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Abstract 

 

Rapid decline of fossil fuel reserves and rise of average global temperature has compelled 

energy scientists to look for non-conventional energy sources, preferably environment 

friendly and renewable in nature. Among the renewable sources, wind and photovoltaic based 

energy conversion processes are capturing recent interests. As the input to these two kinds of 

energy conversion processes are highly unpredictable, incorporation of energy storage device 

becomes imperative for uninterruptible power supply. However, considering hybrid 

renewable power generation for fulfilling load demand, arbitrary mixing among participating 

generating units could result in non-profitable outcome for power supplying entities. Hence, 

in this work, an optimal sizing of a Wind-Photovoltaic-Battery system has been suggested 

using a hybrid single objective optimization (SOO) method integrating a genetic algorithm 

(GA) and grey wolf optimizer (GWO) in phase one and in phase two a multi-objective 

optimization (MOO) method integrating a non-dominant sorting Genetic Algorithm (NSGA) 

II and the Grey wolf optimizer (GWO) is proposed. In the SOO phase the population 

undergoes cross-over and mutation and then the population is updated according to GWO. In 

the MOO phase the population of each generation of NSGA II is passed through the GWO 

before they are allowed to crossover and mutate in order to increase the probability of 

avoiding local minima. A comparative analysis of the performance of the applied hybrid 

algorithm with NSGA II and multi-objective Particle Swarm Optimization (MOPSO) has 

been carried out in phase two and the hybrid SOO algorithm in phase one is compared with 

GA. The analysis shows that the applied hybrid algorithms show better performance 

compared to the other existing algorithms in terms of convergence speed, obtaining global 

minima, lower mean (for minimization objective) and a higher standard deviation. 
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Chapter 1: Introduction 

1.1 The need of alternative sources of energy 

The world has seen a rapid development in the field of technologies in the last decade. The 

population is also on the rise as usual. It is reported by [1] that the world energy demand will 

see a rise of about 53% by the year 2035. The increased population and advanced 

technologies have drastically increased the energy consumption. Energy consumption have 

specially escalated in buildings due to the following reasons [2] 

 Population growth 

 More times spent indoors 

 Increased demand for building functions 

 Indoor environment quality 

 Global climate change 

And in order to meet these increased energy demands, we are heavily dependent on the non-

renewable energy sources like coal, fuels, generators, oil, etc. But these sources of energy not 

only harm our environment but are also diminishing rapidly. The popular non-renewable 

sources like oil, gas and coal will roughly last for another 40, 60 and 200 years respectively 

[3]. Authors in [4] claim that the present situation is most likely unsustainable and is further 

aggravated due to resource scarcity. The declination in oil is substantially worsening the 

water problems, and this gradually increases energy problems. Authors in [5] claim that 

renewable energies are one of the main reasons of global warming and solar energy has the 

greatest potential to solve energy and water problems. Generation of electricity from fossil 

fuels, transportation and industrial processes are increasing CO2 . Studies [6] show that non-

renewable energy consumption increases the emission of CO2  and on the other hand the 

consumption of renewable energy decreases the CO2 emission. Due to the increased demand 

of electricity, nuclear sources of energy are being considered now-a-days to act as a source of 

energy. But this will cause huge emission of CO2. So definitely nuclear sources can‟t be 

considered as ideal sources of energy. Photovoltaics, on the other hand is green in nature and 

have the full potential to replace nuclear power [7]. So in order to meet the demand in energy 

it is needed to have [8] 

 Reliable 
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 Cost-effective 

 Everlasting 

source of energy, which is, without a doubt renewable in nature and it is claimed that solar 

energy is the best in this aspect.  

1.2 Literature Review 

1.2.1 Hybrid Renewable Energy System  

 

So it is high time researchers focused on renewable sources of energy rather than non-

renewable sources. Some of the popular renewable sources of energy are: 

 Biomass 

 Hydropower 

 Geothermal 

 Wind 

 Solar 

It is reported by [9] that the average annual direct normal solar radiation from the sun on the 

horizontal surface of the earth varies from 800 
2/W m  to higher than 1000 

2/W m . Wind 

energy is another popular form of energy and it is less expensive, sustainable, safe and 

pollution free [3]. However, the unpredictable nature of these renewable sources in their 

output makes them expensive which necessitates the use of more than one sources of energy 

in order to complement each other. Such a system is known as Hybrid Renewable Energy 

System (HRES). A stand-alone HRES provides much reliable outcome in comparison to a 

single source based system in terms of cost and efficiency [10]. HRES is gaining popularity 

specially in the remote areas due to rise in prices of petroleum products [11]. 

1.2.2 HRES Combinations 

 

There can be a number of combinations of a HRES. In 2006, authors in [12] used wind, 

photovoltaic and fuel cell (FC) generation system for satisfying load of a typical home in the 

Pacific Northwest. In this system hydrogen storage tank was used as the energy storage 

system. Other studies where a similar combination was used were in [13-16]. But because of 
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the high initial cost of the hydrogen tank and the need of FC makes the system expensive 

[17]. Another popular combination is the use of PV, wind and diesel generator (DG). 

Different authors in [18-21] opted for this combination and in most of the cases battery 

system was used as the energy storage device. Some other combinations like Photovoltaic 

(PV), Wind Turbine (WT) and Biomass (BM) was applied in [22] and PV, WT, Hydro 

Generator (HG), BM and Biogas (BG) was applied by the authors in [23]. However, various 

studies [24, 25] prove that, photovoltaic (PV), wind turbine (WT) and battery system (BS) is 

the most economical and environment friendly combination. Authors in [26] have proven 

using seven different optimization techniques that hybrid PV-WT-BS is the most cost 

effective combination for outlying areas  compared to PV-BS, WT-BS and PV-WT 

configurations. 

1.2.3 Sizing of HRES 

 

Sizing of HRES is a very complicated issue. While an oversized HRES can easily satisfy the 

load demand, it is unnecessarily expensive, on the other side; an undersized HRES is 

economical but very often fails to satisfy the load demand. Thus an optimum sizing of HRES 

is expected and it depends on the mathematical model of the system components [27]. There 

are a lot of sizing techniques available in the literature. Some of the sizing methodologies are 

described below [28]: 

 Software tools 

 Evolutionary algorithms 

 Nature inspired algorithms 

 Linear programming 

 Dynamic programming 

 Iterative and probabilistic approach 

 Matrix approach 

 Design space based approach 

A lot of software tools are available for this sizing methodology of HRES. However, the most 

popular software in this field is Hybrid Optimization Model for Electric Renewables 

(HOMER) which was developed by National Renewable Energy Laboratory (NREL), United 

States [29]. A lot of researchers used HOMER as the sizing tool in their design of HRES. The 
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use of HOMER can be found in [30-34]. But besides HOMER there are other similar 

software tools like 

 The General Algebraic Modeling System  (GAMS) [35] 

 Optimization of Renewable Intermittent Energies with Hydrogen for Autonomous 

Electrification (ORIENTE) [36] 

 Determining Optimum Integration of RES (DOIRES) [37] 

 Grid-connected Renewable Hybrid Systems Optimization  (GRHYSO) [38] 

Evolutionary and nature inspired algorithms are probably the most used approach in the field 

of any kind of optimization. These algorithms are originated either from some evolutionary 

processes or from some nature inspired approaches. These processes are then carefully 

mathematically modelled to generate an optimization algorithm which can be applied in 

almost any optimization problem by making the necessary modifications. Among the 

evolutionary algorithms, probably the most popular is the Genetic Algorithm (GA) [39]. The 

application of GA can be found in a lot of research papers and articles like [40-44]. Among 

the nature inspired algorithms, Particle Swarm Optimization (PSO) is found very popular in 

the literature. The application of PSO has been made by the authors in [45-48]. Another 

recent nature inspired algorithm, which made some promising results, is Grey Wolf 

Optimizer (GWO). GWO was developed by Mirjalili et al in [49]. The use of GWO in the 

field of HRES is not so prominent due to the fact that the algorithm is very new. However, 

very recently, in 2019 GWO has been used by the authors in [50] for the sizing approach of 

their design. 

