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ABSTRACT 

Load flow analysis is a significant tool for proper planning, operation and dynamic analysis of a 

conventional power system which provides the steady state values of voltage magnitudes and 

angles at fundamental frequency. However, due to the absence of slack bus in an autonomous 

microgrid, modified load flow algorithms should be adopted considering the system frequency as 

one of the solution variables. This work proposes the application of nature inspired hybrid 

optimization algorithms for solving the load flow problem of autonomous microgrids. Several 

nature-inspired algorithms such as, Genetic Algorithm (GA), Differential Evolution (DE) 

algorithm, Flower Pollination Algorithm (FPA) and Grasshopper Optimization Algorithm 

(GOA) are separately merged with Imperialistic Competitive Algorithm (ICA) to form four 

hybrid algorithms named as ICGA, ICDE, ICFPA and ICGOA and their performances are tested 

on a modified IEEE 37-Bus microgrid system as a case study. Particle swarm optimization 

(PSO) algorithm is also employed to perform the load flow analysis of the same case study 

system. Among the above-mentioned algorithms, to identify the algorithm with better 

performance, independent samples t-tests have been conducted using SPSS statistical analysis 

software. From the statistical analysis, it has been identified that ICDE exhibit better 

performance compared to the other algorithms in terms of the number of iterations and the 

execution time required to complete the optimization process for the load flow analysis. 
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Chapter 1 

Introduction and Background 

This chapter starts with a brief introduction of microgrid system, its different operating modes 

and the control scheme adopted for meeting load demand as presented in section 1.1. Section 1.2 

contains a brief discussion regarding the importance of load flow analysis for proper planning 

and energy management of microgrid system. The literature review portion in section 1.3 

contains information regarding the traditional methods of load flow analysis of a power system. 

The different methodologies and algorithms employed in various literatures for the load flow 

analysis of autonomous microgrid are also highlighted in this section. In light of the literature 

review the motivation towards this research is discussed in section 1.4 and the thesis objectives 

are outlined in section 1.5. 

1.1 Introduction to Microgrid 

Microgrid concept evolved from the idea of integrating distributed generation (DG) units along 

with energy storage elements and controllable loads [1]. As a result of growing energy demand 

and as a replacement to the aging infrastructure of current transmission and distribution system; 

the incorporation of DGs in the distribution level gained much popularity over the last few 

decades [2]. Renewable energy resources such as solar energy, wind energy, hydro power along 

with other generating sources like diesel engine, internal combustion engine, gas turbines, fuel 

cells etc. are some of the commonly used DG units. Storage devices such as batteries, energy 

capacitors, flywheels and different flexible loads are aggregated with the DG units to form a 

particular microgrid system [3]. The interconnection among these devices for a typical microgrid 

system is depicted in Fig. 1.1. In this figure; solar energy (photovoltaic modules), wind energy 

(wind turbines) and generating sources (diesel engine) are shown as the DG units and a battery is 

used to represent the energy storage element. With the help of the renewable energy resources 

electricity can be produced at low fuel cost with less carbon emission. Energy storage elements 

also play a vital role in achieving energy balance in case of load fluctuations [4]. In terms of the 

nature of the energy produced, each DG unit has to be associated with power electronic 

interfaces (DC/AC or AC/DC/AC) in order to connect the DG unit to a particular bus in the 
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electrical network [5]. The final stage of these interfaces consists of dc/ac inverters. Thus, the 

control process associated with the inverter has significant importance on the operation of a 

microgrid system [6]. To design different controllers, it is often necessary to determine the 

steady state operating points of a system. Load flow analysis is a significant tool in determining 

the steady state operating points. Load flow analysis also provide useful information for proper 

monitoring, operation and energy management of a power system. Thus, over the years, several 

studies have been conducted to propose efficient methods of load flow analysis of microgrid 

systems in order to ensure proper planning, operation and control. 

 

Fig. 1.1: Architecture of a typical microgrid system 

1.1.1 Operating Modes of Microgrid System 

Based on the position of the isolator switch a microgrid system can have two operation modes: 

grid-connected (online) mode and autonomous (islanded) mode [7]. 

Grid-connected Mode: In grid connected mode, the microgrid system is coupled with the utility 

grid. The coupling of the microgrid with the main grid can be achieved by closing the isolator 

switch shown in Fig. 1.1. The isolator switch also signifies the point of common connection 
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(PCC) between the DGs and the utility grid. In grid connected mode, the power supplied by the 

DG units are almost independent of the load fluctuations because the spinning reserve associated 

with the online generators compensate the unbalance between the generated power and the 

electrical power consumption. Thus, the voltage and frequency at the PCC are maintained by the 

main grid. Furthermore, as the capacities associated with the DGs connected in a microgrid is 

small compared to the utility grid, the disturbances in the microgrid very rarely has significant 

effect on the frequency adjustment of the grid [8]. 

Autonomous (Islanded) Mode: In autonomous mode, the microgrid system operates as an 

independent entity with isolation from the utility grid. The operation of microgrid can be 

switched to autonomous or islanded mode by keeping the isolator switch open as shown in Fig. 

1.1. In order to achieve a stable operating condition, all the DGs have to take the responsibility of 

maintaining the balance between power supply and load variations. Due to the low capacities of 

the DG units and as they are power electronically interfaced, the spinning reserve concept cannot 

be employed for stable operation in autonomous mode. Dedicated control scheme is required for 

islanded microgrid to provide voltage and frequency control establishing real and reactive power 

balance [9]. According to the change in load demand the voltage and frequency set points to the 

DG units has to be adjusted on regular basis. Thus, establishing a control process to ensure 

reliability of operation of microgrid in case of autonomous mode becomes a challenging task. 

Droop control schemes are most commonly employed on the power electronic inverters 

associated with each DG unit to obtain the regulation of voltage and frequency [10, 11]. 

1.1.2 Droop Control Method for Autonomous Microgrid 

As mentioned in earlier section, the DG units in the microgrid system are interfaced with power 

electronic interfaces and the final stage of each interface consist of an dc/ac inverter such as 

voltage source inverter (VSI). Each VSI is associated with inner current controllers and outer 

voltage controllers. To control the VSIs, real power-frequency ( )P −  and reactive power-

voltage ( )Q V−  droop control methods are used to imitate the behavior of synchronous 

generator [12-15]. The voltage and frequency of the VSI has to be regulated in such a way that 

power demand for all critical loads within the microgrid are met adequately. If there is increase 

in load demand, then the DG units should generate more power by slightly reducing the 

frequency of the VSI as per the ( )P −  droop control scheme. Similarly, to control the flow of 
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reactive power with respect to the load demand the voltage magnitude is adjusted following the 

( )Q V−  droop control scheme. Thus, in case of load fluctuations, the frequency and voltage 

magnitude are adjusted according to the required power demand in order to ensure reliability of 

operation. The droop co-efficients are set in such a way that all the DG units in a microgrid 

system can share the total load demand with respect to their individual power ratings [15, 16]. 

The decentralized droop control method is a very effective primary control strategy for islanded 

microgrids. Unlike centralized microgrid control system, the droop control scheme does not 

require inter-unit communication between the DGs. Droop controller associated with each DG 

operate independently based on locally measured values in order to obtain appropriate power 

sharing [17, 18]. 

1.2 Importance of Load Flow Analysis 

Load flow analysis is an integral part of power system analysis. It is also a prerequisite for 

transient stability analysis, optimal power flow and contingency studies [19]. The bus voltage 

magnitudes and phase angles along with the active and reactive power flowing through the 

transmission lines are the key information obtained from load flow analysis. This information is 

important for proper monitoring of the present status of a network. It is also important for 

necessary planning prior to setting-up a new system and to ensure optimal operation and future 

expansion of existing system [20]. Solutions obtained from load flow analysis can be used to find 

steady-state operating points of a particular system. Then a system model with a set of nonlinear 

equations can be linearized around the steady-state operating points [21]. Due to the small 

capacity of the DG units in case of autonomous microgrid, a single DG unit cannot act as the 

infinite bus, rather all the DGs have to regulate their voltage and frequency to meet the required 

load demand. Thus, load flow analysis plays a significant role in assessing the feasibility of 

autonomous operation under specified system constraints. Proper energy management and power 

sharing among the DGs and the overall stability analysis of microgrid system can also be 

facilitated by efficient load flow methodology [22]. 

1.3 Literature Review 

Over the years; Gauss-Seidel (GS), Newton-Raphson (NR) methods have been widely used for 

efficient and reliable load flow analysis of power systems [23, 24]. Several studies showed that 

Newton-Raphson method possess better convergence characteristics, but with a higher 
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computational time. In order to achieve faster computation, the decoupled and fast decoupled 

load flow techniques were proposed as modified versions of the traditional NR method [25, 26]. 

According to different researches it has been shown that, it becomes difficult to achieve 

convergence using NR method or fast decoupled (FD) method in case of ill-conditioned 

distribution networks such as radial network, networks with low X/R ratios or in case of 

unbalanced distributed loads [27, 28]. As a result, several modified versions of the GS, NR, FD 

load flow methods have been proposed in different literatures.  Another popular method is the 

backward/forward sweep (BFS) method which performs the load flow analysis using forward 

and backward sweeps through the network based on basic electrical circuit laws such as 

Kirchoff’s voltage and current laws [29, 30]. Later on, different modified versions were proposed 

by introducing quadrating equations to calculate voltage magnitudes as proposed in some 

literatures. In other studies, power summation and admittance summation methods were 

introduced in BFS load flow analysis. However, the different backward/forward sweep methods 

of load flow analysis were designed to solve radial distribution networks. For weakly meshed 

distribution networks, compensation based load flow methods were proposed in different 

literatures [31-33]. The main concept of compensation based algorithm is to introduce several 

mesh break points in order to represent the weakly meshed network as a single radial network. 

The load flow analysis of this equivalent radial network can then be performed following the 

process of backward/forward sweep method [34]. 

As an alternative to the conventional load flow methodologies, evolutionary computation was 

introduced in the load flow analysis of power systems. The evolutionary algorithms are 

derivative-free in nature as there is no requirement to calculate the Jacobian matrix. Furthermore, 

these algorithms are independent of the initial settings of the solution variables and have the 

capability to generate multiple solutions. In [35], a constrained genetic algorithm (CGA) was 

proposed for load flow analysis of power systems by minimizing the active and reactive power 

mismatches in case of PQ buses and minimizing the mismatch between active power and voltage 

requirements in case of PV buses. Later on, advanced constrained genetic algorithm (ACGA) 

was proposed by Wong et al. in order to improve the performance of CGA [36]. Two 

acceleration techniques were introduced in ACGA to facilitate faster convergence. In first step, 

the current population was updated by nodal voltage differential technique and then a percentage 

of the updated population is further accelerated using gradient technique in the second step. Ting 
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et al. developed a hybrid CGA/PSO algorithm as a modification of ACGA [37]. In this hybrid 

algorithm, PSO was introduced to replace the differential voltage technique used in ACGA to 

update the current population. A multi-objective differential evolution (MODE) algorithm was 

introduced in [38], in order to optimize the balance between real and reactive power. In order to 

find the most optimum solution from the pareto optimal solutions, a fuzzy membership and 

pseudo-weight vector approach was introduced in that technique. 

The abovementioned algorithms were developed to perform load flow analysis of conventional 

power systems or distribution networks. These load flow methods assume the system frequency 

to be constant implying the concept of slack bus. In case of autonomous operation of microgrid 

system, the concept of slack bus in not applicable as all the DG units need to collectively 

regulate the voltage and frequency as per the load demand. Rather than considering frequency to 

be constant, it has to be calculated as one of the load flow variables. However, conventional 

concepts of power flow analysis were used in case of an autonomous microgrid by treating the 

local bus of the generating unit with the highest power rating as the slack bus [39, 40]. Some 

studies conducted by Kamh et al. were based on the application of single phase backward-

forward sweep algorithm for single phase networks and sequence-components frame power flow 

solver for three phase networks [41, 42]. The accuracy of these methods is limited due to the 

approximation of constant frequency throughout the solution. Furthermore, the decentralized 

droop control-based operation of microgrid system was not considered in these studies. In order 

to compensate the shortcomings of the conventional methods, several approaches have been 

proposed considering the frequency as one of the power flow solution variables. In the work of 

Abdelaziz et al. [22], a Newton-trust region method was proposed to perform the load flow 

analysis of three phase systems considering that some of the DGs are governed by the droop 

control method. Later on, a modified Gauss Seidel (MGS) method and a modified Newton-

Raphson (MNR) methods were proposed in the work of Mumtaz et al. to perform the load flow 

analysis of islanded microgrids focusing on the droop characteristics of DGs [43, 44]. However, 

for these methods, the microgrid system model was developed in stationary reference frame 

considering the voltages and currents as phasors which only allowed steady state analysis of the 

system and failed to provide necessary information for obtaining the linearized dynamic model 

of the system. In the study conducted by Mueller and Kimball [21], the system model was 

developed in synchronous reference frame and a quasi-Newton method was introduced to solve 
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the load flow analysis considering the system frequency, reference frame angles and voltage 

magnitudes as the load flow variables. Most of these load flow techniques use gradient-based 

algorithms which require evaluation of derivatives for a series of complex equations. Gradient 

based techniques often fail to obtain a global solution as these algorithms mostly converge on a 

local solution depending upon the selection of the initial starting point [45]. 

Multi-solution based evolutionary algorithms have better possibility of avoiding a local optimum 

by exploring a larger portion of the search space [46]. For droop-controlled islanded microgrid, a 

load flow algorithm was introduced where particle swarm optimization (PSO) technique was 

used to determine the droop parameters [47]. Later on, Abedini [48] applied hybridized ICGA 

algorithm for load flow analysis by incorporating imperialist competitive algorithm (ICA) with 

the multi-solution based genetic algorithm (GA). Fairly good performance was obtained in the 

aforementioned work; however, the system modeling was done in stationary reference frame. 

1.4 Motivation towards the Research 

The literature review gives an insight regarding the necessity of developing modified load flow 

methodologies for autonomous microgrids. Several approaches have been proposed by different 

researchers for this purpose as highlighted in the literature review. Some of these methods were 

based on the assumption of constant system frequency which is contradictory to the 

characteristics of autonomous microgrids. In some techniques the droop control scheme of 

microgrids was not considered. Most of these approaches were focused on gradient-based 

approaches which have a tendency of getting stuck in a local optimum if the initial starting point 

is not selected close to the global optimum. Furthermore, these derivative based approaches often 

fail to converge in case of nonlinear and discontinuous functions. As a result, nature inspired 

metaheuristic optimization algorithms were introduced for the load flow analysis of autonomous 

microgrids. However, only a few researches have been conducted in this regard such as the 

application of ICGA algorithm as discussed in the literature review. Thus, it can be considered 

that there is still room for further exploration regarding the application of nature inspired 

optimization algorithms in case of autonomous microgrids. Considering this fact in this research, 

a comparative study will be demonstrated among ICGA and three other hybrid algorithms ICDE, 

ICFPA and ICGOA where the differential evolution (DE) algorithm, flower pollination 

algorithm (FPA) and grasshopper optimization algorithm (GOA) will be separately merged with 
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ICA. Furthermore, for this study, synchronous reference frame-based system model is adopted 

for the droop controlled autonomous microgrid. Developing the system model in synchronous 

reference frame provides multiple advantages such as transforming the time variant quantities 

into time invariant ones which makes the modeling of different controllers easier. In this 

research, the modified IEEE-37 bus system is considered as a case study system. For a 

comparative study along with the aforementioned four hybrid algorithms load flow analysis of 

the modified IEEE-37 bus system will be also performed using particle swarm optimization 

(PSO). From the comparative study the algorithm with the better performance will be identified 

which can be considered as a prospective stochastic technique for non-conventional load flow 

methodology for autonomous microgrids. 

1.5 Thesis Objectives 

The main goal of this thesis is to develop a load flow methodology for autonomous microgrids 

based on the nature-inspired optimization algorithms. In order to meet that goal the following 

objectives have been considered for this thesis 

• Study of different nature-inspired optimization algorithms 

• To propose several hybrid optimization algorithms based on the study conducted 

• Application of these hybrid algorithms in performing load flow analysis of autonomous 

microgrids 

• To perform comparative study on the results obtained through different hybrid algorithms 

• To identify the algorithm with better performance among the proposed ones 

 

1.6 Outline of this thesis 

Chapter 2 demonstrates the mathematical model of a microgrid system in the synchronous 

reference frame. As each DG unit is coupled with an inverter, the mathematical model of an 

inverter along with its necessary controllers are presented in this chapter. The development of 

load and line equations and bus voltage equations are also shown in this chapter. 

In Chapter 3, discussions are carried out on some of the nature-inspired optimization algorithms 

considered for this research which are the genetic algorithm (GA), particle swarm optimization 

(PSO), differential evolution (DE), imperialist competitive algorithm (ICA), flower pollination 
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algorithm (FPA) and grasshopper optimization algorithm (GOA). This chapter gives a brief 

insight to the optimization process of these algorithms along with respective pseudocodes. 

