
Document Clustering Using TextRank and
Wikipedia Based Semantic Analyser

AUTHORS
Yemin Sajid, ID: 144412

Md. Ariful Islam, ID: 144416

A Thesis submitted to the Academic Faculty in Partial Fulfillment of the
Requirements for the Degree of

Bachelor of Science in Computer Science and

Engineering

Department of Computer Science and Engineering
Islamic University of Technology

Bangladesh

Document Clustering Using TextRank and Wikipedia
Based Semantic Analyser

Islamic University of Technology

Prepared by
Yemin Sajid - 144412

Md. Ariful Islam - 144416

Supervised by
Dr. Abu Raihan Mostafa Kamal

Professor
Department of Computer Science and Engineering

Islamic University of Technology

1

Declaration of Authorship

This is to certify that the work presented in this thesis is the outcome of the analysis and investigations
carried out by Yemin Sajid and Md. Ariful Islam in the Academic Year 2017-2018, under the supervision
of Dr. Abu Raihan Mostofa Kamal, Professor at the Department of Computer Science and Engineering
(CSE), Islamic University of Technology (IUT), Gazipur, Bangladesh. It is also declared that neither this
thesis nor any part of this thesis has been submitted anywhere else for any degree or diploma. Information
derived from the published and unpublished work of others has been acknowledged in the text and a list
of references is given.

Authors

 ____________________ ____________________

 ​ Yemin Sajid ​​ ​Md. Ariful Islam
 ID: 144412 ID: 144416

Dr. Abu Raihan Mostofa Kamal
Professor

Department of Computer Science and Engineering
Islamic University of Technology

Board Bazar, Gazipur-1704, Bangladesh

2

Introduction 5

Problem Statement 5

Research Challenge 6

Related Research 7

Automatic Keyphrase Extraction: A Survey of the State of the Art 8
Introduction 8
Factors of Corpora 8
Keyphrase Extraction Approaches 9
Evaluation: 12

Evaluation Metrics 12
Evaluation Techniques : 12
The State of the Art 13

Analysis 13
Error Analysis 13
Recommendations 13
Conclusion and Future Directions 13

TextRank: Bringing Order into Texts 14
Introduction 14
The TextRank Mode 14
Undirected Graphs 15
Weighted Graphs 15
Text as a Graph 16
TextRank for Keyword Extraction 16
Evaluation 18
Why TextRank Works 18
Conclusion 19
Review 19

Computing Semantic Relatedness using Wikipedia-based Explicit Semantic Analysis 20
Introduction 20
Explicit Semantic Analysis 20
Evaluation and Result 22
Related Work 23
Conclusion 24
Review 25

Text Document Clustering on the basis of Inter passage approach by using K-means 26

3

Introduction 26
Algorithm For Clustering of Text Document 26
Result 28
Conclusion 31
Review 31

Proposal 32

Details 32

Experiment 36

Result 40

Result Analysis 42

Conclusion 43

References 44

4

Introduction
Document Clustering is an important tool for many Information Retrieval (IR) tasks. Document clustering
is particularly useful in many applications such as automatic categorization of documents, grouping
search engine results, building a taxonomy of documents, and others. Generally speaking, text document
clustering methods attempt to segregate the documents into groups where each group represents some
topic that is different than those topics represented by the other groups. The huge increase in amount of
information present on web poses new challenges in clustering regarding to underlying data model and
nature of clustering algorithm. Any clustering technique relies on concepts such as a data representation
model, a similarity measure, a cluster model, a clustering algorithm.

The contribution of this report is as follows. First, we state the problem statement, and address the
problem we want to solve. Second, we mention the research challenges we will face to solve what is
stated in the problem statement. Also related researches are mentioned, where we cover some of the
related researches in this area. Third, we present an approach to document clustering along with the result
analysis. And also some future directions that can be taken to improve the current approach of organizing
the articles.

Problem Statement
Articles like “New Iphone Announcement” and “Google’s Newest Phone” are similar. On the other hand
“X has been elected as the new Mayor” and “Election 2018” are similar. We can naturally find this
connection that clusters these 4 articles into 2 distinguishable groups. But
with the enormous success of the Information Society and the World Wide Web, the amount of textual
electronic information available has significantly increased when given an enormous amount of articles,
this become almost impossible to do it manually.

Medium, a social content sharing platform has over 60 million monthly readers. Everyday, thousands of
people turn to Medium to publish their ideas and perspectives. And the number of article posted is
increasing exponentially. In 2015, number of medium posts published was 1.9 million. Where, in 2016, it
reached 7.5 million. That make a 140,000 number of stories written weekly in 2016.

This illustrates the enormous success of the textual electronic article in the World Wide Web. But if these
articles are not properly channeled and clustered, it is almost impossible to consume the information. But
at the same time, it is impossible to do this manually. Hence, comes the need for automated solution.

5

Research Challenge
Generally speaking, to organize the documents in separate groups it involves keyphrase extraction,
semantic relatedness between keyphrases and clustering algorithm to cluster the in a group.

To break it down, an article can be composed on any topic. So we need a way to understand each article
of what is written about. Keyword/keyphrase plays an important role here to understand the topic of the
article. Basically a keyword/keyphrase of a document to words/phrases that seem to have higher
importance in that particular document. As a result, keyword/keyphrase potentially hold the title and the
topic of the whole document. So once we understand the keyword or key phrase of an article, we can tell
what the article is written about.

