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Abstract

Modulus imaging has great potential in soft-tissue characterization since it reveals in-

trinsic mechanical properties. The elastic properties of biological tissues are usually

modified by disease. The physical quantities that describe tissue elastic properties are

stress, strain and elastic moduli. Stress distribution reconstruction is vital to find out

the true value of the modulus distribution. Stress distribution not only depends on the

physiology of the tissue but also largely changes with the boundary conditions. In

clinical practice it is impossible to find out in-depth information about the stress distri-

bution of the tissue. Stress distribution only can predict based on different parameters.

In this dissertation stress distribution is predicted from the strain distribution and stress

value on the top surface of the tissue body. For predicting the first stress distribution

the difference of strain distributions and the top surface stresses are taken as the ref-

erences. The stress distribution prediction is updated by addressing the error of the

predicting strain values. Simulation is carried out for different aspects of the tissue

background and the inclusion. The proposed concept is validated with the recent al-

gorithm by the simulation data first then comparing with the recently published data.

The modulus prediction error is around4% to 5.5% comparing with the real modulus

value. Researchers in this field show the inclusion to background modulus mean error

as6.87% for a particular phantom whereas the proposed algorithm found the mean

error4.69% for the same kind of phantoms. The overall stress prediction will improve

the modulus prediction which refers to good quality modulus image. Clinically it will

provide detail information about the modulus spectrum.

xiii



Chapter 1

Introduction

1.1 Introduction

Medical imaging is vital to modern clinical practice, enabling clinicians to examine tis-

sues inside the human body non-invasively. Its value depends on accuracy, resolution,

and the imaged property (e.g., density). Various new scanning techniques are aimed at

producing elasticity images related to mechanical properties (e.g., density, stiffness) to

which conventional forms of ultrasound, X-ray and magnetic resonance imaging are

insensitive. Elastography, palpography or strain imaging has been under development

for almost two decades. Elasticity images are produced by estimating and analyzing

quasistatic deformations that occur between the acquisitions of multiple ultrasound

images. Likely applications include improved diagnosis of breast cancer (which often

presents as a stiff lump), but the technique can be unreliable and difficult to perform.

Previously the imaging was based on freehand scanning, i.e., the ultrasound probe was

moved manually over the surface of the tissue. This requires that elasticity images are

calculated fast to provide a live display, and the images need to present meaningful

elasticity data despite the poorly controlled properties of the deformations.

This thesis presents technical developments towards improved clinically used elas-

ticity imaging. First, the simulation model is proposed for complex breast structure.

Based on that complex structure and practical environment all the simulation is carried

out. Upper surface pressure is taken into account to predict final Young’s Modulus

(mentioned as modulus), which is the main objective of this thesis. Secondly, for pre-

dicting stress value, different algorithm is checked and finally a novel technique from

computational time consumption point of view and modulus prediction accuracy is

proposed. Mentioned algorithm is validated for two phantom structures from recent

research article by S.R. Mousaviet. el. [2]. Pressure acquisition system attached with

US probe is proposed for surface pressure measurement. In the clinical practice a large

number of elasticity images are formed for a single patient. Among them most of the

image frames are not clearly visible. In this dissertation a novel approach is proposed

1



Figure 1.1: Side-by-side comparison of an ultrasound B-mode image with the corresponding
elastogram of an excised uterus from a 51-year-old patient. The width of the B-mode image
is 5 cm. The location of the fibroid is indicated by the arrow [3].

to find out the most visible image frames among the all the generated elasticity image

frames.