In Chapter 4, the formulations necessary for the load flow analysis is presented. The process of 

forming four hybrid algorithms are also discussed in this chapter. The steps involved in the 

optimization process of GA, DE, FPA and GOA are separately merged with the optimization 

process of ICA to form the four hybrid algorithms. 

The application of these hybrid algorithms in performing the load flow analysis is demonstrated 

in Chapter 5. The modified IEEE-37 bus system was considered as the case study system for this 

study. The comparison among the results obtained through different hybrid algorithms are shown 

in this chapter. 

Lastly, Chapter 6 contains some concluding remarks and a brief discussion on the future research 

scope. 
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Chapter 2 

Mathematical Model of Microgrid 

Multiple distributed generation (DG) units are aggregated in a microgrid system. In most of the 

cases direct connection of these DGs to the distribution network is not suitable due to the nature 

of energy produced. Thus, before connecting to a bus, the DGs are associated with power 

electronic interfaces such as inverters [49]. As a result, developing mathematical model of the 

inverter along with its associated controllers is important for the analysis of microgrid systems. 

The control strategy of an inverter coupled with an individual DG is shown diagrammatically in 

Fig. 2.1. The discussion in this section describes the dynamic model of droop-controlled 

inverters along with the necessary load and line equations to develop the complete microgrid 

model. The modeling technique described in this section is based on the studies carried out in 

[21, 50, 51], where the system model was developed in the synchronous reference frame instead 

of the stationary reference frame following the Park’s transformation technique. As a result of 

the transformation from stationary reference frame to synchronous reference frame, three phase 

quantities can be converted to two phase which reduces the complexity of the system. In addition 

to that time varying quantities can be converted to time invariant ones as a result of this 

transformation which makes the design of different controllers easier as regular PI controllers 

can be used. 

 

Fig. 2.1: Block diagram of control strategy of droop-controlled inverter for individual DG 
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2.1 Inverter Model 

2.1.1 Reference Frame Transformation 
 

 

Fig. 2.2: Relationship between abc and dq quantities 

The inverter is coupled to the inverter bus through an LCL filter as shown in Fig. 2.1. The three-

phase capacitor voltage and inductor currents of the LCL filter are transformed from stationary 

abc reference frame to the synchronously rotating dq reference frame following the theory of 

Park’s transformation. The axes of the three-phase stationary abc reference frame and the direct 

(d) and quadrature (q) axes of the synchronously rotating dq reference frame are shown in Fig. 

2.2, where θ represents the angle difference between the two reference frames and   represents 

the rotational speed of the dq reference frame. This transformation is accomplished using the 

following equation 

 

0

2 2
( ) ( ) ( )

3 3

2 2 2
( ) ( ) ( )

3 3 3

1 1 1

2 2 2

oq oa

od ob

o oc

cos cos cos

v v

v sin sin sin v

v v

 
  

 
  

 
− + 

    
    = − +
    
       

 
  

 (2.1) 

where, oqv  and odv  are respectively the q-axis and d-axis components of the filter capacitor 

voltage and oav , obv  and ocv  are voltages in the stationary reference frame. The reference frame 

transformation of the filter inductor current, li  and the output current, 0i  can be obtained using 
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similar relationships. In equation (2.1), the transformation angle (θ) is calculated by a phase 

locked loop (PLL). Details of this transformation technique is given in [52]. 

2.1.2 Phase Locked Loop (PLL) 
 

 

Fig. 2.3: dq-based PLL 

A dq-based PLL is used to measure the phase and frequency. A proportional-integral (PI) 

controller is associated with the PLL as shown in Fig. 2.3. The PLL is used to force the d-axis 

component of the capacitor voltage to become 0. This results in the steady-state voltage 

magnitude to be equal to its q-axis component. The PLL equations are 

 
PLL od

d
v

dt
 = −  (2.2) 

 
, ,PLL PLLPLL p od i PLLk v k = − +  (2.3) 

 
PLL

d

dt
 =  (2.4) 

where, 
PLL  is the integrator state of the PI controller. ,PLLpk  and ,PLLik  are respectively the 

proportional and integral gain, PLL  is the calculated frequency and   is the transformation 

angle. 

2.1.3 Power Controller 

First of all, the instantaneous active (p) and reactive (q) powers are calculated in the power 

controller based on the values of the capacitor voltage and output current. The instantaneous 

active (p) and reactive (q) power outputs are given by 
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 3
( )

2
od od oq oqp v i v i= +  (2.5) 

 3
( )

2
oq od od oqq v i v i= −  (2.6) 

Then, average active (P) and reactive (Q) power values are calculated by passing the 

instantaneous power outputs through a first order low pass filter (LPF). The filter equations are 

 
c c

d
P p P

dt
 = −  (2.7) 

 
c c

d
Q q Q

dt
 = −  (2.8) 

where, 
c  is the cut-off frequency of the low pass filter. The process of active and reactive 

power calculations is shown in Fig. 2.4. 

 

Fig. 2.4: Calculation of active and reactive power 

 

Fig. 2.5: Droop characteristics curves 
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Then, the droop controller generates the voltage magnitude and frequency references depending 

upon the calculated values of the active and reactive powers. The P- and Q-V droop equations 

are used to generate the frequency reference, *  and q-axis voltage magnitude reference, *

oqv  

respectively. The characteristics of the droop curves are shown in Fig. 2.5. 

 *

n mP = −  (2.9) 

 *

oq nv V nQ= −  (2.10) 

where, 
n  represents the nominal frequency set point and 

nV  represents the nominal set point of 

the q-axis output voltage. The droop constants m  and n  are calculated from specified range of 

frequency and voltage magnitude. 

 
max min

max

m
P

 −
=  (2.11) 

 
, ,oq max oq min

max

V V
n

Q

−
=  (2.12) 

 

2.1.4 Voltage Controllers 

The voltage controller compares between the reference and measured values of frequency and 

voltage, and generates the reference values of the output filter inductor currents through a pair of 

PI controller as shown in Fig. 2.6. The voltage controller equations are 

 *

d PLL

d

dt
  = −  (2.13) 

 *

, ,

* ( )pv dld PLL iv d di k k  = − +  (2.14) 

 *

q oq oq

d
v v

dt
 = −  (2.15) 

 * *

, ,( )lq opv q oq iq v q qi k v kv = − +  (2.16) 
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where, 
d  and q  represent the integrator states of the voltage controllers. The proportional and 

integral gains of the respective d-axis and q-axis controllers are represented by ,pv dk , ,pv qk , ,iv dk  

and ,iv qk . 

 

Fig. 2.6: Voltage controllers 

2.1.5 Current Controllers 

The reference values of filter inductor current are compared with the measured filter inductor 

current using the current controllers. As outputs reference values of voltages are provided by 

these current controllers, which are used to generate switching signals for the inverter. As shown 

in Fig. 2.7, two PI controllers are used for this purpose. The cross-coupling terms appearing due 

to the reference frame transformation are also eliminated by these controllers. The current 

controller equations are 

 *

d ld ld

d
i i

dt
 = −  (2.17) 

 *

, ,

* ( )pc d ld ldi ic d d n f ld qv k i i k L i = − + −  (2.18) 

 *

q lq lq

d
i i

dt
 = −  (2.19) 
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 *

, ,

* ( )pc q lq lqi ic q q n f lq dv k i i k L i = − + +  (2.20) 

where, 
d  and q  are the integrator state of the current controllers. ,pc dk , ,pc qk , ,ic dk  and ,ic qk  

represent the proportional and integral gains of the d-axis and q-axis controllers respectively. 

 

Fig. 2.7: Current controllers 

 

Fig. 2.8: Output LCL filter 
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2.1.6 LCL Filter Equations 

The inverter output is connected to the microgrid through an LC filter and coupling inductor as 

demonstrated in Fig. 2.8. The filter inductor Lf, filter capacitor Cf and coupling inductor Lc 

collectively form the LCL filter. The parasitic resistance of these components is also considered 

for the inverter model as shown in Fig. 2.1. The filter dynamics are governed by the following 

equations 

 *1
( )ld f ld id od lq

f

d
i r i v v i

dt L
= − + − +  (2.21) 

 *1
( )lq f lq iq oq ld

f

d
i r i v v i

dt L
= − + − −  (2.22) 

 *1
( )od c od od bd oq

c

d
i r i v v i

dt L
= − + − +  (2.23) 

 *1
( )oq c oq oq bq od

c

d
i r i v v i

dt L
= − + − −  (2.24) 

 *1
( ) ( )od ld od oq d ld od

f

d d
v i i v R i i

dt C dt
= − + + −  (2.25) 

 *1
( ) ( )oq lq oq od d lq oq

f

d d
v i i v R i i

dt C dt
= − − + −  (2.26) 

In equations (2.23) and (2.24), bdv  and bqv  represent the bus voltages at the grid side of the 

coupling inductor. 

2.1.7 Local to Global Reference Frame Transformation 

Each inverter model is developed in its own local reference frame. For modeling a microgrid 

system with several inverters, it is necessary to translate the values defined in the local reference 

frame of an inverter to a common reference frame called the global reference frame. This 

concept can be visualized from Fig. 2.9, where DQ reference frame is considered to be the 

common reference frame and dq reference frames indicate the local reference frames of the 
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Fig. 2.9: Relationship between global reference frame and local reference frames 

inverters in the system. In Fig. 2.9, i indicates the number of inverters connected in the system 

where, i = 1, 2, … …, k. This transformation can be achieved by 

 
( )

q q

d d

F f
R

F f


   
=   

   
 (2.27) 

 
( )

cos sin
R

sin cos

 


 

− 
=  

 
 (2.28) 

where,   is the angular difference between local and global reference frame. In equation (2.27), 

lowercase letter is used to indicate local reference frame and uppercase letter is used to indicate 

global reference frame. The angle   is defined by 

 
PLL

d

dt
  = −  (2.29) 

where,   is the frequency of the global reference frame and PLL  is the frequency measured by 

PLL of a particular inverter. Often, the reference frame of the first inverter in the system is 

chosen as the global reference frame. In this work, we set 
1 PLL =  and 1 0 = , which implies 

1 0 = . For other inverters, 
PLL   and   has to be calculated following equation (2.29). 
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2.2 Equations for Load and Line 

To complete modeling the entire microgrid model, it is necessary to formulate the state equations 

for load and line in the global reference frame. Loads can be of constant impedance type which is 

basically a combination of resistors and inductors (RL loads) as depicted in Fig. 2.10. The 

equations of RL load connected to the ith bus can be described by 

 
, , ,

1
( )

i i i i i

i

load d bd load load d load q

load

d
I V R I I

dt L
= − +  (2.30) 

 
, , ,

1
( )

i i i i i

i

load q bq load load q load d

load

d
I V R I I

dt L
= − −  (2.31) 

Line currents between two adjacent buses i and j connected through a transmission line can be 

described by 

 
, , ,

1
( )

ij i j ij ij ij

ij

line d bd bd line line d line q

line

d
I V V R I I

dt L
= − − +  (2.32) 

 
, , ,

1
( )

ij i j ij ij ij

ij

line q bq bq line line q line d

line

d
I V V R I I

dt L
= − − −  (2.33) 

where, 0 i j N   . N represents the total number of buses in the system. 

 

Fig. 2.10: Line configuration between two buses 
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Fig. 2.11: Line and load currents at a particular bus 

 

2.3 Bus Voltage Equations 

The virtual resistance method can be used to find the expression of the bus voltages in the global 

reference frame. To determine the bus voltage at the ith bus using virtual resistance method, a 

high resistance connection is considered between bus i and ground. This high resistance actually 

represents open circuit. Ideally this resistance should be infinite, but typically a large value of 

resistance is considered for modeling purpose. 

Bus voltage expressions are typically dependent on any incoming inverter output current, 

incoming or outgoing line currents and currents flowing through the connected load as shown in 

Fig. 2.11. The voltage expression at bus i can be expressed as 

 1

, , ,

1 1

( )
i i i ji ik

i N

bd n od load d line d line d

j k i

V r I I I I
−

= = +

= − + −   (2.34) 

 1

, , ,

1 1

( )
i i i ji ik

i N

bq n oq load q line q line q

j k i

V r I I I I
−

= = +

= − + −   (2.35) 

where, j i k N   . 
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2.4 Overall Microgrid Model 

The equations of the inverter, load and line model described so far can be used to represent the 

overall microgrid model. The state vector of a droop-controlled inverter connected to the ith bus 

can be formulated as 

 
i i i i i i i i i i i i

T

inv i i i d q d q ld lq d q od oq PLLx P Q i i v v i i      =    (2.36) 

If there are total p number of inverters connected to the system, then the combined state vector of 

all the inverters can be represented as 

 
1 2 pinv inv inv invx x x x =  

 
 (2.37) 

Considering the equations of the load model described from equations (30) and (31), the state 

vector of a load connected at the ith bus is 

 
, ,i i i

T

load load d load qx I I =    (2.38) 

If there are total N number of buses in the microgid system and one specific RL load is connected 

to each bus, then the combined state vector of all the loads will be 

 
1 1, , , ,N N

T

load load d load q load d load qx I I I I =     (2.39) 

The equations of line current from equations (2.32) and (2.33) can be used to represent the states 

of a line between buses i and j as 

 
, ,ij ij ij

T

line line d line qx I I =
 

 (2.40) 

The overall state vector of all the lines can be represented as 

 
1 1, , , ,j j kN kNlin

T

line d line q line de line qx I I I I =  
 

 (2.41) 

where, 1 j k N   . 

Based on the combined state vectors of the droop-controlled inverters, loads and lines; the states 

of the overall microgrid model can be described as 
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  mg inv load linex x x x=  (2.42) 

State-space model of the whole microgrid system will have the following form 

 
mg mg mg mg mgx A x B u= +  (2.43) 

The elements of the state matrix, mgA  and input matrix, mgB  is defined by equations (2.2), (2.7), 

(2.8), (2.13), (2.15), (2.17), (2.19), (2.21) to (2.26), (2.29) and (2.30) to (2.33). The input vector, 

mgu  can be represented in terms of the bus voltages as 

 
1 1 N N

T

mg bd bq bd bqu V V V V =     (2.44) 
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Chapter 3 

Introduction to Nature-inspired Optimization 

Algorithms 

Optimization has become an important tool for solving various problems in the field of 

engineering, science, technology, industrial designs and even for business studies. Most of the 

real-world problems can be formulated in terms of nonlinear equations with some constraints 

associated. These constraints or restrictions can be associated in the form of resources, cost, time 

or any other parameters upon which the objective function is dependent. Thus, robust 

optimization techniques are required to find the most suitable solution to a particular problem 

without violating the constraints. In general, the optimization techniques are often classified as 

either deterministic optimization techniques or stochastic optimization techniques. 

Deterministic optimization techniques are mostly calculus-based or derivative-based approaches. 

These are single-solution based approaches and the search is directed towards an optimum point 

based on the gradient of the function. These optimization techniques are highly dependent on the 

selection of the initial starting point or the initial guess. If the initial guess is not selected in the 

neighborhood of the global optimum, then the solution is likely to entrap to a local optimum. 

Apart from that, application of these algorithms is dependent upon the existence of derivatives. 

In case of nonlinear objective functions having discontinuities, the gradient-based algorithms are 

not supposed to work [53]. 

On the other hand, stochastic optimization methods operate based on some random search 

techniques. Different evolutionary and swarm intelligence-based algorithms are categorized 

under the stochastic methods. These algorithms are also referred to as nature-inspired 

optimization algorithms because the search techniques used in these algorithms are motivated 

from some natural phenomenon. Most of these techniques are multi-solution based optimization 

process where a set of random solutions are initially generated. Then, through a series of random 

operators the solution sets are updated at each iteration with the focus to move towards the global 

optimum. Thus, through random trial and error process these algorithms try to reach the optimum 

solution. Hence, all the stochastic algorithms are also termed as metaheuristic algorithms. 
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Exploitation and exploration are two major components of these nature-inspired optimization 

algorithms. Exploration is the process of generating diverse solutions along the search space 

which is necessary to identify other prospective solutions apart from the current solutions. This 

process is referred to as a global searching process. On the other hand, exploitation refers to local 

searching mechanism which is focused on searching around the neighborhood of the current 

solutions. A balance between these two operators is necessary to obtain an overall global 

optimum solution. As these algorithms are free from the calculation of derivatives and also not 

completely dependent upon the initial starting point, the metaheuristic algorithms gained much 

popularity over the gradient-based techniques [45, 54]. 

The following sections contain discussions regarding the optimization process of some of the 

nature-inspired optimization algorithms opted for this research. The algorithms are namely; the 

genetic algorithm (GA), particle swarm optimization (PSO), differential evolution (DE), 

imperialist competitive algorithm (ICA), flower pollination algorithm (FPA) and grasshopper 

optimization algorithm (GOA). Formation of hybrid algorithms by merging these individual 

algorithms is presented in the subsequent chapter. 

3.1 Genetic Algorithm (GA) 

Genetic algorithm (GA) is one of the most popular evolutionary optimization algorithms which 

was inspired by Charles Darwin’s theory of natural evolution. The concept of GA was first 

proposed in [55], based on the theory of natural selection and survival of the fittest which refers 

to the selection of the fittest individuals to participate in the reproduction of the next generation. 

