
I

Nature Inspired Hybrid Optimization Algorithms for Load Flow Analysis of Autonomous

Microgrids

by

Saad Mohammad Abdullah

MASTER OF SCIENCE

IN

ELECTRICAL AND ELECTRONIC ENGINEERING

Department of Electrical and Electronic Engineering

Islamic University of Technology (IUT)

Board Bazar, Gazipur-1704, Bangladesh

November, 2019

II

© 2019 Saad Mohammad Abdullah

All Rights Reserved

III

CERTIFICATE OF APPROVAL

The thesis titled ‘Nature Inspired Hybrid Optimization Algorithms for Load Flow Analysis of

Autonomous Microgrids’ submitted by Saad Mohammad Abdullah, St. No. 161021012 of

Academic year 2016-17 has been found as satisfactory and accepted as partial fulfillment of the

requirement for the Degree MASTER OF SCIENCE IN ELECTRICAL AND ELECTRONIC

ENGINEERING on November 08, 2019.

1.

Dr. Ashik Ahmed (Supervisor)

Associate Professor,

Department of Electrical and Electronic Engineering,

Islamic University of Technology (IUT), Gazipur.

 Chairman

2.

Dr. Md. Ruhul Amin

Professor and Head,

Department of Electrical and Electronic Engineering,

Islamic University of Technology (IUT), Gazipur.

 Ex-Officio

3.

Dr. Golam Sarowar

Associate Professor,

Department of Electrical and Electronic Engineering,

Islamic University of Technology (IUT), Gazipur.

Member

4.

Dr. Md. Shahid Ullah

Professor and Head,

Department of Electrical and Electronic Engineering,

Daffodil International University (DIU), Dhaka.

Member (External)

11

IV

Declaration of Candidate

It is hereby declared that this thesis report or any part of it has not been submitted elsewhere for

the award of any Degree or Diploma and it has not been copied from other person’s work.

Dr. Ashik Ahmed

Associate Professor,

Department of Electrical and Electronic Engineering,

Islamic University of Technology (IUT), Gazipur.

Date: November 08, 2019

Saad Mohammad Abdullah

Student No.:161021012

Academic Year: 2016-17

Date: November 08, 2019

11

V

Dedicated to my parents

for

their love and support

VI

Table of Contents

CERTIFICATE OF APPROVAL…………………………………………………………… III

DECLARATION OF CANDIDATE……………………………………………………….… IV

LIST OF FIGURES………………………………………………………………………….. VIII

LIST OF TABLES…………………………………………………………………………….. IX

LIST OF ABBREVIATIONS…………………………………………………….…………… X

ACKNOWLEDGMENTS…………………………………………………………………….. XI

ABSTRACT…………………………………………………………………………………... XII

Chapter 1 ...1

Introduction and Background ..1

1.1 Introduction to Microgrid ...1

1.1.1 Operating Modes of Microgrid System ..2

1.1.2 Droop Control Method for Autonomous Microgrid ...3

1.2 Importance of Load Flow Analysis ...4

1.3 Literature Review ..4

1.4 Motivation towards the Research ..7

1.5 Thesis Objectives ...8

1.6 Outline of this thesis...8

Chapter 2 ... 10

Mathematical Model of Microgrid ... 10

2.1 Inverter Model ... 11

2.1.1 Reference Frame Transformation .. 11

2.1.2 Phase Locked Loop (PLL) ... 12

2.1.3 Power Controller ... 12

2.1.4 Voltage Controllers ... 14

2.1.5 Current Controllers .. 15

2.1.6 LCL Filter Equations ... 17

2.1.7 Local to Global Reference Frame Transformation ... 17

2.2 Equations for Load and Line .. 19

2.3 Bus Voltage Equations ... 20

2.4 Overall Microgrid Model... 21

Chapter 3 ... 23

Introduction to Nature-inspired Optimization Algorithms ... 23

VII

3.1 Genetic Algorithm (GA) .. 24

3.2 Differential Evolution (DE) ... 27

3.3 Particle Swarm Optimization (PSO) ... 30

3.4 Imperialist Competitive Algorithm (ICA) .. 33

3.5 Flower Pollination Algorithm (FPA) ... 37

3.6 Grasshopper Optimization Algorithm (GOA) .. 40

Chapter 4 ... 43

Load Flow Analysis and Proposed Hybrid Algorithms ... 43

4.1 Problem Formulation .. 43

4.2 Proposed Hybrid Algorithms .. 46

Chapter 5 ... 51

Numerical Case Study ... 51

5.1 System Information ... 51

5.2 Comparison among the Algorithms with Statistical Analysis 54

5.3 Results of Load Flow Analysis ... 62

Chapter 6 ... 64

Conclusion and Future Research Directions .. 64

6.1 Conclusion .. 64

6.2 Future Research Directions ... 65

References.. 66

Appendix ... 71

VIII

List of Figures

Fig. 1.1: Architecture of a typical microgrid system 2

Fig. 2.1: Block diagram of control strategy of droop-controlled inverter for

 individual DG

10

Fig. 2.2: Relationship between abc and dq quantities 11

Fig. 2.3: dq-based PLL 12

Fig. 2.4: Calculation of active and reactive power 13

Fig. 2.5: Droop characteristics curves 13

Fig. 2.6: Voltage controllers 15

Fig. 2.7: Current controllers 16

Fig. 2.8: Output LCL filter 16

Fig. 2.9: Relationship between global reference frame and local reference frames 18

Fig. 2.10: Line configuration between two buses 19

Fig. 2.11: Line and load currents at a particular bus 20

Fig. 3.1: Extended-line crossover with range of possible offspring 26

Fig. 3.2: Vector diagram relating PSO equations 31

Fig. 3.3: A conceptual model of the interactions between grasshoppers 40

Fig. 3.4: Function s when 𝑙𝑎𝑡𝑡 = 1.5 and 𝑓 = 0.5 41

Fig. 4.1: Steady-state equivalent circuit of inverter model at bus i 44

Fig. 4.2: Norton equivalent circuit of steady-state inverter model at bus i 44

Fig. 4.3: Flowchart of; (a) ICGA and (b) ICDE 48

Fig. 4.4: Flowchart of; (a) ICFPA and (b) ICGOA 49

Fig. 5.1: Single-line diagram of the modified IEEE 37-bus system 51

Fig. 5.2: Convergence graph for the best results of each algorithm; (a) original

 scale, (b) zoomed version

56

Fig. 5.3: Convergence graph for the worst results of each algorithm; (a) original

 scale, (b) zoomed version

57

Fig. 5.4: Total number of iterations in each trial in case of; (a) ICDE, (b) ICGA,

 (c) ICFPA, (d) ICGOA, (e) PSO

58

IX

List of Tables

Table 5.1: Inverter bus locations, power ratings and droop co-efficients 52

Table 5.2: Branch Parameters 52

Table 5.3: Load Parameters 53

Table 5.4: Parameters of ICGA, ICDE, ICFPA, ICGOA 54

Table 5.5: Parameters of PSO 54

Table 5.6: Iterations and Time required by ICGA, ICDE, ICFPA, ICGOA and

 PSO algorithms

55

Table 5.7: Results of t-test based on number of Iterations 60

Table 5.8: Results of t-test based on computational time 60

Table 5.9: Load flow results obtained by ICDE 61

Table 5.10: Comparison among the per unit output voltages at each inverter

 obtained through ICDE and quasi-Newton method

61

Table 5.11: Generated active and reactive powers at each inverter in case of ICDE 62

X

List of Abbreviations

DG Distributed Generation

PCC Point of Common Connection

VSI Voltage Source Inverter

PLL Phase Locked Loop

GA Genetic Algorithm

DE Differential Evolution

PSO Particle Swarm Optimization

ICA Imperialist Competitive Algorithm

FPA Flower Pollination Algorithm

GOA Grasshopper Optimization Algorithm

ICGA Imperialist Competitive Genetic Algorithm

ICDE Imperialist Competitive Differential Evolution

ICFPA Imperialist Competitive Flower Pollination Algorithm

ICGOA Imperialist Competitive Grasshopper Optimization Algorithm

XI

ACKNOWLEDGMENTS

First and foremost, I would like to express my heartiest gratitude to the almighty Allah (SWT),

for giving me the required capability and patience to conduct this research work.

I would like to express my sincere gratitude to my thesis supervisor, Dr. Ashik Ahmed for his

continuous guidance and support throughout the course of this work. I am thankful to my

supervisor for introducing me to the topics focused in this research. Whenever I encountered

some problem, his guidance and suggestions helped me to have a better understanding on the

related topics.

I would also like to thank all the faculty members of the department of EEE, IUT for their

motivation and inspiration during this research work.

Finally, I am extremely grateful and express my deepest gratitude to my parents for their

continuous moral support throughout this research work. Without their support and sacrifice it

would never have been possible for me to make it this far. Special thanks to my elder sister,

family members and friends for their motivation and support.

Saad Mohammad Abdullah

November, 2019

XII

ABSTRACT

Load flow analysis is a significant tool for proper planning, operation and dynamic analysis of a

conventional power system which provides the steady state values of voltage magnitudes and

angles at fundamental frequency. However, due to the absence of slack bus in an autonomous

microgrid, modified load flow algorithms should be adopted considering the system frequency as

one of the solution variables. This work proposes the application of nature inspired hybrid

optimization algorithms for solving the load flow problem of autonomous microgrids. Several

nature-inspired algorithms such as, Genetic Algorithm (GA), Differential Evolution (DE)

algorithm, Flower Pollination Algorithm (FPA) and Grasshopper Optimization Algorithm

(GOA) are separately merged with Imperialistic Competitive Algorithm (ICA) to form four

hybrid algorithms named as ICGA, ICDE, ICFPA and ICGOA and their performances are tested

on a modified IEEE 37-Bus microgrid system as a case study. Particle swarm optimization

(PSO) algorithm is also employed to perform the load flow analysis of the same case study

system. Among the above-mentioned algorithms, to identify the algorithm with better

performance, independent samples t-tests have been conducted using SPSS statistical analysis

software. From the statistical analysis, it has been identified that ICDE exhibit better

performance compared to the other algorithms in terms of the number of iterations and the

execution time required to complete the optimization process for the load flow analysis.

1

Chapter 1

Introduction and Background

This chapter starts with a brief introduction of microgrid system, its different operating modes

and the control scheme adopted for meeting load demand as presented in section 1.1. Section 1.2

contains a brief discussion regarding the importance of load flow analysis for proper planning

and energy management of microgrid system. The literature review portion in section 1.3

contains information regarding the traditional methods of load flow analysis of a power system.

The different methodologies and algorithms employed in various literatures for the load flow

analysis of autonomous microgrid are also highlighted in this section. In light of the literature

review the motivation towards this research is discussed in section 1.4 and the thesis objectives

are outlined in section 1.5.

1.1 Introduction to Microgrid

Microgrid concept evolved from the idea of integrating distributed generation (DG) units along

with energy storage elements and controllable loads [1]. As a result of growing energy demand

and as a replacement to the aging infrastructure of current transmission and distribution system;

the incorporation of DGs in the distribution level gained much popularity over the last few

decades [2]. Renewable energy resources such as solar energy, wind energy, hydro power along

with other generating sources like diesel engine, internal combustion engine, gas turbines, fuel

cells etc. are some of the commonly used DG units. Storage devices such as batteries, energy

capacitors, flywheels and different flexible loads are aggregated with the DG units to form a

particular microgrid system [3]. The interconnection among these devices for a typical microgrid

system is depicted in Fig. 1.1. In this figure; solar energy (photovoltaic modules), wind energy

(wind turbines) and generating sources (diesel engine) are shown as the DG units and a battery is

used to represent the energy storage element. With the help of the renewable energy resources

electricity can be produced at low fuel cost with less carbon emission. Energy storage elements

also play a vital role in achieving energy balance in case of load fluctuations [4]. In terms of the

nature of the energy produced, each DG unit has to be associated with power electronic

interfaces (DC/AC or AC/DC/AC) in order to connect the DG unit to a particular bus in the

2

electrical network [5]. The final stage of these interfaces consists of dc/ac inverters. Thus, the

control process associated with the inverter has significant importance on the operation of a

microgrid system [6]. To design different controllers, it is often necessary to determine the

steady state operating points of a system. Load flow analysis is a significant tool in determining

the steady state operating points. Load flow analysis also provide useful information for proper

monitoring, operation and energy management of a power system. Thus, over the years, several

studies have been conducted to propose efficient methods of load flow analysis of microgrid

systems in order to ensure proper planning, operation and control.

Fig. 1.1: Architecture of a typical microgrid system

1.1.1 Operating Modes of Microgrid System

Based on the position of the isolator switch a microgrid system can have two operation modes:

grid-connected (online) mode and autonomous (islanded) mode [7].

Grid-connected Mode: In grid connected mode, the microgrid system is coupled with the utility

grid. The coupling of the microgrid with the main grid can be achieved by closing the isolator

switch shown in Fig. 1.1. The isolator switch also signifies the point of common connection

3

(PCC) between the DGs and the utility grid. In grid connected mode, the power supplied by the

DG units are almost independent of the load fluctuations because the spinning reserve associated

with the online generators compensate the unbalance between the generated power and the

electrical power consumption. Thus, the voltage and frequency at the PCC are maintained by the

main grid. Furthermore, as the capacities associated with the DGs connected in a microgrid is

small compared to the utility grid, the disturbances in the microgrid very rarely has significant

effect on the frequency adjustment of the grid [8].

Autonomous (Islanded) Mode: In autonomous mode, the microgrid system operates as an

independent entity with isolation from the utility grid. The operation of microgrid can be

switched to autonomous or islanded mode by keeping the isolator switch open as shown in Fig.

1.1. In order to achieve a stable operating condition, all the DGs have to take the responsibility of

maintaining the balance between power supply and load variations. Due to the low capacities of

the DG units and as they are power electronically interfaced, the spinning reserve concept cannot

be employed for stable operation in autonomous mode. Dedicated control scheme is required for

islanded microgrid to provide voltage and frequency control establishing real and reactive power

balance [9]. According to the change in load demand the voltage and frequency set points to the

DG units has to be adjusted on regular basis. Thus, establishing a control process to ensure

reliability of operation of microgrid in case of autonomous mode becomes a challenging task.

Droop control schemes are most commonly employed on the power electronic inverters

associated with each DG unit to obtain the regulation of voltage and frequency [10, 11].

1.1.2 Droop Control Method for Autonomous Microgrid

As mentioned in earlier section, the DG units in the microgrid system are interfaced with power

electronic interfaces and the final stage of each interface consist of an dc/ac inverter such as

voltage source inverter (VSI). Each VSI is associated with inner current controllers and outer

voltage controllers. To control the VSIs, real power-frequency ()P − and reactive power-

voltage ()Q V− droop control methods are used to imitate the behavior of synchronous

generator [12-15]. The voltage and frequency of the VSI has to be regulated in such a way that

power demand for all critical loads within the microgrid are met adequately. If there is increase

in load demand, then the DG units should generate more power by slightly reducing the

frequency of the VSI as per the ()P − droop control scheme. Similarly, to control the flow of

4

reactive power with respect to the load demand the voltage magnitude is adjusted following the

()Q V− droop control scheme. Thus, in case of load fluctuations, the frequency and voltage

magnitude are adjusted according to the required power demand in order to ensure reliability of

operation. The droop co-efficients are set in such a way that all the DG units in a microgrid

system can share the total load demand with respect to their individual power ratings [15, 16].

The decentralized droop control method is a very effective primary control strategy for islanded

microgrids. Unlike centralized microgrid control system, the droop control scheme does not

require inter-unit communication between the DGs. Droop controller associated with each DG

operate independently based on locally measured values in order to obtain appropriate power

sharing [17, 18].

1.2 Importance of Load Flow Analysis

Load flow analysis is an integral part of power system analysis. It is also a prerequisite for

transient stability analysis, optimal power flow and contingency studies [19]. The bus voltage

magnitudes and phase angles along with the active and reactive power flowing through the

transmission lines are the key information obtained from load flow analysis. This information is

important for proper monitoring of the present status of a network. It is also important for

necessary planning prior to setting-up a new system and to ensure optimal operation and future

expansion of existing system [20]. Solutions obtained from load flow analysis can be used to find

steady-state operating points of a particular system. Then a system model with a set of nonlinear

equations can be linearized around the steady-state operating points [21]. Due to the small

capacity of the DG units in case of autonomous microgrid, a single DG unit cannot act as the

infinite bus, rather all the DGs have to regulate their voltage and frequency to meet the required

load demand. Thus, load flow analysis plays a significant role in assessing the feasibility of

autonomous operation under specified system constraints. Proper energy management and power

sharing among the DGs and the overall stability analysis of microgrid system can also be

facilitated by efficient load flow methodology [22].

1.3 Literature Review

Over the years; Gauss-Seidel (GS), Newton-Raphson (NR) methods have been widely used for

efficient and reliable load flow analysis of power systems [23, 24]. Several studies showed that

Newton-Raphson method possess better convergence characteristics, but with a higher

5

computational time. In order to achieve faster computation, the decoupled and fast decoupled

load flow techniques were proposed as modified versions of the traditional NR method [25, 26].

According to different researches it has been shown that, it becomes difficult to achieve

convergence using NR method or fast decoupled (FD) method in case of ill-conditioned

distribution networks such as radial network, networks with low X/R ratios or in case of

unbalanced distributed loads [27, 28]. As a result, several modified versions of the GS, NR, FD

load flow methods have been proposed in different literatures. Another popular method is the

backward/forward sweep (BFS) method which performs the load flow analysis using forward

and backward sweeps through the network based on basic electrical circuit laws such as

Kirchoff’s voltage and current laws [29, 30]. Later on, different modified versions were proposed

by introducing quadrating equations to calculate voltage magnitudes as proposed in some

literatures. In other studies, power summation and admittance summation methods were

introduced in BFS load flow analysis. However, the different backward/forward sweep methods

of load flow analysis were designed to solve radial distribution networks. For weakly meshed

distribution networks, compensation based load flow methods were proposed in different

literatures [31-33]. The main concept of compensation based algorithm is to introduce several

mesh break points in order to represent the weakly meshed network as a single radial network.

The load flow analysis of this equivalent radial network can then be performed following the

process of backward/forward sweep method [34].

As an alternative to the conventional load flow methodologies, evolutionary computation was

introduced in the load flow analysis of power systems. The evolutionary algorithms are

derivative-free in nature as there is no requirement to calculate the Jacobian matrix. Furthermore,

these algorithms are independent of the initial settings of the solution variables and have the

capability to generate multiple solutions. In [35], a constrained genetic algorithm (CGA) was

proposed for load flow analysis of power systems by minimizing the active and reactive power

mismatches in case of PQ buses and minimizing the mismatch between active power and voltage

requirements in case of PV buses. Later on, advanced constrained genetic algorithm (ACGA)

was proposed by Wong et al. in order to improve the performance of CGA [36]. Two

acceleration techniques were introduced in ACGA to facilitate faster convergence. In first step,

the current population was updated by nodal voltage differential technique and then a percentage

of the updated population is further accelerated using gradient technique in the second step. Ting

6

et al. developed a hybrid CGA/PSO algorithm as a modification of ACGA [37]. In this hybrid

algorithm, PSO was introduced to replace the differential voltage technique used in ACGA to

update the current population. A multi-objective differential evolution (MODE) algorithm was

introduced in [38], in order to optimize the balance between real and reactive power. In order to

find the most optimum solution from the pareto optimal solutions, a fuzzy membership and

pseudo-weight vector approach was introduced in that technique.