1.2 Significance of the Research

An imaging technique for breast cancer detection employs tissue stiffness as contrast

mechanism. When the acoustic characteristics of the inclusion and the background tis-

sue are very close to each other then B-mode image suffers to provide clear idea about

the tumor tissue. B-mode imaging suffers from this phenomena for various kind of

malignant tumors. Here comes the importance to study elasticity imaging. Changes in

tissue elasticity are generally correlated with pathological phenomena. Many cancers,

such as scirrhous carcinoma of the breast, appear as extremely hard nodules which are

a result of increased stromal density. Other diseases involve fatty and/or collagenous

deposits which increase or decrease tissue elasticity. Complicated fluid filled cysts

could be invisible in standard ultrasound examinations, yet be quite softer than the em-

bedding tissue. In many cases, the small size of a pathological lesion and/or its location

deep in the body preclude its detection and evaluation. Moreover, the lesion may or

may not possess acoustic backscatter properties which would make it ultrasonically

detectable. Diffuse diseases such as cirrhosis of the liver are known to significantly

reduce the elasticity of the liver, yet they appear normal in conventional ultrasound

examinations [3].

It is founded on the fact that alterations in breast tissue stiffness are frequently as-

sociated with pathology [4], [5]. This was demonstrated by stiffness measurement

studies of ex vivo breast tissue samples conducted by Krouskopet al. [6] and Samani

and Plewes [7, 8]. Based on their measurements, there is a significant difference be-

tween the Young’s moduli of breast tumor and healthy breast tissues. As such, imaging

the variation of breast tissue stiffness due to the malignancy can be potentially used as

a non-invasive breast cancer diagnosis method with a high efficacy. After develop-

2



ment of elastography techniques [9], breast elastography was introduced as one of

the first reported clinical applications developed based on the elastography concept.

Two alternative methods of quasi-static and harmonic elastography were proposed. In

the quasi-static methods, the tissue is mechanically stimulated very slowly and the re-

sulting tissue deformation data are acquired using imaging modalities such as MR or

ultrasound (US). In harmonic elastography, a mechanical wave is induced in the tissue

and either vibration amplitude or wave speed is measured using MRI or US imag-

ing techniques. In both cases, acquired data is used to estimate the tissue mechanical

properties (e.g., Young’s modulus).

Several feasibility studies [10, 11] aiming at breast cancer diagnosis which in-

volved harmonic US elastography were reported. Among relevant groups, Sinkuset al.

[12, 13] and Van Houtenet al. [14] proposed harmonic MR elastography techniques

to measure the viscoelastic shear properties of in vivo breast lesions. While harmonic

elastography techniques provide information related to tissue viscosity properties that

may potentially carry more diagnostic information to characterize a breast lesion, they

usually require additional hardware attachments for wave generation in addition to

ad hoc software including specialized pulse sequences for MR elastography. These

techniques also involve approximations which lead to elastic modulus reconstruction

formulation based on the wave form and propagation characteristics. Other groups

developed quasistatic elastography methods in the form of mechanical imaging [15],

strain imaging [16, 17] and full inversion techniques [18, 19] for breast cancer diag-

nosis. In mechanical imaging [15], mechanical parameters of the breast lesions were

estimated using contact stress patterns on breast surface measured through a force sen-

sor array pressed against the breast. This imaging approach is based on the premise

that temporal and spatial changes in the stress pattern allow detection of internal struc-

tures with different elastic properties and assessing their geometrical characteristics.

Strain imaging is based on a simplifying assumption of uniform tissue stress distribu-

tion under which tissue stiffness is proportional to its strain reciprocal. Since stress

spatial variation developed within the breast tissue during mechanical stimulation is

far from uniform, strain imaging does not provide reliable quantitative tissue stiff-

ness information necessary for high sensitivity and specificity in breast cancer diagno-

sis. Full-inversion based elastography techniques on the other hand, account for tissue

stress variation, permitting reconstruction of quantitative maps of elasticity modulus.

One difficulty with inversion based quasi-static elastography methods is that they are

computationally intensive, unstable and hard to implement. To reduce the complexity

of the elastography inversion algorithms, Samaniet. al. [20] developed a MR-based

iterative inversion algorithm for breast elastography. This technique was later imple-

mented based on an ultrasound platform [21] as a step to develop near real-time, low

3



cost and widely available imaging system. The algorithm was shown to be robust,

however, it requires image segmentation for healthy and tumor tissue delineation. This

requirement is not easy to fulfill, especially with US imaging.