The initial versions of genetic algorithms were developed by introducing some form of binary 

coding to represent the solution variables. Thus, for multidimensional genetic algorithms each 

parameter (variable) of a solution set is represented as binary bit-string. It is worth mentioning 

that in analogy to natural evolution, the solution sets are considered as set of chromosomes / 

population individuals in case of GA and each parameter is considered as genes characterizing 

the chromosomes / individuals. The initial solution sets are termed as the parent chromosomes. 

For generating offspring, two parent chromosomes are randomly selected and their 

corresponding bit patterns are exchanged at random points referring to the crossover process of 

natural reproduction. The generated offspring undergo mutation process to add diversity to the 

population individuals. After crossover and mutation, the total population size increases and 
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based on the fitness value of each individual, a specific number of individuals are selected as 

parents to generate offspring in the next iteration [56]. Although, the binary coded genetic 

algorithms are very robust search techniques for global optimization, but a major drawback is the 

higher computational cost specially in case of multidimensional problems as each parameter has 

to be encoded with a corresponding bit-sequence. To address this issue, real-coded genetic 

algorithm was first proposed in [57], where each possible solution sets were considered as the 

chromosomes and each real valued parameter were considered as the genes. The crossover and 

mutation operators were also designed in terms of real values of the variables. Over the years, in 

order to improve the performance of real coded genetic algorithms, researchers have put much 

emphasis on the development of sophisticated real coded crossover operators as can be found 

from the works described in [58, 59]. The pseudo code for GA is shown in Algorithm 1 and the 

steps involved in the optimization process is described as follows. 

Step 1: Random generation of the initial population (X) of n number of possible solutions (parent 

chromosomes) within the lower (lb) and upper (ub) boundaries of the search space. 

Step 2: Initialization of the percentage of crossover (𝑝𝑐) and the percentage of mutation (𝑝𝑚). 

Thus, determining the number of offspring (𝑛𝑐) and the number of mutants (𝑛𝑚) to be generated 

from the parents in each iteration.  

Step 3: Initialization of mutation rate (𝜇𝑚) and the extension rate for crossover (𝛾). 

Step 4: Generation of offspring (child chromosomes) by performing the crossover operation. 

Extended-line crossover is considered for this case as shown in Fig. 3.1. First of all, two parent 

chromosomes (𝑃1, 𝑃2) are randomly selected from the initial population (X). A random number 

(𝜆) is generated based on the value of 𝛾 and two child chromosomes (𝑦1, 𝑦2) are generated 

following the equations presented in Algorithm 1. The range of possible offspring is shown by an 

extended straight line connecting the two parent chromosomes as indicated in Fig. 3.1 for two-

dimensional space. As two child chromosomes are generated from each crossover operation, the 

inner loop of crossover is executed 𝑛𝑐/2 number of times to generate total 𝑛𝑐 number of 

offspring. After each execution of the crossover operation, the information of the child 

chromosomes (𝑦1, 𝑦2) are stored in a variable, Y. 
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Fig. 3.1: Extended-line crossover with range of possible offspring 

Step 5: Performing Gaussian mutation to generate the mutants. First, a random parent 

chromosome (𝑃) is selected. Then, the dimension(s), 𝑗 at which the mutation is going to be 

performed is randomly selected with respect to the mutation rate (𝜇𝑚) and the parameter(s) at the 

𝑗𝑡ℎ  dimension(s) of 𝑃 will be perturbed through the mutation process as shown in Algorithm 1. 

Where, 𝑔𝑎𝑢𝑠𝑠𝑖𝑎𝑛(0,
𝑢𝑏−𝑙𝑏

10
) is a function to generate random Gaussian number with zero mean 

and the standard deviation of (
𝑢𝑏−𝑙𝑏

10
). The inner loop of mutation is executed for 𝑛𝑚 number of 

times and at each execution the generated mutant (𝑧) is stored in a variable, Z. 

Step 6: The total population size is updated by merging the generated offspring (𝑌) and mutants 

(𝑍) with the initially generated parent chromosomes (𝑋). For each candidate solution in the total 

population the objective function is evaluated to determine the fitness of each solution. The 

possible solutions are sorted based on their fitness value and fittest 𝑛 number of solutions are 

selected as parent chromosomes (𝑋) for the next generation. 

Step 7: If the stopping criterion is satisfied, then the solution with the best fitness is considered 

as the optimum solution. Otherwise, the process will continue from step 4 until the termination 

criterion is satisfied. 

 

Algorithm 1 Pseudo code for GA 

 

Begin: 

Generate the initial population (chromosomes): 𝑋𝑖 ~ 𝑈(lb, ub)   (i = 1, 2, …, n) 

Initialize the percentage of crossover (𝑝𝑐) and mutation (𝑝𝑚) 

Determine the total number of offspring (𝑛𝑐) and total number of mutants (𝑛𝑚) 

Initialize mutation rate, 𝜇𝑚 

Initialize the extension rate for crossover, 𝛾 
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while(the stopping criterion is not satisfied) 

for i = 1 to 𝑛𝑐/2 

 Randomly select two parent chromosomes 𝑃1, 𝑃2 

            Y ← Initialize to store the offspring 

            Crossover (𝑃1, 𝑃2, 𝛾) 

            { 

                  𝜆 ← a random number in [-𝛾, 1+ 𝛾, size(𝑃1)] 

                 𝑦1 =  𝜆𝑃1 + (1 −  𝜆)𝑃2 

                 𝑦2 =  𝜆𝑃2 + (1 −  𝜆)𝑃1 

            } 

           Update Y 

end 

           Z ← Initialize to store the mutants 

for i = 1 to 𝑛𝑚 

 Randomly select a parent chromosome 𝑃 

            Mutation (𝑃, 𝜇𝑚) 

            { 

                 𝑧 = 𝑃; 

                  𝑗 ← randomly select the number of dimensions to be mutated with respect to 𝜇𝑚 

                 𝑧(𝑗) =  𝑃(𝑗) + 𝑔𝑎𝑢𝑠𝑠𝑖𝑎𝑛(0,
𝑢𝑏−𝑙𝑏

10
) 

            } 

           Update Z 

end 

Total population, T = [X; Y; Z] 

Evaluate fitness of each solution set in total population 𝑓(𝑇𝑖)      (i = 1, 2, …, 𝑛 + 𝑛𝑐 + 𝑛𝑚) 

Update X with the fittest 𝑛 number of solution sets  

Best Solution = X(1) 

end 

return    Best Solution 

End 

 

3.2 Differential Evolution (DE) 

Differential Evolution (DE) is a real-parameter optimization algorithm which also falls into the 

category of evolutionary algorithms. It was first introduced in the work of Storn and Price [60]. 

Like other evolutionary algorithms DE solves a particular optimization problem in an iterative 

process by improving the candidate solutions in each iteration with respect to the objective 

function. As used in other evolutionary algorithms such as genetic algorithm (GA); genetic 

operators such as crossover, mutation, selection is also performed in case of DE. However, these 

operators are employed in a different manner. For example, in case of DE, the mutation 

operation is performed to perturb all the components of a solution vector. Whereas, in case of 
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GA, only a selected number of components in the candidate solution is perturbed. In DE, the 

optimization process starts with a randomly generated initial population. The solution vectors 

present in the population at the beginning of a particular generation are referred as parent vectors 

or genomes. With the help of mutation and crossover operation offspring are generated from the 

parent vectors. Each parent vector in the population first undergo a differential mutation process 

and the vector obtained from the mutation process is termed as the mutant vector. For a 

particular parent vector in the population; the differential mutation is performed by randomly 

selecting three other distinct solution vectors. Then, a scaled difference is taken between any two 

of these three vectors and the scaled difference is added with the third vector to obtain the mutant 

vector. Finally, offspring is generated from the mutant and parent vector by exchanging 

components of the parent and mutant vector on the basis of crossover probability. The offspring 

vector generated after crossover is known as the trial vector. The fitness of all the trial vectors 

are compared with the fitness of the parent vectors and the fittest solution vectors are chosen as 

parents for reproduction in the next generation keeping the population size constant [61]. 

Algorithm 2 contains the pseudo-code of DE and the step by step optimization process of DE is 

briefly discussed as follows. 

Step 1: Initialization of the population (X) with n number of random solution vectors (parent 

chromosomes) within the lower (lb) and upper (ub) boundaries of the search space. 

Step 2: Evaluation of the fitness value of each parent vector, 𝑓(X𝑖). Where, i = 1, 2, …, n.  

Step 3: Initialization of the crossover probability (𝑝𝐶𝑅) in the range [0, 1]. 

Step 4: Generation of parent vectors for the next generation. 

  Step 4.1: Generation of the mutant vector (𝑉𝑖) for the 𝑖𝑡ℎ parent vector by performing the 

differential mutation operation. From the n number of solution vectors of the current 

population three solution vectors are randomly chosen in order to create the mutant 

vector. Let us consider, 𝑋𝑗, 𝑋𝑘 and 𝑋𝑙 are the three randomly selected solution vectors 

where, 𝑗, 𝑘, 𝑙 ∈ [1, 𝑛] and 𝑖 ≠ 𝑗 ≠ 𝑘 ≠ 𝑙. Now, from these three vectors, difference 

between any two of them is scaled by a scaling factor, 𝐹 and added with the third one to 

generate the mutant vector as indicated in the formula shown in Algorithm 2. Typically, 

the value of 𝐹 is randomly drawn in the range between 0.4 and 1. 
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  Step 4.2: In this step, the crossover operation is performed to recombine the mutant with 

the parent vector and generate offspring known as the trial vector (𝑈𝑖). The exchange of 

components between the parent and mutant vector is dependent upon the crossover 

probability (𝑝𝐶𝑅). In binomial crossover, a random integer (𝑚𝑟𝑎𝑛𝑑) is generated in the 

range [1, 𝐷], where 𝐷 is the dimension of each solution vector. The 𝑚𝑡ℎ
 (𝑚 ∈ [1, 𝐷]) 

component of the trial vector, 𝑈𝑖(𝑚) will be taken from the 𝑚𝑡ℎ
 component of mutant 

vector, 𝑉𝑖(𝑚) when the value of a  𝑚𝑟𝑎𝑛𝑑 equals the value of 𝑚 or when a randomly 

generated number, 𝑟𝑎𝑛𝑑[0, 1] is less than or equal to the crossover probability (𝑝𝐶𝑅). 

Otherwise, the 𝑚𝑡ℎ
 (𝑚 ∈ [1, 𝐷]) component of the trial vector, 𝑈𝑖(𝑚) will be set to the 

value of the 𝑚𝑡ℎ
 component of the parent vector, 𝑋𝑖(𝑚). 

  Step 4.3: Selection among the parent and the trial vector will be carried out in this step. If 

the fitness value of the trial vector (𝑈𝑖) is better compared to the fitness of the parent 

vector (𝑋𝑖), then the parent vector will be replaced by the trial vector. Otherwise, the 

parent vector will sustain for the next generation. 

  Step 4.4: Repeat steps 4.1, 4.2 and 4.3 for all the n number of parent vectors in the 

current generation. 

Step 5: Determine the solution with the best fitness value among all the solution vectors in the 

current iteration. 

Step 6: If the stopping criterion is satisfied, then the solution with the best fitness in the current 

iteration is considered as the optimum solution. Otherwise, the optimization process will 

continue from step 4. 

Algorithm 2 Pseudo code for DE 

 

Begin: 

Initialize the population of solution vectors (genomes): 𝑋𝑖 ~ 𝑈(lb, ub)   (i = 1, 2, …, n) 

Evaluate fitness of each solution vector:   𝑓(X𝑖)  (i = 1, 2, …, n) 

Initialize the crossover probability 𝑝𝐶𝑅 ∈ [0, 1]  
 

while(the stopping criterion is not satisfied) 

for 𝑖 = 1 𝑡𝑜 𝑛 

     Parent vector → 𝑋𝑖 

     𝑗, 𝑘, 𝑙 ← randomly select three integers in the range [0, 𝑛] (where, 𝑖 ≠ 𝑗 ≠ 𝑘 ≠ 𝑙) 
     𝐹 ← Scaling factor (randomly chosen in the range [0.4, 1]) 
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     Generate Mutant vector:    𝑉𝑖 =  𝑋𝑗 + 𝐹( 𝑋𝑘 − 𝑋𝑙) 

     𝑚𝑟𝑎𝑛𝑑 ← randomly chosen integer in the range [1, 𝐷]  (𝐷 → dimension of each solution  

                                                                                                       vector) 

     𝑈𝑖 ←  initialize Trial vector with all components equal to zero 

     for   𝑚 = 1 𝑡𝑜 𝐷  

          if  𝑚 == 𝑚𝑟𝑎𝑛𝑑  𝑜𝑟  𝑟𝑎𝑛𝑑[0, 1]  ≤ 𝑝𝐶𝑅 

               𝑈𝑖(𝑚) = 𝑉𝑖(𝑚) 

          else 

               𝑈𝑖(𝑚) = 𝑋𝑖(𝑚) 

          end 

     end 

Calculate fitness of Trial vector:   𝑓(𝑈𝑖) 

     if   𝑓(𝑈𝑖) < 𝑓(X𝑖)  

 X𝑖 = 𝑈𝑖 

     else 

 X𝑖 will remain unchanged 

     end 

end 

𝐵𝑒𝑠𝑡 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 = solution vector with best fitness in current iteration 

end 

return    𝐵𝑒𝑠𝑡 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 

End 
 

3.3 Particle Swarm Optimization (PSO) 

Particle Swarm Optimization (PSO) is a swarm intelligence-based optimization algorithm which 

was first developed in 1995 by Kennedy and Eberhart [62]. This algorithm was mainly inspired 

by the swarming behavior of creatures such as birds, fishes or bees which live in large colonies. 

The movement and intelligence of these swarms and their social interaction are the basis particle 

swarm optimization. In PSO, the members of the swarm are commonly referred as particles 

which move around a search space in order to find the best solution. The algorithm starts by 

random initialization of the positions of these particles. Then, through continuous iteration, the 

algorithm searches for optimum solution by updating the position of each particle based on the 

particle velocity, the personal best solution (𝑝𝑏𝑒𝑠𝑡) and the global best solution (𝑔𝑏𝑒𝑠𝑡). For a 

continuous optimization process, 𝑝𝑏𝑒𝑠𝑡 refers to the best solution a particle has achieved up to 

current iteration and 𝑔𝑏𝑒𝑠𝑡 is the overall best solution among all the particles in the current 

population. In each iteration, in terms of predefined inertia weight (𝑤) and acceleration constants 

(𝐶1, 𝐶2), the resultant velocity of each particle is calculated depending upon its previous velocity 

and the locations of 𝑝𝑏𝑒𝑠𝑡 and 𝑔𝑏𝑒𝑠𝑡. Thus, the resultant velocity guides the particles to move 
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Fig. 3.2: Vector diagram relating PSO equations 

towards the locations of its 𝑝𝑏𝑒𝑠𝑡 and 𝑔𝑏𝑒𝑠𝑡 [63]. In modified version of PSO a constriction 

factor (K) based approach was used to update the velocity in each iteration [64, 65]. In this 

approach, the constriction factor (K) is associated with the inertia weight and acceleration 

constants in updating the velocity. The pseudocode of PSO is presented in Algorithm 3 and the 

step by step procedure of applying PSO in solving an optimization problem is briefly discussed 

as follows. 

Step 1: Randomly generating the initial positions of the particles (X) within the lower (lb) and 

upper (ub) boundaries of the solution variables. 

Step 2: Evaluation of the fitness values of the particles 𝑓(𝑋). For the initial population, the 

𝑝𝑏𝑒𝑠𝑡 solution of each particle is set to be same as the initial positions. Whereas, the 𝑔𝑏𝑒𝑠𝑡 

solution is the solution with the best fitness among the initial generation. 

Step 3: Initialization of acceleration constants, 𝐶1 and 𝐶2. Calculating the constriction factor (K) 

following the equation shown in Algorithm 3. Initially, the inertia weight (𝑤) is set equal to K.  

Step 4: Randomly generating the initial velocity vectors (𝑉) of the particles. 

Step 5: Calculating the velocity of the particles following the equation shown in Algorithm 3 in 

order to update the positions of the particles for the next iteration. In this equation, the 

acceleration constants, 𝐶1 and 𝐶2 influence the movement of the particles in the search space 

before reaching the target region. Along with these two constants the concept of inertia weight 
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(𝑤) was introduced to obtain a balance between exploration and exploitation [66]. Furthermore, 

in order to enhance the probability of convergence the concept of constriction factor (K) was 

introduced. 

Step 6: Updating the position of each particle by adding the velocity vector with the position 

vector of each particle. This process can be visualized from the vector diagram presented in  

Fig. 3.2. 

Step 7: Evaluation of the fitness of the updated particles. Based on the calculated fitness values 

the location of 𝑝𝑏𝑒𝑠𝑡 and 𝑔𝑏𝑒𝑠𝑡 are updated. The inertia weight (𝑤) is also updated based on the 

inertia weight damping factor (𝑤𝑑𝑎𝑚𝑝). 