The abovementioned algorithms were developed to perform load flow analysis of conventional

power systems or distribution networks. These load flow methods assume the system frequency

to be constant implying the concept of slack bus. In case of autonomous operation of microgrid

system, the concept of slack bus in not applicable as all the DG units need to collectively

regulate the voltage and frequency as per the load demand. Rather than considering frequency to

be constant, it has to be calculated as one of the load flow variables. However, conventional

concepts of power flow analysis were used in case of an autonomous microgrid by treating the

local bus of the generating unit with the highest power rating as the slack bus [39, 40]. Some

studies conducted by Kamh et al. were based on the application of single phase backward-

forward sweep algorithm for single phase networks and sequence-components frame power flow

solver for three phase networks [41, 42]. The accuracy of these methods is limited due to the

approximation of constant frequency throughout the solution. Furthermore, the decentralized

droop control-based operation of microgrid system was not considered in these studies. In order

to compensate the shortcomings of the conventional methods, several approaches have been

proposed considering the frequency as one of the power flow solution variables. In the work of

Abdelaziz et al. [22], a Newton-trust region method was proposed to perform the load flow

analysis of three phase systems considering that some of the DGs are governed by the droop

control method. Later on, a modified Gauss Seidel (MGS) method and a modified Newton-

Raphson (MNR) methods were proposed in the work of Mumtaz et al. to perform the load flow

analysis of islanded microgrids focusing on the droop characteristics of DGs [43, 44]. However,

for these methods, the microgrid system model was developed in stationary reference frame

considering the voltages and currents as phasors which only allowed steady state analysis of the

system and failed to provide necessary information for obtaining the linearized dynamic model

of the system. In the study conducted by Mueller and Kimball [21], the system model was

developed in synchronous reference frame and a quasi-Newton method was introduced to solve

7

the load flow analysis considering the system frequency, reference frame angles and voltage

magnitudes as the load flow variables. Most of these load flow techniques use gradient-based

algorithms which require evaluation of derivatives for a series of complex equations. Gradient

based techniques often fail to obtain a global solution as these algorithms mostly converge on a

local solution depending upon the selection of the initial starting point [45].

Multi-solution based evolutionary algorithms have better possibility of avoiding a local optimum

by exploring a larger portion of the search space [46]. For droop-controlled islanded microgrid, a

load flow algorithm was introduced where particle swarm optimization (PSO) technique was

used to determine the droop parameters [47]. Later on, Abedini [48] applied hybridized ICGA

algorithm for load flow analysis by incorporating imperialist competitive algorithm (ICA) with

the multi-solution based genetic algorithm (GA). Fairly good performance was obtained in the

aforementioned work; however, the system modeling was done in stationary reference frame.

1.4 Motivation towards the Research

The literature review gives an insight regarding the necessity of developing modified load flow

methodologies for autonomous microgrids. Several approaches have been proposed by different

researchers for this purpose as highlighted in the literature review. Some of these methods were

based on the assumption of constant system frequency which is contradictory to the

characteristics of autonomous microgrids. In some techniques the droop control scheme of

microgrids was not considered. Most of these approaches were focused on gradient-based

approaches which have a tendency of getting stuck in a local optimum if the initial starting point

is not selected close to the global optimum. Furthermore, these derivative based approaches often

fail to converge in case of nonlinear and discontinuous functions. As a result, nature inspired

metaheuristic optimization algorithms were introduced for the load flow analysis of autonomous

microgrids. However, only a few researches have been conducted in this regard such as the

application of ICGA algorithm as discussed in the literature review. Thus, it can be considered

that there is still room for further exploration regarding the application of nature inspired

optimization algorithms in case of autonomous microgrids. Considering this fact in this research,

a comparative study will be demonstrated among ICGA and three other hybrid algorithms ICDE,

ICFPA and ICGOA where the differential evolution (DE) algorithm, flower pollination

algorithm (FPA) and grasshopper optimization algorithm (GOA) will be separately merged with

8

ICA. Furthermore, for this study, synchronous reference frame-based system model is adopted

for the droop controlled autonomous microgrid. Developing the system model in synchronous

reference frame provides multiple advantages such as transforming the time variant quantities

into time invariant ones which makes the modeling of different controllers easier. In this

research, the modified IEEE-37 bus system is considered as a case study system. For a

comparative study along with the aforementioned four hybrid algorithms load flow analysis of

the modified IEEE-37 bus system will be also performed using particle swarm optimization

(PSO). From the comparative study the algorithm with the better performance will be identified

which can be considered as a prospective stochastic technique for non-conventional load flow

methodology for autonomous microgrids.

1.5 Thesis Objectives

The main goal of this thesis is to develop a load flow methodology for autonomous microgrids

based on the nature-inspired optimization algorithms. In order to meet that goal the following

objectives have been considered for this thesis

• Study of different nature-inspired optimization algorithms

• To propose several hybrid optimization algorithms based on the study conducted

• Application of these hybrid algorithms in performing load flow analysis of autonomous

microgrids

• To perform comparative study on the results obtained through different hybrid algorithms

• To identify the algorithm with better performance among the proposed ones

1.6 Outline of this thesis

Chapter 2 demonstrates the mathematical model of a microgrid system in the synchronous

reference frame. As each DG unit is coupled with an inverter, the mathematical model of an

inverter along with its necessary controllers are presented in this chapter. The development of

load and line equations and bus voltage equations are also shown in this chapter.

In Chapter 3, discussions are carried out on some of the nature-inspired optimization algorithms

considered for this research which are the genetic algorithm (GA), particle swarm optimization

(PSO), differential evolution (DE), imperialist competitive algorithm (ICA), flower pollination

9

algorithm (FPA) and grasshopper optimization algorithm (GOA). This chapter gives a brief

insight to the optimization process of these algorithms along with respective pseudocodes.

In Chapter 4, the formulations necessary for the load flow analysis is presented. The process of

forming four hybrid algorithms are also discussed in this chapter. The steps involved in the

optimization process of GA, DE, FPA and GOA are separately merged with the optimization

process of ICA to form the four hybrid algorithms.

The application of these hybrid algorithms in performing the load flow analysis is demonstrated

in Chapter 5. The modified IEEE-37 bus system was considered as the case study system for this

study. The comparison among the results obtained through different hybrid algorithms are shown

in this chapter.

Lastly, Chapter 6 contains some concluding remarks and a brief discussion on the future research

scope.

10

Chapter 2

Mathematical Model of Microgrid

Multiple distributed generation (DG) units are aggregated in a microgrid system. In most of the

cases direct connection of these DGs to the distribution network is not suitable due to the nature

of energy produced. Thus, before connecting to a bus, the DGs are associated with power

electronic interfaces such as inverters [49]. As a result, developing mathematical model of the

inverter along with its associated controllers is important for the analysis of microgrid systems.

The control strategy of an inverter coupled with an individual DG is shown diagrammatically in

Fig. 2.1. The discussion in this section describes the dynamic model of droop-controlled

inverters along with the necessary load and line equations to develop the complete microgrid

model. The modeling technique described in this section is based on the studies carried out in

[21, 50, 51], where the system model was developed in the synchronous reference frame instead

of the stationary reference frame following the Park’s transformation technique. As a result of

the transformation from stationary reference frame to synchronous reference frame, three phase

quantities can be converted to two phase which reduces the complexity of the system. In addition

to that time varying quantities can be converted to time invariant ones as a result of this

transformation which makes the design of different controllers easier as regular PI controllers

can be used.

Fig. 2.1: Block diagram of control strategy of droop-controlled inverter for individual DG

11

2.1 Inverter Model

2.1.1 Reference Frame Transformation

Fig. 2.2: Relationship between abc and dq quantities

The inverter is coupled to the inverter bus through an LCL filter as shown in Fig. 2.1. The three-

phase capacitor voltage and inductor currents of the LCL filter are transformed from stationary

abc reference frame to the synchronously rotating dq reference frame following the theory of

Park’s transformation. The axes of the three-phase stationary abc reference frame and the direct

(d) and quadrature (q) axes of the synchronously rotating dq reference frame are shown in Fig.

2.2, where θ represents the angle difference between the two reference frames and represents

the rotational speed of the dq reference frame. This transformation is accomplished using the

following equation

0

2 2
() () ()

3 3

2 2 2
() () ()

3 3 3

1 1 1

2 2 2

oq oa

od ob

o oc

cos cos cos

v v

v sin sin sin v

v v

− +

 = − +

 (2.1)

where, oqv and odv are respectively the q-axis and d-axis components of the filter capacitor

voltage and oav , obv and ocv are voltages in the stationary reference frame. The reference frame

transformation of the filter inductor current, li and the output current, 0i can be obtained using

12

similar relationships. In equation (2.1), the transformation angle (θ) is calculated by a phase

locked loop (PLL). Details of this transformation technique is given in [52].

2.1.2 Phase Locked Loop (PLL)

Fig. 2.3: dq-based PLL

A dq-based PLL is used to measure the phase and frequency. A proportional-integral (PI)

controller is associated with the PLL as shown in Fig. 2.3. The PLL is used to force the d-axis

component of the capacitor voltage to become 0. This results in the steady-state voltage

magnitude to be equal to its q-axis component. The PLL equations are

PLL od

d
v

dt
 = − (2.2)

, ,PLL PLLPLL p od i PLLk v k = − + (2.3)

PLL

d

dt
 = (2.4)

where,
PLL is the integrator state of the PI controller. ,PLLpk and ,PLLik are respectively the

proportional and integral gain, PLL is the calculated frequency and is the transformation

angle.

2.1.3 Power Controller

First of all, the instantaneous active (p) and reactive (q) powers are calculated in the power

controller based on the values of the capacitor voltage and output current. The instantaneous

active (p) and reactive (q) power outputs are given by

13

 3
()

2
od od oq oqp v i v i= + (2.5)

 3
()

2
oq od od oqq v i v i= − (2.6)

Then, average active (P) and reactive (Q) power values are calculated by passing the

instantaneous power outputs through a first order low pass filter (LPF). The filter equations are

c c

d
P p P

dt
 = − (2.7)

c c

d
Q q Q

dt
 = − (2.8)

where,
c is the cut-off frequency of the low pass filter. The process of active and reactive

power calculations is shown in Fig. 2.4.

Fig. 2.4: Calculation of active and reactive power

Fig. 2.5: Droop characteristics curves

14

Then, the droop controller generates the voltage magnitude and frequency references depending

upon the calculated values of the active and reactive powers. The P- and Q-V droop equations

are used to generate the frequency reference, * and q-axis voltage magnitude reference, *

oqv

respectively. The characteristics of the droop curves are shown in Fig. 2.5.

 *

n mP = − (2.9)

 *

oq nv V nQ= − (2.10)

where,
n represents the nominal frequency set point and

nV represents the nominal set point of

the q-axis output voltage. The droop constants m and n are calculated from specified range of

frequency and voltage magnitude.

max min

max

m
P

 −
= (2.11)

, ,oq max oq min

max

V V
n

Q

−
= (2.12)

2.1.4 Voltage Controllers

The voltage controller compares between the reference and measured values of frequency and

voltage, and generates the reference values of the output filter inductor currents through a pair of

PI controller as shown in Fig. 2.6. The voltage controller equations are

 *

d PLL

d

dt
 = − (2.13)

 *

, ,

* ()pv dld PLL iv d di k k = − + (2.14)

 *

q oq oq

d
v v

dt
 = − (2.15)

 * *

, ,()lq opv q oq iq v q qi k v kv = − + (2.16)

15

where,
d and q represent the integrator states of the voltage controllers. The proportional and

integral gains of the respective d-axis and q-axis controllers are represented by ,pv dk , ,pv qk , ,iv dk

and ,iv qk .

Fig. 2.6: Voltage controllers

2.1.5 Current Controllers

The reference values of filter inductor current are compared with the measured filter inductor

current using the current controllers. As outputs reference values of voltages are provided by

these current controllers, which are used to generate switching signals for the inverter. As shown

in Fig. 2.7, two PI controllers are used for this purpose. The cross-coupling terms appearing due

to the reference frame transformation are also eliminated by these controllers. The current

controller equations are

 *

d ld ld

d
i i

dt
 = − (2.17)

 *

, ,

* ()pc d ld ldi ic d d n f ld qv k i i k L i = − + − (2.18)

 *

q lq lq

d
i i

dt
 = − (2.19)

16

 *

, ,

* ()pc q lq lqi ic q q n f lq dv k i i k L i = − + + (2.20)

where,
d and q are the integrator state of the current controllers. ,pc dk , ,pc qk , ,ic dk and ,ic qk

represent the proportional and integral gains of the d-axis and q-axis controllers respectively.

Fig. 2.7: Current controllers

Fig. 2.8: Output LCL filter

17

2.1.6 LCL Filter Equations

The inverter output is connected to the microgrid through an LC filter and coupling inductor as

demonstrated in Fig. 2.8. The filter inductor Lf, filter capacitor Cf and coupling inductor Lc

collectively form the LCL filter. The parasitic resistance of these components is also considered

for the inverter model as shown in Fig. 2.1. The filter dynamics are governed by the following

equations

 *1
()ld f ld id od lq

f

d
i r i v v i

dt L
= − + − + (2.21)

 *1
()lq f lq iq oq ld

f

d
i r i v v i

dt L
= − + − − (2.22)

 *1
()od c od od bd oq

c

d
i r i v v i

dt L
= − + − + (2.23)

 *1
()oq c oq oq bq od

c

d
i r i v v i

dt L
= − + − − (2.24)

 *1
() ()od ld od oq d ld od

f

d d
v i i v R i i

dt C dt
= − + + − (2.25)

 *1
() ()oq lq oq od d lq oq

f

d d
v i i v R i i

dt C dt
= − − + − (2.26)

In equations (2.23) and (2.24), bdv and bqv represent the bus voltages at the grid side of the

coupling inductor.

2.1.7 Local to Global Reference Frame Transformation

Each inverter model is developed in its own local reference frame. For modeling a microgrid

system with several inverters, it is necessary to translate the values defined in the local reference

frame of an inverter to a common reference frame called the global reference frame. This

concept can be visualized from Fig. 2.9, where DQ reference frame is considered to be the

common reference frame and dq reference frames indicate the local reference frames of the

18

Fig. 2.9: Relationship between global reference frame and local reference frames

inverters in the system. In Fig. 2.9, i indicates the number of inverters connected in the system

where, i = 1, 2, … …, k. This transformation can be achieved by

()

q q

d d

F f
R

F f

=

 (2.27)

()

cos sin
R

sin cos

−
=

 (2.28)

where, is the angular difference between local and global reference frame. In equation (2.27),

lowercase letter is used to indicate local reference frame and uppercase letter is used to indicate

global reference frame. The angle is defined by

PLL

d

dt
 = − (2.29)

where, is the frequency of the global reference frame and PLL is the frequency measured by

PLL of a particular inverter. Often, the reference frame of the first inverter in the system is

chosen as the global reference frame. In this work, we set
1 PLL = and 1 0 = , which implies

1 0 = . For other inverters,
PLL and has to be calculated following equation (2.29).

19

2.2 Equations for Load and Line

To complete modeling the entire microgrid model, it is necessary to formulate the state equations

for load and line in the global reference frame. Loads can be of constant impedance type which is

basically a combination of resistors and inductors (RL loads) as depicted in Fig. 2.10. The

equations of RL load connected to the ith bus can be described by

, , ,

1
()

i i i i i

i

load d bd load load d load q

load

d
I V R I I

dt L
= − + (2.30)

, , ,

1
()

i i i i i

i

load q bq load load q load d

load

d
I V R I I

dt L
= − − (2.31)

Line currents between two adjacent buses i and j connected through a transmission line can be

described by

, , ,

1
()

ij i j ij ij ij

ij

line d bd bd line line d line q

line

d
I V V R I I

dt L
= − − + (2.32)

, , ,

1
()

ij i j ij ij ij

ij

line q bq bq line line q line d

line

d
I V V R I I

dt L
= − − − (2.33)

where, 0 i j N . N represents the total number of buses in the system.

Fig. 2.10: Line configuration between two buses

20

Fig. 2.11: Line and load currents at a particular bus

2.3 Bus Voltage Equations

The virtual resistance method can be used to find the expression of the bus voltages in the global

reference frame. To determine the bus voltage at the ith bus using virtual resistance method, a

high resistance connection is considered between bus i and ground. This high resistance actually

represents open circuit. Ideally this resistance should be infinite, but typically a large value of

resistance is considered for modeling purpose.

Bus voltage expressions are typically dependent on any incoming inverter output current,

incoming or outgoing line currents and currents flowing through the connected load as shown in

Fig. 2.11. The voltage expression at bus i can be expressed as

 1

, , ,

1 1

()
i i i ji ik

i N

bd n od load d line d line d

j k i

V r I I I I
−

= = +

= − + − (2.34)

 1

, , ,

1 1

()
i i i ji ik

i N

bq n oq load q line q line q

j k i

V r I I I I
−

= = +

= − + − (2.35)

where, j i k N .

21

2.4 Overall Microgrid Model

The equations of the inverter, load and line model described so far can be used to represent the

overall microgrid model. The state vector of a droop-controlled inverter connected to the ith bus

can be formulated as

i i i i i i i i i i i i

T

inv i i i d q d q ld lq d q od oq PLLx P Q i i v v i i = (2.36)

If there are total p number of inverters connected to the system, then the combined state vector of

all the inverters can be represented as

1 2 pinv inv inv invx x x x =

 (2.37)

Considering the equations of the load model described from equations (30) and (31), the state

vector of a load connected at the ith bus is

, ,i i i

T

load load d load qx I I = (2.38)

If there are total N number of buses in the microgid system and one specific RL load is connected

to each bus, then the combined state vector of all the loads will be

1 1, , , ,N N

T

load load d load q load d load qx I I I I = (2.39)

The equations of line current from equations (2.32) and (2.33) can be used to represent the states

of a line between buses i and j as

, ,ij ij ij

T

line line d line qx I I =

 (2.40)

The overall state vector of all the lines can be represented as

1 1, , , ,j j kN kNlin

T

line d line q line de line qx I I I I =

 (2.41)

where, 1 j k N .