In this research, the proposed methodology is shown for unconstrained full inversion-

based breast elastography considering the surface pressure of the top surface of the

field of view (FOV). In this work, it is also shown that, to predict the proper stress

distribution throughout the experimental object, the surface pressure data guide to get

the modulus distribution for more precise and take less computational time which give

the real advantage to get more accurate quantitative modulus distribution and the char-

acteristics of the tumor.

1.3 Research Challenges and Objectives

Imaging internal soft tissue displacements and strains resulting from mechanical forces

applied to the body surface is rapidly developing into a new diagnostic modality [22,

23]. Internal deformational images, however, emphasize both the spatial distribution of

the Young’s or shear modulus and global boundary conditions, including mechanical

constraint of the body, its geometry, the types of external and internal forces, etc. That

is, displacement and/or strain images may exhibit significant artifacts due to global

boundary conditions, as discussed in [20, 21]. It is challenging to reduce artifacts

in elasticity images significantly by directly reconstructing and imaging the elastic

Young’s modulus. Although absolute quantitation may ultimately be important for

certain applications, differential diagnosis based on tissue elasticity will probably be

based on relative modulus reconstruction. Computing the mechanical properties of a

medium based on its response to mechanical action can be posed in a number of ways.

Because of physical limitations inherent in measuring internal displacements with an

ultrasound imaging system, (i.e. limitations of traditional longitudinal speckle tracking

algorithms for large absolute displacements and the poor accuracy of lateral displace-

ment measurements), work to date has focused on estimating elastic moduli with lim-

ited deformation information [14, 20, 21, 24, 25]. Based on simplified models of both

the elastic modulus distribution in the body and the mechanical boundary conditions,

these methods are accurate only in limited applications or, otherwise, produce large

artifacts in the elasticity reconstruction [21]. Consequently, expanded reconstruction

methods are needed to handle more complex objects and boundary conditions.

Motivated by the issues relating to the modulus reconstruction and elasticity imag-

ing the objectives of the current research is defined as follows:

• To develop a simulated model of a section of the breast tissue with the inclusion,

which refers to the practical physiology of breast.
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• To validate the simulated tissue model by comparing reconstructed modulus

value using commonly used methods.

• To develop an algorithm to reconstruct modulus based on actual strain distri-

bution of the tissue plane and only the surface stress data, which will help to

generate enhanced elastography images.

• To develop an algorithm to identify the eminence image frames from a large

number of elastography image frames for making the diagnostic process more

faster and reliable.

• To verify the proposed approaches with the recently published data.

1.4 Main contributions

Based on the research challenges and objectives mentioned above, this dissertation

provides main contributions listed below:

• A practical simulated model of the breast with the tumor is developed which pro-

vides a practical complex environment in the modulus reconstruction algorithm.

• A stress spectrum updating process is proposed and the effectiveness based on

the window size of the stress vector is shown.

• A novel modulus reconstruction algorithm is proposed and compared with the

classical method where the surface stress is not taken as the input data. The mean

error rate is calculated for both cases. For the proposed algorithm, surface stress

and the strain data is taken as the input data.

• The proposed reconstruction algorithm is applied for different conditions of the

inclusion.

• The proposed reconstruction algorithm is validated by comparing with the re-

cently published article.

• A semi-automated best frame selection algorithm is proposed to find some sig-

nificant image frame from the strain image sequence and validate by human

visual perception.

1.5 Thesis outline

Subject to the above research objectives and targeted contributions this dissertation is

outlined as follows:

5



Chapter 1 provides the background and motivation of the current research includ-

ing main contributions and significance of the research. Later, the thesis outline is

presented at the end of this chapter.