Step 8: Checking the stopping condition. If the stopping condition is satisfied, then the location 

of 𝑔𝑏𝑒𝑠𝑡 is considered as the optimum solution. Otherwise, the optimization procedure is 

repeated from step 5. 

Algorithm 3 Pseudo code for PSO 
 

Begin: 

Randomly initialize the population (particles): 𝑋𝑖 ~ 𝑈(lb, ub)   (i = 1, 2, …, n); 

Evaluate fitness of each particle:   𝑓(𝑋𝑖)  (i = 1, 2, …, n); 

Initialize best solution for each particle for initial population:   𝑝𝑏𝑒𝑠𝑡𝑖 = 𝑋𝑖; 

Determine, 𝑔𝑏𝑒𝑠𝑡 = Best solution among all the particles in current population; 

Initialize inertia weight damping factor (𝑤𝑑𝑎𝑚𝑝) and acceleration constants 𝐶1 and 𝐶2; 

Calculation of constriction factor:   
2

2

2 4
K

  
=

− − −
 (where, 𝜑 = 𝐶1 + 𝐶2  & 𝜑 > 4); 

Initialize inertia weight, 𝑤 = 𝐾; 

Randomly initialize the velocity of each particle:    𝑉𝑖 
 

while(the stopping criterion is not satisfied) 

for i = 1 to 𝑛 

     Calculate velocity:    𝑉𝑖
𝑡+1 = 𝑤 ∗ 𝑉𝑖

𝑡 + 𝐾 ∗ 𝐶1 ∗ 𝑟𝑎𝑛𝑑(0, 1) ∗ (𝑝𝑏𝑒𝑠𝑡𝑖
𝑡 − 𝑋𝑖

𝑡) 
+ 𝐾 ∗ 𝐶2 ∗ 𝑟𝑎𝑛𝑑(0, 1) ∗ (𝑔𝑏𝑒𝑠𝑡𝑡 − 𝑋𝑖

𝑡); 
     Update position of particle:     𝑋𝑖

𝑡+1 = X𝑖
𝑡 + 𝑉𝑖

𝑡+1; 

     Evaluate fitness of the updated particle:    𝑓(𝑋𝑖
𝑡+1); 

     if   𝑓(𝑋𝑖
𝑡+1) < 𝑓(𝑝𝑏𝑒𝑠𝑡𝑖

𝑡) 

          𝑝𝑏𝑒𝑠𝑡𝑖
𝑡+1 = 𝑋𝑖

𝑡+1; 

          if   𝑓(𝑋𝑖
𝑡+1) < 𝑓(𝑔𝑏𝑒𝑠𝑡𝑡) 

               𝑔𝑏𝑒𝑠𝑡𝑡+1 = 𝑋𝑖
𝑡+1; 

          end 
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     end 

     𝑤 =  𝑤 ∗ 𝑤𝑑𝑎𝑚𝑝; 

end 

end 

return    𝑔𝑏𝑒𝑠𝑡 

End 

 

3.4 Imperialist Competitive Algorithm (ICA) 

Imperialism is the policy of a country to establish its dominance over other countries through 

political, economic or military power. The more developed countries try to exercise their power 

over underdeveloped countries and possess the control over their resources. Thus, an empire is 

formed where the developed country act as the imperialist and the countries under its control are 

termed as the colonies to the imperialist. Going back in history, it can be seen that several 

empires existed throughout the centuries. There always existed a competition among different 

empires to take control over the colonies of other empires to enhance its own power with the 

ultimate target of ruling the whole world. Apart from that, the developing colonies also try to 

liberate them from the authority of the imperialist to regain control over their own resources. In 

this course, a particular developing colony may become a threat for the imperialist and 

eventually by taking complete authority this colony may emerge as the new imperialist of the 

empire. Thus, the whole phenomenon is a game of survival of the fittest where the most powerful 

countries dominate over the others. Inspired from this concept of imperialistic competition, the 

imperialist competitive algorithm (ICA) was first introduced by Atashpaz-Gargari and Lucas 

[67]. This algorithm is referred as social counterpart of genetic algorithm (GA) as it is based on 

human social evolution compared to the biological evolution in case of GA. Similar to other 

evolutionary algorithms, ICA starts with a randomly generated initial population and the 

population individuals are termed as countries in this case. Based on the fitness values of the 

countries, a specific number of countries are set as the imperialists and the rest of the countries 

are allotted as colonies to the imperialists. Then, the positions of the colonies are moved towards 

their respective imperialist following a process called assimilation. The assimilation process 

imitates the fact that the imperialists try to force their cultural beliefs and customs to the colonies 

in order to have a better control over them. However, some colonies resist to follow the forcibly 

pressed customs of the imperialists. This scenario is mimicked through a process called 

revolution, where the positions of some of the colonies are randomly perturbed. If a colony is 
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found to possess better fitness than the imperialist, then the roles of imperialist and colony are 

interchanged. Then, the total power of each empire is computed and imperialistic competition is 

performed by picking the weakest colony from the weakest empire and assigning them to the 

empire which has the most likelihood to possess that colony [68]. This process continues until a 

convergence criterion is not satisfied. The pseudo code of ICA is given in Algorithm 4 and the 

optimization process is discussed through the following steps. 

Step 1: Defining input parameters; the population size (𝑛𝑝𝑜𝑝), number of imperialists (𝑛𝑖𝑚𝑝) and 

number of colonies (𝑛𝑐𝑜𝑙). 

Step 2: Initialization of the population by randomly generating the positions of 𝑛𝑝𝑜𝑝 number of 

countries (X) within the lower (lb) and upper (ub) boundaries of the solution variables.  

Step 3: Computing the cost or fitness of each country and sorting them in terms of the fitness 

value. Selecting the fittest 𝑛𝑖𝑚𝑝  number of countries as imperialists (𝐼𝑚𝑝). The remaining 𝑛𝑐𝑜𝑙 

number of countries will be assigned as colonies to these imperialists. 

Step 4: The maximum cost (𝐶𝑚𝑎𝑥) among the selected imperialists is identified and the cost (𝐶) 

of each imperialist is normalized with respect to this maximum cost. From the computed values 

of normalized costs (𝐶𝑛), the normalized power (𝑃𝑛) of each imperialist is calculated following 

the equation as indicated in Algorithm 4. From the total number of colonies (𝑛𝑐𝑜𝑙), the initial 

number of colonies (𝑁𝐶) to be assigned to a particular imperialist is calculated from its 

respective normalized power. 

Step 5: Generation of each empire by randomly selecting 𝑁𝐶 number of colonies from the total 

number of colonies and assigning them as colonies (𝐶𝑜𝑙) to their respective imperialist (𝐼𝑚𝑝). 

Step 6: Initialization of assimilation coefficient (𝛽), probability of revolution (𝑝𝑅), revolution 

rate (𝜇). 

Step 7: In this step, the positions of the colonies are updated by moving the colonies towards 

their respective imperialists. This process in referred to as Assimilation. How much a particular 

colony will move towards the imperialist depends upon the assimilation co-efficient (𝛽) and the 

distance (𝑑) between the colony and imperialist. Each colony is moved towards the imperialist 

by 𝑥 units where 𝑥 is a uniformly distributed random number in the range [0, 𝛽 ∗ 𝑑]. 
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Step 8: In this step, some of the colonies are randomly selected and the positions of these 

colonies are updated by randomly selecting the dimension(s) at which the parameter is going to 

be perturbed. In case of ICA, this process of perturbation at random dimensions of the colonies is 

termed as Revolution. Whether a particular colony will undergo revolution or not is determined 

with respect to the probability of revolution (𝑝𝑅) and the dimensions (𝑙) at which the perturbation 

is going to be performed is randomly selected based on the revolution rate (𝜇). As indicated in 

Algorithm 4, the 𝑙𝑡ℎ parameter of the 𝑚𝑡ℎ colony of the 𝑗𝑡ℎ imperialist is going to be perturbed 

by a random number having gaussian distribution with zero mean and standard deviation of 

(
𝑢𝑏−𝑙𝑏

10
). 

Step 8: Intra-empire competition is performed in this step, where the cost of each colony is 

compared with the cost of the imperialist. If any colony has a better cost compared to the 

imperialist, then the position of the imperialist and colony are exchanged. 

Step 9: Calculating the total cost (𝑇𝐶) of an empire by adding the scaled value of the mean 

fitness of the colonies with the fitness of the imperialist. 

Step 10: Imperialistic competition is performed to select the weakest colony from the weakest 

empire and assign it to the empire which has the most likelihood to possess it. This depends on 

the possession probability (𝑃𝑝) of each empire which is calculated from the total cost (𝑇𝐶). First 

the total cost of each empire is normalized, then from the normalized values the possession 

probability is calculated as shown in the pseudo code in Algorithm 4. 

Step 11: The imperialist with the best fitness value is termed as the 𝐵𝑒𝑠𝑡 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 in the current 

iteration. 

Step 12: If the stopping criterion is satisfied, then the 𝐵𝑒𝑠𝑡 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 in the current iteration is 

considered as the optimum solution. Otherwise, the optimization process will continue from  

step 7. 

Algorithm 4 Pseudo code for ICA 

 

Begin: 

Initialize 𝑛𝑝𝑜𝑝 (population size), 𝑛𝑖𝑚𝑝 (number of imperialists) and 𝑛𝑐𝑜𝑙 (number of colonies); 

Generate the initial population (countries): Xi (𝑖 = 1, 2, … , 𝑛𝑝𝑜𝑝); 

Evaluate fitness or cost of each country:   𝐶𝑖 = 𝑓(𝑋𝑖)  (𝑖 = 1, 2, … , 𝑛𝑝𝑜𝑝); 
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Sort the countries with respect to their costs and select best 𝑛𝑖𝑚𝑝  number of countries among 

them as imperialists (𝐼𝑚𝑝); 

Determine the maximum cost among the imperialists:  𝐶𝑚𝑎𝑥 = max
𝑖

{𝐶𝑖}     (𝑖 = 1, 2, … , 𝑛𝑖𝑚𝑝); 

Normalize the cost of each imperialist:   𝐶𝑛𝑗 = 𝐶𝑚𝑎𝑥 − 𝐶𝑗      (𝑗 = 1, 2, … , 𝑛𝑖𝑚𝑝); 

Determine the normalized power of each imperialist:    𝑃𝑛𝑗 = |
𝐶𝑛𝑗

∑ 𝐶𝑖

𝑛𝑖𝑚𝑝
𝑖

|     (𝑗 = 1, 2, … , 𝑛𝑖𝑚𝑝); 

 

Compute initial number of colonies to be assigned to each imperialist:     

                                         𝑁𝐶𝑗 = 𝑟𝑜𝑢𝑛𝑑(𝑃𝑛𝑗 ∗ 𝑛𝑐𝑜𝑙)     (𝑗 = 1, 2, … , 𝑛𝑖𝑚𝑝); 

Randomly select 𝑁𝐶𝑗 number of colonies (𝐶𝑜𝑙𝑗) and assign them to the 𝑗𝑡ℎ imperialist; 

Initialize 𝛽 (assimilation coefficient), 𝑝𝑅 (probability of revolution), 𝜇 (revolution rate), 

                 (mean cost co-efficient of the colonies); 

while(the stopping criterion is not satisfied) 

 

Assimilation: 

for j = 1 to 𝑛𝑖𝑚𝑝 

     for m = 1 to 𝑁𝐶𝑗 

           𝑑 ← distance between colony and imperialist; 

           𝑥~𝑈(0, 𝛽 ∗ 𝑑); 

           𝐶𝑜𝑙𝑗𝑚 = 𝐶𝑜𝑙𝑗𝑚 + 𝑥; 

     end 

end 

 

Revolution: 

for j = 1 to 𝑛𝑖𝑚𝑝 

     for m = 1 to 𝑁𝐶𝑗 

           𝑙 ← randomly select the number of dimensions to be perturbed with respect to 𝜇; 

           if   𝑟𝑎𝑛𝑑[0, 1] ≤ 𝑝𝑅 

               𝐶𝑜𝑙𝑗𝑚(𝑙) = 𝐶𝑜𝑙𝑗𝑚(𝑙) + 𝑔𝑎𝑢𝑠𝑠𝑖𝑎𝑛(0,
𝑢𝑏−𝑙𝑏

10
); 

           end  

     end 

end 

 

Intra-empire competition: 

Evaluate the fitness of updated colonies; 

for j = 1 to 𝑛𝑖𝑚𝑝 

     for m = 1 to 𝑁𝐶𝑗 

           if   𝑓(𝐶𝑜𝑙𝑗𝑚) < 𝑓(𝐼𝑚𝑝𝑗) 

               Exchange the position of 𝐼𝑚𝑝𝑗 and 𝐶𝑜𝑙𝑗𝑚; 

           end  

     end 

end 
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Total power of an empire: 

for j = 1 to 𝑛𝑖𝑚𝑝 

     𝑇𝐶𝑗 = 𝑓(𝐼𝑚𝑝𝑗) +  ∗ 𝑚𝑒𝑎𝑛{𝑓(𝐶𝑜𝑙𝑗)}; 

end 

 

Imperialistic competition: 

Maximum total cost among the empires:  𝑇𝐶𝑚𝑎𝑥 = max
𝑖

{𝑇𝐶𝑖}    (𝑖 = 1, 2, … , 𝑛𝑖𝑚𝑝); 

Calculate normalized total cost of each empire:   𝑇𝐶𝑛𝑗 = 𝑇𝐶𝑚𝑎𝑥 − 𝑇𝐶𝑗     (𝑗 = 1, 2, … , 𝑛𝑖𝑚𝑝); 

Obtain possession probability of each empire:    𝑃𝑝𝑗
= |

𝑇𝐶𝑛𝑗

∑ 𝑇𝐶𝑖

𝑛𝑖𝑚𝑝
𝑖

|     (𝑗 = 1, 2, … , 𝑛𝑖𝑚𝑝); 

Pick the weakest colony from the weakest empire and allocate it to the empire which has the 

most likelihood to possess it based on possession probability (𝑃𝑝); 

 

𝐵𝑒𝑠𝑡 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 = imperialist with the best fitness in current iteration 

end 

return    𝐵𝑒𝑠𝑡 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 

End 

 

3.5 Flower Pollination Algorithm (FPA) 

Inspired by the pollination process of flowers, Flower Pollination Algorithm (FPA) was first 

proposed in [69]. Pollination process in flowers can primarily be classified as Biotic and Abiotic 

pollination. Biotic pollination process requires the help of pollinators in the form of insects, birds 

or bats to transfer pollen from one flower to another. Whereas, in abiotic pollination, pollen is 

transferred through the help of wind or diffusion in water without the necessity of pollinators. 

About 90% of pollination process in flowering plants occur in biotic form and only 10% 

pollination takes place in abiotic process. Flower constancy is also an important term in flower 

pollination. It refers to the fact that many pollinators travel to flowering plants of certain species 

in search of nectar. This ensures the transfer of pollen to the same or conspecific species and 

increases the probability of reproduction of the same flower species. Pollination process in 

flowers can be further classified as self-pollination and cross-pollination. Self-pollination process 

takes place through the transfer of pollen to the same flower or another flower in the same plant. 

On the other hand, cross-pollination refers to the process of transferring pollen from one plant to 

another plant. Thus, biotic and cross-pollination can be regarded as global pollination as the 

insects or pollinators traverse a long distance. Whereas, abiotic and self-pollination is referred as 

local pollination as the pollination takes place within a small neighborhood [70]. In FPA, a 
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global searching process is introduced mimicking the concept of global pollination and flower 

constancy where Levy distribution is normally used to indicate the jump or fly distance of 

pollinators in the global pollination process [71]. This global searching mechanism enhances 

diversity among the solution sets within the population. Moreover, the concept of local 

pollination and flower constancy is utilized in developing a local search operator. This local 

search operator also plays an important role of exploiting the search area in the vicinity of 

current solution. The pseudo-code of FPA is shown in Algorithm 5 and the steps involved in the 

optimization process is described as follows. 

Step 1: Random initialization of the initial population (X) of n number of candidate solutions 

(flowers) within the lower (lb) and upper (ub) boundaries of the solution vector. For simplicity, 

normally it is considered that each flower produces only one pollen gamete. Thus, each solution 

is considered to be a flower or a pollen gamete. 

Step 2: Evaluation of the fitness value of each flower in the population and identification of the 

best solution (𝑔∗) within the initial population.  

Step 3: Initialization of switch probability (𝑝) by choosing a value between 0 to 1. Whether a 

solution set will undergo local pollination or global pollination depends upon this value of 𝑝. 

Step 4: Generation of candidate solutions for the next iteration. 

  Step 4.1: If a generated random number is greater than the value of 𝑝, then global 

pollination is performed according to the formula of global pollination written in 

Algorithm 5. In global pollination, the insects have to make large jumps or have to move 

a long distance. To address this behavior of insects, Levy distribution is adopted to 

generate a step vector, 𝐿. 