Once we get the key phrases of all the corpus, we now have to find out that which articles are related to
which of them. For that we need to find the semantic relatedness between the keyphrases hence finding
the relatedness between the articles.

After calculating the semantic relatedness between the keywords/key phrases, we then have to cluster the
semantically related articles together. Thus we will have different clusters of topic, separated from each
other. Each cluster will contain only those articles, those who are semantically related. That means, the
articles that shares similar topic will be grouped together and will be separated from other topic group.
Thus organizing the massive collection of articles based on topics and making it easier for the consumer
to access these articles.

So to wrap it up, the following are the research challenges that we have -

1. Keyword/Keyphrase extraction​ from the article.
2. Finding ​Semantic Relatedness​ between the Keyphrases.
3. Clustering​ the articles based on the semantic relatedness.

6

Related Research
As stated earlier, in order to cluster the articles, we had to go through Keyword/Keyphrase extraction,
Semantic Relatedness and also Clustering algorithm. This section will cover some of the major relative
researches in these respected fields. So followings are the summary of some of the major relative
researches that was reviewed in the field of Keyword/Keyphrase extraction, Semantic Relatedness and
Document Clustering algorithm.

For related research done in Keyword/Keyphrase extraction we have summarized these following
research -

1. Automatic Keyphrase Extraction: A Survey of the State of the Art.
2. TextRank: Bringing Order into Texts.

And for research in the field of Semantic Relatedness, we have summarized -

 3. Computing Semantic Relatedness using Wikipedia-based Explicit Semantic Analysis.

And finally for document clustering, we have summarized -

 4. Text Document Clustering on the basis of Inter passage approach by using K-means.

Summary of these mentioned researches are as follows -

7

Automatic Keyphrase Extraction: A Survey of the State of the
Art

Kazi Saidul Hasan ​​and ​Vincent Ng
(2014)

Introduction

Automatic Keyphrase extraction concerns the automatic selection of ​Important ​​and ​Topical ​​phrases
from the body of a document.

Application:

● Natural Language Processing
● Information Retrieval

Text summarization, Text categorization, Opinion mining, Document Indexing

Factors of Corpora

1. Length : ​​Increasing length means more candidate keyphrases.
2. Structural consistency: ​​Lack of structural consistency renders structural information less useful.
3. Topic change: ​​Conversation, chats tend to change the topic.
4. Topic correlation: ​​Uncorrelated topics (in conversation and chats) increase the difficulty of

keyphrase extraction.

8

Keyphrase Extraction Approaches

Two step process:

1. Selecting Candidate Words and Phrases: ​​Heuristics like - using a stop word list to remove stop
words, certain part of speech tags like noun adjectives verbs, allowing n-grams that appear in
Wikipedia, extracting from that those satisfy pre-defined lexico-syntax

2. Selecting Correct Keyword from the Candidates: ​​using Supervised and Unsupervised
approaches.

Supervised Approach

It focuses on two issues:

1. Task Reformulation:​​ Early approach was binary classification. The goal is to train a classifier on
documents annotated with keyphrases to determine whether a candidate phrase is a keyphrase.
Algorithm: Naive Bayes, Decision trees, Bagging, Boosting, Maximum entropy, multi-layer
perceptron, SVM.

Weakness: cannot determine which keyphrase is more suitable.

Solution: Ranking approach by making a ranker learn to rank two candidate keyphrase.

 2. ​ Feature Design: ​​Divided in two categories:

 A. Within-Collection Features: Within the training document. Further divided into three types.

I. Statistical features: tf*idf - frequency of appearance in the document and inverse document.
Distance - number of words preceding and total words ratio. Supervised Keyphraseness -
occurrence in the training set. Phrase length and spread.

II. Structural features: where the candidate is located.
III. Syntactic features: Syntactic patterns of a keyphrase PoS tags, suffix sequence. Not very useful.

 B. External Resource_based Features: Outside the training document - lexical knowledge bases
(wikipedia), web.

Wikipedia based keyphraseness is computed as a canditated’s document frequency * number of wikipedia
link appearance and total appearance.
Another feature is appearance in the query log of search engine.

9

Another feature is semantically relatedness. Coherence features.

Unsupervised Approach

Four groups:

1. ​Graph-Based Ranking: ​​A candidate is important if it is related to a large number of candidates and
candidates that are important.

Basic idea is - to build a graph from the input document and rank its nodes according to their importance.
Each node is a candidate and edges are relatedness. Edges are weighted based on the syntactic and/or
semantic relevance. Top ranked candidates are selected. TextRank is well know in this area.

Drawback: Does not guarantee that all the main topics will be represented.

2. ​Topic Based Clustering: ​​Grouping the keyphrases in topics. Potential keyphrase should be
comprehensive in a sense that they should cover all the main topics in a document. Here are three
approaches of this.

I. KeyCluster: Clusters semantically similar candidates using wikipedia and co-occurrence-based
statistics. Each cluster is a topic. Candidates close to the centroid of each are potential keyphrases
to cover the document.

Performs better than TextRank.

Drawback: gives equal importance to all the cluster i.e. topics.

II. Topical PageRank: Runs TextRank multiple times; once for each of topics. Final score of a
candidate - sum of its scores for each of the topics, weighted by the probability of that topic in the
document.

Performs better that tf*idf and TextRank.

10

III. CommunityCluster: This cluster gives more weight to more important topics. But unlike TPR it
extract all candidate keyphrases from an important topic assuming that even if the focus is little, it
is still under that important topic.