The use of other sizing algorithms is also available in literature, but they are not so popular in 

comparison to the discussed approaches. In the field of HRES, researchers in the recent years 

opt for various optimization algorithms. It is due to the fact that artificial and hybrid methods 

can often identify the global optimum system and they also have a better convergence 

probability [51]. So in this study GA and GWO will be hybridized to create a hybrid Single 

Objective Optimization (SOO) and Non-dominated Sorting Genetic Algorithm (NSGA) and 

GWO will be hybridized to create a hybrid Multi Objective Optimization (MOO). 
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1.2.4 Single Objective Optimization (SOO) 

 

An optimization problem is termed as SOO when the problem needs only one objective 

function to be satisfied. The objective function will contain a number of optimizing 

parameters which will be linked with each other with the help of the objective function. It is a 

common phenomenon that each optimizing parameter will/may have its own constraints. 

Surveying the literature, a lot of works in this field can be found. GA is one of the most 

popular approaches with the researchers in this particular aspect. In 2006 Koutroulis et al. 

applied GA in [40] in order to size the parameters of a HRES keeping the load satisfied at all 

time. Later in 2008 a similar work was presented in [41] where the authors incorporated the 

variation of weather in the load demand while keeping the Loss of Power Supply Probability 

(LPSP) zero. In 2014 another work was presented by the authors in [52] where a 

methodology for optimal sizing design and strategy control based on differential flatness 

approach was applied to a stand-alone wind-PV system. The algorithm applied in this study 

was also GA. Nature inspired algorithms like PSO has also been used by authors in [53] for 

reducing the Levelized Cost of Energy (LCE). PSO was also applied in [19] where the HRES 

consisted of diesel, PV, wind and battery storage cell. Other algorithms like Mine Blast 

Algorithm (MBA) was used in [13] to solve the optimal sizing of a hybrid system consisting 

of photovoltaic modules, wind turbines and fuel cells (PV/WT/FC) to meet a certain load of 

remote area in Egypt. Ant Colony Optimization (ACO) is another popular nature inspired 

algorithm that was employed in [54] for sizing and performance analysis of a standalone 

HES. 

1.2.5 Multi Objective Optimization (MOO) 

 

An optimization problem is termed as MOO when it is required to simultaneously satisfy 

more than one objective function. In this approach it is needed that the objective functions 

have an inverse relation with each other. So the optimizing algorithm tries to find the point 

where both the objective functions are simultaneously minimum (for minimizing problem) or 

simultaneously maximum (for maximizing problem). It may also happen that it is needed to 

maximize some objective functions and minimize the rest. The optimizing parameters are 

also interlinked with each other by these objective functions. Studies in [55] shows that MOO 

provides a better flexibility to the designers in selecting the most optimal solution. In this 
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aspect MOO has been carried out by authors in [56] where both Annual Cost System (ACS) 

and LPSP were minimized applying multi objective genetic algorithm. In 2015, Azadeh et al. 

in [24] employed Non Dominated Sorting Algorithm-II (NSGA-II) in order to achieve 

minimum system cost and maximum reliability. Recently Authors in [57] applied hybrid GA-

PSO for SOO and multi objective PSO (MOPSO) for MOO in order to minimize the total 

present cost and Loss of Load Expected (LOLE). However, none of the previous studies had 

performed a comparative analysis of the results obtained with other multi-objective 

algorithms. 

1.3 Thesis objectives 

 

i. To propose a hybrid optimization algorithm for wind-photovoltaic-battery hybrid 

renewable energy system which ensures a zero loss of power supply probability 

(LPSP) and makes the system cost effective. 

ii. To conduct a comparative study among several proposed hybrid optimization 

algorithms for wind-photovoltaic-battery based hybrid renewable energy system. 

1.4 Organization of this thesis 

 

Chapter two introduces the mathematical of the HRES consisting of PV, WT and batteries. 

Each component of the hybrid model is explained along with its mathematical model. In the 

later part of this chapter the objective function is formulated which is based on LPSP. 

Chapter three discusses the SOO namely GA and GWO. The detailed explanation of these 

algorithms is presented along with the associated mathematical formulae. The two SOO are 

then hybridized to generate a single algorithm. The hybrid algorithm is presented in a 

flowchart and discussed in details. 

In chapter four MOO algorithms are discussed. NSGA and NSGA-II are introduced with 

detailed mathematical formulae with the help of flowcharts and equations. The NSGA-II is 

then hybridized with GWO to create a hybrid MOO algorithm. This algorithm is explained 

with the help of a flowchart. 
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The algorithms introduced in chapter three and four are put to test and the results and in depth 

analysis is presented in chapter five. The results are analysed with the help of various graphs 

and tables and the chapter concludes by discussing various aspects of these algorithms. 

Chapter six basically contains the summary of all the previous chapters and provides future 

direction for further exploration in this field. 
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Chapter 2: Mathematical Model of HRES and 

Objective Function Formulation 

 

The studied HRES consists of WT, PV and batteries are used as storage component. The 

chapter begins by showing how these components are interconnected to each other. Further 

these components are introduced along with their mathematical formulae. The specifications 

of these components for this study are also presented. At the end of this chapter the objective 

function is presented which is based on LPSP.  

Whenever multiple sources of energy are deployed to generate electric power, the system is 

termed as hybrid renewable energy system (HRES). Both renewable and non-renewable 

sources of energy can be used to create a HRES. However, HRES mainly focuses on the use 

of renewable sources of energy since this concept came with the view to replacing the non-

renewable sources of energy. Unlike the non-renewable sources of energy, renewable sources 

are unpredictable and thus this necessitates the use of multiple sources in order to bring 

stability in the system. Undoubtedly a system consisting of multiple energy sources provides 

much more reliability in terms of cost and efficiency in comparison to a system consisting of 

a single source of energy [10, 58]. Besides, HRES employing renewable sources of energy 

are gaining popularity especially in the remote areas due to the inflation in prices of 

petroleum products [11].  Different sources of energy like HG, geothermal, BM, BG, WT, 

solar energy utilized in PV cells, hydrogen, nuclear and fossil fuels along with an energy 

storage system are used by researchers in various parts of the world. The literature review 

suggests that PV-WT-BS is the most cost effective combination among all of them. 
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Fig. 2.1:  A PV-WT-BS hybrid renewable energy system. 

In this study, the HRES consists of two sources of energy which are wind generator and 

photovoltaic cells and as an energy storage system, a battery is employed.  Each of the 

components is discussed below: 

2.1 Wind turbine model 

Any wind turbine may be selected for the HRES. However, the type of chosen wind turbine 

should be analysed based on the non-linear power characteristics curve provided by the 

manufacturer of the specific wind turbine. A typical power characteristic curve is presented to 

provide some insight in understanding the behaviour of a wind turbine. 
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Fig. 2.2: Wind turbine power output characteristics 

From Fig. 2.2 it is obvious that wind speed of a particular site plays a vital role for generating 

power. The wind speed at a reference height (approximately 33m) of the site under study, can 

be obtained from the Typical Meteorological Year (TMY) data. Based on the study by [59], 

the specific power output, wP (W/m
2
), depends on the wind speed of that particular site and is 

expressed by  

3
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the WG respectively. rP  denotes the rated power. Cut in, rated and cut out speed of the wind 

turbine can be found from the manufacturer of the selected turbine [60].  In order to 

implement the above equation, the velocity of wind at hub height is needed. In order to find 

the velocity we use the following equation[61]  
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In equation 2.2, 
rv  and v  are the wind speed at the reference height and hub height 

respectively,   is the power law coefficient, h  is the WG installation height and 
rh  is the 

reference height. 