  Step 4.2: If the random number generated in the previous step is less than 𝑝, then local 

pollination is performed following the formula of local pollination shown in Algorithm 5. 

From the total number of solutions in the population; 𝑗𝑡ℎ and 𝑘𝑡ℎ solution sets are 

randomly selected for local pollination. The value of 𝜖 is randomly selected from a 

uniform distribution in the range [0, 1]. 

  Step 4.3: After performing either local or global pollination, if the newly generated 

solution (X𝑖
𝑡+1) has better fitness compared to the previous one (X𝑖

𝑡), then the previous 
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solution is replaced with the new one. Otherwise, the previous solution (X𝑖
𝑡) will remain 

unchanged. 

  Step 4.4: Repeat steps 4.1, 4.2 and 4.3 to go through the pollination process for all the 𝑛 

number of solutions in the population in the current generation. 

Step 7: The solution with the best fitness among the current solutions is identified and 𝑔∗ is 

updated accordingly. 

Step 8: The termination criterion is checked in this step. If the criterion is satisfied then the 

current best solution, 𝑔∗ is returned as the optimum solution. Otherwise, the optimization process 

will be continued from step 4. 

Algorithm 5 Pseudo code for FPA 

 

Begin: 

Generate the initial population (flowers): 𝑋𝑖 ~ 𝑈(lb, ub)   (i = 1, 2, …, n) 

Evaluate fitness of each flower:   𝑓(X𝑖)  (i = 1, 2, …, n) 

Determine, 𝑔∗ = Best solution among the initial population 

Initialize the switch probability between local and global pollination 𝑝 ∈ [0, 1]  
 

while(the stopping criterion is not satisfied) 

for i = 1 to 𝑛 

     if   𝑟𝑎𝑛𝑑[0, 1] > 𝑝  

          Generate a step vector, 𝐿 following Levy distribution (dimension will be same as a               

                                                                                                         particular solution) 

          Perform global pollination:     X𝑖
𝑡+1 = X𝑖

𝑡 + 𝐿(𝑔∗ − X𝑖
𝑡) 

     else 

          𝜖 ← randomly select a number from a uniform distribution in [0, 1] 
          𝑗, 𝑘 ← randomly select two numbers from the total number of solutions 

          Perform local pollination:     X𝑖
𝑡+1 = X𝑖

𝑡 + 𝜖(X𝑗
𝑡 − X𝑘

𝑡 ) 

     end 

Calculate fitness of new solution:     𝑓(X𝑖
𝑡+1) 

     if   𝑓(X𝑖
𝑡+1) < 𝑓(X𝑖)  

 X𝑖 = X𝑖
𝑡+1 

     else 

 X𝑖 will remain unchanged 

     end 

end 

Find, 𝑔∗ = Best solution among the current population 

end 

return    𝑔∗ 

End 
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3.6 Grasshopper Optimization Algorithm (GOA)  

In the study conducted by Saremi et al. [46], a new nature-inspired algorithm named the 

grasshopper optimization algorithm (GOA) was proposed by mathematically modeling the 

swarming behavior of grasshoppers in nature. The mathematical model of swarming behavior of 

grasshoppers include the model for social interaction between grasshoppers. As part of the social 

interaction, it is considered that the individuals of the grasshopper swarm experience both 

attractive and repulsive forces as indicated in Fig. 3.3. At a particular distance between two 

grasshoppers, the attractive and repulsive force is considered to be equal which is known as the 

comfort zone. At short distances, there is possibility of collision between two grasshoppers. 

Thus, if the distance between two grasshoppers is less than the distance of comfort zone then the 

repulsive force between them should be higher in order to avoid collision. On the other hand, in 

order to form a swarm, the attractive force between two grasshoppers should be higher if the 

distance between them is more than the comfort zone distance [72]. In each iteration, the best 

solution is considered as the target for the next iteration which simulates the tendency of 

grasshoppers to move towards the source of food. While updating the positions of grasshoppers 

in each iteration, a deceleration coefficient is introduced to gradually obtain a balance between 

exploration and exploitation while chasing the target solution. The pseudo code for GOA is 

shown in Algorithm 6 and the steps involved in the optimization process is described as follows. 

 

Fig. 3.3: A conceptual model of the interactions between grasshoppers [46] 

 

Step 1: Defining input parameters. (𝑐𝑚𝑎𝑥, 𝑐𝑚𝑖𝑛, maximum number of iterations) 

Step 2: Random initialization of the positions for n number of grasshoppers (X) within the lower 

(lb) and upper (ub) boundaries of the search space.  
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Fig. 3.4: Function s when 𝑙𝑎𝑡𝑡 = 1.5 and 𝑓 = 0.5 [46] 

Step 3: Evaluation of the fitness values of each search agent and identification of the best one as 

the target solution (T). 

Step 4: Calculation of the deceleration coefficient (c) based on its maximum (𝑐𝑚𝑎𝑥) and 

minimum (𝑐𝑚𝑖𝑛) values, current iteration number (l) and the maximum number of iterations (L). 

Step 5: This coefficient c is associated in updating the position of each search agent by 

simulating the social interaction between the grasshoppers through the social interaction function 

(s) and the distance between two grasshoppers (𝑑𝑖𝑗). Fig. 3.4 shows the social interaction 

function plotted as a function of distance for 𝑙𝑎𝑡𝑡 = 1.5 and 𝑓 = 0.5. From this figure, it can be 

seen that the social interaction function (s) is most significant within the range from 1 to 4. Thus, 

the distance between grasshoppers is normalized in the range [1,4] [46]. Along with the 

modeling of social interaction between grasshoppers, the positions of the grasshoppers are 

moved towards the target solution which imitates the movement of grasshoppers towards the 

food source. In this way, position of all the n number of grasshoppers are updated in this step. 

Step 6: The position of the target solution will be updated by any one of the search agents if it 

obtains a better fitness value. Otherwise, the target solution will remain unchanged. 

Step 7: If the stopping criterion is satisfied, then the position of the target solution is considered 

as the optimum solution. Otherwise, the process will continue from step 4 until the termination 

criterion is satisfied. 
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Algorithm 6 Pseudo code for GOA 

 

Begin: 

Initialize the positions of the grasshoppers: Xi (i = 1, 2, …, n) 

Initialize 𝑐𝑚𝑎𝑥, 𝑐𝑚𝑖𝑛 and maximum number of iterations (L) 

Initialize intensity of attraction (f) and the attractive length scale (𝑙𝑎𝑡𝑡) 

Evaluate fitness of each search agent:   𝑓(Xi)  (i = 1, 2, …, n) 

Assign, T = the best search agent 

while(the stopping criterion is not satisfied) 

     Update deceleration coefficient:    𝑐 = 𝑐𝑚𝑎𝑥 − 𝑙
𝑐𝑚𝑎𝑥 − 𝑐𝑚𝑖𝑛

𝐿
 

for i = 1 to n 

     Normalize the distance between grasshoppers in [1,4] 

     Update the position of the search agent:    X𝑖 = 𝑐 (∑ 𝑐
𝑢𝑏−𝑙𝑏

2
𝑠(𝑑𝑖𝑗)

𝑥𝑗−𝑥𝑖

𝑑𝑖𝑗

𝑁
 𝑗=1
𝑗≠ 𝑖

) +  �̂� 

     Where,    𝑠(𝑑𝑖𝑗) = 𝑓𝑒
−𝑑𝑖𝑗

𝑙𝑎𝑡𝑡 − 𝑒−𝑑𝑖𝑗       𝑎𝑛𝑑     𝑑𝑖𝑗 = |𝑥𝑗 − 𝑥𝑖| 

     Bring the search agent back if it goes outside the boundaries 

end 

Evaluate fitness of each search agent:   𝑓(X𝑖)  (i = 1, 2, …, n) 

     if min(𝑓(X𝑖)) <𝑓(𝑇) 

 Update T with the location of the ith search agent 

     else 

 T will remain unchanged 

     end 

l = l+1 

end 

return    T 

End 

 

The general optimization characteristics of nature-inspired optimization algorithms are presented 

in this chapter. The step by step optimization process of some nature-inspired algorithms which 

are opted for this research are explained with the help of respective pseudocodes. The 

hybridization technique among these algorithms to form hybrid optimization algorithms for load 

flow analysis of islanded microgrid is presented in the next chapter. 
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Chapter 4 

Load Flow Analysis and Proposed Hybrid Algorithms 

In the conventional load flow analysis, the slack bus governs the voltage and frequency of the 

whole system. Whereas, in case of droop-controlled islanded microgrid the voltage and 

frequency are regulated by droop controllers associated with each source. Due to the variation of 

voltage and frequency, the concept of slack bus becomes invalid in case of islanded microgrid. 

As a result, for an islanded microgrid with droop-controlled inverter; the system frequency has to 

be considered as one of the load flow variables along with the voltage magnitudes and reference 

angles contributed by each inverter in the system. The state variable, x can be described in terms 

of the load flow variables as 

 
12 KK oq oqx v v   =       (4.1) 

where;  ,   and oqv  represents the system frequency, reference angle and voltage magnitude 

respectively and K  represents the total number of inverters in the system. The constraints of the 

objective problem can be defined as 

min max

min max

min max

oq oq oqv v v

  

  

 

 

 

 

4.1 Problem Formulation 

The objective of the load flow analysis is to minimize the sum of absolute mismatch values of 

active and reactive power of the inverters. The objective function can be written as 

 

1 1

, ( )
K K

i i

i i

Minimize f x P Q
= =

=  +    (4.2) 

where; 
iP  and iQ  are the real and reactive power mismatch at the ith bus. In [48], similar 

objective function was employed in order to solve the load flow analysis. For a droop-controlled 

inverter, the power mismatch equations are the difference between the inverter output power 
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calculated at the global reference frame and the reference values set by the droop controllers. For 

the ith inverter bus the active and reactive power mismatch equations are 

 ( )3
( )

2 i i i i

n
i od od oq oq

i

P V I V I
m

 −
 = + −  (4.3) 

 ( )3
( )

2

i

i i i i

n oq

i oq od od oq

i

V v
Q V I V I

n

−
 = − −  (4.4) 

To determine the power mismatch values, a set of equations has to be solved which involve the 

calculation of bus voltages and inverter output currents. For these calculations an equivalent 

circuit of the inverter model is considered as shown in Fig. 4.1, where the inverter output voltage 

across the capacitor is considered as a voltage source behind its coupling impedance. The 

process of determining the power mismatch values is described in the following steps. 

 

Fig. 4.1: Steady-state equivalent circuit of inverter model at bus i 

 

Fig. 4.2: Norton equivalent circuit of steady-state inverter model at bus i 
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Step 1: First of all, following equations (2.27) and (2.28); the d-axis and q-axis components of 

the inverter output voltage is transformed in the global reference frame using the reference angle

 . Then, the output voltage of the ith inverter in terms of a complex quantity can be calculated as 

 ( )
i iod i oqV sin v=  (4.5) 

 ( )
i ioq i oqV cos v=  (4.6) 

 
i i io od oqV jV V= +  (4.7) 

Step 2: Before determining the bus voltages it is required to calculate the current injected to a 

particular bus. For this study, only constant impedance loads are considered. So, the inverter are 

the only sources to inject current to their respective buses. The current injected by the inverters 

can be easily calculated by transforming the circuit shown in Fig. 4.1 to its Norton equivalent as 

shown in Fig. 4.2. Then, the current injected by the ith inverter is calculated as 

 

( )

i

i i

o

inj SC

c

V
I I

Z 
= =  (4.8) 

Step 3: The bus voltages can now be calculated from the injected currents as 

 ( )b bus injV Z I=  (4.9) 

For islanded microgrids the bus impedance matrix is a function of frequency and it has to be 

updated at each iteration. For an N-bus system the vector of injected currents at each bus is given 

by 

       (   )

0

pinj

inj

I due to inverter at bus p p N
I

otherwise


= 


 (4.10) 

Step 4: After determining the bus voltages, the output current of the ith inverter can be 

determined by 

 

( )

i i

i

o b

o

c

V V
I

Z 

−
=  (4.11) 

The d-axis and q-axis components of the inverter output current in the global reference frame is 

given by 

 { }
i iod oI I=   (4.12) 

 { }
i ioq oI I=   (4.13) 
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Step 5: The equations from (4.5) to (4.13) are sufficient to calculate the active and reactive 

power mismatch values for each inverter by solving the equations described in (4.3) and (4.4). 

Thus, the values of the power mismatch equations can be used to evaluate the objective function 

as indicated in equation (4.2). 

 

4.2 Proposed Hybrid Algorithms 

The flowcharts of the hybrid algorithms are shown in Fig. 4.3 and Fig. 4.4. Several hybrid 

algorithms based on nature-inspired optimization algorithms have been proposed to perform the 

load flow analysis of islanded microgrids. These hybrid algorithms have been designed keeping 

the imperialist competitive algorithm (ICA) as the main frame. Four other metaheuristic 

algorithms namely; genetic algorithm (GA), differential evolution (DE), flower pollination 

algorithm (FPA) and grasshopper optimization algorithm (GOA) were separately combined with 

ICA to obtain four hybrid algorithms namely ICGA, ICDE, ICFPA and ICGOA. The main focus 

of introducing GA, DE, FPA and GOA in the optimization process of ICA is to enhance the 

capability of better exploration and exploitation of the search space. Exploration and exploitation 

are two key terms of these nature-inspired optimization algorithms. Where, exploration refers to 

a process of searching the search space in a wider range to increase the diversity of candidate 

solutions. On the other hand, exploitation indicates the process of searching in the vicinity of 

prospective solutions. Thus, exploration can be regarded as a search in the global scale, whereas 

exploitation indicates search in the local scale. Adding other nature inspired algorithms along 

with ICA will introduce few more steps to update the candidate solutions in the optimization 

process which is expected to increase the diversity among the generated solution sets. 

Furthermore, if a situation arises where the optimization problem is stuck in a local minima, then 

addition of GA, DE, FPA or GOA in the optimization process of ICA may assist in getting out of 

the local minima and approach towards convergence faster. The process of applying the 

proposed hybrid algorithms for the load flow analysis is described in the following steps. 

Step 1: Initialization of the system data of islanded microgrid. 

Step 2: Generation of initial population for the state variables as stated in (4.1). In case of ICA, 

the population individuals are called countries. For a particular study a specific number of 

countries are initially generated. 
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Step 3: For each country, equations (4.5) to (4.13) are solved and the values of active and 

reactive power mismatch for each inverter are calculated using equations (4.3) and (4.4). Then, 

for each country in the population the value of the objective function is determined using 

equation (4.2). 

Step 4: Next, the countries are sorted according to their objective function values. Then, 

depending on the fitness values of the countries; the empires are generated by setting specific 

countries as the imperialists and assigning rest of the countries as colonies to them. 

Step 5: The positions of the colonies are then moved towards the position of their respective 

imperialist by a process called assimilation. 

Step 6: In this step, the positions of some of the colonies are modified randomly by doing 

revolution. 

Step 7: If there is a colony which has a lower fitness value than the imperialist, then their 

positions are interchanged. This process is referred as intra-empire competition. 

Step 8: The hybridization process of ICA with GA, DE, FPA and GOA is carried out in this step. 

Four distinct hybrid algorithms are obtained by following the four cases as indicated below 

Case 1: The flowchart of ICGA is shown in Fig. 4.3(a), where the updated empires from 

the previous step is set as parents in GA. Then, the positions of the imperialists and 

colonies are updated through crossover, mutation and selection process. 

Case 2: The resulting algorithm will be ICDE if the flowchart shown in Fig. 4.3(b) is 

followed. Here, the empires are assigned as parents of the DE algorithm. The positions of 

the countries (imperialists and colonies) are updated through mutation, crossover and 

selection process of DE. 

Case 3: In Fig. 4.4(a), the flowchart of ICFPA is presented. The empires are assigned as 

population of flowers in FPA. The population is then modified by mimicking either 

global pollination or local pollination process depending upon a probability switch. 

Case 4: Hybrid algorithm ICGOA can be obtained by following the algorithm shown in 

Fig. 4.4(b). In this case the empires are set as the positions of grasshoppers in GOA. The 

positions are updated by simulating the swarming behavior of grasshoppers. 
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        (a)                                                                                          (b) 

Fig. 4.3: Flowchart of; (a) ICGA and (b) ICDE 
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        (a)                                                                                          (b) 

Fig. 4.4: Flowchart of; (a) ICFPA and (b) ICGOA 
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Selecting any one of these four cases in this step is the prime difference among the four hybrid 

algorithms. The rest of the steps are similar for each algorithm. 

Step 9: Intra-empire competition is performed again as mentioned in step 7. 

Step 10: In this step, first of all the total fitness of each empire is calculated. Then, in 

imperialistic competition, the weakest colonies are identified and are given to the empires which 

have the most likelihood to possess them. If an empire ends up with no colonies then that empire 

will be eliminated. 

Step 11: The solution set which is providing the best fitness value will be identified in this step. 

Step 12: If the stopping conditions are satisfied, then the whole process will be terminated. 