3. ​Simultaneous Learning:​​ Simultaneous summarization and keyphrase extraction as they can
potentially benefit from each other. Because,

I. An important sentence is connected to other important sentences.
II. An important word is linked to other important words.

Based on these two assumption S-S, bipartite S-W and W-W graph is constructed.

The weight of an edge in -

I. S-S graph corresponds to their content similarity.
II. S-W graph denotes the word’s importance in the sentence it appears.

III. W-W graph co-occurrence or knowledge-based similarity between two words.

Top-scored words are used to form keyphrase.

Drawback: keywords may not cover all important topics. TopicClustering can be used on W-W graph to
solve the problem.

4. ​Language Modeling:

Scored based on ​Phraseness ​​and ​Informativeness​​. The values are estimated using Language Models
trained on ​foreground ​​(set of document from which keyphrases are to be extracted)​ ​​and ​background
(general knowledge about the world, web)​ ​​corpus.

Unigram LM and n-gram LM constructed respectively.

Phraseness, defined using the foreground LM, is calculated as the loss of information incurred as a result
of assuming a unigram LM instead of a n-gram LM.

Informativeness is computed as the loss that results because of the assumption that the candidate is
sampled from the background LM rather than the foreground LM.

The loss values are computed using KullbackLeibler divergence.

LMA uses language models instead of heuristics. Language model is trained on the background corpus to
determine how unique a candidate keyphrase is to the domain represented by the foreground corpus.

11

Evaluation:

Evaluation Metrics
Designing evaluation metrics for keyphrase extraction is by no means an easy task. To score the output of
a keyphrase extraction system, the typical approach, which is also adopted by the SemEval-2010 shared
task on keyphrase extraction, is

1. to create a mapping between the key-phrases in the gold standard and those in the system output
using exact match, and then

2. Score the output using evaluation metrics such as precision (P), recall (R), and F-score (F).

Evaluation Techniques :
● Exact match
● Human evaluation
● Predictions

12

The State of the Art

Analysis
With the goal of providing directions for future work, we identify the errors commonly made by
state-of-the-art key-phrase extractors below.

Error Analysis
● Over-generation errors
● Infrequency errors
● Redundancy errors
● Evaluation errors

Recommendations
We recommend that background knowledge be extracted from external lexical databases (e.g., YAGO2
(Suchanek et al., 2007), Freebase (Bollacker et al., 2008), BabelNet (Navigli and Ponzetto, 2012)) to
address the four types of errors discussed above.

Conclusion and Future Directions
1. Incorporating background knowledge.
2. Handling long documents.
3. Improving evaluation schemes.

13

TextRank: Bringing Order into Texts
Rada Mihalcea ​​and ​Paul Tarau

(2004)

Introduction
A graph-based ranking algorithm is a way of deciding on the importance of a vertex within a graph, by
taking into account global information recursively computed from the entire graph, rather than relying
only on local vertex-specific information.

Applying a similar line of thinking to lexical or semantic graphs extracted from natural language
documents, results in a graph-based ranking model that can be applied to a variety of natural language
processing applications, where knowledge drawn from an entire text is used in making local
ranking/selection decisions. Such text-oriented ranking methods can be applied to tasks ranging from
automated extraction of keyphrases, to extractive summarization and word sense disambiguation.

We introduce the TextRank graph-based ranking model for graphs extracted from natural language texts.
We investigate and evaluate the application of TextRank to two language processing tasks consisting of
unsupervised keyword and sentence extraction, and show that the results obtained with TextRank are
competitive with state-of-the-art systems developed in these areas.

The TextRank Mode
The basic idea implemented by a graph-based ranking model is that of “voting” or “recommendation”.
When one vertex links to another one, it is basically casting a vote for that other vertex. The higher the
number of votes that are cast for a vertex, the higher the importance of the vertex. Moreover, the
importance of the vertex casting the vote determines how important the vote itself is, and this information
is also taken into account by the ranking model.

Formally, let be a directed graph with the set of vertices and set of edges , where is (V ,)G = E V E E
a subset of . For a given vertex , let be the set of vertices that point to it (predecessors), × VV V i n(V)I i
and let be the set of vertices that vertex points to (successors). The score of a vertex isut(V)O i V i V i
defined as follow-

14

Starting from arbitrary values assigned to each node in the graph, the computation iterates until
convergence below a given threshold is achieved. After running the algorithm, a score is associated with
each vertex, which represents the “importance” of the vertex within the graph. Notice that the final values
obtained after TextRank runs to completion are not affected by the choice of the initial value, only the
number of iterations to convergence may be different.

Undirected Graphs
For loosely connected graphs, with the number of edges proportional with the number of vertices,
undirected graphs tend to have more gradual convergence curves.Figure 1 plots the convergence curves
for a randomly generated graph with 250 vertices and 250 edges, for a convergence threshold of 0.0001.
As the connectivity of the graph increases (i.e. larger number of edges), convergence is usually achieved
after fewer iterations, and the convergence curves for directed and undirected graphs practically overlap.