Based on the combined state vectors of the droop-controlled inverters, loads and lines; the states

of the overall microgrid model can be described as

22

 mg inv load linex x x x= (2.42)

State-space model of the whole microgrid system will have the following form

mg mg mg mg mgx A x B u= + (2.43)

The elements of the state matrix, mgA and input matrix, mgB is defined by equations (2.2), (2.7),

(2.8), (2.13), (2.15), (2.17), (2.19), (2.21) to (2.26), (2.29) and (2.30) to (2.33). The input vector,

mgu can be represented in terms of the bus voltages as

1 1 N N

T

mg bd bq bd bqu V V V V = (2.44)

23

Chapter 3

Introduction to Nature-inspired Optimization

Algorithms

Optimization has become an important tool for solving various problems in the field of

engineering, science, technology, industrial designs and even for business studies. Most of the

real-world problems can be formulated in terms of nonlinear equations with some constraints

associated. These constraints or restrictions can be associated in the form of resources, cost, time

or any other parameters upon which the objective function is dependent. Thus, robust

optimization techniques are required to find the most suitable solution to a particular problem

without violating the constraints. In general, the optimization techniques are often classified as

either deterministic optimization techniques or stochastic optimization techniques.

Deterministic optimization techniques are mostly calculus-based or derivative-based approaches.

These are single-solution based approaches and the search is directed towards an optimum point

based on the gradient of the function. These optimization techniques are highly dependent on the

selection of the initial starting point or the initial guess. If the initial guess is not selected in the

neighborhood of the global optimum, then the solution is likely to entrap to a local optimum.

Apart from that, application of these algorithms is dependent upon the existence of derivatives.

In case of nonlinear objective functions having discontinuities, the gradient-based algorithms are

not supposed to work [53].

On the other hand, stochastic optimization methods operate based on some random search

techniques. Different evolutionary and swarm intelligence-based algorithms are categorized

under the stochastic methods. These algorithms are also referred to as nature-inspired

optimization algorithms because the search techniques used in these algorithms are motivated

from some natural phenomenon. Most of these techniques are multi-solution based optimization

process where a set of random solutions are initially generated. Then, through a series of random

operators the solution sets are updated at each iteration with the focus to move towards the global

optimum. Thus, through random trial and error process these algorithms try to reach the optimum

solution. Hence, all the stochastic algorithms are also termed as metaheuristic algorithms.

24

Exploitation and exploration are two major components of these nature-inspired optimization

algorithms. Exploration is the process of generating diverse solutions along the search space

which is necessary to identify other prospective solutions apart from the current solutions. This

process is referred to as a global searching process. On the other hand, exploitation refers to local

searching mechanism which is focused on searching around the neighborhood of the current

solutions. A balance between these two operators is necessary to obtain an overall global

optimum solution. As these algorithms are free from the calculation of derivatives and also not

completely dependent upon the initial starting point, the metaheuristic algorithms gained much

popularity over the gradient-based techniques [45, 54].

The following sections contain discussions regarding the optimization process of some of the

nature-inspired optimization algorithms opted for this research. The algorithms are namely; the

genetic algorithm (GA), particle swarm optimization (PSO), differential evolution (DE),

imperialist competitive algorithm (ICA), flower pollination algorithm (FPA) and grasshopper

optimization algorithm (GOA). Formation of hybrid algorithms by merging these individual

algorithms is presented in the subsequent chapter.

3.1 Genetic Algorithm (GA)

Genetic algorithm (GA) is one of the most popular evolutionary optimization algorithms which

was inspired by Charles Darwin’s theory of natural evolution. The concept of GA was first

proposed in [55], based on the theory of natural selection and survival of the fittest which refers

to the selection of the fittest individuals to participate in the reproduction of the next generation.

The initial versions of genetic algorithms were developed by introducing some form of binary

coding to represent the solution variables. Thus, for multidimensional genetic algorithms each

parameter (variable) of a solution set is represented as binary bit-string. It is worth mentioning

that in analogy to natural evolution, the solution sets are considered as set of chromosomes /

population individuals in case of GA and each parameter is considered as genes characterizing

the chromosomes / individuals. The initial solution sets are termed as the parent chromosomes.

For generating offspring, two parent chromosomes are randomly selected and their

corresponding bit patterns are exchanged at random points referring to the crossover process of

natural reproduction. The generated offspring undergo mutation process to add diversity to the

population individuals. After crossover and mutation, the total population size increases and

25

based on the fitness value of each individual, a specific number of individuals are selected as

parents to generate offspring in the next iteration [56]. Although, the binary coded genetic

algorithms are very robust search techniques for global optimization, but a major drawback is the

higher computational cost specially in case of multidimensional problems as each parameter has

to be encoded with a corresponding bit-sequence. To address this issue, real-coded genetic

algorithm was first proposed in [57], where each possible solution sets were considered as the

chromosomes and each real valued parameter were considered as the genes. The crossover and

mutation operators were also designed in terms of real values of the variables. Over the years, in

order to improve the performance of real coded genetic algorithms, researchers have put much

emphasis on the development of sophisticated real coded crossover operators as can be found

from the works described in [58, 59]. The pseudo code for GA is shown in Algorithm 1 and the

steps involved in the optimization process is described as follows.

Step 1: Random generation of the initial population (X) of n number of possible solutions (parent

chromosomes) within the lower (lb) and upper (ub) boundaries of the search space.

Step 2: Initialization of the percentage of crossover (𝑝𝑐) and the percentage of mutation (𝑝𝑚).

Thus, determining the number of offspring (𝑛𝑐) and the number of mutants (𝑛𝑚) to be generated

from the parents in each iteration.

Step 3: Initialization of mutation rate (𝜇𝑚) and the extension rate for crossover (𝛾).

Step 4: Generation of offspring (child chromosomes) by performing the crossover operation.

Extended-line crossover is considered for this case as shown in Fig. 3.1. First of all, two parent

chromosomes (𝑃1, 𝑃2) are randomly selected from the initial population (X). A random number

(𝜆) is generated based on the value of 𝛾 and two child chromosomes (𝑦1, 𝑦2) are generated

following the equations presented in Algorithm 1. The range of possible offspring is shown by an

extended straight line connecting the two parent chromosomes as indicated in Fig. 3.1 for two-

dimensional space. As two child chromosomes are generated from each crossover operation, the

inner loop of crossover is executed 𝑛𝑐/2 number of times to generate total 𝑛𝑐 number of

offspring. After each execution of the crossover operation, the information of the child

chromosomes (𝑦1, 𝑦2) are stored in a variable, Y.

26

Fig. 3.1: Extended-line crossover with range of possible offspring

Step 5: Performing Gaussian mutation to generate the mutants. First, a random parent

chromosome (𝑃) is selected. Then, the dimension(s), 𝑗 at which the mutation is going to be

performed is randomly selected with respect to the mutation rate (𝜇𝑚) and the parameter(s) at the

𝑗𝑡ℎ dimension(s) of 𝑃 will be perturbed through the mutation process as shown in Algorithm 1.

Where, 𝑔𝑎𝑢𝑠𝑠𝑖𝑎𝑛(0,
𝑢𝑏−𝑙𝑏

10
) is a function to generate random Gaussian number with zero mean

and the standard deviation of (
𝑢𝑏−𝑙𝑏

10
). The inner loop of mutation is executed for 𝑛𝑚 number of

times and at each execution the generated mutant (𝑧) is stored in a variable, Z.

Step 6: The total population size is updated by merging the generated offspring (𝑌) and mutants

(𝑍) with the initially generated parent chromosomes (𝑋). For each candidate solution in the total

population the objective function is evaluated to determine the fitness of each solution. The

possible solutions are sorted based on their fitness value and fittest 𝑛 number of solutions are

selected as parent chromosomes (𝑋) for the next generation.

Step 7: If the stopping criterion is satisfied, then the solution with the best fitness is considered

as the optimum solution. Otherwise, the process will continue from step 4 until the termination

criterion is satisfied.

Algorithm 1 Pseudo code for GA

Begin:

Generate the initial population (chromosomes): 𝑋𝑖 ~ 𝑈(lb, ub) (i = 1, 2, …, n)

Initialize the percentage of crossover (𝑝𝑐) and mutation (𝑝𝑚)

Determine the total number of offspring (𝑛𝑐) and total number of mutants (𝑛𝑚)

Initialize mutation rate, 𝜇𝑚

Initialize the extension rate for crossover, 𝛾

27

while(the stopping criterion is not satisfied)

for i = 1 to 𝑛𝑐/2

 Randomly select two parent chromosomes 𝑃1, 𝑃2

 Y ← Initialize to store the offspring

 Crossover (𝑃1, 𝑃2, 𝛾)

 {

 𝜆 ← a random number in [-𝛾, 1+ 𝛾, size(𝑃1)]

 𝑦1 = 𝜆𝑃1 + (1 − 𝜆)𝑃2

 𝑦2 = 𝜆𝑃2 + (1 − 𝜆)𝑃1

 }

 Update Y

end

 Z ← Initialize to store the mutants

for i = 1 to 𝑛𝑚

 Randomly select a parent chromosome 𝑃

 Mutation (𝑃, 𝜇𝑚)

 {

 𝑧 = 𝑃;

 𝑗 ← randomly select the number of dimensions to be mutated with respect to 𝜇𝑚

 𝑧(𝑗) = 𝑃(𝑗) + 𝑔𝑎𝑢𝑠𝑠𝑖𝑎𝑛(0,
𝑢𝑏−𝑙𝑏

10
)

 }

 Update Z

end

Total population, T = [X; Y; Z]

Evaluate fitness of each solution set in total population 𝑓(𝑇𝑖) (i = 1, 2, …, 𝑛 + 𝑛𝑐 + 𝑛𝑚)

Update X with the fittest 𝑛 number of solution sets

Best Solution = X(1)

end

return Best Solution

End

3.2 Differential Evolution (DE)

Differential Evolution (DE) is a real-parameter optimization algorithm which also falls into the

category of evolutionary algorithms. It was first introduced in the work of Storn and Price [60].

Like other evolutionary algorithms DE solves a particular optimization problem in an iterative

process by improving the candidate solutions in each iteration with respect to the objective

function. As used in other evolutionary algorithms such as genetic algorithm (GA); genetic

operators such as crossover, mutation, selection is also performed in case of DE. However, these

operators are employed in a different manner. For example, in case of DE, the mutation

operation is performed to perturb all the components of a solution vector. Whereas, in case of

28

GA, only a selected number of components in the candidate solution is perturbed. In DE, the

optimization process starts with a randomly generated initial population. The solution vectors

present in the population at the beginning of a particular generation are referred as parent vectors

or genomes. With the help of mutation and crossover operation offspring are generated from the

parent vectors. Each parent vector in the population first undergo a differential mutation process

and the vector obtained from the mutation process is termed as the mutant vector. For a

particular parent vector in the population; the differential mutation is performed by randomly

selecting three other distinct solution vectors. Then, a scaled difference is taken between any two

of these three vectors and the scaled difference is added with the third vector to obtain the mutant

vector. Finally, offspring is generated from the mutant and parent vector by exchanging

components of the parent and mutant vector on the basis of crossover probability. The offspring

vector generated after crossover is known as the trial vector. The fitness of all the trial vectors

are compared with the fitness of the parent vectors and the fittest solution vectors are chosen as

parents for reproduction in the next generation keeping the population size constant [61].

Algorithm 2 contains the pseudo-code of DE and the step by step optimization process of DE is

briefly discussed as follows.

Step 1: Initialization of the population (X) with n number of random solution vectors (parent

chromosomes) within the lower (lb) and upper (ub) boundaries of the search space.

Step 2: Evaluation of the fitness value of each parent vector, 𝑓(X𝑖). Where, i = 1, 2, …, n.

Step 3: Initialization of the crossover probability (𝑝𝐶𝑅) in the range [0, 1].

Step 4: Generation of parent vectors for the next generation.

 Step 4.1: Generation of the mutant vector (𝑉𝑖) for the 𝑖𝑡ℎ parent vector by performing the

differential mutation operation. From the n number of solution vectors of the current

population three solution vectors are randomly chosen in order to create the mutant

vector. Let us consider, 𝑋𝑗, 𝑋𝑘 and 𝑋𝑙 are the three randomly selected solution vectors

where, 𝑗, 𝑘, 𝑙 ∈ [1, 𝑛] and 𝑖 ≠ 𝑗 ≠ 𝑘 ≠ 𝑙. Now, from these three vectors, difference

between any two of them is scaled by a scaling factor, 𝐹 and added with the third one to

generate the mutant vector as indicated in the formula shown in Algorithm 2. Typically,

the value of 𝐹 is randomly drawn in the range between 0.4 and 1.

29

 Step 4.2: In this step, the crossover operation is performed to recombine the mutant with

the parent vector and generate offspring known as the trial vector (𝑈𝑖). The exchange of

components between the parent and mutant vector is dependent upon the crossover

probability (𝑝𝐶𝑅). In binomial crossover, a random integer (𝑚𝑟𝑎𝑛𝑑) is generated in the

range [1, 𝐷], where 𝐷 is the dimension of each solution vector. The 𝑚𝑡ℎ
 (𝑚 ∈ [1, 𝐷])

component of the trial vector, 𝑈𝑖(𝑚) will be taken from the 𝑚𝑡ℎ
 component of mutant

vector, 𝑉𝑖(𝑚) when the value of a 𝑚𝑟𝑎𝑛𝑑 equals the value of 𝑚 or when a randomly

generated number, 𝑟𝑎𝑛𝑑[0, 1] is less than or equal to the crossover probability (𝑝𝐶𝑅).

Otherwise, the 𝑚𝑡ℎ
 (𝑚 ∈ [1, 𝐷]) component of the trial vector, 𝑈𝑖(𝑚) will be set to the

value of the 𝑚𝑡ℎ
 component of the parent vector, 𝑋𝑖(𝑚).

 Step 4.3: Selection among the parent and the trial vector will be carried out in this step. If

the fitness value of the trial vector (𝑈𝑖) is better compared to the fitness of the parent

vector (𝑋𝑖), then the parent vector will be replaced by the trial vector. Otherwise, the

parent vector will sustain for the next generation.

 Step 4.4: Repeat steps 4.1, 4.2 and 4.3 for all the n number of parent vectors in the

current generation.

Step 5: Determine the solution with the best fitness value among all the solution vectors in the

current iteration.

Step 6: If the stopping criterion is satisfied, then the solution with the best fitness in the current

iteration is considered as the optimum solution. Otherwise, the optimization process will

continue from step 4.

Algorithm 2 Pseudo code for DE

Begin:

Initialize the population of solution vectors (genomes): 𝑋𝑖 ~ 𝑈(lb, ub) (i = 1, 2, …, n)

Evaluate fitness of each solution vector: 𝑓(X𝑖) (i = 1, 2, …, n)

Initialize the crossover probability 𝑝𝐶𝑅 ∈ [0, 1]

while(the stopping criterion is not satisfied)

for 𝑖 = 1 𝑡𝑜 𝑛

 Parent vector → 𝑋𝑖

 𝑗, 𝑘, 𝑙 ← randomly select three integers in the range [0, 𝑛] (where, 𝑖 ≠ 𝑗 ≠ 𝑘 ≠ 𝑙)
 𝐹 ← Scaling factor (randomly chosen in the range [0.4, 1])

30

 Generate Mutant vector: 𝑉𝑖 = 𝑋𝑗 + 𝐹(𝑋𝑘 − 𝑋𝑙)

 𝑚𝑟𝑎𝑛𝑑 ← randomly chosen integer in the range [1, 𝐷] (𝐷 → dimension of each solution

 vector)

 𝑈𝑖 ← initialize Trial vector with all components equal to zero

 for 𝑚 = 1 𝑡𝑜 𝐷

 if 𝑚 == 𝑚𝑟𝑎𝑛𝑑 𝑜𝑟 𝑟𝑎𝑛𝑑[0, 1] ≤ 𝑝𝐶𝑅

 𝑈𝑖(𝑚) = 𝑉𝑖(𝑚)

 else

 𝑈𝑖(𝑚) = 𝑋𝑖(𝑚)

 end

 end

Calculate fitness of Trial vector: 𝑓(𝑈𝑖)

 if 𝑓(𝑈𝑖) < 𝑓(X𝑖)

 X𝑖 = 𝑈𝑖

 else

 X𝑖 will remain unchanged

 end

end

𝐵𝑒𝑠𝑡 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 = solution vector with best fitness in current iteration

end

return 𝐵𝑒𝑠𝑡 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛

End

3.3 Particle Swarm Optimization (PSO)

Particle Swarm Optimization (PSO) is a swarm intelligence-based optimization algorithm which

was first developed in 1995 by Kennedy and Eberhart [62]. This algorithm was mainly inspired

by the swarming behavior of creatures such as birds, fishes or bees which live in large colonies.

The movement and intelligence of these swarms and their social interaction are the basis particle

swarm optimization. In PSO, the members of the swarm are commonly referred as particles

which move around a search space in order to find the best solution. The algorithm starts by

random initialization of the positions of these particles. Then, through continuous iteration, the

algorithm searches for optimum solution by updating the position of each particle based on the

particle velocity, the personal best solution (𝑝𝑏𝑒𝑠𝑡) and the global best solution (𝑔𝑏𝑒𝑠𝑡). For a

continuous optimization process, 𝑝𝑏𝑒𝑠𝑡 refers to the best solution a particle has achieved up to

current iteration and 𝑔𝑏𝑒𝑠𝑡 is the overall best solution among all the particles in the current

population. In each iteration, in terms of predefined inertia weight (𝑤) and acceleration constants

(𝐶1, 𝐶2), the resultant velocity of each particle is calculated depending upon its previous velocity

and the locations of 𝑝𝑏𝑒𝑠𝑡 and 𝑔𝑏𝑒𝑠𝑡. Thus, the resultant velocity guides the particles to move

31

Fig. 3.2: Vector diagram relating PSO equations

towards the locations of its 𝑝𝑏𝑒𝑠𝑡 and 𝑔𝑏𝑒𝑠𝑡 [63]. In modified version of PSO a constriction

factor (K) based approach was used to update the velocity in each iteration [64, 65]. In this

approach, the constriction factor (K) is associated with the inertia weight and acceleration

constants in updating the velocity. The pseudocode of PSO is presented in Algorithm 3 and the

step by step procedure of applying PSO in solving an optimization problem is briefly discussed

as follows.

Step 1: Randomly generating the initial positions of the particles (X) within the lower (lb) and

upper (ub) boundaries of the solution variables.

Step 2: Evaluation of the fitness values of the particles 𝑓(𝑋). For the initial population, the

𝑝𝑏𝑒𝑠𝑡 solution of each particle is set to be same as the initial positions. Whereas, the 𝑔𝑏𝑒𝑠𝑡

solution is the solution with the best fitness among the initial generation.

Step 3: Initialization of acceleration constants, 𝐶1 and 𝐶2. Calculating the constriction factor (K)

following the equation shown in Algorithm 3. Initially, the inertia weight (𝑤) is set equal to K.

Step 4: Randomly generating the initial velocity vectors (𝑉) of the particles.

Step 5: Calculating the velocity of the particles following the equation shown in Algorithm 3 in

order to update the positions of the particles for the next iteration. In this equation, the

acceleration constants, 𝐶1 and 𝐶2 influence the movement of the particles in the search space

before reaching the target region. Along with these two constants the concept of inertia weight

32

(𝑤) was introduced to obtain a balance between exploration and exploitation [66]. Furthermore,

in order to enhance the probability of convergence the concept of constriction factor (K) was

introduced.

Step 6: Updating the position of each particle by adding the velocity vector with the position

vector of each particle. This process can be visualized from the vector diagram presented in

Fig. 3.2.