Other-wise, the calculations will be repeated from step 5. For this study, the optimization process 

will terminate if any one of the following two stopping criterion is satisfied. 

1. If the value of the best fitness is less than a pre-specified threshold (ε) value. 

2. If the total number of iterations is less than a pre-specified value of maximum number 

of iterations. 

 

In this chapter, the load flow variables for an islanded microgrid were defined with respect to the 

mathematical model described in Chapter 2 and an objective function was formulated in terms of 

the load flow variables to perform the load flow analysis as an optimization problem. In the later 

portion of the chapter, discussion was carried out regarding the hybridization technique 

employed in this study to obtain different hybrid algorithms. Applying the proposed hybrid 

algorithms to perform the load flow analysis of a case study system is presented in the next 

chapter.  
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Chapter 5 

Numerical Case Study 

In order to perform load flow analysis using the hybrid algorithms presented in the previous 

chapter the modified IEEE 37-bus system is considered as the case study system. Along with 

these hybrid algorithms, the load flow analysis of the same case study system is performed using 

PSO. Based on the performance of each algorithm in solving the load flow problem, a 

comparative study among these algorithms will be presented in this chapter. Before going to the 

comparative study, this chapter starts with a brief discussion on the modified IEEE 37-bus 

system. Then, the algorithm with the better performance is identified through the comparative 

study and the corresponding load flow results are demonstrated in the later portion of the chapter. 

 

Fig. 5.1: Single-line diagram of the modified IEEE 37-bus system 

5.1 System Information 

The standard IEEE 37-bus system is modified by connecting seven inverters at different bus 

locations as indicated in [73]. The single line diagram of the modified IEEE 37-bus system is 

shown in Fig. 5.1. The seven inverters are connected at buses 15, 18, 22, 24, 29, 33 and 34 as 

indicated by the black dots in Fig. 5.1. For this modified IEEE 37-bus system load flow analysis 

was performed using a quasi-Newton method in [21]. In order to conduct a comparative study, 

the different parameters associated with the load flow analysis for this IEEE 37-bus system were 
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taken similar to the ones in [21]. For all the inverters, a nominal voltage of Vn = 170 V was 

chosen and nominal frequency was set to ωn = 2π60 rad/s. The maximum power ratings and the 

droop co-efficients for each inverter is given in Table 5.1. Only constant impedance loads are 

considered in this case study. The branch and load parameters for the IEEE 37-bus system are 

presented in Table 5.2 and Table 5.3.  

Table 5.1: Inverter bus locations, power ratings and droop co-efficients [21] 

i Bus Pmax (kW) Qmax (kVAR) mi
-1 ni

-1 

1 15 15 15 2387.3 1250 

2 18 8 8 1273.2 666.7 

3 22 10 10 1591.5 833.3 

4 24 15 15 2387.3 1250 

5 29 8 8 1273.2 666.7 

6 33 10 10 1591.5 833.3 

7 34 15 15 2387.3 1250 

Table 5.2: Branch Parameters [73] 

From Bus To Bus R (Ω) L (H) From Bus To Bus R (Ω) L (H) 

1 2 0.167 2.31×10−4 10 29 0.223 3.08×10−4 

2 5 0.070 9.64×10−5 11 33 0.070 9.64×10−5 

2 13 0.063 8.67×10−5 11 32 0.035 4.82×10−5 

2 3 0.230 3.18×10−4 13 4 0.091 1.25×10−4 

3 20 0.042 5.78×10−5 14 15 0.091 1.25×10−4 

3 23 0.105 1.45×10−4 16 7 0.160 2.22×10−4 

4 14 0.014 1.93×10−5 16 6 0.105 1.45×10−4 

4 16 0.139 1.93×10−4 20 35 0.049 6.75×10−5 

5 34 0.056 7.71×10−5 23 9 0.035 4.82×10−5 

5 12 0.042 5.78×10−5 26 27 0.098 1.35×10−4 

6 19 0.049 6.75×10−5 27 30 0.112 1.54×10−4 

7 18 0.132 1.83×10−4 27 10 0.091 1.25×10−4 

7 17 0.021 2.89×10−5 30 31 0.070 9.64×10−5 

8 26 0.056 7.71×10−5 31 11 0.070 9.64×10−5 

8 25 0.056 7.71×10−5 35 21 0.035 4.82×10−5 

9 24 0.105 1.45×10−4 35 22 0.049 6.75×10−5 

9 8 0.056 7.71×10−5 36 9 0.230 3.18×10−4 

10 28 0.035 4.82×10−5     
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Table 5.3: Load Parameters [73] 

Bus R (Ω) L (H) Bus R (Ω) L (H) 

1 6.58 0.0105 24 49.93 0.0748 

12 49.93 0.0748 25 98.74 0.1572 

13 49.93 0.0748 26 49.93 0.0748 

14 111.41 0.1681 27 98.74 0.1572 

15 49.93 0.0748 28 49.93 0.0748 

16 49.93 0.0748 29 98.74 0.1572 

17 25.82 0.0409 30 29.62 0.0472 

18 98.74 0.1572 31 33.12 0.0519 

19 98.74 0.1572 32 49.93 0.0748 

20 98.74 0.1572 33 98.74 0.1572 

21 32.91 0.0524 34 45.54 0.0686 

22 98.74 0.1572 35 98.74 0.1572 

23 49.93 0.0748    

For the modified IEEE 37-bus system the load flow analysis was formulated as an optimization 

problem as discussed in chapter 4. Next, load flow analysis was performed by applying the 

hybrid algorithms ICGA, ICDE, ICFPA and ICGOA separately to the modified IEEE 37-bus 

system. For these hybrid algorithms, the total number of countries was set to 100. For this study, 

among these 100 countries, 5 were chosen as imperialists and rest of them were assigned as 

colonies to the imperialists. Later on, PSO was also applied to perform the load flow analysis of 

the same case study system. The total number of particles for PSO was set to 100 as well, in 

order to make a logical comparison among the five algorithms. The values different parameters 

of these algorithms used for the simulation is summarized in Table 5.4 and Table 5.5. All the 

simulations were performed using a personal computer with a processor of intel core i7-8550 at 

1.8 GHz and with an installed RAM of 8 GB. For this case study, the following stopping criterion 

were considered which would terminate the optimization process once satisfied. 

1. If the best fitness value is less than a pre-specified threshold (ɛ) value which was set to    

10-5 for this study. 

2. If the number of iterations is equal to a pre-specified value of maximum number of 

iterations. For this study, the maximum number of iterations was set to 100. 
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Table 5.4: Parameters of ICGA, ICDE, ICFPA, ICGOA 

Algorithm Parameters Algorithm Parameters 

ICA 

𝑛𝑝𝑜𝑝 = 100 

𝑛𝑖𝑚𝑝 = 5 

𝑛𝑐𝑜𝑙 = 95 

𝛽 = 1.5 

𝑝𝑅 = 0.05 

𝜇 = 0.1 

 = 0.2 

GA 

𝑝𝑐 = 0.7 

𝑝𝑚 = 0.3 

𝜇𝑚 = 0.1 

𝛾 = 0.4 

DE 
𝑝𝐶𝑅 = 0.5 

𝐹~ [0.4,1] 

FPA 𝑝 = 0.8 

GOA 

𝑐𝑚𝑎𝑥 = 1 

𝑐𝑚𝑖𝑛 = 0.00004 
𝑓 = 0.5 

𝑙𝑎𝑡𝑡 = 1.5 
 

Table 5.5: Parameters of PSO 

Algorithm Parameters 

PSO 

𝑛 = 100 

𝑤𝑑𝑎𝑚𝑝 = 0.99 

𝐶1 = 2.05 

𝐶2 = 2.05 
 

 

5.2 Comparison among the Algorithms with Statistical Analysis 

Being metaheuristic algorithms, these algorithms operate in a stochastic manner which indicates 

that the optimization process is associated with randomness. The optimization process for these 

algorithms start by randomly initializing the positions of the solution variables within the 

boundary of pre-specified constraints. Then, a number of iterations is performed by updating the 

positions of each solution set through a series of random process until the optimum solution is 

obtained. Due to the inherent randomness of these algorithms it is most likely that the number of 

iterations and the execution time needed to complete the optimization process may vary for each 

independent run/trial. Thus, for overall comparison among the algorithms, each algorithm was 

executed for 30 independent trials. 

For each independent trial, the number of iterations to reach the stopping criterion and the overall 

execution time were recorded. These data are summarized in Table 5.6 in three categories 

namely best, average and worst result for each algorithm. From Table 5.6, among the 30 

independent runs if the best results are considered, then it can be observed that ICGA and ICDE 

achieve convergence in minimum number of iterations which is 23 in this case. For this best-case 
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Table 5.6: Iterations and Time required by ICGA, ICDE, ICFPA, ICGOA and PSO algorithms 

Algorithm 

Best Results Average Results Worst Results 

No. of 

Iterations 

Execution 

Time (sec) 

No. of 

Iterations 

Execution 

Time (sec) 

No. of 

Iterations 

Execution 

Time (sec) 

ICGA 23 80.215 30 105.528 40 140.287 

ICDE 23 79.659 27 95.512 30 120.108 

ICFPA 26 90.597 32 146.213 39 305.142 

ICGOA 29 101.586 42 159.265 50 569.403 

PSO 40 67.277 55 96.175 81 143.393 
 

scenario, if the execution time is taken into consideration then it can be seen that ICDE 

completes the optimization process 0.556 sec faster compared to ICGA. In case of ICFPA and 

ICGOA the required number of iterations and the execution time is higher compared to the other 

algorithms. For PSO, 40 iterations were required to complete the load flow analysis; however, 

due to less complexity in the optimization process, convergence is achieved faster compared to 

the other algorithms. On the other hand, for the worst-case scenario, ICDE completes the load 

flow analysis in 30 iteration with a computational time of 120.108 sec. Whereas, the other 

algorithms require more iterations and higher computational time to complete the load flow 

analysis. To summarize the results shown in Table 5.6, considering all 30 independent trials, on 

an average, ICDE requires 27 iterations to complete the optimization process with an average 

computational time of 95.512 sec. In case of PSO the average computational time is 96.175 sec 

which is close to that of ICDE, but the required number of iterations is much higher compared to 

ICDE. Thus, among the five algorithms ICDE can be considered as the algorithm with better 

performance. To further support the above discussion, the convergence graph of each algorithm 

considering their best and worst results is respectively shown in Fig. 5.2 and Fig. 5.3. From Fig. 

5.2(a) and Fig. 5.3(a), it can be seen that all the algorithms attain very high fitness values in the 

initial iterations and gradually after completing several iterations the fitness values obtain 

convergence. In order to show the exact point of convergence for each algorithm, the zoomed 

version of the graphs shown in Fig. 5.2(a) and Fig. 5.3(a) are depicted in Fig. 5.2(b) and  

Fig. 5.3(b). From these two figures, it is also evident that for both the cases; ICDE is providing 

faster convergence compared to the other algorithms. For the 30 independent trials, the number 

of iterations required in each trial for the five individual algorithms is shown in Fig. 5.4. 
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(a) 

 

(b) 

Fig. 5.2: Convergence graph for the best results of each algorithm; (a) original scale, (b) zoomed 

version 
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(a) 

 

(b) 

Fig. 5.3: Convergence graph for the worst results of each algorithm; (a) original scale,  

(b) zoomed version 
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Fig. 5.4: Total number of iterations in each trial in case of; (a) ICDE, (b) ICGA, (c) ICFPA,  

(d) ICGOA, (e) PSO 

(a) 

(b) 

(c) 

(d) 

(e) 
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From the bar plots shown in Fig. 5.4, it can be observed that ICDE has more uniform distribution 

compared to the other algorithms which indicates that ICDE has less variation in the required 

number of iterations for different trials. 

For further analysis of the acquired results, SPSS statistics software was used to perform 

statistical analysis of the obtained data from 30 independent runs. To demonstrate the uniqueness 

of each algorithm, independent samples t-tests were performed to compare the means of each 

algorithm. In this study, data from two algorithms were defined as grouping variables at a time. 

Table 5.7 and Table 5.8 show the t-test results based on the required number of iterations and the 

execution time as the comparison variable respectively. Whenever independent samples t-test is 

performed in SPSS, the software also generates results of a corresponding F-test which 

determine whether the data sample of two groups have equal variances or not. If the significant 

factor (p-value) of the F-test is greater than the significance level of 0.05, then the group 

variances are considered to be equal. Otherwise, it is not possible to assume equal variances. 

From Table 5.7, it can be observed that when the number of iterations is considered, data 

samples of the pairs ICFPA-ICGA and ICGOA-PSO possess equal variances as the p-value of 

the F-test is greater than 0.05. All the other pair of groups possess non-equal variances in this 

case. Similarly, as shown in Table 5.8, in terms of the computational time, the pairs which 

exhibit equal variances are ICFPA-ICGOA, ICGA-ICGOA, ICGA-PSO and ICGOA-PSO. 

For the t-test, the null hypothesis H0 assumes that the mean values of the data set are equal and 

the alternative hypothesis H1 assumes that the mean values of the data set are not equal. Whether 

the null hypothesis can be accepted or not depends on the value of the significant factor (p-value) 

of the t-test. From Table 5.7, it can be seen that, the p-value of the t-test with respect to the 

required number of iterations is smaller than 0.05 for all the pairs of data sample, which indicate 

that the null hypothesis can be rejected and in this context there is significant difference among 

all the algorithms. On the other hand, Table 5.8 shows the t-test results with respect to 

computational time. Considering the p-values of the t-tests shown in Table 5.8, it can be 

observed that all pairs except ICDE-PSO and ICFPA-ICGOA contain significant difference with 

respect to execution time. 
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Thus, considering both execution time and the number of iterations required to complete the 

optimization process, all the algorithms can be regarded to have unique characteristics. Based on 

the studies done so far, it can be observed that ICDE performs relatively better compared to the 

other algorithms considering the average number of iterations and the average execution time. 

Table 5.7: Results of t-test based on number of Iterations 

Methods 

F-test t-test for equality of means 

F Sig. 
Mean 

Difference 
t df Sig. (2-tailed) 

ICDE-ICFPA 12.819 0.001 -5.033 -7.560 40.905 0.000 

ICDE-ICGA 21.065 0.000 -2.567 -3.067 36.191 0.004 

ICDE-ICGOA 77.330 0.000 -15.033 -10.687 31.387 0.000 

ICDE-PSO 50.681 0.000 -27.533 -13.987 30.196 0.000 

ICFPA-ICGA 1.992 0.164 2.467 2.483 58 0.016 

ICFPA-ICGOA 33.548 0.000 -10.000 -6.644 39.740 0.000 

ICFPA-PSO 30.552 0.000 -22.5 -11.030 34.524 0.000 

ICGA-ICGOA 18.166 0.000 -12.467 -7.849 46.147 0.000 

ICGA-PSO 21.454 0.000 -24.967 -11.877 38.255 0.000 

ICGOA-PSO 3.020 0.088 -12.5 -5.237 58 0.000 

 

Table 5.8: Results of t-test based on computational time 

Methods 

F-test t-test for equality of means 

F Sig. 
Mean 

Difference 
t df Sig. (2-tailed) 

ICDE-ICFPA 38.033 0.000 -50.701 -3.941 29.805 0.000 

ICDE-ICGA 8.777 0.004 -10.016 -3.137 44.320 0.003 

ICDE-ICGOA 5.209 0.026 -63.754 -4.259 29.592 0.000 

ICDE-PSO 17.358 0.000 -0.664 -0.175 39.528 0.862 

ICFPA-ICGA 28.486 0.000 40.685 3.110 31.810 0.004 

ICFPA-ICGOA 1.375 0.246 -13.052 -0.665 58 0.509 

ICFPA-PSO 23.825 0.000 50.037 3.779 33.259 0.001 

ICGA-ICGOA 3.360 0.072 -53.738 -3.545 58 0.001 

ICGA-PSO 1.629 0.207 9.352 2.092 58 0.041 

ICGOA-PSO 2.493 0.120 63.089 4.125 58 0.000 
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Table 5.9: Load flow results obtained by ICDE 

Load Flow 

Variable 

Calculated 

Value 

Load Flow 

Variable 

Calculated 

Value 

ω (rad/s) 375.5576 𝑣𝑜𝑞1
(V) 165.472 

δ2 (deg) -1.3682 𝑣𝑜𝑞2
(V) 168.236 

δ3 (deg) -2.9203 𝑣𝑜𝑞3
(V) 169.621 

δ4 (deg) -0.3786 𝑣𝑜𝑞4
(V) 169.717 

δ5 (deg) 1.0963 𝑣𝑜𝑞5
(V) 166.986 

δ6 (deg) 2.2311 𝑣𝑜𝑞6
(V) 169.932 

δ7 (deg) 2.4701 𝑣𝑜𝑞7
(V) 168.741 

 

Table 5.10: Comparison among the per unit output voltages at each inverter obtained through 

ICDE and quasi-Newton method 

 

i 

 

Bus 

Output Voltage (p.u.) 