From [41] it can be concluded that the value of  is less than 0.10 for very flat land, water 

and ice and is more than 0.25 for a heavily forested landscape. For this study  is taken to be 

0.14, because the site considered is almost like an open terrain of grasslands and [62] 

suggests that it is a good approximation for such an area. So incorporating all the above facts, 

it can be finally concluded that the actual electric power output as obtained from a wind 

turbine is represented by 

WG w WG wGP P A                     (2.3) 

where WGP  is the power produced by the WGs, WGA  is the total swept area of a WG and wG  

is the efficiency of WG and the corresponding converters. The details of the considered WT 

are given in the Table 2.1.[63]  

Table 2.1: Specification of the WG 

Power (W) 
lowh  (m) highh  (m) WG capital cost ($) Tower capital cost 

($/unit length) 

1000 11 40 2400 55 

 

2.2 Photovoltaic (PV) module model 

This is the second source of renewable energy which is employed in this study. It is to be 

noted here that electricity generation of PV modules are dependent on solar radiation and thus 

are not capable of producing any power at night. Besides solar radiation, other factors like 

ambient temperature and irradiation conditions influence the power generation of PV 

modules and these conditions differ from modules to modules. The manufacturer of the PV 

modules provide these data for the Standard Test Conditions (STC) (cell temperature at 25 

C and solar irradiance of 1 kW/m
2
). Incorporating these data from the manufacturer, the 

output power of a PV module at a given time is found out from the following equation [40]  
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               (2.4) 

In equation 2.4, PVP  is the power produced by PV modules, t  is a particular time (hour in this 

study),   is the tilt angle of the PV modules, 
SN  and PN  are the number of PV modules 

connected in series and parallel respectively, 
OCV  and 

SCI  represent the open circuit voltage 

and short circuit current of a PV module respectively, FF  is the fill factor which is the ratio 

of the actual maximum obtainable power to the product of the open circuit voltage and short 

circuit current, VK  and IK  are the open circuit voltage temperature coefficient and short 

circuit current temperature coefficient respectively, G  represents the global solar irradiance 

on a PV module, AT  is the ambient temperature and NCOT  is the nominal cell operating 

temperature. 

From equation 2.4 it is evident that we need the value of global solar irradiance which is 

incident on the PV module. Though hourly global irradiation on a horizontal plane can be 

found from the data seta of meteorological year (TMY), it is not sufficient for this study since 

the PV modules are not placed horizontally. For a tilted PV module, the solar irradiance is 

decomposed into beam and diffuse components. So we need both of these components in 

order to get our resultant global solar irradiance. Tk is the hourly clearness index and it gives 

the ratio of beam (G) and diffuse (D) components. The correlation between 
G

D
 and Tk is 

given by the following expression [64-67]  
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           (2.5) 

The site under study is in New Zealand which is located in the southern hemisphere and thus 

it is obvious that the PV modules will be facing true north at some fixed angle. bR is a 

geometric factor which is the ratio of beam radiation on a tilted surface to that on a horizontal 

surface at any time. bR is given by the following equation [64]  
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


                (2.6) 

 

 

Fig. 2.3: Angles related to the sun  

To understand the angles associated in equation 2.6 let us take a look at Fig. 2.3.   is the 

latitude of the site,   is the tilt angle of the PV module. From Fig. 2.3 it can be seen that the 

PV module is tilted at   degree from the horizontal surface.   is the hour angle, which is 

the angular displacement of the sun east or west of the local meridian due to rotation of the 

earth on its axis at 15
o 

per hour. The hour angle is positive in the afternoon and vice versa. 

The angle between the vertical and the line to the sun is represented by z  and is known as 
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the zenith angle.   is the declination of the sun i.e the angular position of the sun at solar 

noon with respect to the plane of the equator. The angle of declination is considered to be 

positive in the northern hemisphere and negative in the southern hemisphere and it varies 

from -23.45
o 
to 23.45

o
. The declination angle is represented by equation 2.7. 

284
23.45sin 360

365

n


 
  

 
                  (2.7) 

In equation 2.7, n  is the day of the year. For example, for a random date of 17
th

 January, the 

value of n  is 17 and for 16
th

 March, the value is 75. 

Now incorporating the tilt angle of the PV module, the total hourly global radiation can be 

found by [64] 
 

1 cos 1 cos
( , ) ( )

2 2
b gG t G D R D G

 
 

    
      

   
              (2.8) 

In equation 2.8 g  is the ground reflectance and bR  is obtained from equation 2.6. 

Finally incorporating efficiency the total output power follows the following expression 

( , ) ( , )array PV S P PVP t N N P t                    (2.9)
 

where PV is the PV-module‟s and related converter‟s efficiency [60]. It is to be noted that in 

the present study the numbers of PV modules in series is determined by the magnitude of the 

DC bus voltage whereas the numbers of parallel PV modules is obtained from the 

optimization algorithm. 

The details of the considered PV module are given in Table 2.2.[63] 

Table 2.2: Specification of the PV module 

OCV (V) SCI (A) maxV (V) maxI (A) maxP (W) Capital cost ($) 

64.8 6.24 54.7 5.86 320 640 

 

2.3 Battery Model 

As mentioned earlier, the chosen sources of energy are inconsistent with nature. So it is very 

obvious that sometimes the generated electricity is more than the current demand and 
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sometimes it is less than the required load. In order to maintain a steady state of operation, it 

is therefore needed to have an energy storage system which will store the surplus energy and 

provide energy when the production is below the required load. Signifying that the battery 

will charge and discharge based on the situation. For this phenomenon, state of charge (SOC) 

plays a very important role. For knowing the current SOC of a battery, knowledge on three 

things are needed: initial SOC, the charge/discharge time and the current flowing. From [41] 

the SOC at a particular instance can be represented by equation 2.10. 

 
( ). ..

( ) 1 . 1
24

bat bat

bat

I t tt
SOC t SOC t

C

  
    

 
             (2.10) 

where   is the self-discharge rate  of a battery, batI  is the battery current, batC  is the nominal 

capacity of a battery and bat  is the battery charging efficiency. 

According to [41]   depends on the accumulated charge and in this study the value is 

assumed to be 0.2% per day [68], charging efficiency is set to 0.8 and discharging efficiency 

is assumed to be 1 in accordance to the study in [41].  

While discharging, the battery cannot be allowed to be completely empty as this drastically 

reduces the battery longevity. Authors in [69] suggest that life of a battery can be extended by 

avoiding overcharge and critical discharge. So the minimum permissible limit of the battery 

is given by 

min nC DOD C                   (2.11) 

where nC  is the total capacity of the connected batteries and the maximum depth of discharge 

(DOD) is to be given by the system engineer and typically it is expressed in percentage. In 

order to calculate the capacity of the battery bank in equation 2.11, we need to know the 

number of batteries connected in parallel since the batteries connected in series depend on the 

DC bus voltage and is given by 

BUS
Sbat

bat

V
N

V
                   (2.12) 

In equation 2.12, SbatN  gives the number of batteries connected in series, BUSV  is the DC bus 

voltage and batV  is the nominal voltage of each individual battery. 
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Thus capacity of the battery bank is now given by 

n Pbat batC N C                   (2.13) 

where 
PbatN  is the number of batteries connected in parallel. To visualize the connection of 

the batteries in series and parallel, let us take a look at Fig. 2.4. 

 

Fig. 2.4 Batteries connected in series and parallel 

It is to be noted that number of batteries in parallel is one of the optimizing parameters since 

the number of batteries in series can be readily obtained from the bus voltage. The total 

number of batteries of course depends on both the series and parallel connected batteries and 

is given by equation 2.14. 

bat Sbat PbatN N N                   (2.14) 

where batN  represents the total number of batteries in the system.  

So finally, the current obtained from the battery due to its incorporation with PV and WG, as 

can be seen from Fig.2.1, is given by the equation 2.15 
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                (2.15) 

The details of the considered battery model are given in the following table [63]. 

Table 2.3: Specification of the battery model 

Price ($) Voltage (V) Capacity (A h) 

1239 12 357 

 

2.4 Objective function formulation based on Loss of Power 

Supply Probability (LPSP) 

 

There is a probability that the Hybrid model under study may sometimes be unable to satisfy 

the load demand in order to be economically viable, such probability is defined as loss of 

power supply probability (LPSP) [70]. The value of LPSP can vary from zero to one. An 

LPSP of zero signifies the utmost reliability of a model meaning that the load will always be 

satisfied and on the contrary, an LPSP of zero means that the load will never be satisfied. 