Step 7: Evaluation of the fitness of the updated particles. Based on the calculated fitness values

the location of 𝑝𝑏𝑒𝑠𝑡 and 𝑔𝑏𝑒𝑠𝑡 are updated. The inertia weight (𝑤) is also updated based on the

inertia weight damping factor (𝑤𝑑𝑎𝑚𝑝).

Step 8: Checking the stopping condition. If the stopping condition is satisfied, then the location

of 𝑔𝑏𝑒𝑠𝑡 is considered as the optimum solution. Otherwise, the optimization procedure is

repeated from step 5.

Algorithm 3 Pseudo code for PSO

Begin:

Randomly initialize the population (particles): 𝑋𝑖 ~ 𝑈(lb, ub) (i = 1, 2, …, n);

Evaluate fitness of each particle: 𝑓(𝑋𝑖) (i = 1, 2, …, n);

Initialize best solution for each particle for initial population: 𝑝𝑏𝑒𝑠𝑡𝑖 = 𝑋𝑖;

Determine, 𝑔𝑏𝑒𝑠𝑡 = Best solution among all the particles in current population;

Initialize inertia weight damping factor (𝑤𝑑𝑎𝑚𝑝) and acceleration constants 𝐶1 and 𝐶2;

Calculation of constriction factor:
2

2

2 4
K

=

− − −
 (where, 𝜑 = 𝐶1 + 𝐶2 & 𝜑 > 4);

Initialize inertia weight, 𝑤 = 𝐾;

Randomly initialize the velocity of each particle: 𝑉𝑖

while(the stopping criterion is not satisfied)

for i = 1 to 𝑛

 Calculate velocity: 𝑉𝑖
𝑡+1 = 𝑤 ∗ 𝑉𝑖

𝑡 + 𝐾 ∗ 𝐶1 ∗ 𝑟𝑎𝑛𝑑(0, 1) ∗ (𝑝𝑏𝑒𝑠𝑡𝑖
𝑡 − 𝑋𝑖

𝑡)
+ 𝐾 ∗ 𝐶2 ∗ 𝑟𝑎𝑛𝑑(0, 1) ∗ (𝑔𝑏𝑒𝑠𝑡𝑡 − 𝑋𝑖

𝑡);
 Update position of particle: 𝑋𝑖

𝑡+1 = X𝑖
𝑡 + 𝑉𝑖

𝑡+1;

 Evaluate fitness of the updated particle: 𝑓(𝑋𝑖
𝑡+1);

 if 𝑓(𝑋𝑖
𝑡+1) < 𝑓(𝑝𝑏𝑒𝑠𝑡𝑖

𝑡)

 𝑝𝑏𝑒𝑠𝑡𝑖
𝑡+1 = 𝑋𝑖

𝑡+1;

 if 𝑓(𝑋𝑖
𝑡+1) < 𝑓(𝑔𝑏𝑒𝑠𝑡𝑡)

 𝑔𝑏𝑒𝑠𝑡𝑡+1 = 𝑋𝑖
𝑡+1;

 end

33

 end

 𝑤 = 𝑤 ∗ 𝑤𝑑𝑎𝑚𝑝;

end

end

return 𝑔𝑏𝑒𝑠𝑡

End

3.4 Imperialist Competitive Algorithm (ICA)

Imperialism is the policy of a country to establish its dominance over other countries through

political, economic or military power. The more developed countries try to exercise their power

over underdeveloped countries and possess the control over their resources. Thus, an empire is

formed where the developed country act as the imperialist and the countries under its control are

termed as the colonies to the imperialist. Going back in history, it can be seen that several

empires existed throughout the centuries. There always existed a competition among different

empires to take control over the colonies of other empires to enhance its own power with the

ultimate target of ruling the whole world. Apart from that, the developing colonies also try to

liberate them from the authority of the imperialist to regain control over their own resources. In

this course, a particular developing colony may become a threat for the imperialist and

eventually by taking complete authority this colony may emerge as the new imperialist of the

empire. Thus, the whole phenomenon is a game of survival of the fittest where the most powerful

countries dominate over the others. Inspired from this concept of imperialistic competition, the

imperialist competitive algorithm (ICA) was first introduced by Atashpaz-Gargari and Lucas

[67]. This algorithm is referred as social counterpart of genetic algorithm (GA) as it is based on

human social evolution compared to the biological evolution in case of GA. Similar to other

evolutionary algorithms, ICA starts with a randomly generated initial population and the

population individuals are termed as countries in this case. Based on the fitness values of the

countries, a specific number of countries are set as the imperialists and the rest of the countries

are allotted as colonies to the imperialists. Then, the positions of the colonies are moved towards

their respective imperialist following a process called assimilation. The assimilation process

imitates the fact that the imperialists try to force their cultural beliefs and customs to the colonies

in order to have a better control over them. However, some colonies resist to follow the forcibly

pressed customs of the imperialists. This scenario is mimicked through a process called

revolution, where the positions of some of the colonies are randomly perturbed. If a colony is

34

found to possess better fitness than the imperialist, then the roles of imperialist and colony are

interchanged. Then, the total power of each empire is computed and imperialistic competition is

performed by picking the weakest colony from the weakest empire and assigning them to the

empire which has the most likelihood to possess that colony [68]. This process continues until a

convergence criterion is not satisfied. The pseudo code of ICA is given in Algorithm 4 and the

optimization process is discussed through the following steps.

Step 1: Defining input parameters; the population size (𝑛𝑝𝑜𝑝), number of imperialists (𝑛𝑖𝑚𝑝) and

number of colonies (𝑛𝑐𝑜𝑙).

Step 2: Initialization of the population by randomly generating the positions of 𝑛𝑝𝑜𝑝 number of

countries (X) within the lower (lb) and upper (ub) boundaries of the solution variables.

Step 3: Computing the cost or fitness of each country and sorting them in terms of the fitness

value. Selecting the fittest 𝑛𝑖𝑚𝑝 number of countries as imperialists (𝐼𝑚𝑝). The remaining 𝑛𝑐𝑜𝑙

number of countries will be assigned as colonies to these imperialists.

Step 4: The maximum cost (𝐶𝑚𝑎𝑥) among the selected imperialists is identified and the cost (𝐶)

of each imperialist is normalized with respect to this maximum cost. From the computed values

of normalized costs (𝐶𝑛), the normalized power (𝑃𝑛) of each imperialist is calculated following

the equation as indicated in Algorithm 4. From the total number of colonies (𝑛𝑐𝑜𝑙), the initial

number of colonies (𝑁𝐶) to be assigned to a particular imperialist is calculated from its

respective normalized power.

Step 5: Generation of each empire by randomly selecting 𝑁𝐶 number of colonies from the total

number of colonies and assigning them as colonies (𝐶𝑜𝑙) to their respective imperialist (𝐼𝑚𝑝).

Step 6: Initialization of assimilation coefficient (𝛽), probability of revolution (𝑝𝑅), revolution

rate (𝜇).

Step 7: In this step, the positions of the colonies are updated by moving the colonies towards

their respective imperialists. This process in referred to as Assimilation. How much a particular

colony will move towards the imperialist depends upon the assimilation co-efficient (𝛽) and the

distance (𝑑) between the colony and imperialist. Each colony is moved towards the imperialist

by 𝑥 units where 𝑥 is a uniformly distributed random number in the range [0, 𝛽 ∗ 𝑑].

35

Step 8: In this step, some of the colonies are randomly selected and the positions of these

colonies are updated by randomly selecting the dimension(s) at which the parameter is going to

be perturbed. In case of ICA, this process of perturbation at random dimensions of the colonies is

termed as Revolution. Whether a particular colony will undergo revolution or not is determined

with respect to the probability of revolution (𝑝𝑅) and the dimensions (𝑙) at which the perturbation

is going to be performed is randomly selected based on the revolution rate (𝜇). As indicated in

Algorithm 4, the 𝑙𝑡ℎ parameter of the 𝑚𝑡ℎ colony of the 𝑗𝑡ℎ imperialist is going to be perturbed

by a random number having gaussian distribution with zero mean and standard deviation of

(
𝑢𝑏−𝑙𝑏

10
).

Step 8: Intra-empire competition is performed in this step, where the cost of each colony is

compared with the cost of the imperialist. If any colony has a better cost compared to the

imperialist, then the position of the imperialist and colony are exchanged.

Step 9: Calculating the total cost (𝑇𝐶) of an empire by adding the scaled value of the mean

fitness of the colonies with the fitness of the imperialist.

Step 10: Imperialistic competition is performed to select the weakest colony from the weakest

empire and assign it to the empire which has the most likelihood to possess it. This depends on

the possession probability (𝑃𝑝) of each empire which is calculated from the total cost (𝑇𝐶). First

the total cost of each empire is normalized, then from the normalized values the possession

probability is calculated as shown in the pseudo code in Algorithm 4.

Step 11: The imperialist with the best fitness value is termed as the 𝐵𝑒𝑠𝑡 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 in the current

iteration.

Step 12: If the stopping criterion is satisfied, then the 𝐵𝑒𝑠𝑡 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 in the current iteration is

considered as the optimum solution. Otherwise, the optimization process will continue from

step 7.

Algorithm 4 Pseudo code for ICA

Begin:

Initialize 𝑛𝑝𝑜𝑝 (population size), 𝑛𝑖𝑚𝑝 (number of imperialists) and 𝑛𝑐𝑜𝑙 (number of colonies);

Generate the initial population (countries): Xi (𝑖 = 1, 2, … , 𝑛𝑝𝑜𝑝);

Evaluate fitness or cost of each country: 𝐶𝑖 = 𝑓(𝑋𝑖) (𝑖 = 1, 2, … , 𝑛𝑝𝑜𝑝);

36

Sort the countries with respect to their costs and select best 𝑛𝑖𝑚𝑝 number of countries among

them as imperialists (𝐼𝑚𝑝);

Determine the maximum cost among the imperialists: 𝐶𝑚𝑎𝑥 = max
𝑖

{𝐶𝑖} (𝑖 = 1, 2, … , 𝑛𝑖𝑚𝑝);

Normalize the cost of each imperialist: 𝐶𝑛𝑗 = 𝐶𝑚𝑎𝑥 − 𝐶𝑗 (𝑗 = 1, 2, … , 𝑛𝑖𝑚𝑝);

Determine the normalized power of each imperialist: 𝑃𝑛𝑗 = |
𝐶𝑛𝑗

∑ 𝐶𝑖

𝑛𝑖𝑚𝑝
𝑖

| (𝑗 = 1, 2, … , 𝑛𝑖𝑚𝑝);

Compute initial number of colonies to be assigned to each imperialist:

 𝑁𝐶𝑗 = 𝑟𝑜𝑢𝑛𝑑(𝑃𝑛𝑗 ∗ 𝑛𝑐𝑜𝑙) (𝑗 = 1, 2, … , 𝑛𝑖𝑚𝑝);

Randomly select 𝑁𝐶𝑗 number of colonies (𝐶𝑜𝑙𝑗) and assign them to the 𝑗𝑡ℎ imperialist;

Initialize 𝛽 (assimilation coefficient), 𝑝𝑅 (probability of revolution), 𝜇 (revolution rate),

 (mean cost co-efficient of the colonies);

while(the stopping criterion is not satisfied)

Assimilation:

for j = 1 to 𝑛𝑖𝑚𝑝

 for m = 1 to 𝑁𝐶𝑗

 𝑑 ← distance between colony and imperialist;

 𝑥~𝑈(0, 𝛽 ∗ 𝑑);

 𝐶𝑜𝑙𝑗𝑚 = 𝐶𝑜𝑙𝑗𝑚 + 𝑥;

 end

end

Revolution:

for j = 1 to 𝑛𝑖𝑚𝑝

 for m = 1 to 𝑁𝐶𝑗

 𝑙 ← randomly select the number of dimensions to be perturbed with respect to 𝜇;

 if 𝑟𝑎𝑛𝑑[0, 1] ≤ 𝑝𝑅

 𝐶𝑜𝑙𝑗𝑚(𝑙) = 𝐶𝑜𝑙𝑗𝑚(𝑙) + 𝑔𝑎𝑢𝑠𝑠𝑖𝑎𝑛(0,
𝑢𝑏−𝑙𝑏

10
);

 end

 end

end

Intra-empire competition:

Evaluate the fitness of updated colonies;

for j = 1 to 𝑛𝑖𝑚𝑝

 for m = 1 to 𝑁𝐶𝑗

 if 𝑓(𝐶𝑜𝑙𝑗𝑚) < 𝑓(𝐼𝑚𝑝𝑗)

 Exchange the position of 𝐼𝑚𝑝𝑗 and 𝐶𝑜𝑙𝑗𝑚;

 end

 end

end

37

Total power of an empire:

for j = 1 to 𝑛𝑖𝑚𝑝

 𝑇𝐶𝑗 = 𝑓(𝐼𝑚𝑝𝑗) + ∗ 𝑚𝑒𝑎𝑛{𝑓(𝐶𝑜𝑙𝑗)};

end

Imperialistic competition:

Maximum total cost among the empires: 𝑇𝐶𝑚𝑎𝑥 = max
𝑖

{𝑇𝐶𝑖} (𝑖 = 1, 2, … , 𝑛𝑖𝑚𝑝);

Calculate normalized total cost of each empire: 𝑇𝐶𝑛𝑗 = 𝑇𝐶𝑚𝑎𝑥 − 𝑇𝐶𝑗 (𝑗 = 1, 2, … , 𝑛𝑖𝑚𝑝);

Obtain possession probability of each empire: 𝑃𝑝𝑗
= |

𝑇𝐶𝑛𝑗

∑ 𝑇𝐶𝑖

𝑛𝑖𝑚𝑝
𝑖

| (𝑗 = 1, 2, … , 𝑛𝑖𝑚𝑝);

Pick the weakest colony from the weakest empire and allocate it to the empire which has the

most likelihood to possess it based on possession probability (𝑃𝑝);

𝐵𝑒𝑠𝑡 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 = imperialist with the best fitness in current iteration

end

return 𝐵𝑒𝑠𝑡 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛

End

3.5 Flower Pollination Algorithm (FPA)

Inspired by the pollination process of flowers, Flower Pollination Algorithm (FPA) was first

proposed in [69]. Pollination process in flowers can primarily be classified as Biotic and Abiotic

pollination. Biotic pollination process requires the help of pollinators in the form of insects, birds

or bats to transfer pollen from one flower to another. Whereas, in abiotic pollination, pollen is

transferred through the help of wind or diffusion in water without the necessity of pollinators.

About 90% of pollination process in flowering plants occur in biotic form and only 10%

pollination takes place in abiotic process. Flower constancy is also an important term in flower

pollination. It refers to the fact that many pollinators travel to flowering plants of certain species

in search of nectar. This ensures the transfer of pollen to the same or conspecific species and

increases the probability of reproduction of the same flower species. Pollination process in

flowers can be further classified as self-pollination and cross-pollination. Self-pollination process

takes place through the transfer of pollen to the same flower or another flower in the same plant.

On the other hand, cross-pollination refers to the process of transferring pollen from one plant to

another plant. Thus, biotic and cross-pollination can be regarded as global pollination as the

insects or pollinators traverse a long distance. Whereas, abiotic and self-pollination is referred as

local pollination as the pollination takes place within a small neighborhood [70]. In FPA, a

38

global searching process is introduced mimicking the concept of global pollination and flower

constancy where Levy distribution is normally used to indicate the jump or fly distance of

pollinators in the global pollination process [71]. This global searching mechanism enhances

diversity among the solution sets within the population. Moreover, the concept of local

pollination and flower constancy is utilized in developing a local search operator. This local

search operator also plays an important role of exploiting the search area in the vicinity of

current solution. The pseudo-code of FPA is shown in Algorithm 5 and the steps involved in the

optimization process is described as follows.

Step 1: Random initialization of the initial population (X) of n number of candidate solutions

(flowers) within the lower (lb) and upper (ub) boundaries of the solution vector. For simplicity,

normally it is considered that each flower produces only one pollen gamete. Thus, each solution

is considered to be a flower or a pollen gamete.

Step 2: Evaluation of the fitness value of each flower in the population and identification of the

best solution (𝑔∗) within the initial population.

Step 3: Initialization of switch probability (𝑝) by choosing a value between 0 to 1. Whether a

solution set will undergo local pollination or global pollination depends upon this value of 𝑝.

Step 4: Generation of candidate solutions for the next iteration.

 Step 4.1: If a generated random number is greater than the value of 𝑝, then global

pollination is performed according to the formula of global pollination written in

Algorithm 5. In global pollination, the insects have to make large jumps or have to move

a long distance. To address this behavior of insects, Levy distribution is adopted to

generate a step vector, 𝐿.

 Step 4.2: If the random number generated in the previous step is less than 𝑝, then local

pollination is performed following the formula of local pollination shown in Algorithm 5.

From the total number of solutions in the population; 𝑗𝑡ℎ and 𝑘𝑡ℎ solution sets are

randomly selected for local pollination. The value of 𝜖 is randomly selected from a

uniform distribution in the range [0, 1].

 Step 4.3: After performing either local or global pollination, if the newly generated

solution (X𝑖
𝑡+1) has better fitness compared to the previous one (X𝑖

𝑡), then the previous

39

solution is replaced with the new one. Otherwise, the previous solution (X𝑖
𝑡) will remain

unchanged.

 Step 4.4: Repeat steps 4.1, 4.2 and 4.3 to go through the pollination process for all the 𝑛

number of solutions in the population in the current generation.

Step 7: The solution with the best fitness among the current solutions is identified and 𝑔∗ is

updated accordingly.

Step 8: The termination criterion is checked in this step. If the criterion is satisfied then the

current best solution, 𝑔∗ is returned as the optimum solution. Otherwise, the optimization process

will be continued from step 4.

Algorithm 5 Pseudo code for FPA

Begin:

Generate the initial population (flowers): 𝑋𝑖 ~ 𝑈(lb, ub) (i = 1, 2, …, n)

Evaluate fitness of each flower: 𝑓(X𝑖) (i = 1, 2, …, n)

Determine, 𝑔∗ = Best solution among the initial population

Initialize the switch probability between local and global pollination 𝑝 ∈ [0, 1]

while(the stopping criterion is not satisfied)

for i = 1 to 𝑛

 if 𝑟𝑎𝑛𝑑[0, 1] > 𝑝

 Generate a step vector, 𝐿 following Levy distribution (dimension will be same as a

 particular solution)

 Perform global pollination: X𝑖
𝑡+1 = X𝑖

𝑡 + 𝐿(𝑔∗ − X𝑖
𝑡)

 else

 𝜖 ← randomly select a number from a uniform distribution in [0, 1]
 𝑗, 𝑘 ← randomly select two numbers from the total number of solutions

 Perform local pollination: X𝑖
𝑡+1 = X𝑖

𝑡 + 𝜖(X𝑗
𝑡 − X𝑘

𝑡)

 end

Calculate fitness of new solution: 𝑓(X𝑖
𝑡+1)

 if 𝑓(X𝑖
𝑡+1) < 𝑓(X𝑖)

 X𝑖 = X𝑖
𝑡+1

 else

 X𝑖 will remain unchanged

 end

end

Find, 𝑔∗ = Best solution among the current population

end

return 𝑔∗

End

40

3.6 Grasshopper Optimization Algorithm (GOA)

In the study conducted by Saremi et al. [46], a new nature-inspired algorithm named the

grasshopper optimization algorithm (GOA) was proposed by mathematically modeling the

swarming behavior of grasshoppers in nature. The mathematical model of swarming behavior of

grasshoppers include the model for social interaction between grasshoppers. As part of the social

interaction, it is considered that the individuals of the grasshopper swarm experience both

attractive and repulsive forces as indicated in Fig. 3.3. At a particular distance between two

grasshoppers, the attractive and repulsive force is considered to be equal which is known as the

comfort zone. At short distances, there is possibility of collision between two grasshoppers.