Weighted Graphs
It is unusual for a page to include multiple or partial links to another page, so the graph is unweighted.
Buti n our model the graphs are build from natural language texts, and may include multiple or partial
links between the units (vertices) that are extracted from text. It may be therefore useful to indicate and
incorporate into the model the “strength” of the connection between two vertices and as a weightV i V j

added to the corresponding edge that connects the two vertices. So, we introduce a new formula forW ij
graph-based ranking that takes into account edge weight-

 Figure 1 plots the convergence curves for the same sample graph that was used, with random weights in
the interval 0–10 added to the edges. While the final vertex scores (and therefore rankings) differ
significantly as compared to their unweighted alternatives, the number of iterations to convergence and
the shape of the convergence curves is almost identical for weighted and unweighted graph.

15

Figure: Convergence curves for graph-based ranking: directed/undirected, weighted/unweighted graph,

250 vertices, 250 edges.

Text as a Graph
To enable the application of graph-based ranking algorithms to natural language texts, we have to build a
graph that represents the text, and interconnects words or other text entities with meaningful relation.
Regardless of the type and characteristics of the elements added to the graph, the application of
graph-based ranking algorithms to natural language texts consists of the following main step-

1. Identify text units that best define the task at hand, and add them as vertices in the graph.
2. Identify relations that connect such text units, and use these relations to draw edges between

vertices in the graph. Edges can be directed or undirected, weighted or unweighted.
3. Iterate the graph-based ranking algorithm until convergence.
4. Sort vertices based on their final score. Use the values attached to each vertex for

ranking/selection decisions.

TextRank for Keyword Extraction
The TextRank keyword extraction algorithm is fully unsupervised, and proceeds as follows-

1. First the text is tokenized, and annotated with part of speech tags – a preprocessing step required
to enable the application of syntactic filters.To avoid excessive growth of the graph size we

16

consider only single words as candidates for addition to the graph, with multi-word keywords
being eventually reconstructed in the post-processing phase.

2. All lexical units that pass the syntactic filter are added to the graph, and an edge is added between
those lexical units that co-occur within a window of word.N

3. After the graph is constructed (undirected unweighted graph), the score associated with each
vertex is set to an initial value of 1, and the ranking algorithm described in previous section, is
run on the graph for several iterations until it converges – usually for 20-30 iterations, at a
threshold of 0.0001.

4. Once a final score is obtained for each vertex in the graph, vertices are sorted in reversed order of
their score, and the top vertices in the ranking are retained for post-processing.T

For the data used in our experiments, which consists of relatively short abstracts, is set to a third of theT
number of vertices in the graph. Figure shows a sample graph built for an abstract from our test
collection.

Figure: Sample graph build for keyphrase extraction from an Inspec abstract

Evaluation
The data set used in the experiments is a collection of 500 abstracts from the Inspec database, and the
corresponding manually assigned keyword. The same test data set as used in the keyword extraction

17

experiments reported in (Hulth, 2003). In her experiments, Hulth is using a total of 2000 abstracts,
divided into 1000 for training, 500 for development, and 500 for test. Since our approach is completely
unsupervised, no training/development data is required, and we are only using the test document for
evaluation purposes.

Table: Results for automatic keyword extraction using TextRank or supervised learning (Hulth, 2003)

The results are evaluated using precision, recall, and F-measure. Overall, TextRank system leads to an
F-measure higher than any of the previously proposed systems. Notice that TextRank is completely
unsupervised, and unlike other supervised systems, it relies exclusively on information drawn from the
text itself, which makes it easily portable to other text collections, domains, and languages.

Why TextRank Works
Intuitively, TextRank works well because it does not only rely on the local context of a text unit (vertex),
but rather it takes into account information recursively drawn from the entire text (graph). Through the
graphs it builds on texts, TextRank identifies connections between various entities in a text, and
implements the concept of recommendation. A text unit recommends other related text units, and the
strength of the recommendation is recursively computed based on the importance of the units making the
recommendation. For instance, in the keyphrase extraction application, co-occurring words recommend
each other as important, and it is the common context that enables the identification of connections
between words in text.

Through its iterative mechanism, TextRank goes beyond simple graph connectivity, and it is able to score
text units based also on the “importance” of other text units they link to. The text units selected by
TextRank for a given application are the ones most recommended by related text units in the text, with
preference given to the recommendations made most influential ones, i.e. the ones that are in turn highly
recommended by other related units.

18

The underlying hypothesis is that in a cohesive text fragment, related text units tend to form a “Web” of
connections that approximates the model humans build about a given context in the process of discourse
understanding.

Conclusion
In this paper, we introduced TextRank – a graph-based ranking model for text processing, and show how
it can be successfully used for natural language application and which performs competitively with that of
previously proposed state-of-the-art algorithms. An important aspect of TextRank is that it does not
require deep linguistic knowledge, nor domain or language specific annotated corpora, which makes it
highly portable to other domains, genres, or language.

Review
Here, we can see that-

1. TextRank achieves better better result though being completely unsupervised.
2. It relies exclusively on information drawn from the text itself.
3. So it does not require deep linguistic knowledge, nor domain or language specific annotated

corpora.
4. As a result, it easily portable to other text collections, domains, and languages.

Computing Semantic Relatedness using Wikipedia-based
Explicit Semantic Analysis

Evgeniy Gabrilovich​​ and ​Shaul Markovitch

(2007)

19

Introduction

It has long been recognized that in order to process natural language, computers require access to vast
amounts of common-sense and domain-specific world knowledge. However, prior work on semantic
relatedness was based on purely statistical techniques that did not make use of background knowledge or
on lexical resources that incorporate very limited knowledge about the world.