ICDE 
Quasi-Newton 

[21] 

1 15 0.9734 0.9789 

2 18 0.9896 0.9601 

3 22 0.9978 0.9655 

4 24 0.9983 0.9844 

5 29 0.9823 0.9745 

6 33 0.9996 0.9673 

7 34 0.9926 0.9700 
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Table 5.11: Generated active and reactive powers at each inverter in case of ICDE 

i Bus 

Generated Power 

Active Power 

(kW) 

Reactive Power 

(kVAR) 

1 15 1.856 0.685 

2 18 3.477 0.357 

3 22 6.595 -1.424 

4 24 3.235 1.330 

5 29 0.905 0.803 

6 33 1.685 3.493 

7 34 0.729 5.899 

 

5.3 Results of Load Flow Analysis 

The results of the load flow analysis of the modified IEEE 37-bus system using ICDE is given in 

Table 5.9. In this table the optimized values of the load flow variables such as the system 

frequency, reference frame angles and the q-axis component of the inverter output voltages are 

recorded. Among the 30 independent runs the best result is tabulated here. From the obtained 

results the (p.u.) value of the steady state frequency is found to be 0.9962. In [21], the load flow 

solution of the modified IEEE 37-bus system was obtained through a quasi-Newton method. In 

order to make a comparison among the ICDE and the quasi-Newton method, the per unit (p.u.) 

values of the inverter output voltages at each inverter bus is tabulated in Table 5.10. From Table 

5.10, it can be observed that the p.u. values of the inverter output voltages obtained through both 

the algorithms are very close to each other and it can also be seen that all bus voltages lie within 

5% of the rated bus voltage which satisfy the IEEE standard of voltage regulation as stated in 

[74]. Furthermore, it can be observed that the p.u. values of the inverter output voltages are close 

to unity in case of ICDE which indicate that the voltages in this case are close to the nominal 

value. The inverter bus locations and the values of the active and reactive powers generated by 

each inverter in case of ICDE is tabulated in Table 5.11.  
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The results obtained so far are sufficient to calculate the voltages and phase angles at other buses 

of the network. These information are important for proper monitoring and operation of the 

whole system. The obtained load flow results can also be used to calculate steady-state operating 

points that can be used to linearize the nonlinear equations of the system model which is 

necessary for control and small signal stability analysis of the system. 

As ICDE was found to exhibit better performance compared to the other algorithms considered 

in this work, the MATLAB code of ICDE is presented in Appendix. The resources available in 

[75] were helpful in developing the MATLAB codes for the implementation of the hybrid 

algorithms. 
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Chapter 6 

Conclusion and Future Research Directions 

6.1 Conclusion 

This thesis was focused on the application of nature-inspired hybrid optimization algorithms for 

the efficient solution of load flow problem of autonomous microgrids. In Chapter 1, brief 

introduction to microgrid systems, its different operating modes, significance of droop control 

scheme for autonomous microgrids and importance of load flow analysis were presented. 

Motivation towards this research and the thesis objectives were outlined in the later portion of 

the chapter in light of the literature review. Chapter 2 contains the mathematical model of 

autonomous microgrid in synchronous reference frame. The mathematical is useful in 

understanding the relationship between different parameters associated with the microgrid 

system. In Chapter 3, a brief discussion was presented on the general characteristics of nature 

inspired optimization techniques along with the optimization process of some of the algorithms 

considered for this study. For solving the load flow problem, an objective function was 

formulated based on the absolute summation of errors in the real and reactive power generations 

from the inverter based microgrid sources as demonstrated in Chapter 4. This chapter also 

contains discussions on the formation of hybrid optimization techniques; namely ICGA, ICDE, 

ICFPA and ICGOA. The hybridization was performed with a view to improving the global 

searching capability by enhanced exploration of the search space. In Chapter 5, the hybrid 

algorithms were applied to conduct a case study on the modified IEEE 37-bus system containing 

seven droop-controlled inverters. The simulations for the load flow analysis were carried out 

using MATLAB software. For the same case study system, PSO was also applied to conduct the 

load flow analysis. The performances of the applied hybrid algorithms along with PSO were 

compared through a series of statistical tests. SPSS statistical analysis software was used to 

conduct the statistical analysis. Based on the statistical test ICDE was found to exhibit better 

performance than the other algorithms in terms of the required number of iterations and the 

execution time. Therefore, ICDE can be regarded as a prospective stochastic load flow technique 

for droop-controlled islanded microgrids. 
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6.2 Future Research Directions 

With respect to the study conducted in this research some possible future research scopes can be 

suggested. Apart from the algorithms considered in this thesis, other nature-inspired 

metaheuristic algorithms may be adopted for the load flow analysis of islanded microgirds and a 

comparative study may be conducted. Furthermore, in this thesis, the objective function was 

considered to be the absolute summation of the real and reactive power mismatch. So, the 

objective function actually does not consider the mismatch of real and reactive power at each 

bus, rather the mismatch of all the inverter buses were considered collectively. As an alternative 

approach, the load flow problem can be considered as a multi-objective optimization problem 

where the power mismatch equations at each bus can be considered as separate objective 

functions. Then, with the help of multi-objective optimization technique a particular solution 

point has to be identified where all the separate objective function will meet the specified 

convergence criteria. 
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Appendix 
 

MATLAB Code of ICDE 

 

 
% Main Body of ICDE 

clc; 

clear; 

close all; 

  

for re = 1:30       % for 30 independent trials 

  

tic 

  

%% Problem Definition 

  

CostFunction = @(x) MG_TEST_37(x);        % Cost Function 

  

nVar=14;             % Number of Decision Variables 

  

VarSize=[1 nVar];   % Decision Variables Matrix Size 

  

wmin = 375; 

wmax = 379; 

d_min = -3; d_max = 3; v_min = 160; v_max = 180; 

  

VarMin = [wmin d_min d_min d_min d_min d_min d_min v_min v_min v_min v_min 

v_min v_min v_min];         % Lower Bound of Variables 

VarMax = [wmax d_max d_max d_max d_max d_max d_max v_max v_max v_max v_max 

v_max v_max v_max];         % Upper Bound of Variables 

  

%% ICA Parameters 

  

MaxIt=100;          % Maximum Number of Iterations 

  

nPop=100;           % Population Size 

nEmp=5;             % Number of Empires/Imperialists 

  

alpha=1;            % Selection Pressure 

  

beta=1.5;           % Assimilation Coefficient 

  

pRevolution=0.05;   % Revolution Probability 

mu=0.1;             % Revolution Rate 

  

zeta=0.2;           % Colonies Mean Cost Coefficient 

  

%% Globalization of Parameters and Settings 

  

global ProblemSettings; 

ProblemSettings.CostFunction=CostFunction; 

ProblemSettings.nVar=nVar; 

ProblemSettings.VarSize=VarSize; 

ProblemSettings.VarMin=VarMin; 

ProblemSettings.VarMax=VarMax; 
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global ICASettings; 

ICASettings.MaxIt=MaxIt; 

ICASettings.nPop=nPop; 

ICASettings.nEmp=nEmp; 

ICASettings.alpha=alpha; 

ICASettings.beta=beta; 

ICASettings.pRevolution=pRevolution; 

ICASettings.mu=mu; 

ICASettings.zeta=zeta;  

  

%% Initialization 

  

% Initialize Empires 

[emp, country]=CreateInitialEmpires(); 

   

% Array to Hold Best Cost Values 

BestCost=zeros(MaxIt,1); 

  

%% ICA Main Loop 

  

for it=1:MaxIt 

     

    % Assimilation 

    emp=AssimilateColonies(emp); 

     

    % Revolution 

    emp=DoRevolution(emp); 

     

    % Intra-Empire Competition 

    emp=IntraEmpireCompetition(emp); 

     

    % Differential Evolution 

    emp=Differential_Evolution(emp); 

     

    % Intra-Empire Competition 

    emp=IntraEmpireCompetition(emp); 

     

    % Update Total Cost of Empires 

    emp=UpdateTotalCost(emp); 

     

    % Inter-Empire Competition 

    emp=InterEmpireCompetition(emp); 

     

    % Update Best Solution Ever Found 

    imp=[emp.Imp]; 

    [~, BestImpIndex]=min([imp.Cost]); 

    BestSol=imp(BestImpIndex); 

     

    % Update Best Cost 

    BestCost(it)=BestSol.Cost; 

     

    % Show Iteration Information 

    disp(['Iteration ' num2str(it) ': Best Cost = ' num2str(BestCost(it))]); 

     

    if BestCost(it) < 1e-5 

        break; 
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    end 

end 

  

%% Results 

  

duration = toc 

  

xlswrite('ICDE_Load_Flow_Results.xlsx',[BestSol.Position,BestSol.Cost,it,dura

tion],['A' num2str(re) ':' 'Q' num2str(re)]) 

xlswrite('ICDE_fitness_per_trial.xlsx',[it,BestCost'],['A' num2str(re) ':' 

'CW' num2str(re)]) 

re 

end 

 

% Code for objective function 

 

function z=MG_TEST_37(x) 

              

wn = 2*pi*60; 

Vn = 170; 

m1 = (1/2387.5); m2 = (1/1273.2); m3 = (1/1591.5); m4 = (1/2387.5); ... 

m5 = (1/1273.2); m6 = (1/1591.5); m7 = (1/2387.5); 

n1 = (1/1250); n2 = (1/666.7); n3 = (1/833.3); n4 = (1/1250); ... 

n5 = (1/666.7); n6 = (1/833.3); n7 = (1/1250);                 

  

R1_2  = 0.167; R2_5  = 0.070; R2_13 = 0.063; R2_3  = 0.230; R3_20 = 0.042; 

R3_23 = 0.105; R4_14 = 0.014; R4_16 = 0.139; R5_34 = 0.056; R5_12 = 0.042; 

R6_19 = 0.049; R7_18 = 0.132; R7_17 = 0.021; R8_26 = 0.056; R8_25 = 0.056; 

R9_24 = 0.105; R9_8  = 0.056; R10_28= 0.035; R10_29= 0.233; R11_33= 0.070; 

R11_32= 0.035; R13_4 = 0.091; R14_15= 0.091; R16_7 = 0.160; R16_6 = 0.105; 

R20_35= 0.049; R23_9 = 0.035; R26_27= 0.098; R27_30= 0.112; R27_10= 0.091; 

R30_31= 0.070; R31_11= 0.070; R35_21= 0.035; R35_22= 0.049; R36_9 = 0.230; 

  

L1_2  = 2.31e-4; L2_5  = 9.64e-5; L2_13 = 8.67e-5; L2_3  = 3.18e-4; L3_20 = 

5.78e-5; 

L3_23 = 1.45e-4; L4_14 = 1.93e-5; L4_16 = 1.93e-4; L5_34 = 7.71e-5; L5_12 = 

5.78e-5; 

L6_19 = 6.75e-5; L7_18 = 1.83e-4; L7_17 = 2.89e-5; L8_26 = 7.71e-5; L8_25 = 

7.71e-5; 

L9_24 = 1.45e-4; L9_8  = 7.71e-5; L10_28= 4.82e-5; L10_29= 3.08e-4; L11_33= 

9.64e-5; 

L11_32= 4.82e-5; L13_4 = 1.25e-4; L14_15= 1.25e-4; L16_7 = 2.22e-4; L16_6 = 

1.45e-4; 

L20_35= 6.75e-5; L23_9 = 4.82e-5; L26_27= 1.35e-4; L27_30= 1.54e-4; L27_10= 

1.25e-4; 

L30_31= 9.64e-5; L31_11= 9.64e-5; L35_21= 4.82e-5; L35_22= 6.75e-5; L36_9 = 

3.18e-4; 

  

Rload1  =  6.58; Rload12 = 49.93; Rload13 = 49.93; Rload14 = 111.41; Rload15 

= 49.93; 

Rload16 = 49.93; Rload17 = 25.82; Rload18 = 98.74; Rload19 =  98.74; Rload20 

= 98.74; 

Rload21 = 32.91; Rload22 = 98.74; Rload23 = 49.93; Rload24 =  49.93; Rload25 

= 98.74; 

Rload26 = 49.93; Rload27 = 98.74; Rload28 = 49.93; Rload29 =  98.74; Rload30 

= 29.62; 
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Rload31 = 33.12; Rload32 = 49.93; Rload33 = 98.74; Rload34 =  45.54; Rload35 

= 98.74; 

  

Lload1  = 0.0105; Lload12 = 0.0748; Lload13 = 0.0748; Lload14 = 0.1681; 

Lload15 = 0.0748; 

Lload16 = 0.0748; Lload17 = 0.0409; Lload18 = 0.1572; Lload19 = 0.1572; 

Lload20 = 0.1572; 

Lload21 = 0.0524; Lload22 = 0.1572; Lload23 = 0.0748; Lload24 = 0.0748; 

Lload25 = 0.1572; 

Lload26 = 0.0748; Lload27 = 0.1572; Lload28 = 0.0748; Lload29 = 0.1572; 

Lload30 = 0.0472; 

Lload31 = 0.0519; Lload32 = 0.0748; Lload33 = 0.1572; Lload34 = 0.0686; 

Lload35 = 0.1572; 

  

Rc = 0.1; Lc = 0.5e-3; 

                 

imp_line = [0 1 Rload1 Lload1; 0 12 Rload12 Lload12; 0 13 Rload13 Lload13; 0 

14 Rload14 Lload14; 

            0 15 Rload15 Lload15; 0 16 Rload16 Lload16; 0 17 Rload17 Lload17; 

0 18 Rload18 Lload18; 

            0 19 Rload19 Lload19; 0 20 Rload20 Lload20; 0 21 Rload21 Lload21; 

0 22 Rload22 Lload22; 

            0 23 Rload23 Lload23; 0 24 Rload24 Lload24; 0 25 Rload25 Lload25; 

0 26 Rload26 Lload26; 

            0 27 Rload27 Lload27; 0 28 Rload28 Lload28; 0 29 Rload29 Lload29; 

0 30 Rload30 Lload30; 

            0 31 Rload31 Lload31; 0 32 Rload32 Lload32; 0 33 Rload33 Lload33; 

0 34 Rload34 Lload34; 

            0 35 Rload35 Lload35; 

            0 15 Rc Lc; 0 18 Rc Lc; 0 22 Rc Lc; 0 24 Rc Lc; 0 29 Rc Lc; 0 33 

Rc Lc; 0 34 Rc Lc; 

            1 2 R1_2 L1_2; 2 5 R2_5 L2_5; 2 13 R2_13 L2_13; 2 3 R2_3 L2_3; 3 

20 R3_20 L3_20; 

            3 23 R3_23 L3_23; 4 14 R4_14 L4_14; 4 16 R4_16 L4_16; 5 34 R5_34 

L5_34; 5 12 R5_12 L5_12; 

            6 19 R6_19 L6_19; 7 18 R7_18 L7_18; 7 17 R7_17 L7_17; 8 26 R8_26 

L8_26; 8 25 R8_25 L8_25; 

            9 24 R9_24 L9_24; 9 8 R9_8 L9_8; 10 28 R10_28 L10_28; 10 29 

R10_29 L10_29; 11 33 R11_33 L11_33; 

            11 32 R11_32 L11_32; 13 4 R13_4 L13_4; 14 15 R14_15 L14_15; 16 7 

R16_7 L16_7; 16 6 R16_6 L16_6; 

            20 35 R20_35 L20_35; 23 9 R23_9 L23_9; 26 27 R26_27 L26_27; 27 30 

R27_30 L27_30; 27 10 R27_10 L27_10; 

            30 31 R30_31 L30_31; 31 11 R31_11 L31_11; 35 21 R35_21 L35_21; 35 

22 R35_22 L35_22; 36 9 R36_9 L36_9]; 

                      

del1 = 0;                 

                 

                y = x; 

                 

                [Zbus] = zbuild_w(imp_line,y(1)); 

  

                Zc = Rc + j*y(1)*Lc;  %coupling impedance 

  

                %Complex inverters voltages 

                V1d = (y(8))*sin(del1); 

                V1q = (y(8))*cos(del1);    
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                V2d = (y(9))*sin((y(2)*pi)/180); 

                V2q = (y(9))*cos((y(2)*pi)/180); 

                 

                V3d = (y(10))*sin((y(3)*pi)/180); 

                V3q = (y(10))*cos((y(3)*pi)/180); 

                 

                V4d = (y(11))*sin((y(4)*pi)/180); 

                V4q = (y(11))*cos((y(4)*pi)/180); 

                 

                V5d = (y(12))*sin((y(5)*pi)/180); 

                V5q = (y(12))*cos((y(5)*pi)/180); 

                 

                V6d = (y(13))*sin((y(6)*pi)/180); 

                V6q = (y(13))*cos((y(6)*pi)/180); 

                 

                V7d = (y(14))*sin((y(7)*pi)/180); 

                V7q = (y(14))*cos((y(7)*pi)/180); 

                 

                V1 = V1d + j*V1q; 

                V2 = V2d + j*V2q; 

                V3 = V3d + j*V3q; 

                V4 = V4d + j*V4q; 

                V5 = V5d + j*V5q; 

                V6 = V6d + j*V6q; 