LPSP is governed by the following equation [41] 

    
0 0

T T

available Load

t t

Loss of Power SupplyTime Time P t P t

LPSP
T T

 



 
 

          (2.16) 

For calculating LPSP from equation 2.16 two more factors are needed to be considered. One 

is the load demand  LoadP t  at a particular time period which can readily be obtained from 

the load demand file of the site under study, and the other factor is the available power

 availableP t  from the hybrid model at that particular time period. In equation 2.16, T  is the 

total number of hours in a given year and 
0

T

t

Loss of Power SupplyTime


  represents the 

summation of all the hours during which the available power was less than the demand. The 

available power at a particular instant from an HRES consisting of PV, WG and battery is 

given by equation 2.17 [41]  
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         (2.17) 

In the equation 2.17 C is a constant and min 1SOC DOD   [41].When the battery is charging 

the value of C is zero and one for the discharging process. It is to be noted that the analysis is 

done on hourly basis and so the numerical values of power is equal to energy. 

The main aim of this study is to reduce the cost of the HRES. This objective is carried out in 

two phases. In the first phase LPSP is kept at zero, which ensures maximum reliability and 

then calculating the cost, resulting in an SOO. Since the LPSP is kept at zero, so there is only 

one objective function which is equation 2.18 and thus it becomes an SOO. In the second 

phase both LPSP and cost are allowed to vary so as to provide a designer a greater flexibility 

in terms of financial aspect, resulting in an MOO. In this phase, the objective is to minimize 

both equation 2.16 and 2.18, thus there is more than one objective to satisfy and so is termed 

as MOO. 

In this study, the lifetime of the HRES under study is assumed to be 20 years and the 

associated costs not only include the initial set up cost of the PV, WG and batteries, but also 

the maintenance cost throughout its life span. According to [40], the objective function is 

given by 

   
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Subject to the constraints 
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                  (2.19) 

In equation 2.18, PVN , WGN  and batN  are the number of PV modules, WGs and batteries 

respectively, PVC , WGC  and batC  are the capital cost of a PV module, WG and battery 

respectively, PVM , WGM  and batM  are the annual maintenance cost of a PV module, WG and 
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battery respectively, 
hC  is the capital cost per unit height of WG tower, 

hM  is the yearly 

maintenance cost per unit height of a WG tower and 
baty  is the expected number of battery 

replacements during the life of HRES. 

Thus in phase one, the focus is only on equation no. 2.18, keeping LPSP equal to zero and in 

phase two, the target is to minimize both LPSP and total cost of the HRES. In order to 

decrease the value of LPSP it is needed to increase the value of 
availableP  in equation 2.16. 

From equation 2.17 it is understood that increasing the values of pvP  and
WGP  will increase 

the value of
availableP , but on the contrary this will result in an increase in the total cost of the 

HRES (from equation 2.18). So it is obvious that equation no. 2.18 and 2.16 are inversely 

proportional to each other and thus it is needed to translate the problem into an MOO. 

2.5 Summary 

 
Thus the HRES is now explained along with the objective functions associated with this 

thesis. It can be well understood that the HRES relies a lot on the climate of the particular site 

where it is implemented. So the incorporation of an energy storage device becomes 

mandatory and this inclusion of battery makes the system expensive. That is why it is very 

important to try and utilize the generated energy in the most economical way possible. 
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Chapter 3: Hybrid GWO-GA SOO  

In this chapter two single objective optimization algorithms namely GA and GWO are 

elaborated. The mathematical equations which are applied in each algorithm along with the 

working principle of these algorithms are also discussed. Finally both the algorithms are 

merged to create a hybrid algorithm. The hybrid algorithm is explained with the help of a 

flowchart at the end of this chapter. 

3.1 Genetic Algorithm (GA) 

Genetic Algorithm (GA) is an evolutionary optimization algorithm which can be applied in 

any domain using computer simulations. This approach mimics the Darwinian principle of 

reproduction and survival of the fittest. And thus the process includes cross-over and 

mutation which is analogous to the naturally occurring genetic operations [71] . This is an 

SOO which initially starts with a number of randomly generated populations from a 

population set. Each population set is termed as chromosome and the variable in a population 

set are known as genes of that chromosome.  

 

Fig. 3.1: Representation of the optimizing parameters as genes in a chromosome 

Then for each chromosome, the algorithm checks if the provided objective function is 

satisfied or not. Before checking the objective functions, the genes of a chromosome are 

required to fulfil any given constraints. Upon satisfaction of the objective function (equation 

2.18 in this study), the probable solutions enter the process of cross-over and mutation. 

3.1.1 Cross-over 

 

 In cross-over operation, any two accepted solutions/chromosomes are chosen randomly to 
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generate two new off-springs which are termed as the next generation of solution. In this 

study we follow the line cross-over and it is expressed by equation 3.1 [72] 

(1 )i i iz x y     for 1:i n                  (3.1) 

where iz  is the offspring chromosome, 
ix  and 

iy  are the parent chromosomes and   is a 

random number between 0 and 1. 

Cross-over plays a significant role in GA. If the cross-over rate is high, newer chromosomes 

are generated more quickly but at the same time newer chromosomes with high performance 

are also discarded quickly in comparison to the improvements provided by the selection rate. 

On the other hand if the cross-over rate is lower, the algorithm will have a much lower 

exploration capability [39]. 

After cross-over, again a randomly accepted solution/chromosome is chosen to undergo the 

mutation process. 

3.1.2 Mutation 

 

Mutation is directly related with the variability of the population, a higher mutation rate 

increases the variability and vice-versa. A lower mutation rate prevents a gene from 

remaining converged to a single value in the entire population set [39]. In this study the 

Gaussian mutation is applied which is governed by equation 3.2 [72] 

(0, )i i iz z N                      (3.2) 

where (0, )iN   is an independent random Gaussian number with a zero mean value and i  is 

the associated standard deviation. Both iz  and  (0, )iN   depend on mutation rate. Mutation 

rate determines how many genes in a chromosome will undergo mutation.  

It is to be noted that not all the chromosomes undergo cross-over and mutation, but only 

some randomly selected chromosomes enter this process. This approach prevents the 

algorithm from being stuck at some local minima (for minimization problems). The off-

springs are then again re-evaluated and thus the process continues. Finally the chromosome 

with the minimum (for minimizing objective functions) value is chosen as the optimum 

solution.  
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3.2 Grey Wolf Optimizer (GWO) 

Grey wolf optimizer is rather a new nature inspired optimization algorithm which was 

proposed by the authors in [49] in 2013. This is also an SOO in nature. This algorithm 

mimics the hierarchy and hunting mechanism of grey wolves (Canis lupus). 

Grey wolves are divided into four classes known as alpha ( g ), beta ( g ), delta ( g ) and 

omega ( g ). The alphas are the leaders of the pack and essentially all the decisions of the 

pack are taken by the alphas. The second in hierarchy are the betas. They basically carry out 

and implement the orders given by the alphas and at the same time advise them in making of 

various decisions. The deltas are the third in hierarchy; they basically follow the orders given 

by the alphas and betas and at the same time dominate the omegas. And finally, the lowest in 

the hierarchy are the omegas who submit to all other wolves.  Social hunting is one of the 

main activities of the grey wolves which basically constitute of three phases [73] 

 Tracking, chasing and approaching the prey 

 Pursuing, harassing and encircling the prey until it stops moving 

 Attack toward the prey. 

These phenomenon which takes place in the pack of grey wolves, are mathematically 

modelled by the authors in [49]. The encircling phase of the pack is given by: 

   

( ) ( )

1 ( )

p

p

D CX t X t

X t X t A D

 

  
                  (3.3) 

where t  is the value of the current iteration, A  and C  are the coefficient vectors which are 

calculated from equation 3.4, X  is the position vector of a grey wolf and pX  is the position 

vector of the prey.  