This paper proposes a novel method called, Explicit Semantic Analysis (ESA) for fine-grained semantic
representation of unrestricted natural language texts. This method represents meaning in a
high-dimensional space of natural concepts derived from Wikipedia.

Explicit Semantic Analysis

We represents texts as a weighted mixture of a predetermined set of natural concepts, which are defined
by humans themselves and can be easily explained. To achieve this aim, they have used concepts defined
by Wikipedia articles. The advantages can be listed as-

1. It uses of vast amounts of highly organized human knowledge encoded in Wikipedia.
2. Wikipedia undergoes constant development so its breadth and depth steadily increase over time.

20

They have used machine learning techniques to build a semantic interpreter that maps fragments of
natural language text into a weighted sequence of ​Wikipedia concepts​ ordered by their relevance to the
input.This way, input texts are represented as weighted vectors of concepts, called ​interpretation vectors​.
Computing semantic relatedness of texts then amounts to comparing their vectors in the space defined by
the concepts, for example, using the cosine metric.

To speed up semantic interpretation, they have built an inverted
index, which maps each word into a list of concepts in which it appears. They also used the inverted index
to discard insignificant associations between words and concepts by removing those concepts whose
weights for a given word are too low.

Let T = {wi} be input text, and let vi be its TFIDF vector, where vi is the weight of word wi. Let kj be an
inverted index entry for word wi, where kj quantifies the strength of association of word wi with
Wikipedia concept cj, {cj ∈ c1, . . . , cN} (where N is the total number of Wikipedia (concepts). Then,
the semantic interpretation vector V for text T is a vector of length N, in which the weight of each concept
cj is defined as wi∈T vi · kj. Entries of this vector reflect the relevance of the corresponding concepts to
text T. To compute semantic relatedness of a pair of text fragments we compare their vectors using the
cosine metric.

Figure 1 illustrates the process of Wikipedia-based semantic interpretation.

21

Figure 1: Semantic interpreter

Evaluation and Result

In this work, we use two such datasets, which are to the best of our knowledge the largest publicly
available collections of their kind. To assess word relatedness, we use the WordSimilarity-353 collection.
And for document similarity, we used a collection of 50 documents from the Australian Broadcasting
Corporation’s news mail service.

22

The following table shows the results of applying our methodology to estimating relatedness of individual
words.

Table: Computing word relatedness

Table: Computing text relatedness

Related Work

Prior work in the field pursued three main directions: comparing text fragments as bags of words in vector
space, using lexical resources, and using Latent Semantic Analysis (LSA).

1. The former technique is the simplest, but performs sub-optimally when the texts to be compared
share few words, for instance, when the texts use synonyms to convey similar messages. This
technique is also trivially inappropriate for comparing individual words.

2. Lexical databases such as WordNet or Roget’s Thesaurus encode relations between words such as
synonymy, hypernymy. The obvious drawback of this approach is that creation of lexical
resources requires lexicographic expertise as well as a lot of time and effort, and consequently
such resources cover only a small fragment of the language lexicon. Specifically, such resources
contain few proper names, neologisms, slang, and domain-specific technical terms. Furthermore,
these resources have strong lexical orientation and mainly contain information about individual

23

words but little world knowledge in general.

3. On the other hand, LSA is a purely statistical technique, which leverages word co occurrence
information from a large unlabeled corpus of text. LSA does not rely on any human-organized
knowledge; rather, it “learns” its representation by applying Singular Value Decomposition
(SVD) to the words-by-documents cooccurrence matrix.

WordNet-based techniques are similar to ESA in that both approaches manipulate a collection of
concepts. There are, however, several important differences. These are,

1. WordNet-based methods are inherently limited to individual words, and their adaptation for
comparing longer texts requires an extra level of sophistication. In contrast, our method treats
both words and texts in essentially the same way.

2. Second, considering words in context allows our approach to perform word sense disambiguation
(see Table 3). Using WordNet cannot achieve disambiguation, since information about synsets is
limited to a few words (gloss); in both ODP and Wikipedia concept are associated with huge
amounts of text.

3. Finally, even for individual words, ESA provides much more sophisticated mapping of words to
concepts, through the analysis of the large bodies of texts associated with concepts.

Conclusion
We use Wikipedia and the ODP, the largest knowledge repositories of their kind, which contain hundreds
of thousands of human-defined concepts and provide a cornucopia of information about each concept.
Our approach is called Explicit Semantic Analysis, since it uses concepts explicitly defined and described
by humans.

Compared to LSA, which only uses statistical co occurrence information, our methodology explicitly uses
the knowledge collected and organized by humans. Compared to lexical resources such as WordNet, our
methodology leverages knowledge bases that are orders of magnitude larger and more comprehensive.

24

Review

Explicit Semantic Analysis uses concepts explicitly defined and described by humans

1. ESA performs better than trivial algorithms.
2. Using Wikipedia is superior than using WordNet due to its massive collection highly organized

human knowledge.

25

Text Document Clustering on the basis of Inter passage
approach by using K-means

Rupesh Kumar Mishra​​,​ Kanika Saini Kanika Saini ​​and​ Sakshi Bagri
(2015)

Introduction

Document clustering usually deals with clustering of documents that revolve around a single topic. To
achieve more efficient clustering results, it is important to consider the fact that a document may deal with
more than one topic. This research work proposes a new inter-passage based clustering technique which
will cluster the segment of the documents on the basis of similarities. The input will be the collection of
documents consisting of multi topic segments taken from web. SentiWordNet has been used to calculate
the segment score of the segments within the documents. Based upon the segment score segment based
clustering is performed on the intra-document level. Once done with intra-document segment based
clustering then k-means approach is applied to the entire collection of documents to perform
inter-document clustering in which the similar segments of various documents will be clustered under a
single cluster.