Thus, if the distance between two grasshoppers is less than the distance of comfort zone then the

repulsive force between them should be higher in order to avoid collision. On the other hand, in

order to form a swarm, the attractive force between two grasshoppers should be higher if the

distance between them is more than the comfort zone distance [72]. In each iteration, the best

solution is considered as the target for the next iteration which simulates the tendency of

grasshoppers to move towards the source of food. While updating the positions of grasshoppers

in each iteration, a deceleration coefficient is introduced to gradually obtain a balance between

exploration and exploitation while chasing the target solution. The pseudo code for GOA is

shown in Algorithm 6 and the steps involved in the optimization process is described as follows.

Fig. 3.3: A conceptual model of the interactions between grasshoppers [46]

Step 1: Defining input parameters. (𝑐𝑚𝑎𝑥, 𝑐𝑚𝑖𝑛, maximum number of iterations)

Step 2: Random initialization of the positions for n number of grasshoppers (X) within the lower

(lb) and upper (ub) boundaries of the search space.

41

Fig. 3.4: Function s when 𝑙𝑎𝑡𝑡 = 1.5 and 𝑓 = 0.5 [46]

Step 3: Evaluation of the fitness values of each search agent and identification of the best one as

the target solution (T).

Step 4: Calculation of the deceleration coefficient (c) based on its maximum (𝑐𝑚𝑎𝑥) and

minimum (𝑐𝑚𝑖𝑛) values, current iteration number (l) and the maximum number of iterations (L).

Step 5: This coefficient c is associated in updating the position of each search agent by

simulating the social interaction between the grasshoppers through the social interaction function

(s) and the distance between two grasshoppers (𝑑𝑖𝑗). Fig. 3.4 shows the social interaction

function plotted as a function of distance for 𝑙𝑎𝑡𝑡 = 1.5 and 𝑓 = 0.5. From this figure, it can be

seen that the social interaction function (s) is most significant within the range from 1 to 4. Thus,

the distance between grasshoppers is normalized in the range [1,4] [46]. Along with the

modeling of social interaction between grasshoppers, the positions of the grasshoppers are

moved towards the target solution which imitates the movement of grasshoppers towards the

food source. In this way, position of all the n number of grasshoppers are updated in this step.

Step 6: The position of the target solution will be updated by any one of the search agents if it

obtains a better fitness value. Otherwise, the target solution will remain unchanged.

Step 7: If the stopping criterion is satisfied, then the position of the target solution is considered

as the optimum solution. Otherwise, the process will continue from step 4 until the termination

criterion is satisfied.

42

Algorithm 6 Pseudo code for GOA

Begin:

Initialize the positions of the grasshoppers: Xi (i = 1, 2, …, n)

Initialize 𝑐𝑚𝑎𝑥, 𝑐𝑚𝑖𝑛 and maximum number of iterations (L)

Initialize intensity of attraction (f) and the attractive length scale (𝑙𝑎𝑡𝑡)

Evaluate fitness of each search agent: 𝑓(Xi) (i = 1, 2, …, n)

Assign, T = the best search agent

while(the stopping criterion is not satisfied)

 Update deceleration coefficient: 𝑐 = 𝑐𝑚𝑎𝑥 − 𝑙
𝑐𝑚𝑎𝑥 − 𝑐𝑚𝑖𝑛

𝐿

for i = 1 to n

 Normalize the distance between grasshoppers in [1,4]

 Update the position of the search agent: X𝑖 = 𝑐 (∑ 𝑐
𝑢𝑏−𝑙𝑏

2
𝑠(𝑑𝑖𝑗)

𝑥𝑗−𝑥𝑖

𝑑𝑖𝑗

𝑁
 𝑗=1
𝑗≠ 𝑖

) + �̂�

 Where, 𝑠(𝑑𝑖𝑗) = 𝑓𝑒
−𝑑𝑖𝑗

𝑙𝑎𝑡𝑡 − 𝑒−𝑑𝑖𝑗 𝑎𝑛𝑑 𝑑𝑖𝑗 = |𝑥𝑗 − 𝑥𝑖|

 Bring the search agent back if it goes outside the boundaries

end

Evaluate fitness of each search agent: 𝑓(X𝑖) (i = 1, 2, …, n)

 if min(𝑓(X𝑖)) <𝑓(𝑇)

 Update T with the location of the ith search agent

 else

 T will remain unchanged

 end

l = l+1

end

return T

End

The general optimization characteristics of nature-inspired optimization algorithms are presented

in this chapter. The step by step optimization process of some nature-inspired algorithms which

are opted for this research are explained with the help of respective pseudocodes. The

hybridization technique among these algorithms to form hybrid optimization algorithms for load

flow analysis of islanded microgrid is presented in the next chapter.

43

Chapter 4

Load Flow Analysis and Proposed Hybrid Algorithms

In the conventional load flow analysis, the slack bus governs the voltage and frequency of the

whole system. Whereas, in case of droop-controlled islanded microgrid the voltage and

frequency are regulated by droop controllers associated with each source. Due to the variation of

voltage and frequency, the concept of slack bus becomes invalid in case of islanded microgrid.

As a result, for an islanded microgrid with droop-controlled inverter; the system frequency has to

be considered as one of the load flow variables along with the voltage magnitudes and reference

angles contributed by each inverter in the system. The state variable, x can be described in terms

of the load flow variables as

12 KK oq oqx v v = (4.1)

where; , and oqv represents the system frequency, reference angle and voltage magnitude

respectively and K represents the total number of inverters in the system. The constraints of the

objective problem can be defined as

min max

min max

min max

oq oq oqv v v

4.1 Problem Formulation

The objective of the load flow analysis is to minimize the sum of absolute mismatch values of

active and reactive power of the inverters. The objective function can be written as

1 1

, ()
K K

i i

i i

Minimize f x P Q
= =

= + (4.2)

where;
iP and iQ are the real and reactive power mismatch at the ith bus. In [48], similar

objective function was employed in order to solve the load flow analysis. For a droop-controlled

inverter, the power mismatch equations are the difference between the inverter output power

44

calculated at the global reference frame and the reference values set by the droop controllers. For

the ith inverter bus the active and reactive power mismatch equations are

 ()3
()

2 i i i i

n
i od od oq oq

i

P V I V I
m

 −
 = + − (4.3)

 ()3
()

2

i

i i i i

n oq

i oq od od oq

i

V v
Q V I V I

n

−
 = − − (4.4)

To determine the power mismatch values, a set of equations has to be solved which involve the

calculation of bus voltages and inverter output currents. For these calculations an equivalent

circuit of the inverter model is considered as shown in Fig. 4.1, where the inverter output voltage

across the capacitor is considered as a voltage source behind its coupling impedance. The

process of determining the power mismatch values is described in the following steps.

Fig. 4.1: Steady-state equivalent circuit of inverter model at bus i

Fig. 4.2: Norton equivalent circuit of steady-state inverter model at bus i

45

Step 1: First of all, following equations (2.27) and (2.28); the d-axis and q-axis components of

the inverter output voltage is transformed in the global reference frame using the reference angle

 . Then, the output voltage of the ith inverter in terms of a complex quantity can be calculated as

 ()
i iod i oqV sin v= (4.5)

 ()
i ioq i oqV cos v= (4.6)

i i io od oqV jV V= + (4.7)

Step 2: Before determining the bus voltages it is required to calculate the current injected to a

particular bus. For this study, only constant impedance loads are considered. So, the inverter are

the only sources to inject current to their respective buses. The current injected by the inverters

can be easily calculated by transforming the circuit shown in Fig. 4.1 to its Norton equivalent as

shown in Fig. 4.2. Then, the current injected by the ith inverter is calculated as

()

i

i i

o

inj SC

c

V
I I

Z
= = (4.8)

Step 3: The bus voltages can now be calculated from the injected currents as

 ()b bus injV Z I= (4.9)

For islanded microgrids the bus impedance matrix is a function of frequency and it has to be

updated at each iteration. For an N-bus system the vector of injected currents at each bus is given

by

 ()

0

pinj

inj

I due to inverter at bus p p N
I

otherwise

=

 (4.10)

Step 4: After determining the bus voltages, the output current of the ith inverter can be

determined by

()

i i

i

o b

o

c

V V
I

Z

−
= (4.11)

The d-axis and q-axis components of the inverter output current in the global reference frame is

given by

 { }
i iod oI I= (4.12)

 { }
i ioq oI I= (4.13)

46

Step 5: The equations from (4.5) to (4.13) are sufficient to calculate the active and reactive

power mismatch values for each inverter by solving the equations described in (4.3) and (4.4).

Thus, the values of the power mismatch equations can be used to evaluate the objective function

as indicated in equation (4.2).

4.2 Proposed Hybrid Algorithms

The flowcharts of the hybrid algorithms are shown in Fig. 4.3 and Fig. 4.4. Several hybrid

algorithms based on nature-inspired optimization algorithms have been proposed to perform the

load flow analysis of islanded microgrids. These hybrid algorithms have been designed keeping

the imperialist competitive algorithm (ICA) as the main frame. Four other metaheuristic

algorithms namely; genetic algorithm (GA), differential evolution (DE), flower pollination

algorithm (FPA) and grasshopper optimization algorithm (GOA) were separately combined with

ICA to obtain four hybrid algorithms namely ICGA, ICDE, ICFPA and ICGOA. The main focus

of introducing GA, DE, FPA and GOA in the optimization process of ICA is to enhance the

capability of better exploration and exploitation of the search space. Exploration and exploitation

are two key terms of these nature-inspired optimization algorithms. Where, exploration refers to

a process of searching the search space in a wider range to increase the diversity of candidate

solutions. On the other hand, exploitation indicates the process of searching in the vicinity of

prospective solutions. Thus, exploration can be regarded as a search in the global scale, whereas

exploitation indicates search in the local scale. Adding other nature inspired algorithms along

with ICA will introduce few more steps to update the candidate solutions in the optimization

process which is expected to increase the diversity among the generated solution sets.

Furthermore, if a situation arises where the optimization problem is stuck in a local minima, then

addition of GA, DE, FPA or GOA in the optimization process of ICA may assist in getting out of

the local minima and approach towards convergence faster. The process of applying the

proposed hybrid algorithms for the load flow analysis is described in the following steps.

Step 1: Initialization of the system data of islanded microgrid.

Step 2: Generation of initial population for the state variables as stated in (4.1). In case of ICA,

the population individuals are called countries. For a particular study a specific number of

countries are initially generated.

47

Step 3: For each country, equations (4.5) to (4.13) are solved and the values of active and

reactive power mismatch for each inverter are calculated using equations (4.3) and (4.4). Then,

for each country in the population the value of the objective function is determined using

equation (4.2).

Step 4: Next, the countries are sorted according to their objective function values. Then,

depending on the fitness values of the countries; the empires are generated by setting specific

countries as the imperialists and assigning rest of the countries as colonies to them.

Step 5: The positions of the colonies are then moved towards the position of their respective

imperialist by a process called assimilation.

Step 6: In this step, the positions of some of the colonies are modified randomly by doing

revolution.

Step 7: If there is a colony which has a lower fitness value than the imperialist, then their

positions are interchanged. This process is referred as intra-empire competition.

Step 8: The hybridization process of ICA with GA, DE, FPA and GOA is carried out in this step.

Four distinct hybrid algorithms are obtained by following the four cases as indicated below

Case 1: The flowchart of ICGA is shown in Fig. 4.3(a), where the updated empires from

the previous step is set as parents in GA. Then, the positions of the imperialists and

colonies are updated through crossover, mutation and selection process.

Case 2: The resulting algorithm will be ICDE if the flowchart shown in Fig. 4.3(b) is

followed. Here, the empires are assigned as parents of the DE algorithm. The positions of

the countries (imperialists and colonies) are updated through mutation, crossover and

selection process of DE.

Case 3: In Fig. 4.4(a), the flowchart of ICFPA is presented. The empires are assigned as

population of flowers in FPA. The population is then modified by mimicking either

global pollination or local pollination process depending upon a probability switch.

Case 4: Hybrid algorithm ICGOA can be obtained by following the algorithm shown in

Fig. 4.4(b). In this case the empires are set as the positions of grasshoppers in GOA. The

positions are updated by simulating the swarming behavior of grasshoppers.

48

 (a) (b)

Fig. 4.3: Flowchart of; (a) ICGA and (b) ICDE

49

 (a) (b)

Fig. 4.4: Flowchart of; (a) ICFPA and (b) ICGOA

50

Selecting any one of these four cases in this step is the prime difference among the four hybrid

algorithms. The rest of the steps are similar for each algorithm.

Step 9: Intra-empire competition is performed again as mentioned in step 7.

Step 10: In this step, first of all the total fitness of each empire is calculated. Then, in

imperialistic competition, the weakest colonies are identified and are given to the empires which

have the most likelihood to possess them. If an empire ends up with no colonies then that empire

will be eliminated.

Step 11: The solution set which is providing the best fitness value will be identified in this step.

Step 12: If the stopping conditions are satisfied, then the whole process will be terminated.

Other-wise, the calculations will be repeated from step 5. For this study, the optimization process

will terminate if any one of the following two stopping criterion is satisfied.

1. If the value of the best fitness is less than a pre-specified threshold (ε) value.

2. If the total number of iterations is less than a pre-specified value of maximum number

of iterations.

In this chapter, the load flow variables for an islanded microgrid were defined with respect to the

mathematical model described in Chapter 2 and an objective function was formulated in terms of

the load flow variables to perform the load flow analysis as an optimization problem. In the later

portion of the chapter, discussion was carried out regarding the hybridization technique

employed in this study to obtain different hybrid algorithms. Applying the proposed hybrid

algorithms to perform the load flow analysis of a case study system is presented in the next

chapter.

51

Chapter 5

Numerical Case Study

In order to perform load flow analysis using the hybrid algorithms presented in the previous

chapter the modified IEEE 37-bus system is considered as the case study system. Along with

these hybrid algorithms, the load flow analysis of the same case study system is performed using

PSO. Based on the performance of each algorithm in solving the load flow problem, a

comparative study among these algorithms will be presented in this chapter. Before going to the

comparative study, this chapter starts with a brief discussion on the modified IEEE 37-bus

system. Then, the algorithm with the better performance is identified through the comparative

study and the corresponding load flow results are demonstrated in the later portion of the chapter.

Fig. 5.1: Single-line diagram of the modified IEEE 37-bus system

5.1 System Information

The standard IEEE 37-bus system is modified by connecting seven inverters at different bus

locations as indicated in [73]. The single line diagram of the modified IEEE 37-bus system is

shown in Fig. 5.1. The seven inverters are connected at buses 15, 18, 22, 24, 29, 33 and 34 as

indicated by the black dots in Fig. 5.1. For this modified IEEE 37-bus system load flow analysis

was performed using a quasi-Newton method in [21]. In order to conduct a comparative study,

the different parameters associated with the load flow analysis for this IEEE 37-bus system were

52

taken similar to the ones in [21]. For all the inverters, a nominal voltage of Vn = 170 V was

chosen and nominal frequency was set to ωn = 2π60 rad/s. The maximum power ratings and the

droop co-efficients for each inverter is given in Table 5.1. Only constant impedance loads are

considered in this case study. The branch and load parameters for the IEEE 37-bus system are

presented in Table 5.2 and Table 5.3.

Table 5.1: Inverter bus locations, power ratings and droop co-efficients [21]

i Bus Pmax (kW) Qmax (kVAR) mi
-1 ni

-1

1 15 15 15 2387.3 1250

2 18 8 8 1273.2 666.7

3 22 10 10 1591.5 833.3

4 24 15 15 2387.3 1250

5 29 8 8 1273.2 666.7

6 33 10 10 1591.5 833.3

7 34 15 15 2387.3 1250

Table 5.2: Branch Parameters [73]

From Bus To Bus R (Ω) L (H) From Bus To Bus R (Ω) L (H)

1 2 0.167 2.31×10−4 10 29 0.223 3.08×10−4

2 5 0.070 9.64×10−5 11 33 0.070 9.64×10−5

2 13 0.063 8.67×10−5 11 32 0.035 4.82×10−5

2 3 0.230 3.18×10−4 13 4 0.091 1.25×10−4

3 20 0.042 5.78×10−5 14 15 0.091 1.25×10−4

3 23 0.105 1.45×10−4 16 7 0.160 2.22×10−4

4 14 0.014 1.93×10−5 16 6 0.105 1.45×10−4

4 16 0.139 1.93×10−4 20 35 0.049 6.75×10−5

5 34 0.056 7.71×10−5 23 9 0.035 4.82×10−5

5 12 0.042 5.78×10−5 26 27 0.098 1.35×10−4

6 19 0.049 6.75×10−5 27 30 0.112 1.54×10−4

7 18 0.132 1.83×10−4 27 10 0.091 1.25×10−4

7 17 0.021 2.89×10−5 30 31 0.070 9.64×10−5

8 26 0.056 7.71×10−5 31 11 0.070 9.64×10−5

8 25 0.056 7.71×10−5 35 21 0.035 4.82×10−5

9 24 0.105 1.45×10−4 35 22 0.049 6.75×10−5

9 8 0.056 7.71×10−5 36 9 0.230 3.18×10−4

10 28 0.035 4.82×10−5

53

Table 5.3: Load Parameters [73]

Bus R (Ω) L (H) Bus R (Ω) L (H)

1 6.58 0.0105 24 49.93 0.0748

12 49.93 0.0748 25 98.74 0.1572

13 49.93 0.0748 26 49.93 0.0748

14 111.41 0.1681 27 98.74 0.1572

15 49.93 0.0748 28 49.93 0.0748

16 49.93 0.0748 29 98.74 0.1572

17 25.82 0.0409 30 29.62 0.0472

18 98.74 0.1572 31 33.12 0.0519

19 98.74 0.1572 32 49.93 0.0748

20 98.74 0.1572 33 98.74 0.1572

21 32.91 0.0524 34 45.54 0.0686

22 98.74 0.1572 35 98.74 0.1572

23 49.93 0.0748

For the modified IEEE 37-bus system the load flow analysis was formulated as an optimization

problem as discussed in chapter 4. Next, load flow analysis was performed by applying the

hybrid algorithms ICGA, ICDE, ICFPA and ICGOA separately to the modified IEEE 37-bus

system. For these hybrid algorithms, the total number of countries was set to 100. For this study,

among these 100 countries, 5 were chosen as imperialists and rest of them were assigned as

colonies to the imperialists. Later on, PSO was also applied to perform the load flow analysis of

the same case study system. The total number of particles for PSO was set to 100 as well, in

order to make a logical comparison among the five algorithms. The values different parameters

of these algorithms used for the simulation is summarized in Table 5.4 and Table 5.5. All the

simulations were performed using a personal computer with a processor of intel core i7-8550 at

1.8 GHz and with an installed RAM of 8 GB. For this case study, the following stopping criterion

were considered which would terminate the optimization process once satisfied.