In equation 3.3 A and C  are calculated as follows 

1

2

2

2

A ar a

C r

 


                    (3.4) 

In equation 3.4, 1r  and 2r  are two random vectors which are in the range of [0, 1] and the 

value of a  is linearly decreased from 2 to 0 over the course of iterations. 
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In the hunting phase of the grey wolves, it is assumed that the alpha, beta and delta wolves 

have the better knowledge about the location of the prey and all other wolves update their 

positions based on the positions of the best search agents (preferably assumed to be the 

alphas). This is again mathematically modelled as follows [49] 
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                  (3.5) 

In equation 3.5, gD  , gD   and gD   are the distances travelled by the g , g  and g  

wolves respectively over the course of time. To visualize all these parameters let us a take a 

look at Fig. 3.1 

 

 

Fig. 3.2: Position updating in GWO [49] 
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From Fig. 3.1 it can be visualized that with the increase in iteration the value of   decreases. 

Here 3 2 1a a   . As the number of iterations increases, the wolves gradually approach the 

prey and encircle it. The wolves finally attack the prey once the prey stops moving. It is to be 

mentioned that the C  parameter is a random vector whose value ranges from two to zero 

[49]. This parameter defines a random radius and provides a random weight for a prey. If the 

value of C is greater than 1 then the wolves emphasize on that particular prey and vice versa. 

In equation 3.5, C  parameters play a significant role in avoiding local optima stagnation. 

3.3 Hybrid GWO-GA Optimization 

In this study GWO and GA algorithm are merged together to generate a hybrid algorithm in 

order to achieve a better result. This study merges two optimization algorithms of different 

nature. GWO is a nature inspired algorithm whereas GA is an evolutionary algorithm. The 

studied flowchart of the algorithm is given in Fig. 3.2. 

In this study, the objective is to attain the minimum cost over the life cycle of the hybrid 

HRES. The objective function is already formulated in Chapter 2 and now the optimization 

algorithm is applied. The algorithm starts by randomly generating the initial parameters, 

setting iteration equal to one and defining certain variables which will be needed throughout 

the algorithm. Provided the maximum number of iteration is not reached, now the algorithm 

enters the phase where each solution set is checked to find the associated cost. According to 

the cost, the position of alpha, beta and delta wolves are updated. This is done in the 

following manner: if the fitness value (associated cost) of a particular set of solution is 

smaller than the cost saved in alpha (alpha score), then the position of alpha is updated with 

that particular set of solution. The condition for updating the beta position is that, the 

associated cost of the set of solution has to be greater than the alpha score but smaller than 

the stored beta score. And similarly for delta, the fitness value has to be greater than the beta 

score and smaller than the stored delta score. The algorithm comes out of this block of code 

once this system is carried out for all the initially declared solutions in the population set. Of 

course before evaluating the cost function, it is checked whether the variables in the 

population set satisfy the given constraints or not. After this, the population is sorted 

according to the fitness value and the first best population of size PG enters the next phase, 

which is basically GA portion of the algorithm. In this phase of the hybrid algorithm, 

crossover and mutation takes place. Before cross-over and mutation, the whole population set  
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Fig. 3.3: Flowchart of hybrid GA-GWO algorithm 

is sorted based on equation 2.18 and the best population of size PG  produces off-springs 

namely PC and PM after cross-over and mutation. All these population sets are now merged to 

generate a bigger set of population which now enters the core portion of the GWO. In this 
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phase, the position of each search agent is updated following equation no. 3.5 and thus the 

whole set of updated population enter the next iteration. 

This process continues until maximum number of iterations is reached and consequently 

displays the best population set with the associated cost. The whole algorithm is depicted in 

Fig. 3.2.  

3.4 Summary 

 
In this chapter LPSP was kept constant at zero and the main focus was on equation 2.18. Two 

single objective algorithms GA and GWO were merged to create a hybrid algorithm with the 

expectation of obtaining a better result. Each algorithm was also explained in detail so as to 

make the hybrid algorithm easily understandable. These algorithms are tested for a load 

profile of Auckland, New Zealand in Chapter 5. 
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Chapter 4: Hybrid NSGA-GWO MOO 

Optimization 

This phase aims at transforming the problem into a multi-objective optimization (MOO) 

problem. In general, a MOO has more than one objective functions and often the objective 

functions are conflicting in nature. It is already mentioned in Section 1.6 that NSGA is one of 

the MOO algorithms which attracted a lot of researchers because it is comparatively easy to 

implement and attains a set of pareto optimal solutions. None of the solutions in pareto-

optimal set can be termed as dominating the others in respect to the given objective functions. 

This decision solely lies on the designer‟s perspective and provides a lot of flexibility in 

determining the best solution from the pareto-optimal set based on the specific 

requirements/conditions.  

4.1 NSGA 

Non-dominated Sorting Algorithm (NSGA) was proposed by the authors in [74] in 1995. 

Since then a few versions of NSGA has already evolved. However, the core algorithm still 

remains the same. NSGA is basically a modified version of GA. It is already mentioned that 

GA is an SOO, so NSGA transforms this SOO into an MOO. The cross-over (Section 3.1.1) 

and the mutation (Section 3.1.2) are same in both the algorithms, but the difference is created 

in the selection process. Before the selection process, the whole population is divided into 

different non-dominated fronts based on each individual‟s non-domination [74]. Further, each 

front is assigned some dummy fitness value and the process continues until all the population 

are divided into various fronts. Finally, at the end of the algorithm, a single front is presented 

as the solution set, which contains a lot of solutions, and all the solutions are termed as 

pareto-optimal solutions.  

Though NSGA is capable in solving multi-objective problems, this algorithm is criticised by 

a lot of researchers due to the following reasons [75] 

 Computational complexity 

 Non-elitism approach 

 The need for specifying a sharing parameter. 

In order to overcome these problems, a new and improved algorithm known as NSGA-II is 

proposed by the authors in [75]. The main difference is created in this algorithm by the 
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introduction of crowding distance operator and introduction of diversity among the non-

dominated solutions [75].  

4.1.1 Non-Dominated sorting 

 

In NSGA-II, the initialized population is sorted based on non-domination. The algorithm is 

depicted in Fig. 4.1. 

 

 

Fig. 4.1: Non-dominated sorting algorithm flowchart 

The steps are elaborated below: 

 ip  is considered as an individual in the main population P which contains N 

individuals. 

 
ipS  contains the set of all individuals which are dominated by ip  and is set to zero. 
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 
ipn  is the number of individuals that dominate 

ip  and is set to zero. 

 jq  is considered as the following individual of 
ip  in the main population P. 

 If 
ip  dominates jq , jq  is added to the set pS .i.e.  

i ip p jS S q   

 Else the domination counter of 
ip  is incremented by one, i.e. 

i ip pn n +1 

 If 
ipn =0 then the rank of individual 

ip  is set to one and 
ip  is added to 1F . F  is the 

set of fronts and 1F  signifies the first front in the system.  1 1 iF F p  

 The above steps are carried out for all the individuals in the main population P. 

 k is the front counter which is initialized to one. 

 The following steps are carried out as long as 
kF  0. 

 Q is the set for storing the individuals for (k+1)
th  

front and is initialized to zero. 

 ip  is an individual in the front kF . 

 jq  is an individual in the set
ipS . 

 The domination count for individual jq  is decremented by one i.e. 
j jq qn n -1. 

 If 
jqn =0 then ( )j rankq =k+1 and the set Q is updated with q i.e. Q=Q  jq . This 

means that none of the individuals in the subsequent fronts would dominate jq . 

 Else if 
jqn  0 then the algorithm moves to the next individual in the set

ipS . 

 The above steps are carried out for all the individuals in the front kF . 

 The front counter is incremented by one and the algorithm continues as long as kF 

0. 

This algorithm sorts the initial population. According to [76] this algorithm makes the 

NSGA-II [75] better and more efficient than the original NSGA [74] since it takes into 

consideration about the set that an individual dominate (
ipS ). 

4.1.2 Crowding distance operator 

 

After non-domination sorting, the population is again sorted based on the crowding distance 

operator. The equation involving the distance update equation is given by [75] 
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   
max min

1 1
( ) ( )k k

m m

I k m I k m
I d I d

f f

  
 


                           (4.1) 

where, 
kd  corresponds to the distance of k

th 
individual in a particular front, I  is the set 

consisting the distances of  all the individuals in a front, ( )I k m is the value of the m th 

objective function of the k
th 

individual in I and  max

mf and min

mf  are respectively the 

maximum and minimum values obtained for the m th 
objective function. 