The approach in brief-

1. Here we assume that each document consists of multiple topic segments.
2. After preprocessing, using tfidf and SentiWordNet score, important keywords regarding each

segment are identified.
3. Then next, the overall segment score is computed which is the representative score of that

segment and by using this segment score, K-means is applied on the segments for inter document
clustering.

Algorithm For Clustering of Text Document

In this section, the algorithm for clustering of text documents is discussed in detail.

A. Data set used
They have assumed that the document consists of multi topic segments. We have used a total of

26

365 documents for clustering of documents from 20 Newsgroups.

B. Initial Preprocessing and Cleaning
Stop words removal and stemming is performed on the data set to obtain the key features or key
terms.

C. Identifying the keywords of each segment
To identify the keywords, they used the overall score of words computed using the tfidf score and
sentiment polarity score.

f (t) (Number of times term t appears in a document)/(T otal number of terms in the document)t =
df (t) n (T otal number of documents / Number of documents with term t in it)i = l
f df tf idft − i = *
eyword score(W) tf idf (W)× P olarity Score (W)K i = i i

D. Restructuring the content of segment according to the keywords identified

After identifying the keywords of each and every segment, we identify the words whose score is
nearby to the keywords using the following formula. Threshold is used to determine the
relatedness.

entenceScore (S) [keywordScore (W) Score(W)]/nS i = i + i

E. Calculating the segment score
After successful restructuring of the contents of the segment, we’ll calculate the overall segment
score. This score is calculated by averaging the score of all the words in the segment.The segment
score of the segment is the representative score of the keyword.

egmentScore (S) Score of all words in the segment)/(T otal number of words in the segment) S = (

In case, if in a document there are segments which are similar to each other, then these segments
will be combined together and a new segment score will be assigned to the segment which will be
the average of the score of the segments.

F. Apply k-means on these segments
K-means clustering is applied on the segments by using their representative segment score. The
following steps are carried out-

a. Choose k segments randomly as initial seeds.
b. Repeat the following steps until clusters become stable that is there is no change in the

cluster means score.
i. According to the score of the initial seeds selected, assign each segment to the

clusters having scores nearby to it.

27

ii. Update the cluster means score.

Result
Results have been summarized in table 1 and 2 from 365 newsgroup dataset. Table 1 summarizes the
score of the keywords in each and every segment. Keywords are identified on the basis of tfidf and
SentiWordNet score. Table 2 determines the cluster mean score and the number of cluster formed during
inter document clustering.

28

Table: Representative Keyword and score of segments

29

Table: Cluster mean score when K=3

30

Conclusion
The approach which they have employed for clustering of text documents provides promising result and
takes into account the tfi*df as well as SentiWordNet score. This approach helps in considering the word
count as well as the SentiWordNet score of that word in the segment which can be useful for systematic
organization of documents with the availability of large amount of documents.

This technique can be applied to web data as huge amount of web data available as there is a need for
proper organization of web data. We can also extend this work by using more efficient and effective
clustering approach other than K-means for clustering of documents.

Review
Here they have used tfidf and SenttWordNet score for measuring the relatedness and also K-means
algorithm for clustering of the documents. From the previous papers that we reviewed, it states that
although the technique used in ESA using Wikipedia and WordNet based are same, there are some key
differences which makes ESA using Wikipedia superior. Those are -

1. First, WordNet-based methods are inherently limited to individual words, and their adaptation for
comparing longer texts requires an extra level of sophistication. In contrast, our method treats
both words and texts in essentially the same way.

2. Second, considering words in context allows our approach to perform word sense disambiguation.
Using WordNet cannot achieve disambiguation, since information about synsets is limited to a
few words (gloss); in both ODP and Wikipedia concept are associated with huge amounts of text.

3. Finally, even for individual words, ESA provides much more sophisticated mapping of words to
concepts, through the analysis of the large bodies of texts associated with concepts.

31

Proposal
For document clustering, most of the work takes the leverage of Bagging approach for the
Keyword/Keyphrase extraction and WordNet techniques for semantic relatedness measure. However the
mentioned research articles that we mentioned established that unsupervised approach for
Keyword/Keyphrase extraction performs much better than that of supervised approach.

And for semantic relatedness, Wikipedia-based ESA performs significantly better than that of WordNet.
Wikipedia-based ESA uses of vast amounts of highly organized human knowledge encoded in Wikipedia.
Wikipedia undergoes constant development so its breadth and depth steadily increase over time.

So, in this research, we propose a document clustering method for article clustering that uses TextRank
for the important Keyword/Keyphrase extraction and then those keywords are used to calculate the
semantic relatedness in between the articles. That way we will find out which articles are related to which.
And then finally, with this use of article-article similarity matrix, we will cluster the similar articles in a
single group. Thus forming different clusters for different topic of the articles and organizes the articles in
the better and efficient way.

And because we are using TextRank for keyword extraction and Wikipedia-based ESA for semantic
relatedness, this procedure should produce promising outcome because of the higher performance.

Details
To organize the documents in separate groups it involves keyphrase extraction, semantic relatedness
between keyphrases and clustering algorithm to cluster the in a group. In this section, we propose a
method to cluster the article based on their similarity measures. Here, we describe the algorithm in detail.