1. If the best fitness value is less than a pre-specified threshold (ɛ) value which was set to

10-5 for this study.

2. If the number of iterations is equal to a pre-specified value of maximum number of

iterations. For this study, the maximum number of iterations was set to 100.

54

Table 5.4: Parameters of ICGA, ICDE, ICFPA, ICGOA

Algorithm Parameters Algorithm Parameters

ICA

𝑛𝑝𝑜𝑝 = 100

𝑛𝑖𝑚𝑝 = 5

𝑛𝑐𝑜𝑙 = 95

𝛽 = 1.5

𝑝𝑅 = 0.05

𝜇 = 0.1

 = 0.2

GA

𝑝𝑐 = 0.7

𝑝𝑚 = 0.3

𝜇𝑚 = 0.1

𝛾 = 0.4

DE
𝑝𝐶𝑅 = 0.5

𝐹~ [0.4,1]

FPA 𝑝 = 0.8

GOA

𝑐𝑚𝑎𝑥 = 1

𝑐𝑚𝑖𝑛 = 0.00004
𝑓 = 0.5

𝑙𝑎𝑡𝑡 = 1.5

Table 5.5: Parameters of PSO

Algorithm Parameters

PSO

𝑛 = 100

𝑤𝑑𝑎𝑚𝑝 = 0.99

𝐶1 = 2.05

𝐶2 = 2.05

5.2 Comparison among the Algorithms with Statistical Analysis

Being metaheuristic algorithms, these algorithms operate in a stochastic manner which indicates

that the optimization process is associated with randomness. The optimization process for these

algorithms start by randomly initializing the positions of the solution variables within the

boundary of pre-specified constraints. Then, a number of iterations is performed by updating the

positions of each solution set through a series of random process until the optimum solution is

obtained. Due to the inherent randomness of these algorithms it is most likely that the number of

iterations and the execution time needed to complete the optimization process may vary for each

independent run/trial. Thus, for overall comparison among the algorithms, each algorithm was

executed for 30 independent trials.

For each independent trial, the number of iterations to reach the stopping criterion and the overall

execution time were recorded. These data are summarized in Table 5.6 in three categories

namely best, average and worst result for each algorithm. From Table 5.6, among the 30

independent runs if the best results are considered, then it can be observed that ICGA and ICDE

achieve convergence in minimum number of iterations which is 23 in this case. For this best-case

55

Table 5.6: Iterations and Time required by ICGA, ICDE, ICFPA, ICGOA and PSO algorithms

Algorithm

Best Results Average Results Worst Results

No. of

Iterations

Execution

Time (sec)

No. of

Iterations

Execution

Time (sec)

No. of

Iterations

Execution

Time (sec)

ICGA 23 80.215 30 105.528 40 140.287

ICDE 23 79.659 27 95.512 30 120.108

ICFPA 26 90.597 32 146.213 39 305.142

ICGOA 29 101.586 42 159.265 50 569.403

PSO 40 67.277 55 96.175 81 143.393

scenario, if the execution time is taken into consideration then it can be seen that ICDE

completes the optimization process 0.556 sec faster compared to ICGA. In case of ICFPA and

ICGOA the required number of iterations and the execution time is higher compared to the other

algorithms. For PSO, 40 iterations were required to complete the load flow analysis; however,

due to less complexity in the optimization process, convergence is achieved faster compared to

the other algorithms. On the other hand, for the worst-case scenario, ICDE completes the load

flow analysis in 30 iteration with a computational time of 120.108 sec. Whereas, the other

algorithms require more iterations and higher computational time to complete the load flow

analysis. To summarize the results shown in Table 5.6, considering all 30 independent trials, on

an average, ICDE requires 27 iterations to complete the optimization process with an average

computational time of 95.512 sec. In case of PSO the average computational time is 96.175 sec

which is close to that of ICDE, but the required number of iterations is much higher compared to

ICDE. Thus, among the five algorithms ICDE can be considered as the algorithm with better

performance. To further support the above discussion, the convergence graph of each algorithm

considering their best and worst results is respectively shown in Fig. 5.2 and Fig. 5.3. From Fig.

5.2(a) and Fig. 5.3(a), it can be seen that all the algorithms attain very high fitness values in the

initial iterations and gradually after completing several iterations the fitness values obtain

convergence. In order to show the exact point of convergence for each algorithm, the zoomed

version of the graphs shown in Fig. 5.2(a) and Fig. 5.3(a) are depicted in Fig. 5.2(b) and

Fig. 5.3(b). From these two figures, it is also evident that for both the cases; ICDE is providing

faster convergence compared to the other algorithms. For the 30 independent trials, the number

of iterations required in each trial for the five individual algorithms is shown in Fig. 5.4.

56

(a)

(b)

Fig. 5.2: Convergence graph for the best results of each algorithm; (a) original scale, (b) zoomed

version

57

(a)

(b)

Fig. 5.3: Convergence graph for the worst results of each algorithm; (a) original scale,

(b) zoomed version

58

Fig. 5.4: Total number of iterations in each trial in case of; (a) ICDE, (b) ICGA, (c) ICFPA,

(d) ICGOA, (e) PSO

(a)

(b)

(c)

(d)

(e)

59

From the bar plots shown in Fig. 5.4, it can be observed that ICDE has more uniform distribution

compared to the other algorithms which indicates that ICDE has less variation in the required

number of iterations for different trials.

For further analysis of the acquired results, SPSS statistics software was used to perform

statistical analysis of the obtained data from 30 independent runs. To demonstrate the uniqueness

of each algorithm, independent samples t-tests were performed to compare the means of each

algorithm. In this study, data from two algorithms were defined as grouping variables at a time.

Table 5.7 and Table 5.8 show the t-test results based on the required number of iterations and the

execution time as the comparison variable respectively. Whenever independent samples t-test is

performed in SPSS, the software also generates results of a corresponding F-test which

determine whether the data sample of two groups have equal variances or not. If the significant

factor (p-value) of the F-test is greater than the significance level of 0.05, then the group

variances are considered to be equal. Otherwise, it is not possible to assume equal variances.

From Table 5.7, it can be observed that when the number of iterations is considered, data

samples of the pairs ICFPA-ICGA and ICGOA-PSO possess equal variances as the p-value of

the F-test is greater than 0.05. All the other pair of groups possess non-equal variances in this

case. Similarly, as shown in Table 5.8, in terms of the computational time, the pairs which

exhibit equal variances are ICFPA-ICGOA, ICGA-ICGOA, ICGA-PSO and ICGOA-PSO.

For the t-test, the null hypothesis H0 assumes that the mean values of the data set are equal and

the alternative hypothesis H1 assumes that the mean values of the data set are not equal. Whether

the null hypothesis can be accepted or not depends on the value of the significant factor (p-value)

of the t-test. From Table 5.7, it can be seen that, the p-value of the t-test with respect to the

required number of iterations is smaller than 0.05 for all the pairs of data sample, which indicate

that the null hypothesis can be rejected and in this context there is significant difference among

all the algorithms. On the other hand, Table 5.8 shows the t-test results with respect to

computational time. Considering the p-values of the t-tests shown in Table 5.8, it can be

observed that all pairs except ICDE-PSO and ICFPA-ICGOA contain significant difference with

respect to execution time.

60

Thus, considering both execution time and the number of iterations required to complete the

optimization process, all the algorithms can be regarded to have unique characteristics. Based on

the studies done so far, it can be observed that ICDE performs relatively better compared to the

other algorithms considering the average number of iterations and the average execution time.

Table 5.7: Results of t-test based on number of Iterations

Methods

F-test t-test for equality of means

F Sig.
Mean

Difference
t df Sig. (2-tailed)

ICDE-ICFPA 12.819 0.001 -5.033 -7.560 40.905 0.000

ICDE-ICGA 21.065 0.000 -2.567 -3.067 36.191 0.004

ICDE-ICGOA 77.330 0.000 -15.033 -10.687 31.387 0.000

ICDE-PSO 50.681 0.000 -27.533 -13.987 30.196 0.000

ICFPA-ICGA 1.992 0.164 2.467 2.483 58 0.016

ICFPA-ICGOA 33.548 0.000 -10.000 -6.644 39.740 0.000

ICFPA-PSO 30.552 0.000 -22.5 -11.030 34.524 0.000

ICGA-ICGOA 18.166 0.000 -12.467 -7.849 46.147 0.000

ICGA-PSO 21.454 0.000 -24.967 -11.877 38.255 0.000

ICGOA-PSO 3.020 0.088 -12.5 -5.237 58 0.000

Table 5.8: Results of t-test based on computational time

Methods

F-test t-test for equality of means

F Sig.
Mean

Difference
t df Sig. (2-tailed)

ICDE-ICFPA 38.033 0.000 -50.701 -3.941 29.805 0.000

ICDE-ICGA 8.777 0.004 -10.016 -3.137 44.320 0.003

ICDE-ICGOA 5.209 0.026 -63.754 -4.259 29.592 0.000

ICDE-PSO 17.358 0.000 -0.664 -0.175 39.528 0.862

ICFPA-ICGA 28.486 0.000 40.685 3.110 31.810 0.004

ICFPA-ICGOA 1.375 0.246 -13.052 -0.665 58 0.509

ICFPA-PSO 23.825 0.000 50.037 3.779 33.259 0.001

ICGA-ICGOA 3.360 0.072 -53.738 -3.545 58 0.001

ICGA-PSO 1.629 0.207 9.352 2.092 58 0.041

ICGOA-PSO 2.493 0.120 63.089 4.125 58 0.000

61

Table 5.9: Load flow results obtained by ICDE

Load Flow

Variable

Calculated

Value

Load Flow

Variable

Calculated

Value

ω (rad/s) 375.5576 𝑣𝑜𝑞1
(V) 165.472

δ2 (deg) -1.3682 𝑣𝑜𝑞2
(V) 168.236

δ3 (deg) -2.9203 𝑣𝑜𝑞3
(V) 169.621

δ4 (deg) -0.3786 𝑣𝑜𝑞4
(V) 169.717

δ5 (deg) 1.0963 𝑣𝑜𝑞5
(V) 166.986

δ6 (deg) 2.2311 𝑣𝑜𝑞6
(V) 169.932

δ7 (deg) 2.4701 𝑣𝑜𝑞7
(V) 168.741

Table 5.10: Comparison among the per unit output voltages at each inverter obtained through

ICDE and quasi-Newton method

i

Bus

Output Voltage (p.u.)

ICDE
Quasi-Newton

[21]

1 15 0.9734 0.9789

2 18 0.9896 0.9601

3 22 0.9978 0.9655

4 24 0.9983 0.9844

5 29 0.9823 0.9745

6 33 0.9996 0.9673

7 34 0.9926 0.9700

62

Table 5.11: Generated active and reactive powers at each inverter in case of ICDE

i Bus

Generated Power

Active Power

(kW)

Reactive Power

(kVAR)

1 15 1.856 0.685

2 18 3.477 0.357

3 22 6.595 -1.424

4 24 3.235 1.330

5 29 0.905 0.803

6 33 1.685 3.493

7 34 0.729 5.899

5.3 Results of Load Flow Analysis

The results of the load flow analysis of the modified IEEE 37-bus system using ICDE is given in

Table 5.9. In this table the optimized values of the load flow variables such as the system

frequency, reference frame angles and the q-axis component of the inverter output voltages are

recorded. Among the 30 independent runs the best result is tabulated here. From the obtained

results the (p.u.) value of the steady state frequency is found to be 0.9962. In [21], the load flow

solution of the modified IEEE 37-bus system was obtained through a quasi-Newton method. In

order to make a comparison among the ICDE and the quasi-Newton method, the per unit (p.u.)

values of the inverter output voltages at each inverter bus is tabulated in Table 5.10. From Table

5.10, it can be observed that the p.u. values of the inverter output voltages obtained through both

the algorithms are very close to each other and it can also be seen that all bus voltages lie within

5% of the rated bus voltage which satisfy the IEEE standard of voltage regulation as stated in

[74]. Furthermore, it can be observed that the p.u. values of the inverter output voltages are close

to unity in case of ICDE which indicate that the voltages in this case are close to the nominal

value. The inverter bus locations and the values of the active and reactive powers generated by

each inverter in case of ICDE is tabulated in Table 5.11.

63

The results obtained so far are sufficient to calculate the voltages and phase angles at other buses

of the network. These information are important for proper monitoring and operation of the

whole system. The obtained load flow results can also be used to calculate steady-state operating

points that can be used to linearize the nonlinear equations of the system model which is

necessary for control and small signal stability analysis of the system.

As ICDE was found to exhibit better performance compared to the other algorithms considered

in this work, the MATLAB code of ICDE is presented in Appendix. The resources available in

[75] were helpful in developing the MATLAB codes for the implementation of the hybrid

algorithms.

64

Chapter 6

Conclusion and Future Research Directions

6.1 Conclusion

This thesis was focused on the application of nature-inspired hybrid optimization algorithms for

the efficient solution of load flow problem of autonomous microgrids. In Chapter 1, brief

introduction to microgrid systems, its different operating modes, significance of droop control

scheme for autonomous microgrids and importance of load flow analysis were presented.

Motivation towards this research and the thesis objectives were outlined in the later portion of

the chapter in light of the literature review. Chapter 2 contains the mathematical model of

autonomous microgrid in synchronous reference frame. The mathematical is useful in

understanding the relationship between different parameters associated with the microgrid

system. In Chapter 3, a brief discussion was presented on the general characteristics of nature

inspired optimization techniques along with the optimization process of some of the algorithms

considered for this study. For solving the load flow problem, an objective function was

formulated based on the absolute summation of errors in the real and reactive power generations

from the inverter based microgrid sources as demonstrated in Chapter 4. This chapter also

contains discussions on the formation of hybrid optimization techniques; namely ICGA, ICDE,

ICFPA and ICGOA. The hybridization was performed with a view to improving the global

searching capability by enhanced exploration of the search space. In Chapter 5, the hybrid

algorithms were applied to conduct a case study on the modified IEEE 37-bus system containing

seven droop-controlled inverters. The simulations for the load flow analysis were carried out

using MATLAB software. For the same case study system, PSO was also applied to conduct the

load flow analysis. The performances of the applied hybrid algorithms along with PSO were

compared through a series of statistical tests. SPSS statistical analysis software was used to

conduct the statistical analysis. Based on the statistical test ICDE was found to exhibit better

performance than the other algorithms in terms of the required number of iterations and the

execution time. Therefore, ICDE can be regarded as a prospective stochastic load flow technique

for droop-controlled islanded microgrids.

65

6.2 Future Research Directions

With respect to the study conducted in this research some possible future research scopes can be

suggested. Apart from the algorithms considered in this thesis, other nature-inspired

metaheuristic algorithms may be adopted for the load flow analysis of islanded microgirds and a

comparative study may be conducted. Furthermore, in this thesis, the objective function was

considered to be the absolute summation of the real and reactive power mismatch. So, the

objective function actually does not consider the mismatch of real and reactive power at each

bus, rather the mismatch of all the inverter buses were considered collectively. As an alternative

approach, the load flow problem can be considered as a multi-objective optimization problem

where the power mismatch equations at each bus can be considered as separate objective

functions. Then, with the help of multi-objective optimization technique a particular solution

point has to be identified where all the separate objective function will meet the specified

convergence criteria.

66

References

[1] R. H. Lasseter and P. Piagi, "Microgrid: A conceptual solution," in IEEE Power

Electronics Specialists Conference, 2004, pp. 4285-4291.

[2] N. Hatziargyriou, Microgrids: architectures and control: John Wiley & Sons, 2014.

[3] R. Lasseter, A. Akhil, C. Marnay, J. Stephens, J. Dagle, R. Guttromsom, et al.,

"Integration of distributed energy resources. The CERTS Microgrid Concept," Lawrence

Berkeley National Lab.(LBNL), Berkeley, CA (United States)2002.

[4] R. Lasseter and P. Piagi, "Providing premium power through distributed resources," in

Proceedings of the 33rd annual Hawaii international conference on system sciences,

2000, p. 9 pp.

[5] B. Hartono and R. Setiabudy, "Review of microgrid technology," in 2013 international

conference on QiR, 2013, pp. 127-132.

[6] F. Katiraei and M. R. Iravani, "Power management strategies for a microgrid with

multiple distributed generation units," IEEE transactions on power systems, vol. 21, pp.

1821-1831, 2006.

[7] T. L. Vandoorn, J. C. Vasquez, J. De Kooning, J. M. Guerrero, and L. Vandevelde,

"Microgrids: Hierarchical control and an overview of the control and reserve

management strategies," IEEE industrial electronics magazine, vol. 7, pp. 42-55, 2013.

[8] Z. Shuai, Y. Sun, Z. J. Shen, W. Tian, C. Tu, Y. Li, et al., "Microgrid stability:

Classification and a review," Renewable and Sustainable Energy Reviews, vol. 58, pp.

167-179, 2016.

[9] J. P. Lopes, C. Moreira, A. Madureira, F. Resende, X. Wu, N. Jayawarna, et al., "Control

strategies for microgrids emergency operation," in 2005 International Conference on

Future Power Systems, 2005, pp. 6 pp.-6.

[10] M. C. Chandorkar, D. M. Divan, and R. Adapa, "Control of parallel connected inverters

in standalone AC supply systems," IEEE Transactions on Industry Applications, vol. 29,

pp. 136-143, 1993.

[11] A. Engler, "Applicability of droops in low voltage grids," International Journal of

Distributed Energy Resources, vol. 1, pp. 1-6, 2005.

[12] J. P. Lopes, C. Moreira, and A. Madureira, "Defining control strategies for microgrids

islanded operation," IEEE Transactions on power systems, vol. 21, pp. 916-924, 2006.

[13] J. M. Guerrero, J. C. Vasquez, J. Matas, L. G. De Vicuña, and M. Castilla, "Hierarchical

control of droop-controlled AC and DC microgrids—A general approach toward

standardization," IEEE Transactions on industrial electronics, vol. 58, pp. 158-172,

2010.

[14] E. Barklund, N. Pogaku, M. Prodanovic, C. Hernandez-Aramburo, and T. C. Green,

"Energy management in autonomous microgrid using stability-constrained droop control

of inverters," IEEE Transactions on Power Electronics, vol. 23, pp. 2346-2352, 2008.

[15] Y. Li, D. M. Vilathgamuwa, and P. C. Loh, "Design, analysis, and real-time testing of a

controller for multibus microgrid system," IEEE Transactions on power electronics, vol.

19, pp. 1195-1204, 2004.

[16] R. H. Lasseter, "Microgrids," in 2002 IEEE Power Engineering Society Winter Meeting.