The algorithm on how a crowding distance operator operates is presented in Fig. 4.2 

 

 

Fig. 4.2 Crowding distance calculation algorithm 

The steps involving the crowding distance algorithm are described below: 

 The algorithm is initialized by setting i=0 and p=0. 

 Let there be z number of fronts where iF  is a front consisting of n individuals. 

 Initialize the distance to be zero for all the individuals in a front where each individual 

is represented by d . So jd  signifies the distance of j th 
 individual in a front. 
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 Let there are a number of objective functions where each objective function is 

represented by m . 

 All the individuals in the front are now sorted based on the selected objective function 

and stored in I . 

 The individuals in the boundary are assigned infinite distance. 

 The variable k is initialized to two (Since the individual in the boundary is already 

assigned one, and k is allowed to increase up-to n-1 as the individual in the other 

boundary is assigned n). 

 The distance for the k
th 

 individual is updated following equation 4.1 

 k is incremented by one and then checked if it is equal to n-1 

 If k=n-1, p is incremented by one, else the value of the next individual is updated. 

 If p is the last objective function, i is incremented by one else the algorithm continues 

for the next objective function. 

 If i=last front, the algorithm stops, else the algorithm moves to the next front and all 

the previous steps are carried out. 

Crowding distance basically finds the Euclidian distance between each individual in a front 

based on the objective functions and the individuals in the boundary are always selected since 

infinite distance is assigned to them. It is to be noted that, in this study, the algorithm used to 

generate the hybrid algorithm is NSGA-II and not NSGA. 

4.2 Hybrid NSGA-GWO Optimization 

GWO is already discussed in Section 3.2. It is to be noted that, though GWO is an SOO, it is 

used in an MOO to generate pareto-optimal solutions. While merging the two algorithms, 

only the “search-agent update” portion of the GWO was utilised and care was taken that none 

of the aspects of NSGA-II were hampered. In this way, both the algorithms preserved their 

individual ingenuity and combinedly generated the result. The proposed flowchart of the 

hybrid algorithm is given in Fig. 4.3. 
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Fig. 4.3: Flowchart of hybrid multi-objective NSGA-GWO algorithm 

The hybrid algorithm commences with the normal initialization of NSGA II [75]. It is to be 

noted here that NSGA II is well known for being able to generate the pareto-optimal solution 

[77]. From Fig. 4.3 it is seen that a random population of P_primary is created and it is a set 

of population consisting of , , ,PV WG batN N N   and h . This population is now sorted based on 

non-domination (Section 4.1.1) and crowding distance operator (Section 4.1.2), and the new 

population is termed as P_primary_sorted.  However, before accessing the core part of 

NSGA algorithm which is cross-over and mutation, the population termed as 

P_primary_sorted is fed to another algorithm known as grey wolf optimizer [49]. GWO 

promises to have a high local optima avoidance probability and better exploration ability. It is 

to be noted that the GWO is declared to be non-initialized because instead of generating a 

random population in GWO, the P_primary_sorted population obtained from the initial 

population set of NSGA II is taken to be the initial population of GWO. Though GWO is an 



 

33 
 

SOO, it produces child population G of the same size as that of the parent population. It is 

due to the fact that, GWO updates the positions of all the search agents and sorts them based 

on the fitness value in each iteration. So the first member in the sorted search agents is 

declared to be the best search agent in each iteration and the process is continued for the 

defined number of iterations. In the hybrid algorithm, instead of taking the best search agent, 

the whole pack of search agents is considered to be the child population and obviously the 

first member remains as the best search agent. Thus the size of child population G remains 

equal to that of the parent population. This child population G, as obtained from GWO is 

added with P_primary_sorted (when iteration=1) or P_quarternary sorted (when iteration>1) 

to create a new population named as P_secondary. P_secondary is now sorted again based on 

non-domination and crowding distance operator to obtain P_tertiary population on which the 

crossover and mutation take place, producing a child population Q. Finally P_quarternary is 

generated which again goes through a similar sorting operation, to produce the population 

P_quarternary_sorted. Provided the algorithm reaches the maximum number of iterations, it 

stops, otherwise the algorithm continues as depicted in Fig. 4.3. So the hybrid algorithm 

preserves the ingenuity of both the algorithms and combines them in order to generate a 

much reliable outcome. 

4.3 Summary 
 

This chapter presented a detailed explanation of the two main features of NSGA-II which are 

non-domination sorting and crowding distance operator. NSGA-II was then merged with 

single objective GWO to create a hybrid multi objective algorithm.   
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Chapter 5: Results and Analysis 

 

This chapter discusses the application of the algorithms discussed in Chapter 5 and Chapter 6. 

The obtained results are analysed in order to find the credibility of the algorithms and a 

comparative analysis is also carried out among the different algorithms. 

5.1 Load profile 

In order to apply the algorithms, demand is necessary. In this study a site located in 

Auckland, New Zealand is chosen because of ease of accessibility of the required load data. It 

is to be noted that the associated values of solar radiation, global solar irradiation and value 

of power law exponent for this location has already been verified by the authors in [63]. 

Hourly house hold load demands were recorded for a complete year and is used as the load 

demand profile for this study in order to analyse the HRES. Hourly household demand was 

obtained from the available typical hourly summer domestic demand of Auckland, New 

Zealand from [78]  and from the number of houses [79]. Fig. 5.1 shows the hourly summer 

household load of a typical day 

 

Fig. 5.1: Hourly load for a typical day 
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5.2 Hybrid GWO-GA for SOO 

 

The developed algorithm in section 3.3 was put to test for the load profile presented in 

section 5.1. GA was also applied for the same load profile to generate a comparative analysis. 

The obtained results were then investigated using SPSS [80]. 

5.2.1 Simulation environment 

 

The load consisted of 8760 hours, which is for a complete year. A total of 30 independent 

runs of the algorithm were carried out. In these 30 independent runs, each run constituted of 

300 iterations so as to ensure a very thorough implementation of the algorithm. That means 

each independent run started with a random set of population and constituted of 300 

iterations. All the adopted algorithms in this work stop once the maximum number of 

iterations is reached. Based on the studies in section 3.1.1 and 3.1.2, the number of 

chromosomes was taken to be 32, natural selection was 0.5, cross-over rate was 0.8 and 

mutation rate was 0.4. 

5.2.2 Obtained results 

The obtained data for both the hybrid GWO-GA and GA are presented in Table 5.1. 

Table 5.1: Descriptives of the cost in $ (Equation 2.18) of the adopted HRES applying GA-

GWO algorithm and GA 

 
GA-GWO Algorithm GA 

Statistic Std. error Statistic Std. Error 

Mean 38019.06 20.65665 39424.70 22.83751 

Median 37997.40  39479.70  

Variance 12800.920  15646.552  

Std. Deviation 113.1411  125.0861  

Minimum 37943.70  39149.70  

Maximum 38429.70  39479.70  

 



 

36 
 

From Table 5.1 it can be seen that the mean of the hybrid algorithm is far less than that of the 

GA (38019.06 to 39424.70). In fact it is about 3.103% better than the value obtained from 

GA. But, then again, only mean cannot justify the superiority of an algorithm. The prime 

objective of the hybrid algorithm in this study is to minimize the cost. So the most important 

fact is what minimum value the algorithm could achieve. From Table 5.1 it is observed that 

the minimum value obtained by the hybrid algorithm is 37943.70 $ and by the GA is 

39149.70 $. This again is 3.08% better than GA. Variance measures how far a data set is 

spread out. GA has a higher variance than the GA-GWO algorithm, signifying that the data 

obtained from GA is more spread out than GA-GWO algorithm. Both standard deviation and 

mean also support this conclusion since standard deviation measures how far the data is 

spread out from the mean value and median gives the middle value of the data set. From 

Table 5.1, both median and standard deviation is higher for the GA. All these conclusions 

signify that GA needs more number of independent runs in order to obtain a reliable result, 

since there is significant difference between the results obtained in each independent run. 