1. Dataset Used
We’ve collected dataset from the online news website. Among them are- Time, The
Guardian(UK, AUS), NYDailyNews, Cricbuzz

2. Extracting the Keywords
To extract the Keywords, we have used TextRank, a Graph-based Keyword extraction technique.
This algorithm extracts the keyword based on its importance in the document.

Basically it builds a graph from the input document and rank its nodes according to their
importance. Each node is a candidate and edges are relatedness. Edges are weighted based on the
syntactic and/or semantic relevance. This way, every possible Keyword is scored.

32

Figure: Graph model using TextRank.

3. Candidate Keyword Selection
Generally, TextRank pick the top one third of the keyword based on their score. But we have used
one fifth of the size of the words in a text.

4. Calculating the Semantic Relatedness
After extracting Keywords for each of the article, semantic relatedness between every articleK i
is measured. For two document, the score is generated by aggregating the relatedness score
between the selected candidate keywords of the two article and then it is normalized to 0 to 1. The
formula is -

The following illustrates the process of article relatedness scoring

33

 Figure: Finding article relatedness using TextRank and Wikipedia-based ESA

5. Similarity Matrix
From the previous step, a similarity Matrix of is generated where, is the number of × NN N
articles. Here, is the relatedness score between news article and news article .i,)(j i j

6. Thresholding
In this step, we use threshold to define the relatedness between the two article. Any two article are
related if they have relatedness score higher than a threshold value, . If the relatedness score isU
above the threshold value, we have set it to 1. And if it is below, it is set to 0. So it can be
represented as-

34

Here we have experimented with threshold value of 0.001-0.006 and through result analysis, we
have selected 0.006 as our threshold value. Note that this threshold value can be domain specific.

7. Clustering
After thresholding the articles are clustered from the similarity matrix. To make effective
clustering we can use FACADE (Fast and Automatic Clustering Approach to Data Engineering)
algorithm. It is a K-NN based algorithm and has a complexity of .(nlog(n))O

Experiment

35

● Firstly we’ve collected articles of two topics sports and crime.
● Then we’ve made an ideal relation matrix of 30x30 of these documents.
● Then we’ve extracted keyphrases from each topics and stored in a .csv formatted file for later

steps.

import​​ csv
import​​ sys
import​​ codecs

from​​ textrank ​import​​ extract_key_phrases

"""

Keyword Extraction using Textrank algorithm

"""

version compatibility shim!

if​​ sys.hexversion < ​0x3000000​:
Python 2.x

 ​def​​ ​opencsv​​(f): ​return​​ open(f, mode=​"rb"​)
else​​:
Python 3.x

 ​def​​ ​opencsv​​(f): ​return​​ open(f, newline=​""​)

keywords = open(​'keywords.csv'​, ​'w+'​)

for​​ i ​in​​ range(​61​, ​91​):
 article_f = codecs.open(

 'articles_reuters/all_articles/'​ + str(i), encoding=​'utf-8'​)
 article = article_f.read()

 article = article.replace(​r'[^A-Za-z0-9\s\.]'​, ​''​)
 keys = extract_key_phrases(article)

 keys = str(list(keys)).replace(

 '-'​, ​' '​).replace(​"u'"​, ​"'"​).replace(​', '​, ​'-'​)

 keywords.write(​'{},{}\n'​.format(i, str(keys)))

 ​print​​ i

36

● Then we’ve used the previous ‘keywords.csv’ file and calculated the semantic relatedness of each
document

import​​ csv
import​​ sys
import​​ json
import​​ math
import​​ itertools

from​​ Wiki_ESA.cunning_linguistics ​import​​ SemanticAnalyser

semantic_analyser = SemanticAnalyser()

RESULT_FILE_NAME = ​'result.csv'

version compatibility shim!

if​​ sys.hexversion < ​0x3000000​:
 ​# Python 2.x
 ​def​​ ​opencsv​​(f): ​return​​ open(f, mode=​"rb"​)
else​​:
 ​# Python 3.x
 ​def​​ ​opencsv​​(f): ​return​​ open(f, newline=​""​)

result_file = open(RESULT_FILE_NAME, ​'w+'​)

"""

Semantic Analysis using Wikipedia Explicit Semantic Analysis

"""

adding header

for​​ i ​in​​ range(​1​, ​30​):
 result_file.write(​','​+str(i))

result_file.write(​'\n'​)

inf = opencsv(​"keywords.csv"​)

articles = list(csv.reader(inf))

37

i = ​1
for​​ article1 ​in​​ articles:

 result_file.write(str(i))

 ​for​​ j ​in​​ range(i): ​# padding
 result_file.write(​','​)

 ​for​​ article2 ​in​​ articles:
 ​# rel(a,a) not necessary and rel(a,b) = rel(b,a)
 ​if​​ article1[​0​] >= article2[​0​]:
 ​continue
 ​# cleaning data to feed into json decoder
 json_data = ​'{ "data" : %s }'​ % article1[​1​].replace(
 ​'-'​, ​','​).replace(​"'"​, ​'"'​)
 article1_keys = json.loads(json_data)

 json_data = ​'{ "data" : %s }'​ % article2[​1​].replace(
 ​'-'​, ​','​).replace(​"'"​, ​'"'​)
 article2_keys = json.loads(json_data)

 total_cosine_similarity = ​0
 key_count = ​0

 key1_w = len(article1_keys[​'data'​])
 key2_w = len(article2_keys[​'data'​])