Conference Proceedings (Cat. No. 02CH37309), 2002, pp. 305-308.

67

[17] J. M. Guerrero, J. C. Vasquez, J. Matas, M. Castilla, and L. G. de Vicuña, "Control

strategy for flexible microgrid based on parallel line-interactive UPS systems," IEEE

Transactions on industrial Electronics, vol. 56, pp. 726-736, 2008.

[18] H. Han, X. Hou, J. Yang, J. Wu, M. Su, and J. M. Guerrero, "Review of power sharing

control strategies for islanding operation of AC microgrids," IEEE Transactions on Smart

Grid, vol. 7, pp. 200-215, 2015.

[19] H. Saadat, "Power System Analysis,(2nd)," McGraw-Hill Higher Education, 2009.

[20] D. P. Kothari and I. Nagrath, Modern power system analysis: Tata McGraw-Hill

Education, 1989.

[21] J. A. Mueller and J. W. Kimball, "An Efficient Method of Determining Operating Points

of Droop-Controlled Microgrids," IEEE Transactions on Energy Conversion, vol. 32, pp.

1432-1446, 2017.

[22] M. M. A. Abdelaziz, H. E. Farag, E. F. El-Saadany, and Y. A.-R. I. Mohamed, "A novel

and generalized three-phase power flow algorithm for islanded microgrids using a

newton trust region method," IEEE Transactions on Power Systems, vol. 28, pp. 190-201,

2013.

[23] W. F. Tinney and C. E. Hart, "Power flow solution by Newton's method," IEEE

Transactions on Power Apparatus and systems, pp. 1449-1460, 1967.

[24] J. J. Grainger and W. D. Stevenson Jr, "Power System Analisis, Mc GrawHill," New

York, 1994.

[25] B. Stott, "Decoupled Newton load flow," IEEE Transactions on Power Apparatus and

Systems, pp. 1955-1959, 1972.

[26] B. Stott and O. Alsac, "Fast decoupled load flow," IEEE transactions on power

apparatus and systems, pp. 859-869, 1974.

[27] M. Haque, "A general load flow method for distribution systems," Electric Power

Systems Research, vol. 54, pp. 47-54, 2000.

[28] U. Eminoglu and M. H. Hocaoglu, "Distribution systems forward/backward sweep-based

power flow algorithms: a review and comparison study," Electric Power Components

and Systems, vol. 37, pp. 91-110, 2008.

[29] W. Kersting, "Application of Labber Network Theory to the Solution of Three-Phase

radial Load Problems," in IEEE PES winter meeting, 1976.

[30] R. Berg, E. Hawkins, and W. Pleines, "Mechanized calculation of unbalanced load flow

on radial distribution circuits," IEEE Transactions on power apparatus and systems, pp.

415-421, 1967.

[31] D. Shirmohammadi, H. W. Hong, A. Semlyen, and G. Luo, "A compensation-based

power flow method for weakly meshed distribution and transmission networks," IEEE

Transactions on power systems, vol. 3, pp. 753-762, 1988.

[32] Y. Zhu and K. Tomsovic, "Adaptive power flow method for distribution systems with

dispersed generation," IEEE Transactions on Power Delivery, vol. 17, pp. 822-827, 2002.

[33] S. Khushalani, J. M. Solanki, and N. N. Schulz, "Development of three-phase unbalanced

power flow using PV and PQ models for distributed generation and study of the impact

of DG models," IEEE Transactions on Power Systems, vol. 22, pp. 1019-1025, 2007.

[34] K. Balamurugan and D. Srinivasan, "Review of power flow studies on distribution

network with distributed generation," in 2011 IEEE Ninth International Conference on

Power Electronics and Drive Systems, 2011, pp. 411-417.

68

[35] K. P. Wong, A. Li, and M. Law, "Development of constrained-genetic-algorithm load-

flow method," IEE proceedings-Generation, Transmission and Distribution, vol. 144, pp.

91-99, 1997.

[36] K. P. Wong, A. Li, and T. Law, "Advanced, constrained, genetic algorithm load flow

method," IEE Proceedings-Generation, Transmission and Distribution, vol. 146, pp. 609-

616, 1999.

[37] T. Ting, K. Wong, and C. Chung, "Hybrid constrained genetic algorithm/particle swarm

optimisation load flow algorithm," IET generation, transmission & distribution, vol. 2,

pp. 800-812, 2008.

[38] M. Varadarajan and K. S. Swarup, "Solving multi-objective optimal power flow using

differential evolution," IET Generation, Transmission & Distribution, vol. 2, pp. 720-

730, 2008.

[39] H. Nikkhajoei and R. Iravani, "Steady-state model and power flow analysis of

electronically-coupled distributed resource units," IEEE Transactions on Power Delivery,

vol. 22, pp. 721-728, 2007.

[40] M. Z. Kamh and R. Iravani, "Unbalanced model and power-flow analysis of microgrids

and active distribution systems," IEEE Transactions on Power Delivery, vol. 25, pp.

2851-2858, 2010.

[41] M. Z. Kamh and R. Iravani, "Steady-state model and power-flow analysis of single-phase

electronically coupled distributed energy resources," IEEE Transactions on Power

Delivery, vol. 27, pp. 131-139, 2011.

[42] M. Z. Kamh and R. Iravani, "A unified three-phase power-flow analysis model for

electronically coupled distributed energy resources," IEEE Transactions on Power

Delivery, vol. 26, pp. 899-909, 2011.

[43] F. Mumtaz, M. Syed, M. Al Hosani, and H. Zeineldin, "A novel approach to solve power

flow for islanded microgrids using modified newton raphson with droop control of dg,"

IEEE Transactions on Sustainable Energy, vol. 7, pp. 493-503, 2016.

[44] F. Mumtaz, M. Syed, M. Al Hosani, and H. Zeineldin, "A simple and accurate approach

to solve the power flow for balanced islanded microgrids," in 2015 IEEE 15th

International Conference on Environment and Electrical Engineering (EEEIC), 2015, pp.

1852-1856.

[45] X.-S. Yang, Nature-inspired optimization algorithms: Elsevier, 2014.

[46] S. Saremi, S. Mirjalili, and A. Lewis, "Grasshopper optimisation algorithm: theory and

application," Advances in Engineering Software, vol. 105, pp. 30-47, 2017.

[47] A. Elrayyah, Y. Sozer, and M. E. Elbuluk, "A novel load-flow analysis for stable and

optimized microgrid operation," IEEE Transactions on Power Delivery, vol. 29, pp.

1709-1717, 2014.

[48] M. Abedini, "A novel algorithm for load flow analysis in island microgrids using an

improved evolutionary algorithm," International Transactions on Electrical Energy

Systems, vol. 26, pp. 2727-2743, 2016.

[49] H. Jiayi, J. Chuanwen, and X. Rong, "A review on distributed energy resources and

MicroGrid," Renewable and Sustainable Energy Reviews, vol. 12, pp. 2472-2483, 2008.

[50] N. Pogaku, M. Prodanovic, and T. C. Green, "Modeling, analysis and testing of

autonomous operation of an inverter-based microgrid," IEEE Transactions on power

electronics, vol. 22, pp. 613-625, 2007.

69

[51] M. Rasheduzzaman, J. A. Mueller, and J. W. Kimball, "An accurate small-signal model

of inverter-dominated islanded microgrids using $ dq $ reference frame," IEEE Journal

of Emerging and Selected Topics in Power Electronics, vol. 2, pp. 1070-1080, 2014.

[52] P. C. Krause, O. Wasynczuk, S. D. Sudhoff, and S. Pekarek, Analysis of electric

machinery and drive systems vol. 2: Wiley Online Library, 2002.

[53] D. E. Goldberg, Genetic Algorithms in Search, Optimization, and Machine Learning.

New York: Addison-Wesley, 1989.

[54] X.-S. Yang, Nature-inspired metaheuristic algorithms: Luniver press, 2010.

[55] J. H. Holland, Adaptation in Natural and Artificial Systems. Ann Arbor: University of

Michigan press, 1975.

[56] J. H. Holland, Adaptation in natural and artificial systems: an introductory analysis with

applications to biology, control, and artificial intelligence: MIT press, 1992.

[57] A. H. Wright, "Genetic algorithms for real parameter optimization," in Foundations of

genetic algorithms. vol. 1, ed: Elsevier, 1991, pp. 205-218.

[58] K. Deep and M. Thakur, "A new crossover operator for real coded genetic algorithms,"

Applied mathematics and computation, vol. 188, pp. 895-911, 2007.

[59] Y. Yoon and Y.-H. Kim, "The roles of crossover and mutation in real-coded genetic

algorithms," in Bio-inspired computational algorithms and their applications, ed:

IntechOpen, 2012.

[60] R. Storn and K. Price, "Differential evolution–a simple and efficient heuristic for global

optimization over continuous spaces," Journal of global optimization, vol. 11, pp. 341-

359, 1997.

[61] S. Das and P. N. Suganthan, "Differential evolution: A survey of the state-of-the-art,"

IEEE transactions on evolutionary computation, vol. 15, pp. 4-31, 2010.

[62] R. Eberhart and J. Kennedy, "A new optimizer using particle swarm theory," in MHS'95.

Proceedings of the Sixth International Symposium on Micro Machine and Human

Science, 1995, pp. 39-43.

[63] J. Kennedy, "Particle Swarm Optimization," in Encyclopedia of Machine Learning, C.

Sammut and G. I. Webb, Eds., ed Boston, MA: Springer US, 2010, pp. 760-766.

[64] M. S. Arumugam, M. Rao, and A. Chandramohan, "A new and improved version of

particle swarm optimization algorithm with global–local best parameters," Knowledge

and Information systems, vol. 16, pp. 331-357, 2008.

[65] S. Y. Lim, M. Montakhab, and H. Nouri, "Economic dispatch of power system using

particle swarm optimization with constriction factor," International Journal of

Innovations in Energy Systems and Power, vol. 4, pp. 29-34, 2009.

[66] Y. Shi, "Particle swarm optimization: developments, applications and resources," in

Proceedings of the 2001 congress on evolutionary computation (IEEE Cat. No.

01TH8546), 2001, pp. 81-86.

[67] E. Atashpaz-Gargari and C. Lucas, "Imperialist competitive algorithm: an algorithm for

optimization inspired by imperialistic competition," in 2007 IEEE congress on

evolutionary computation, 2007, pp. 4661-4667.

[68] S. Hosseini and A. Al Khaled, "A survey on the imperialist competitive algorithm

metaheuristic: implementation in engineering domain and directions for future research,"

Applied Soft Computing, vol. 24, pp. 1078-1094, 2014.

[69] X.-S. Yang, "Flower pollination algorithm for global optimization," in International

conference on unconventional computing and natural computation, 2012, pp. 240-249.

70

[70] E. Nabil, "A modified flower pollination algorithm for global optimization," Expert

Systems with Applications, vol. 57, pp. 192-203, 2016.

[71] I. Pavlyukevich, "Lévy flights, non-local search and simulated annealing," Journal of

Computational Physics, vol. 226, pp. 1830-1844, 2007.

[72] S. M. Ismael, S. H. A. Aleem, A. Y. Abdelaziz, and A. F. Zobaa, "Optimal Conductor

Selection of Radial Distribution Feeders: An Overview and New Application Using

Grasshopper Optimization Algorithm," in Classical and Recent Aspects of Power System

Optimization, ed: Elsevier, 2018, pp. 185-217.

[73] L. Luo and S. V. Dhople, "Spatiotemporal model reduction of inverter-based islanded

microgrids," IEEE Transactions on Energy Conversion, vol. 29, pp. 823-832, 2014.

[74] IEEE, "IEEE Guide for Identifying and Improving Voltage Quality in Power Systems -

Redline," ed. IEEE Std 1250-2011 (Revision of IEEE Std 1250-1995): IEEE, 2011, pp. 1-

70.

[75] Available: https://yarpiz.com/

71

Appendix

MATLAB Code of ICDE

% Main Body of ICDE

clc;

clear;

close all;

for re = 1:30 % for 30 independent trials

tic

%% Problem Definition

CostFunction = @(x) MG_TEST_37(x); % Cost Function

nVar=14; % Number of Decision Variables

VarSize=[1 nVar]; % Decision Variables Matrix Size

wmin = 375;

wmax = 379;

d_min = -3; d_max = 3; v_min = 160; v_max = 180;

VarMin = [wmin d_min d_min d_min d_min d_min d_min v_min v_min v_min v_min

v_min v_min v_min]; % Lower Bound of Variables

VarMax = [wmax d_max d_max d_max d_max d_max d_max v_max v_max v_max v_max

v_max v_max v_max]; % Upper Bound of Variables

%% ICA Parameters

MaxIt=100; % Maximum Number of Iterations

nPop=100; % Population Size

nEmp=5; % Number of Empires/Imperialists

alpha=1; % Selection Pressure

beta=1.5; % Assimilation Coefficient

pRevolution=0.05; % Revolution Probability

mu=0.1; % Revolution Rate

zeta=0.2; % Colonies Mean Cost Coefficient

%% Globalization of Parameters and Settings

global ProblemSettings;

ProblemSettings.CostFunction=CostFunction;

ProblemSettings.nVar=nVar;

ProblemSettings.VarSize=VarSize;

ProblemSettings.VarMin=VarMin;

ProblemSettings.VarMax=VarMax;

72

global ICASettings;

ICASettings.MaxIt=MaxIt;

ICASettings.nPop=nPop;

ICASettings.nEmp=nEmp;

ICASettings.alpha=alpha;

ICASettings.beta=beta;

ICASettings.pRevolution=pRevolution;

ICASettings.mu=mu;

ICASettings.zeta=zeta;

%% Initialization

% Initialize Empires

[emp, country]=CreateInitialEmpires();

% Array to Hold Best Cost Values

BestCost=zeros(MaxIt,1);

%% ICA Main Loop

for it=1:MaxIt

 % Assimilation

 emp=AssimilateColonies(emp);

 % Revolution

 emp=DoRevolution(emp);

 % Intra-Empire Competition

 emp=IntraEmpireCompetition(emp);

 % Differential Evolution

 emp=Differential_Evolution(emp);

 % Intra-Empire Competition

 emp=IntraEmpireCompetition(emp);

 % Update Total Cost of Empires

 emp=UpdateTotalCost(emp);

 % Inter-Empire Competition

 emp=InterEmpireCompetition(emp);

 % Update Best Solution Ever Found

 imp=[emp.Imp];

 [~, BestImpIndex]=min([imp.Cost]);

 BestSol=imp(BestImpIndex);

 % Update Best Cost

 BestCost(it)=BestSol.Cost;

 % Show Iteration Information

 disp(['Iteration ' num2str(it) ': Best Cost = ' num2str(BestCost(it))]);

 if BestCost(it) < 1e-5

 break;

73

 end

end

%% Results

duration = toc

xlswrite('ICDE_Load_Flow_Results.xlsx',[BestSol.Position,BestSol.Cost,it,dura

tion],['A' num2str(re) ':' 'Q' num2str(re)])

xlswrite('ICDE_fitness_per_trial.xlsx',[it,BestCost'],['A' num2str(re) ':'

'CW' num2str(re)])

re

end

% Code for objective function

function z=MG_TEST_37(x)

wn = 2*pi*60;

Vn = 170;

m1 = (1/2387.5); m2 = (1/1273.2); m3 = (1/1591.5); m4 = (1/2387.5); ...

m5 = (1/1273.2); m6 = (1/1591.5); m7 = (1/2387.5);

n1 = (1/1250); n2 = (1/666.7); n3 = (1/833.3); n4 = (1/1250); ...

n5 = (1/666.7); n6 = (1/833.3); n7 = (1/1250);

R1_2 = 0.167; R2_5 = 0.070; R2_13 = 0.063; R2_3 = 0.230; R3_20 = 0.042;

R3_23 = 0.105; R4_14 = 0.014; R4_16 = 0.139; R5_34 = 0.056; R5_12 = 0.042;

R6_19 = 0.049; R7_18 = 0.132; R7_17 = 0.021; R8_26 = 0.056; R8_25 = 0.056;

R9_24 = 0.105; R9_8 = 0.056; R10_28= 0.035; R10_29= 0.233; R11_33= 0.070;

R11_32= 0.035; R13_4 = 0.091; R14_15= 0.091; R16_7 = 0.160; R16_6 = 0.105;

R20_35= 0.049; R23_9 = 0.035; R26_27= 0.098; R27_30= 0.112; R27_10= 0.091;

R30_31= 0.070; R31_11= 0.070; R35_21= 0.035; R35_22= 0.049; R36_9 = 0.230;

L1_2 = 2.31e-4; L2_5 = 9.64e-5; L2_13 = 8.67e-5; L2_3 = 3.18e-4; L3_20 =

5.78e-5;

L3_23 = 1.45e-4; L4_14 = 1.93e-5; L4_16 = 1.93e-4; L5_34 = 7.71e-5; L5_12 =

5.78e-5;

L6_19 = 6.75e-5; L7_18 = 1.83e-4; L7_17 = 2.89e-5; L8_26 = 7.71e-5; L8_25 =

7.71e-5;

L9_24 = 1.45e-4; L9_8 = 7.71e-5; L10_28= 4.82e-5; L10_29= 3.08e-4; L11_33=

9.64e-5;

L11_32= 4.82e-5; L13_4 = 1.25e-4; L14_15= 1.25e-4; L16_7 = 2.22e-4; L16_6 =

1.45e-4;

L20_35= 6.75e-5; L23_9 = 4.82e-5; L26_27= 1.35e-4; L27_30= 1.54e-4; L27_10=

1.25e-4;

L30_31= 9.64e-5; L31_11= 9.64e-5; L35_21= 4.82e-5; L35_22= 6.75e-5; L36_9 =

3.18e-4;

Rload1 = 6.58; Rload12 = 49.93; Rload13 = 49.93; Rload14 = 111.41; Rload15

= 49.93;

Rload16 = 49.93; Rload17 = 25.82; Rload18 = 98.74; Rload19 = 98.74; Rload20

= 98.74;

Rload21 = 32.91; Rload22 = 98.74; Rload23 = 49.93; Rload24 = 49.93; Rload25

= 98.74;

Rload26 = 49.93; Rload27 = 98.74; Rload28 = 49.93; Rload29 = 98.74; Rload30

= 29.62;

74

Rload31 = 33.12; Rload32 = 49.93; Rload33 = 98.74; Rload34 = 45.54; Rload35

= 98.74;

Lload1 = 0.0105; Lload12 = 0.0748; Lload13 = 0.0748; Lload14 = 0.1681;

Lload15 = 0.0748;

Lload16 = 0.0748; Lload17 = 0.0409; Lload18 = 0.1572; Lload19 = 0.1572;

Lload20 = 0.1572;

Lload21 = 0.0524; Lload22 = 0.1572; Lload23 = 0.0748; Lload24 = 0.0748;

Lload25 = 0.1572;

Lload26 = 0.0748; Lload27 = 0.1572; Lload28 = 0.0748; Lload29 = 0.1572;

Lload30 = 0.0472;

Lload31 = 0.0519; Lload32 = 0.0748; Lload33 = 0.1572; Lload34 = 0.0686;