The normality test was also carried out for both the algorithms in order to understand the 

distribution nature of the data in the data set using SPSS and is portrayed in Table 5.2. 

Table 5.2: Normality test of the cost (Equation 2.18) of the adopted HRES employing GA 

and GA-GWO algorithm using KS and SW methods 

 
Kolmogorov-Smirnov (KS) Shapiro-Wilk (SW) 

Statistic df Sig. Statistic df Sig. 

GA-GWO 

Algorithm 
0.509 30 0.00 0.376 30 0.00 

GA 0.503 30 0.00 0.452 30 0.00 

 

There are two types of test of normality. One is the Kolmogorov-Smirnov or more popularly 

KS test and the other is the Shapiro-Wilk test. In both the cases, the importance lies on the 

value of Sig. which is the significance. The null hypothesis states that the data is not 

statistically significantly different from the normal distribution. For both the algorithms, the 

value of significance is less than 0.05 which concludes that the null hypothesis is rejected and 

the data is statistically significantly different from normal distribution. The result is as 
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expected, because the data which are recorded and analysed, are the final costs obtained after 

300 iterations in each independent run. So the costs, all cluster at the lowest possible value 

and there is not much difference between the values in the 30 independent runs. Thus, the 

data is not normally distributed. 

A further analysis of the algorithms were carried out where the best five and the worst five 

values of each algorithm were recorded and is presented in Table 5.3 so as to ensure a better 

credibility of the hybrid algorithm. 

Table 5.3: Best and worst five data of the cost (Equation 2.18) of the adopted HRES applying 

GA and GA-GWO algorithm 

 Independent run number Value ($) 

GA-GWO Algorithm 

Highest 1 

2 

3 

4 

5 

5 

17 

1 

2 

3 

38429.70 

38429.70 

37997.40 

37997.40 

37997.40 

Lowest 

 

1 

2 

3 

4 

5 

30 

22 

16 

15 

29 

37943.70 

37943.70 

37943.70 

37943.70 

37997.40 

GA 

Highest 

 

1 

2 

3 

4 

5 

1 

3 

4 

5 

6 

39479.70 

39479.70 

39479.70 

39479.70 

39479.70 

Lowest 

 

1 

2 

3 

4 

5 

28 

21 

20 

12 

2 

39149.70 

39149.70 

39149.70 

39149.70 

39149.70 
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It is noticed that the cost obtained by the GA does not differ in different independent runs. 

This suggests that GA often tends to get stuck at some local minima rather than going for the 

global minima. But introducing the core part of the GA which is cross-over and mutation, 

into GWO, greatly increases the probability of reaching the global minima.  

From the above analysis, it can now be safely assumed that the hybrid algorithm has a very 

high probability of reaching the global minima and it clearly outperforms the GA in the field 

of HRES. 

Table 5.4: Optimized parameters of the components of the adopted HRES 

Independent run 30 29 5 

PVN  24 8 22 

WGN  3 5 4 

batN  21 22 21 

  13 16 1 

h  35 29 23 

Cost ($) 37943.7 37997.40 38429.7 

 

Table 5.4 shows the number of different optimizing parameters that are needed for the 

implementation of the HRES. It is observed that most of the times the number of battery is 

kept at minimum since it is the most expensive component of the system. However, 

increasing the number of battery just by one can significantly reduce the required number of 

WGs. So if it is possible to design more cost effective batteries, the overall cost can be 

reduced further. 
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5.3 Hybrid NSGA-GWO for MOO 

 

The mentioned hybrid algorithm incorporating non-initialized GWO and NSGA II is applied 

for a load profile of Auckland, New Zealand. In the present study, optimum result of the total 

system cost is obtained while maintaining an LPSP of zero. It is due to the fact that modern 

research should focus on assuring the best quality and thrive to find the minimal cost for 

ensuring that quality. However, there can still be cost constraints and as such this study also 

focuses on the cost obtained by increasing LPSP from zero to one. In order to ensure the 

viability of the hybrid algorithm, NSGA and MOPSO are also applied to the same load 

profile and a comparative study is carried out. The optimum values obtained for each 

independent run from the three algorithms are recorded and analysed using SPSS [80]. 

5.3.1 Simulation environment 

 

The load consisted of 8760 hours, which is for a complete year. 30 independent runs of the 

hybrid algorithm was recorded where each run constituted of 100 iterations. Population size 

was set to 50, cross-over and mutation rate were 0.7 and 0.02 respectively and cross-over and 

mutation percentage were respectively 0.7 and 0.4. 

5.3.2 Obtained results 

 

The descriptives of the results are displayed in Table 5.5. From the table we can see that a 

minimum value of $32797.48 was recorded from the hybrid algorithm where NSGA II 

obtained a slightly higher cost of $33139.64 and MOPSO obtained a higher cost of 

$36512.70. These results confirm that the optimum value achieved by the hybrid algorithm is 

indeed a global minima and is not stuck at some local minima, because the other two 

algorithms also reached a similar (though slightly higher) value. Moreover the normality tests 

of all the three algorithms are carried out using SPSS and the results are demonstrated in 

Table 5.6. 

From Table 5.6 it is observed that the significance value of the hybrid algorithm in both the 

tests is greater than 0.05 and for the other algorithms it is less than 0.05. This confirms the 

fact that the data (optimum costs) obtained from hybrid algorithm is not statistically 

significantly different from normal distribution whereas the data recorded from the other two 
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algorithms are not normally distributed. Since the data is normally distributed and the 

standard deviation of the hybrid algorithm is also higher than NSGA II (Table 5.5), the 

hybrid algorithm explores more extensive area and gives the designer a wider range of 

options. It is to be noted that the standard deviation is not compared with MOPSO because 

the results obtained from MOPSO are not at all competitive with the other algorithms for this 

specific case. The highest (worst) five costs as well as the lowest (best) five costs are also 

documented and are displayed in Table 5.7 

Table 5.5: Descriptives of the cost in $ (Equation 2.18) of the adopted HRES employing 

NSGA-GWO algorithm along with NSGA-II and MOPSO 

 NSGA-GWO 

Algorithm 

NSGA II MOPSO 

Statistic Std. 

Error 

Statistic Std. 

Error 

Statistic Std. Error 

Mean 33871.11 116.4525 33948.51 102.2213 69637.78 5071.5462 

Median 33812.78  33785.08  67215.25  

Variance 406835.86  313475.80  771617454.3  

Std. Deviation 637.8368  559.8891  27778.00  

Minimum 32797.48  33139.64  36512.70  

Maximum 35261.47  34929.67  127670.09  

 

Table 5.6: Normality test of the cost (Equation 2.18) of the adopted HRES using NSGA-

GWO algorithm, NSGA-II and MOPSO using KS and SW methods 

 Kolmogorov-Smirnov Shapiro-Wilk 

Statistic df Sig. Statistic df Sig. 

NSGA-GWO 

Algorithm 

0.116 30 0.200 0.960 30 0.315 

NSGA II 0.170 30 0.026 0.907 30 0.012 

MOPSO 0.174 30 0.021 0.892 30 0.005 
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Table 5.7: Best and worst five data of NSGA-GWO algorithm along with NSGA-II and 

MOPSO 

 Independent run number Value ($) 

NSGA-GWO 

Algorithm 

Highest 1 

2 

3 

4 

5 

3 

16 

28 

23 

21 

35261.47 

35131.18 

35019.92 

34546.88 

34483.75 

Lowest 1 

2 

3 

4 

5 

30 

2 

1 

7 

27 

32797.48 

32820.37 

32820.37 

33003.05 

33205.67 

NSGA II 

Highest 1 

2 

3 

4 

5 

20 

21 

3 

12 

27 

34929.67 

34879.74 

34810.39 

34810.39 

34743.39 

Lowest 1 

2 

3 

4 

5 

11 

23 

26 

6 

5 

33139.64 

33212.46 

33359.79 

33366.01 

33375.19 

MOPSO 

Highest 1 

2 

3 

4 

5 

17 

18 

20 

4 

19 

127670.09 

127670.09 

127670.09 

116709.74 

99690.79 

Lowest 1 

2 

3 

4 

5 

26 

24 

15 

14 

2 

36512.70 

36645.21 

36915.85 

37914.61 

38471.77 
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From these above results it can be clearly stated that the hybrid algorithm outperforms the 

other two algorithms in all aspects. Besides, it also reaches the pareto optimal front in a much 

lower number of iterations than NSGA II. Every optimization algorithm ultimately reaches a 

pareto front where the number of solutions in the set is equal to the initial population. Both 

the hybrid algorithm and NSGA II reached the pareto optimal front where the number of 

solutions were equal to the initial population, but MOPSO, even in 100 iterations could not 

reach a pareto front where the number of solutions were equal to the initial population. The 

number of iterations required to reach the pareto optimal front for both NSGA II and the 

hybrid algorithm is portrayed in Fig. 5.2 

 

Fig. 5.2 (a): Number of iterations required in each independent run to reach the pareto 

optimal front employing NSGA-GWO Algorithm. 
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Fig. 5.2 (b): Number of iterations required in each independent run to reach the pareto 

optimal front employing   NSGA II. 