                V7 = V7d + j*V7q; 

  

Iinj = zeros(36,1); 

                 

Isc1 = V1/Zc; 

Isc2 = V2/Zc; 

Isc3 = V3/Zc; 

Isc4 = V4/Zc; 

Isc5 = V5/Zc; 

Isc6 = V6/Zc; 

Isc7 = V7/Zc; 

                 

Iinj(15) = Isc1; 

Iinj(18) = Isc2; 

Iinj(22) = Isc3; 

Iinj(24) = Isc4; 

Iinj(29) = Isc5; 

Iinj(33) = Isc6; 

Iinj(34) = Isc7; 

                 

Vb = Zbus*Iinj;     %since Iex = 0, Isc = Iinj 

  

Vb1 = Vb(15); 

Vb2 = Vb(18); 

Vb3 = Vb(22); 

Vb4 = Vb(24); 

Vb5 = Vb(29); 

Vb6 = Vb(33); 

Vb7 = Vb(34); 

  

                %inverters currents 

I01 = (V1 - Vb1)/Zc; 
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I02 = (V2 - Vb2)/Zc; 

I03 = (V3 - Vb3)/Zc; 

I04 = (V4 - Vb4)/Zc; 

I05 = (V5 - Vb5)/Zc; 

I06 = (V6 - Vb6)/Zc; 

I07 = (V7 - Vb7)/Zc; 

  

I01d = real(I01); 

I01q = imag(I01); 

  

I02d = real(I02); 

I02q = imag(I02); 

  

I03d = real(I03); 

I03q = imag(I03); 

  

I04d = real(I04); 

I04q = imag(I04); 

  

I05d = real(I05); 

I05q = imag(I05); 

  

I06d = real(I06); 

I06q = imag(I06); 

  

I07d = real(I07); 

I07q = imag(I07); 

                 

%inverters power mismatch 

                 

dP1 = 3/2*(V1d*I01d + V1q*I01q) - (wn - y(1))/m1; 

dP2 = 3/2*(V2d*I02d + V2q*I02q) - (wn - y(1))/m2; 

dP3 = 3/2*(V3d*I03d + V3q*I03q) - (wn - y(1))/m3; 

dP4 = 3/2*(V4d*I04d + V4q*I04q) - (wn - y(1))/m4; 

dP5 = 3/2*(V5d*I05d + V5q*I05q) - (wn - y(1))/m5; 

dP6 = 3/2*(V6d*I06d + V6q*I06q) - (wn - y(1))/m6; 

dP7 = 3/2*(V7d*I07d + V7q*I07q) - (wn - y(1))/m7; 

dQ1 = 3/2*(V1q*I01d - V1d*I01q) - (Vn - y(8))/n1; 

dQ2 = 3/2*(V2q*I02d - V2d*I02q) - (Vn - y(9))/n2; 

dQ3 = 3/2*(V3q*I03d - V3d*I03q) - (Vn - y(10))/n3; 

dQ4 = 3/2*(V4q*I04d - V4d*I04q) - (Vn - y(11))/n4; 

dQ5 = 3/2*(V5q*I05d - V5d*I05q) - (Vn - y(12))/n5; 

dQ6 = 3/2*(V6q*I06d - V6d*I06q) - (Vn - y(13))/n6; 

dQ7 = 3/2*(V7q*I07d - V7d*I07q) - (Vn - y(14))/n7; 

                 

z = abs(dP1 + dP2 + dP3 + dP4 + dP5 + dP6 + dP7) + abs(dQ1 + dQ2 + dQ3 + dQ4 

+ dQ5 + dQ6 + dQ7); 

end 

 

% Code for formation of Zbus matrix 

 

function [Zbus] = zbuild_w(linedata,w) 

nl = linedata(:,1); nr = linedata(:,2); R = linedata(:,3); 

L = linedata(:,4); 

X = w*L; 

nbr=length(linedata(:,1)); nbus = max(max(nl), max(nr)); 

for k=1:nbr 
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    if R(k) == inf | X(k) ==inf 

    R(k) = 99999999; X(k) = 99999999; 

    else, end 

end 

  

ZB = R + j*X; 

Zbus = zeros(nbus, nbus); 

tree=0;  %%%%new 

% Adding a branch from a new bus to reference bus 0 

  for I = 1:nbr 

  ntree(I) = 1; 

      if nl(I) == 0 | nr(I) == 0 

          if nl(I) == 0      n = nr(I); 

          elseif nr(I) == 0  n = nl(I); 

          end 

              if abs(Zbus(n, n)) == 0   Zbus(n,n) = ZB(I);tree=tree+1; %%new 

              else Zbus(n,n) = Zbus(n,n)*ZB(I)/(Zbus(n,n) + ZB(I)); 

              end 

              ntree(I) = 2; 

      else,end 

  end 

  

% Adding a branch from new bus to an existing bus 

while tree < nbus  %%% new 

  

  for n = 1:nbus 

     nadd = 1; 

     if abs(Zbus(n,n)) == 0 

        for I = 1:nbr 

            if nadd == 1; 

                if nl(I) == n | nr(I) == n 

                   if nl(I) == n      k = nr(I); 

                   elseif nr(I) == n  k = nl(I); 

                   end 

                     if abs(Zbus(k,k)) ~= 0 

                          for m = 1:nbus 

                              if m ~= n 

                              Zbus(m,n) = Zbus(m,k); 

                              Zbus(n,m) = Zbus(m,k); 

                              else, end 

                          end 

                          Zbus(n,n) = Zbus(k,k) + ZB(I); tree=tree+1; %%new 

                          nadd = 2;  ntree(I) = 2; 

                     else, end 

                else, end 

            else, end 

        end 

     else, end 

end 

  

  

end  %%%%%%new 

  

% Adding a link between two old buses 

  for n = 1:nbus 

      for I = 1:nbr 

          if ntree(I) == 1 
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             if nl(I) == n | nr(I) == n 

                 if nl(I) == n     k = nr(I); 

                 elseif nr(I) == n k = nl(I); 

                 end 

             DM = Zbus(n,n) + Zbus(k,k) + ZB(I) - 2*Zbus(n,k); 

                  for jj = 1:nbus 

                  AP = Zbus(jj,n) - Zbus(jj,k); 

                       for kk = 1:nbus 

                       AT = Zbus(n,kk) - Zbus(k, kk); 

                       DELZ(jj,kk) = AP*AT/DM; 

                       end 

                  end 

                  Zbus = Zbus - DELZ; 

                  ntree(I) = 2; 

             else,end 

          else,end 

      end 

  end 

 

% Function for initializing the empires 

 

function [emp, country]=CreateInitialEmpires() 

  

    global ProblemSettings; 

    global ICASettings; 

  

    CostFunction=ProblemSettings.CostFunction; 

    nVar=ProblemSettings.nVar; 

    VarSize=ProblemSettings.VarSize; 

    VarMin=ProblemSettings.VarMin; 

    VarMax=ProblemSettings.VarMax; 

     

    nPop=ICASettings.nPop; 

    nEmp=ICASettings.nEmp; 

    nCol=nPop-nEmp; 

    alpha=ICASettings.alpha; 

     

    empty_country.Position=[]; 

    empty_country.Cost=[]; 

     

    country=repmat(empty_country,nPop,1); 

     

    for i=1:nPop 

        for j = 1:nVar 

        country(i).Position(j)=unifrnd(VarMin(j),VarMax(j)); 

        end 

         

        country(i).Cost=CostFunction(country(i).Position); 

         

    end  

     

    costs=[country.Cost]; 

    [~, SortOrder]=sort(costs); 

     

    country=country(SortOrder); 

     

    imp=country(1:nEmp); 
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    col=country(nEmp+1:end); 

     

 

    empty_empire.Imp=[]; 

    empty_empire.Col=repmat(empty_country,0,1); 

    empty_empire.nCol=0; 

    empty_empire.TotalCost=[]; 

     

    emp=repmat(empty_empire,nEmp,1); 

     

    % Assign Imperialists 

    for k=1:nEmp 

        emp(k).Imp=imp(k); 

    end 

     

    % Assign Colonies 

    P=exp(-alpha*[imp.Cost]/max([imp.Cost])); 

    P=P/sum(P); 

    for j=1:nCol 

         

        k=RouletteWheelSelection(P); 

         

        emp(k).Col=[emp(k).Col col(j)]; 

        

         

        emp(k).nCol=emp(k).nCol+1; 

    end 

     

    emp=UpdateTotalCost(emp);     

end 

 

% Assimilation 

 

function emp=AssimilateColonies(emp) 

  

    global ProblemSettings; 

    CostFunction=ProblemSettings.CostFunction; 

    nVar=ProblemSettings.nVar; 

    VarSize=ProblemSettings.VarSize; 

    VarMin=ProblemSettings.VarMin; 

    VarMax=ProblemSettings.VarMax; 

     

    global ICASettings; 

    beta=ICASettings.beta; 

     

    nEmp=numel(emp); 

    for k=1:nEmp 

        for i=1:emp(k).nCol 

             

            emp(k).Col(i).Position = emp(k).Col(i).Position ... 

                + beta*rand(VarSize).*(emp(k).Imp.Position-

emp(k).Col(i).Position); 

             

            for j = 1:nVar 

                emp(k).Col(i).Position(j) = 

max(emp(k).Col(i).Position(j),VarMin(j)); 
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                emp(k).Col(i).Position(j) = 

min(emp(k).Col(i).Position(j),VarMax(j)); 

            end 

             

            emp(k).Col(i).Cost = CostFunction(emp(k).Col(i).Position); 

             

        end 

    end 

  

end 

 

% Revolution 

 

function emp=DoRevolution(emp) 

  

    global ProblemSettings; 

    CostFunction=ProblemSettings.CostFunction; 

    nVar=ProblemSettings.nVar; 

    VarSize=ProblemSettings.VarSize; 

    VarMin=ProblemSettings.VarMin; 

    VarMax=ProblemSettings.VarMax; 

     

    global ICASettings; 

    pRevolution=ICASettings.pRevolution; 

    mu=ICASettings.mu; 

     

    nmu=ceil(mu*nVar); 

     

    sigma=0.1*(VarMax-VarMin); 

     

    nEmp=numel(emp); 

    for k=1:nEmp 

         

        NewPos = emp(k).Imp.Position + sigma.*randn(VarSize); 

         

        jj=randsample(nVar,nmu)'; 

        NewImp=emp(k).Imp; 

        NewImp.Position(jj)=NewPos(jj); 

               

        NewImp.Cost=CostFunction(NewImp.Position); 

        if NewImp.Cost<emp(k).Imp.Cost 

            emp(k).Imp = NewImp; 

        end 

         

        for i=1:emp(k).nCol 

            if rand<=pRevolution 

  

                NewPos = emp(k).Col(i).Position + sigma.*randn(VarSize); 

                 

                jj=randsample(nVar,nmu)'; 

                emp(k).Col(i).Position(jj) = NewPos(jj); 

                 

              for j = 1:nVar 

                emp(k).Col(i).Position(j) = 

max(emp(k).Col(i).Position(j),VarMin(j)); 

                emp(k).Col(i).Position(j) = 

min(emp(k).Col(i).Position(j),VarMax(j)); 
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              end 

                emp(k).Col(i).Cost = CostFunction(emp(k).Col(i).Position); 

  

            end 

        end 

    end  

end 

 

% Intra-Empire Competition 

 

function emp=IntraEmpireCompetition(emp) 

  

    nEmp=numel(emp); 

     

    for k=1:nEmp 

        for i=1:emp(k).nCol 

            if emp(k).Col(i).Cost<emp(k).Imp.Cost 

                imp=emp(k).Imp; 

                col=emp(k).Col(i); 

                 

                emp(k).Imp=col; 

                emp(k).Col(i)=imp; 

            end 

        end 

    end 

end 

 

% Update total cost of empires 

 

function emp=UpdateTotalCost(emp) 

  

    global ICASettings; 

    zeta=ICASettings.zeta; 

     

    nEmp=numel(emp); 

     

    for k=1:nEmp 

        if emp(k).nCol>0 

            emp(k).TotalCost=emp(k).Imp.Cost+zeta*mean([emp(k).Col.Cost]); 

        else 

            emp(k).TotalCost=emp(k).Imp.Cost; 

        end 

    end  

end 

 

% Imperialistic Competition 

 

function emp=InterEmpireCompetition(emp) 

  

    if numel(emp)==1 

        return; 

    end 

  

    global ICASettings; 

    alpha=ICASettings.alpha; 

  

    TotalCost=[emp.TotalCost]; 
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    [~, WeakestEmpIndex]=max(TotalCost); 

    WeakestEmp=emp(WeakestEmpIndex); 

     

    P=exp(-alpha*TotalCost/max(TotalCost)); 

    P(WeakestEmpIndex)=0; 

    P=P/sum(P); 

    if any(isnan(P)) 

        P(isnan(P))=0; 

        if all(P==0) 

            P(:)=1; 

        end 

        P=P/sum(P); 

    end 

         

    if WeakestEmp.nCol>0 

        [~, WeakestColIndex]=max([WeakestEmp.Col.Cost]); 

        WeakestCol=WeakestEmp.Col(WeakestColIndex); 

  

        WinnerEmpIndex=RouletteWheelSelection(P); 

        WinnerEmp=emp(WinnerEmpIndex); 

  

        WinnerEmp.Col(end+1)=WeakestCol; 

        WinnerEmp.nCol=WinnerEmp.nCol+1; 

        emp(WinnerEmpIndex)=WinnerEmp; 

  

        WeakestEmp.Col(WeakestColIndex)=[]; 

        WeakestEmp.nCol=WeakestEmp.nCol-1; 

        emp(WeakestEmpIndex)=WeakestEmp; 

    end 

     

    if WeakestEmp.nCol==0 

         

        WinnerEmpIndex2=RouletteWheelSelection(P); 

        WinnerEmp2=emp(WinnerEmpIndex2); 

         

        WinnerEmp2.Col(end+1)=WeakestEmp.Imp; 

        WinnerEmp2.nCol=WinnerEmp2.nCol+1; 

        emp(WinnerEmpIndex2)=WinnerEmp2; 

         

        emp(WeakestEmpIndex)=[]; 

    end 

     

end 

 

% Differential Evolution 

 

function emp = Differential_Evolution(emp) 

  

    global ProblemSettings; 

    CostFunction=ProblemSettings.CostFunction; 

    nVar=ProblemSettings.nVar; 

    VarSize=ProblemSettings.VarSize; 

    VarMin=ProblemSettings.VarMin; 

    VarMax=ProblemSettings.VarMax; 

     

    beta_min=0.4;   % Lower Bound of Scaling Factor 
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    beta_max=1.0;   % Upper Bound of Scaling Factor 

  

    pCR=0.5;        % Crossover Probability 

     

    nEmp=numel(emp);     

    for k=1:nEmp 

         

        x = emp(k).Imp.Position; 

         

        A = randperm(nEmp); 

         

        A(A==k) = []; 

         

        a=A(1); 

        b=A(2); 

        c=A(3); 

         

        % Mutation 

        beta = unifrnd(beta_min,beta_max,VarSize); 

        y = emp(a).Imp.Position + beta.*(emp(b).Imp.Position - 

emp(c).Imp.Position); 

         

        for p = 1:nVar 

            y(p) = max(y(p), VarMin(p)); 

            y(p) = min(y(p), VarMax(p)); 

        end 

         

        % Crossover 

        z=zeros(size(x)); 

        j0=randi([1 numel(x)]); 

         

        for j=1:numel(x) 

            if j==j0 || rand<=pCR 

                z(j)=y(j); 

            else 

                z(j)=x(j); 

            end 

        end 

         

        NewSol.Position = z; 

        NewSol.Cost = CostFunction(NewSol.Position); 

         

        if NewSol.Cost < emp(k).Imp.Cost 

            emp(k).Imp = NewSol; 

        end 

         

        for i=1:emp(k).nCol 

            if emp(k).nCol < 4 

                break; 

            end 

            x = emp(k).Col(i).Position; 

             

            A = randperm(emp(k).nCol); 

             

            A(A==i) = []; 

         

            a=A(1); 
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            b=A(2); 

            c=A(3); 

             

            % Mutation 

            beta = unifrnd(beta_min,beta_max,VarSize); 

            y = emp(k).Col(a).Position + beta.*(emp(k).Col(b).Position - 

emp(k).Col(c).Position); 

             

            for p = 1:nVar 

                y(p) = max(y(p), VarMin(p)); 

                y(p) = min(y(p), VarMax(p)); 

            end 

            % Crossover 

            z=zeros(size(x)); 

            j0=randi([1 numel(x)]); 

         

            for j=1:numel(x) 

                if j==j0 || rand<=pCR 

                    z(j)=y(j); 

                else 

                    z(j)=x(j); 

                end 

            end 

            NewSol.Position = z; 

            NewSol.Cost = CostFunction(NewSol.Position); 

             

            if NewSol.Cost < emp(k).Col(i).Cost 

                emp(k).Col(i) = NewSol; 

            end 

        end 

    end 

end 

 

 

 

 

 

 

 