 ​for​​ key ​in​​ article1_keys[​'data'​]:
 key2_w = len(article2_keys[​'data'​])
 ​for​​ key2 ​in​​ article2_keys[​'data'​]:
 ​try​​:
 cs = semantic_analyser.cosine_similarity(key, key2)

 ​if​​ math.isnan(cs):
 ​continue
 total_cosine_similarity += cs * (key1_w + key2_w)

 key_count += key1_w + key2_w

 ​except​​ RuntimeWarning ​as​​ e:
 ​print​​ key, key2

38

 key2_w -= ​1

 key1_w -= ​1

 is_related = ​1​ ​if​​ float(
 total_cosine_similarity / key_count) > THRESHOLD ​else​​ ​0

 ​print​​ article1[​0​], article2[​0​],total_cosine_similarity / key_count

 result_file.write(​',{}'​.format(total_cosine_similarity / key_count))

 i = i+​1
 result_file.write(​'\n'​)

result_file.close()

● Then we’ve analysed the result file to check with our predefined relation

matrix.
● We calculate the effectiveness by taking the difference between of these two

matrices and normalising the number of ones in the whole matrix by 100%.

39

Result

40

Generated output (after thresholding with 0.006)

Desired Output

41

Result Analysis
We’ve got best result by thresholding by 0.006.
144 errors out of 450 relations.

The error rate is 32.44 %

Figure : Indication of errors

42

Conclusion
We can easily notice huge scopes of improvements in the current approach. The result of this approach
depends heavily on the TextRank and ESA algorithm. We can use more updated Wikipedia data dump,
pre process the documents for better results.

This approach can give better results if optimises for a specific domain.

Another important factor is the article itself. Some article can be under certain topic and the topic related
key-terms are not mentioned. Although it can be easily clustered with manual domain specific knowledge,
it is challenging for automated system for clustering.

Also the inter-relations between the keywords can be used to build a hierarchical organisation of the
documents in future.

43

References

Cui, Weiwei, et al. “TextFlow: Towards Better Understanding of Evolving Topics in Text.” ​IEEE

Transactions on Visualization and Computer Graphics​, vol. 17, no. 12, 2011, pp. 2412–2421.,

doi:10.1109/tvcg.2011.239.

Hasan, Kazi Saidul, and Vincent Ng. “Automatic Keyphrase Extraction: A Survey of the State of the

Art.” ​Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics

(Volume 1: Long Papers)​, 2014, doi:10.3115/v1/p14-1119.

Huang, Anna, et al. “Clustering Documents Using a Wikipedia-Based Concept Representation.” ​Advances

in Knowledge Discovery and Data Mining Lecture Notes in Computer Science​, 2009, pp.

628–636., doi:10.1007/978-3-642-01307-2_62.

Kang, Yin, et al. “An Integrated Method for Hierarchy Construction of Domain-Specific Terms.” ​2014

IEEE/ACIS 13th International Conference on Computer and Information Science (ICIS)​, 2014,

doi:10.1109/icis.2014.6912181.

Kaur, Bhavneet, and Sushma Jain. “Keyword Extraction Using Machine Learning Approaches.” ​2017 3rd

International Conference on Advances in Computing,Communication & Automation

(ICACCA) (Fall)​, 2017, doi:10.1109/icaccaf.2017.8344699.

Kulathunga, Chalitha, and D.d. Karunaratne. “An Ontology-Based and Domain Specific Clustering

Methodology for Financial Documents.” ​2017 Seventeenth International Conference on Advances

in ICT for Emerging Regions (ICTer)​, 2017, doi:10.1109/icter.2017.8257786.

Merrouni, Zakariae Alami, et al. “Automatic Keyphrase Extraction: An Overview of the State of the Art.”

2016 4th IEEE International Colloquium on Information Science and Technology (CiSt)​, 2016,

doi:10.1109/cist.2016.7805062.

Puustjarvi, J., and L. Puustjarvi. “Using Semantic Web Technologies in Visualizing Medicinal

44

Vocabularies.” ​2008 IEEE 8th International Conference on Computer and Information Technology

Workshops​, 2008, doi:10.1109/cit.2008.workshops.19.

Rose, Stuart, et al. “Automatic Keyword Extraction from Individual Documents.” ​Text Mining​, Apr.

2010, pp. 1–20., doi:10.1002/9780470689646.ch1.

Shah, Neepa, and Sunita Mahajan. “Semantic Based Document Clustering: A Detailed Review.”

International Journal of Computer Applications​, vol. 52, no. 5, 2012, pp. 42–52.,

doi:10.5120/8202-1598.

Song, Yangqiu, et al. “Automatic Taxonomy Construction from Keywords via Scalable Bayesian Rose

Trees.” ​IEEE Transactions on Knowledge and Data Engineering​, vol. 27, no. 7, Jan. 2015, pp.

1861–1874., doi:10.1109/tkde.2015.2397432.

Zhao, Dexin, et al. “Keyword Extraction for Social Media Short Text.” ​2017 14th Web Information

Systems and Applications Conference (WISA)​, 2017, doi:10.1109/wisa.2017.12.

Gabrilovich, Evgeniy, and Shaul Markovitch. "Computing semantic relatedness using wikipedia-based

explicit semantic analysis." In ​IJcAI​, vol. 7, pp. 1606-1611. 2007.

45