 

It can be seen from Fig. 5.2 that the minimum number of iterations required by NSGA II to 

reach the optimal front is 12 and that for the hybrid algorithm is 2. It can be explained by the 

fact that a random population is fed to NSGA II for cross-over and mutation but in the hybrid 

algorithm, the updated and sorted population attained from the GWO is fed for cross-over 

and mutation. For this reason the number of iterations required to reach the optimal front 

reduces significantly. It is evident from the above analysis that the hybrid algorithm not only 

ensures global optimum result but also provides a better outcome in comparison to both 

NSGA and MOPSO in the field of HRES. Finally the graph generated by varying both LPSP 

and cost employing the hybrid algorithm as well as NSGA II is given in Fig. 5.3 for a better 

comparative study. From the graph it can be clearly observed that the cost reduces 

significantly once the LPSP is allowed to escalate. Thus the decision now solely rests with 

the designer/company to choose the optimum result based on the requirements and ability of 

the designer/company. 
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Fig. 5.3 (a): Cost versus LPSP graph employing NSGA-GWO Algorithm. 

 

 

Fig. 5.3 (b): Cost versus LPSP graph employing NSGA II. 
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The results obtained so far are, of course, theoretical and the algorithm even considers 

fraction as a result. But for practical implementation, we can‟t have fractional number of 

WTs, PV panels or batteries. So we need to round up the values to the next integer and find 

the corresponding cost. So for practical implementation, the number of WTs, PV panels and 

batteries are rounded up to the next integer for the three best obtained results from the hybrid 

algorithm. The data obtained are displayed in Table 5.8. Though only integers are acceptable 

in this specific optimization problem, the algorithm was allowed to take fractions as well. 

This was done intentionally in order to have an in depth analysis of the studied algorithm. 

Unlike the current problem in hand, a lot of optimizing problems often require/accept 

fractions as solutions. So in order to verify the credibility of the studied hybrid algorithm, it 

was allowed to take even fractions as solutions. 

Table 5.8: Modifications needed for practical implementation 

Independent 

run number 

30 2 7 

 Theoretical Practical Theoretical Practical Theoretical Practical 

PVN  5.4244 6 4.5705 5 5.3778 6 

WGN  4.5978 5 4.9533 5 4.9795 5 

batN  20.9312 21 20.8929 21 20.8996 21 

  19.5281 19.5281 1 1 3.0993 3.0993 

h  38.6184 38.6184 35.2532 35.2532 33.4254 33.4254 

Cost ($) 32797.48 35693.77 32820.37 33815.25 33003.05 33980.08 

 

Independent run number 30, 2 and 7 were among the 5 best independent runs in NSGA-GWO 

algorithm (In Table 5.7). The number of WTs, PV panels and batteries as obtained from the 

algorithm are shown in Table 5.8. But since these numbers cannot be kept as fractions, these 

are rounded up to the next integer and the associated increase in cost is also shown in the 

table. However, the tilt angle   and the height h  are still kept as fractions as these can be 

accepted and implemented in fractional values as well. 
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5.4 Summary 
 

In this chapter all the algorithms were put to test and a detailed analysis of all the algorithms 

has been presented. The studied hybrid algorithms were also compared with the existing 

popular algorithms. It is seen that the hybrid algorithm performed better in all the aspects in 

comparison to the other algorithms. Thus it is expected that these hybrid algorithms, both in 

SOO and MOO will leave a significant impact in the field of optimization of HRES. 
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Chapter 6: Conclusion and Future Research 

Directions 

6.1 Conclusion 

In chapter 1 the present scenario of energy crisis was presented and the need of alternative 

sources of energy was emphasized. A detailed literature review in the field of HRES, various 

aspects of HRES, SOO and MOO was also elaborated. The chapter concluded by mentioning 

the thesis objectives along with the organization of this thesis. 

After the introduction, the mathematical model of the proposed HRES was discussed in 

chapter 2. In this chapter there were separate sections explaining the PV module, Wind 

turbine model and batteries. Each section contained the associated equations necessary to 

implement this system. The related costs of each component along with the specifications 

were also provided. At the end of this chapter the objective functions were presented which 

are to minimize the cost of HRES for a time period of 20 years and the expression of LPSP 

which is in fact the criterion for determining the reliability of a system. 

Chapter 3 was the first phase of this thesis which focused on SOO. In this chapter the most 

popular evolutionary algorithm GA was discussed with its two most important aspects 

namely cross-over and mutation. A much recent nature inspired algorithm, GWO was then 

discussed with all the associated equations and figures so as to give the reader a clear concept 

of the algorithm. These two algorithms were then merged, which is one of the main 

objectives of this thesis, and the hybrid algorithm was discussed with the help of a flowchart. 

Chapter 4 was the second phase of this thesis where unlike chapter three, LPSP (equation 

2.16) was also allowed to vary along with the cost function (equation 2.18). NSGA-II was 

discussed in details along with the explanation of cross-over and mutation. It is to be 

mentioned that NSGA is a non-elite approach whereas NSGA-II preserves elitism. GWO 

which was already introduced in chapter three was then merged with NSGA-II to create a 

hybrid MOO algorithm. 

Chapter 5 contains the detailed result and analysis of the previously mentioned algorithms 

along with another popular nature inspired algorithm MOPSO. This chapter started by giving 

a small idea of the studied load profile. SPSS was used to analyse all the obtained data and 
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MATLAB was used to plot the graphs. This chapter also explained the superiority of the 

hybrid algorithm over the other algorithms. 

In this study an evolutionary algorithm GA and a nature inspired algorithm GWO is 

hybridized for SOO and NSGA-II and GWO is hybridized for MOO to optimize PVN , WGN ,

batN ,  and h  keeping cost as variable in case of SOO and both LPSP and cost as variables in 

case of MOO. A practical load of Auckland, New Zealand was taken to evaluate the hybrid 

algorithms. The main objective is to find the minimum costs by varying the LPSP and 

provide the designer/company all the potential solutions. At the same time, a comparison 

with other renowned algorithms are shown, which signifies that the proposed hybrid 

algorithms have a higher probability to reach the global optimum solution and provide a 

much quicker convergence, a lower minimum cost, a lower mean, a normally distributed data 

set (for MOO) and a higher standard deviation in comparison to the other algorithms. Though 

the cost increased slightly for practical implementation due to rounding up the values, this is 

equally applicable for other algorithms as well. Thus it can be safely said that for optimal 

sizing of an HRES, hybrid algorithms can often outperform other algorithms and provide 

much more options to choose from ensuring the best solution for the objective function in 

hand. 

6.2 Future research directions 

The work presented in this thesis was an offline work. The load that was used was previously 

recorded load, so there is a lot of scope to work with real time loads. Also the data taken for 

PV modules and WT models did not incorporate any weather uncertainties. Incorporation of 

these weather uncertainties will make the work much more reliable. Besides the work is 

solely based on software simulations, so transforming the work into hardware model will 

increase the reliability of the model. So it is expected that in the future real time load 

demands along with weather uncertainties will be studied and if circumstances permit 

hardware implementation in a miniature form will also be carried out. 
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