Lload35 = 0.1572;

Rc = 0.1; Lc = 0.5e-3;

imp_line = [0 1 Rload1 Lload1; 0 12 Rload12 Lload12; 0 13 Rload13 Lload13; 0

14 Rload14 Lload14;

 0 15 Rload15 Lload15; 0 16 Rload16 Lload16; 0 17 Rload17 Lload17;

0 18 Rload18 Lload18;

 0 19 Rload19 Lload19; 0 20 Rload20 Lload20; 0 21 Rload21 Lload21;

0 22 Rload22 Lload22;

 0 23 Rload23 Lload23; 0 24 Rload24 Lload24; 0 25 Rload25 Lload25;

0 26 Rload26 Lload26;

 0 27 Rload27 Lload27; 0 28 Rload28 Lload28; 0 29 Rload29 Lload29;

0 30 Rload30 Lload30;

 0 31 Rload31 Lload31; 0 32 Rload32 Lload32; 0 33 Rload33 Lload33;

0 34 Rload34 Lload34;

 0 35 Rload35 Lload35;

 0 15 Rc Lc; 0 18 Rc Lc; 0 22 Rc Lc; 0 24 Rc Lc; 0 29 Rc Lc; 0 33

Rc Lc; 0 34 Rc Lc;

 1 2 R1_2 L1_2; 2 5 R2_5 L2_5; 2 13 R2_13 L2_13; 2 3 R2_3 L2_3; 3

20 R3_20 L3_20;

 3 23 R3_23 L3_23; 4 14 R4_14 L4_14; 4 16 R4_16 L4_16; 5 34 R5_34

L5_34; 5 12 R5_12 L5_12;

 6 19 R6_19 L6_19; 7 18 R7_18 L7_18; 7 17 R7_17 L7_17; 8 26 R8_26

L8_26; 8 25 R8_25 L8_25;

 9 24 R9_24 L9_24; 9 8 R9_8 L9_8; 10 28 R10_28 L10_28; 10 29

R10_29 L10_29; 11 33 R11_33 L11_33;

 11 32 R11_32 L11_32; 13 4 R13_4 L13_4; 14 15 R14_15 L14_15; 16 7

R16_7 L16_7; 16 6 R16_6 L16_6;

 20 35 R20_35 L20_35; 23 9 R23_9 L23_9; 26 27 R26_27 L26_27; 27 30

R27_30 L27_30; 27 10 R27_10 L27_10;

 30 31 R30_31 L30_31; 31 11 R31_11 L31_11; 35 21 R35_21 L35_21; 35

22 R35_22 L35_22; 36 9 R36_9 L36_9];

del1 = 0;

 y = x;

 [Zbus] = zbuild_w(imp_line,y(1));

 Zc = Rc + j*y(1)*Lc; %coupling impedance

 %Complex inverters voltages

 V1d = (y(8))*sin(del1);

 V1q = (y(8))*cos(del1);

75

 V2d = (y(9))*sin((y(2)*pi)/180);

 V2q = (y(9))*cos((y(2)*pi)/180);

 V3d = (y(10))*sin((y(3)*pi)/180);

 V3q = (y(10))*cos((y(3)*pi)/180);

 V4d = (y(11))*sin((y(4)*pi)/180);

 V4q = (y(11))*cos((y(4)*pi)/180);

 V5d = (y(12))*sin((y(5)*pi)/180);

 V5q = (y(12))*cos((y(5)*pi)/180);

 V6d = (y(13))*sin((y(6)*pi)/180);

 V6q = (y(13))*cos((y(6)*pi)/180);

 V7d = (y(14))*sin((y(7)*pi)/180);

 V7q = (y(14))*cos((y(7)*pi)/180);

 V1 = V1d + j*V1q;

 V2 = V2d + j*V2q;

 V3 = V3d + j*V3q;

 V4 = V4d + j*V4q;

 V5 = V5d + j*V5q;

 V6 = V6d + j*V6q;

 V7 = V7d + j*V7q;

Iinj = zeros(36,1);

Isc1 = V1/Zc;

Isc2 = V2/Zc;

Isc3 = V3/Zc;

Isc4 = V4/Zc;

Isc5 = V5/Zc;

Isc6 = V6/Zc;

Isc7 = V7/Zc;

Iinj(15) = Isc1;

Iinj(18) = Isc2;

Iinj(22) = Isc3;

Iinj(24) = Isc4;

Iinj(29) = Isc5;

Iinj(33) = Isc6;

Iinj(34) = Isc7;

Vb = Zbus*Iinj; %since Iex = 0, Isc = Iinj

Vb1 = Vb(15);

Vb2 = Vb(18);

Vb3 = Vb(22);

Vb4 = Vb(24);

Vb5 = Vb(29);

Vb6 = Vb(33);

Vb7 = Vb(34);

 %inverters currents

I01 = (V1 - Vb1)/Zc;

76

I02 = (V2 - Vb2)/Zc;

I03 = (V3 - Vb3)/Zc;

I04 = (V4 - Vb4)/Zc;

I05 = (V5 - Vb5)/Zc;

I06 = (V6 - Vb6)/Zc;

I07 = (V7 - Vb7)/Zc;

I01d = real(I01);

I01q = imag(I01);

I02d = real(I02);

I02q = imag(I02);

I03d = real(I03);

I03q = imag(I03);

I04d = real(I04);

I04q = imag(I04);

I05d = real(I05);

I05q = imag(I05);

I06d = real(I06);

I06q = imag(I06);

I07d = real(I07);

I07q = imag(I07);

%inverters power mismatch

dP1 = 3/2*(V1d*I01d + V1q*I01q) - (wn - y(1))/m1;

dP2 = 3/2*(V2d*I02d + V2q*I02q) - (wn - y(1))/m2;

dP3 = 3/2*(V3d*I03d + V3q*I03q) - (wn - y(1))/m3;

dP4 = 3/2*(V4d*I04d + V4q*I04q) - (wn - y(1))/m4;

dP5 = 3/2*(V5d*I05d + V5q*I05q) - (wn - y(1))/m5;

dP6 = 3/2*(V6d*I06d + V6q*I06q) - (wn - y(1))/m6;

dP7 = 3/2*(V7d*I07d + V7q*I07q) - (wn - y(1))/m7;

dQ1 = 3/2*(V1q*I01d - V1d*I01q) - (Vn - y(8))/n1;

dQ2 = 3/2*(V2q*I02d - V2d*I02q) - (Vn - y(9))/n2;

dQ3 = 3/2*(V3q*I03d - V3d*I03q) - (Vn - y(10))/n3;

dQ4 = 3/2*(V4q*I04d - V4d*I04q) - (Vn - y(11))/n4;

dQ5 = 3/2*(V5q*I05d - V5d*I05q) - (Vn - y(12))/n5;

dQ6 = 3/2*(V6q*I06d - V6d*I06q) - (Vn - y(13))/n6;

dQ7 = 3/2*(V7q*I07d - V7d*I07q) - (Vn - y(14))/n7;

z = abs(dP1 + dP2 + dP3 + dP4 + dP5 + dP6 + dP7) + abs(dQ1 + dQ2 + dQ3 + dQ4

+ dQ5 + dQ6 + dQ7);

end

% Code for formation of Zbus matrix

function [Zbus] = zbuild_w(linedata,w)

nl = linedata(:,1); nr = linedata(:,2); R = linedata(:,3);

L = linedata(:,4);

X = w*L;

nbr=length(linedata(:,1)); nbus = max(max(nl), max(nr));

for k=1:nbr

77

 if R(k) == inf | X(k) ==inf

 R(k) = 99999999; X(k) = 99999999;

 else, end

end

ZB = R + j*X;

Zbus = zeros(nbus, nbus);

tree=0; %%%%new

% Adding a branch from a new bus to reference bus 0

 for I = 1:nbr

 ntree(I) = 1;

 if nl(I) == 0 | nr(I) == 0

 if nl(I) == 0 n = nr(I);

 elseif nr(I) == 0 n = nl(I);

 end

 if abs(Zbus(n, n)) == 0 Zbus(n,n) = ZB(I);tree=tree+1; %%new

 else Zbus(n,n) = Zbus(n,n)*ZB(I)/(Zbus(n,n) + ZB(I));

 end

 ntree(I) = 2;

 else,end

 end

% Adding a branch from new bus to an existing bus

while tree < nbus %%% new

 for n = 1:nbus

 nadd = 1;

 if abs(Zbus(n,n)) == 0

 for I = 1:nbr

 if nadd == 1;

 if nl(I) == n | nr(I) == n

 if nl(I) == n k = nr(I);

 elseif nr(I) == n k = nl(I);

 end

 if abs(Zbus(k,k)) ~= 0

 for m = 1:nbus

 if m ~= n

 Zbus(m,n) = Zbus(m,k);

 Zbus(n,m) = Zbus(m,k);

 else, end

 end

 Zbus(n,n) = Zbus(k,k) + ZB(I); tree=tree+1; %%new

 nadd = 2; ntree(I) = 2;

 else, end

 else, end

 else, end

 end

 else, end

end

end %%%%%%new

% Adding a link between two old buses

 for n = 1:nbus

 for I = 1:nbr

 if ntree(I) == 1

78

 if nl(I) == n | nr(I) == n

 if nl(I) == n k = nr(I);

 elseif nr(I) == n k = nl(I);

 end

 DM = Zbus(n,n) + Zbus(k,k) + ZB(I) - 2*Zbus(n,k);

 for jj = 1:nbus

 AP = Zbus(jj,n) - Zbus(jj,k);

 for kk = 1:nbus

 AT = Zbus(n,kk) - Zbus(k, kk);

 DELZ(jj,kk) = AP*AT/DM;

 end

 end

 Zbus = Zbus - DELZ;

 ntree(I) = 2;

 else,end

 else,end

 end

 end

% Function for initializing the empires

function [emp, country]=CreateInitialEmpires()

 global ProblemSettings;

 global ICASettings;

 CostFunction=ProblemSettings.CostFunction;

 nVar=ProblemSettings.nVar;

 VarSize=ProblemSettings.VarSize;

 VarMin=ProblemSettings.VarMin;

 VarMax=ProblemSettings.VarMax;

 nPop=ICASettings.nPop;

 nEmp=ICASettings.nEmp;

 nCol=nPop-nEmp;

 alpha=ICASettings.alpha;

 empty_country.Position=[];

 empty_country.Cost=[];

 country=repmat(empty_country,nPop,1);

 for i=1:nPop

 for j = 1:nVar

 country(i).Position(j)=unifrnd(VarMin(j),VarMax(j));

 end

 country(i).Cost=CostFunction(country(i).Position);

 end

 costs=[country.Cost];

 [~, SortOrder]=sort(costs);

 country=country(SortOrder);

 imp=country(1:nEmp);

79

 col=country(nEmp+1:end);

 empty_empire.Imp=[];

 empty_empire.Col=repmat(empty_country,0,1);

 empty_empire.nCol=0;

 empty_empire.TotalCost=[];

 emp=repmat(empty_empire,nEmp,1);

 % Assign Imperialists

 for k=1:nEmp

 emp(k).Imp=imp(k);

 end

 % Assign Colonies

 P=exp(-alpha*[imp.Cost]/max([imp.Cost]));

 P=P/sum(P);

 for j=1:nCol

 k=RouletteWheelSelection(P);

 emp(k).Col=[emp(k).Col col(j)];

 emp(k).nCol=emp(k).nCol+1;

 end

 emp=UpdateTotalCost(emp);

end

% Assimilation

function emp=AssimilateColonies(emp)

 global ProblemSettings;

 CostFunction=ProblemSettings.CostFunction;

 nVar=ProblemSettings.nVar;

 VarSize=ProblemSettings.VarSize;

 VarMin=ProblemSettings.VarMin;

 VarMax=ProblemSettings.VarMax;

 global ICASettings;

 beta=ICASettings.beta;

 nEmp=numel(emp);

 for k=1:nEmp

 for i=1:emp(k).nCol

 emp(k).Col(i).Position = emp(k).Col(i).Position ...

 + beta*rand(VarSize).*(emp(k).Imp.Position-

emp(k).Col(i).Position);

 for j = 1:nVar

 emp(k).Col(i).Position(j) =

max(emp(k).Col(i).Position(j),VarMin(j));

80

 emp(k).Col(i).Position(j) =

min(emp(k).Col(i).Position(j),VarMax(j));

 end

 emp(k).Col(i).Cost = CostFunction(emp(k).Col(i).Position);

 end

 end

end

% Revolution

function emp=DoRevolution(emp)

 global ProblemSettings;

 CostFunction=ProblemSettings.CostFunction;

 nVar=ProblemSettings.nVar;

 VarSize=ProblemSettings.VarSize;

 VarMin=ProblemSettings.VarMin;

 VarMax=ProblemSettings.VarMax;

 global ICASettings;

 pRevolution=ICASettings.pRevolution;

 mu=ICASettings.mu;

 nmu=ceil(mu*nVar);

 sigma=0.1*(VarMax-VarMin);

 nEmp=numel(emp);

 for k=1:nEmp

 NewPos = emp(k).Imp.Position + sigma.*randn(VarSize);

 jj=randsample(nVar,nmu)';

 NewImp=emp(k).Imp;

 NewImp.Position(jj)=NewPos(jj);

 NewImp.Cost=CostFunction(NewImp.Position);

 if NewImp.Cost<emp(k).Imp.Cost

 emp(k).Imp = NewImp;

 end

 for i=1:emp(k).nCol

 if rand<=pRevolution

 NewPos = emp(k).Col(i).Position + sigma.*randn(VarSize);

 jj=randsample(nVar,nmu)';

 emp(k).Col(i).Position(jj) = NewPos(jj);

 for j = 1:nVar

 emp(k).Col(i).Position(j) =

max(emp(k).Col(i).Position(j),VarMin(j));

 emp(k).Col(i).Position(j) =

min(emp(k).Col(i).Position(j),VarMax(j));

81

 end

 emp(k).Col(i).Cost = CostFunction(emp(k).Col(i).Position);

 end

 end

 end

end

% Intra-Empire Competition

function emp=IntraEmpireCompetition(emp)

 nEmp=numel(emp);

 for k=1:nEmp

 for i=1:emp(k).nCol

 if emp(k).Col(i).Cost<emp(k).Imp.Cost

 imp=emp(k).Imp;

 col=emp(k).Col(i);

 emp(k).Imp=col;

 emp(k).Col(i)=imp;

 end

 end

 end

end

% Update total cost of empires

function emp=UpdateTotalCost(emp)

 global ICASettings;

 zeta=ICASettings.zeta;

 nEmp=numel(emp);

 for k=1:nEmp

 if emp(k).nCol>0

 emp(k).TotalCost=emp(k).Imp.Cost+zeta*mean([emp(k).Col.Cost]);

 else

 emp(k).TotalCost=emp(k).Imp.Cost;

 end

 end

end

% Imperialistic Competition

function emp=InterEmpireCompetition(emp)

 if numel(emp)==1

 return;

 end

 global ICASettings;

 alpha=ICASettings.alpha;

 TotalCost=[emp.TotalCost];

82

 [~, WeakestEmpIndex]=max(TotalCost);

 WeakestEmp=emp(WeakestEmpIndex);

 P=exp(-alpha*TotalCost/max(TotalCost));

 P(WeakestEmpIndex)=0;

 P=P/sum(P);

 if any(isnan(P))

 P(isnan(P))=0;

 if all(P==0)

 P(:)=1;

 end

 P=P/sum(P);

 end

 if WeakestEmp.nCol>0

 [~, WeakestColIndex]=max([WeakestEmp.Col.Cost]);

 WeakestCol=WeakestEmp.Col(WeakestColIndex);

 WinnerEmpIndex=RouletteWheelSelection(P);

 WinnerEmp=emp(WinnerEmpIndex);

 WinnerEmp.Col(end+1)=WeakestCol;

 WinnerEmp.nCol=WinnerEmp.nCol+1;

 emp(WinnerEmpIndex)=WinnerEmp;

 WeakestEmp.Col(WeakestColIndex)=[];

 WeakestEmp.nCol=WeakestEmp.nCol-1;

 emp(WeakestEmpIndex)=WeakestEmp;

 end

 if WeakestEmp.nCol==0

 WinnerEmpIndex2=RouletteWheelSelection(P);

 WinnerEmp2=emp(WinnerEmpIndex2);

 WinnerEmp2.Col(end+1)=WeakestEmp.Imp;

 WinnerEmp2.nCol=WinnerEmp2.nCol+1;

 emp(WinnerEmpIndex2)=WinnerEmp2;

 emp(WeakestEmpIndex)=[];

 end

end

% Differential Evolution

function emp = Differential_Evolution(emp)

 global ProblemSettings;

 CostFunction=ProblemSettings.CostFunction;

 nVar=ProblemSettings.nVar;

 VarSize=ProblemSettings.VarSize;

 VarMin=ProblemSettings.VarMin;

 VarMax=ProblemSettings.VarMax;

 beta_min=0.4; % Lower Bound of Scaling Factor

83

 beta_max=1.0; % Upper Bound of Scaling Factor

 pCR=0.5; % Crossover Probability

 nEmp=numel(emp);

 for k=1:nEmp

 x = emp(k).Imp.Position;

 A = randperm(nEmp);

 A(A==k) = [];

 a=A(1);

 b=A(2);

 c=A(3);

 % Mutation

 beta = unifrnd(beta_min,beta_max,VarSize);

 y = emp(a).Imp.Position + beta.*(emp(b).Imp.Position -

emp(c).Imp.Position);

 for p = 1:nVar

 y(p) = max(y(p), VarMin(p));

 y(p) = min(y(p), VarMax(p));

 end

 % Crossover

 z=zeros(size(x));

 j0=randi([1 numel(x)]);

 for j=1:numel(x)

 if j==j0 || rand<=pCR

 z(j)=y(j);

 else

 z(j)=x(j);

 end

 end

 NewSol.Position = z;

 NewSol.Cost = CostFunction(NewSol.Position);

 if NewSol.Cost < emp(k).Imp.Cost

 emp(k).Imp = NewSol;

 end

 for i=1:emp(k).nCol

 if emp(k).nCol < 4

 break;

 end

 x = emp(k).Col(i).Position;

 A = randperm(emp(k).nCol);

 A(A==i) = [];

 a=A(1);

84

 b=A(2);

 c=A(3);

 % Mutation

 beta = unifrnd(beta_min,beta_max,VarSize);

 y = emp(k).Col(a).Position + beta.*(emp(k).Col(b).Position -

emp(k).Col(c).Position);

 for p = 1:nVar

 y(p) = max(y(p), VarMin(p));

 y(p) = min(y(p), VarMax(p));

 end

 % Crossover

 z=zeros(size(x));

 j0=randi([1 numel(x)]);

 for j=1:numel(x)

 if j==j0 || rand<=pCR

 z(j)=y(j);

 else

 z(j)=x(j);

 end

 end

 NewSol.Position = z;

 NewSol.Cost = CostFunction(NewSol.Position);

 if NewSol.Cost < emp(k).Col(i).Cost

 emp(k).Col(i) = NewSol;

 end

 end

 end

end