Chapter 2 focuses on contemporary literature survey related to quasistatic imaging

and modulus reconstruction algorithm. This chapter also discusses the theoretical and

research aspects of the relevant current works.

Chapter 3 presents the algorithm to predict the modulus by inverse method con-

sidering only the surface stress and the displacement distribution from pre and post

compression US data. A relevant simulated tissue structure with skin, fat, inclusion

and background tissue is designed and validated. The challenges of the proposed al-

gorithm is discussed and the solution is presented in this chapter. Various cases are

considered to validate the real life scenario.

Chapter 4 concentrates on the result, analysis and validation. A number of practical

cases are considered and for all the cases the simulations are done. All the results

are presented and analysis is carried out after the result. Validation of the proposed

algorithm is made by comparing with stranded and recently published research data.

Chapter 5 presents the algorithm to find out the best frame from the image se-

quences of the strain image. It can also be implemented in the actual elasticity imaging

sequence for efficient image selection. The result is also presented at the last part of

this chapter.

Chapter 6 provides the concluding remarks and future directives for this research.

The future work is also presented to get better output from the proposed approach.
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Chapter 2

Literature Review

2.1 Introduction

Modern medical practitioners have the opportunity to acquire the important informa-

tion in a continual basis by the haptic properties of tissue . Developing countries have

invested enormously at research and infrastructure for breast screening programs. Irre-

spective of the steps towards evidence based medicine, researchers are focusing on the

measurement of tangible changes in medical outcomes. Manual palpation in clinical

breast examination is still widely believed as a vital procedure, contributing towards re-

ducing the breast cancer mortality rate [5]. On the other side, breast cancer elucidates

the bindings of subjective examinations when the apparatus may not be adequate [4].

It was presumed that training woman in self-examination of their own breast could

unlock better medical results, owing to previous cancer detection, but the conglom-

erated attestation indicates that such training programmes have only one remarkable

outcome. The Rate of biopsies on benign lesions increases, which may be damaging

to health [5].

Among females, breast cancer is the most commonly diagnosed cancer and the

leading cause of cancer death, followed by colorectal and lung cancer (for incidence),

and vice versa (for mortality); cervical cancer ranks fourth for both incidence and mor-

tality. There will be an estimated 18.1 million new cancer cases (17.0 million excluding

nonmelanoma skin cancer) and 9.6 million cancer deaths (9.5 million excluding non-

melanoma skin cancer) in 2018 [26, 27]. In both sexes combined, lung cancer is the

most commonly diagnosed cancer (11.6% of the total cases) and the leading cause of

cancer death (18.4% of the total cancer deaths), closely followed by female breast can-

cer (11.6%), prostate cancer (7.1%), and colorectal cancer (6.1%) for incidence and

colorectal cancer (9.2%), stomach cancer (8.2%), and liver cancer (8.2%) for mortal-

ity. Lung cancer is the most frequent cancer and the leading cause of cancer death

among males, followed by prostate and colorectal cancer (for incidence) and liver and

stomach cancer (for mortality). According to estimates from the World Health Orga-
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nization (WHO) in 2015, cancer is the first or second leading cause of death before

age 70 years in 91 of 172 countries, and it ranks third or fourth in an additional 22

countries [28,29].

This literature review draws extensively on the comprehensive review provided by

Lindop [1]. The mechanical properties of tissue have always been considered as a

notable factor for medical diagnosis in the long history of clinical practice. In The

Book of Prognostics (c. 400 BC) Hippocrates stated indicating abdominal swellings

that,

"Such, then, as are painful, hard, and large, indicate danger of speedy death; but

such as are soft, free of pain, and yield when pressed with the finger, are more chronic

than these" [22].

As noted in [1], The hindrance of manual examinations is searching for hard

chunks and encourage the expansion of more updated diagnostic tools. Every form

of diagnosis have a subjective component but most probably up to the minute technol-

ogy will help by serving clinicians with more accurate information than is available

now. For a long period physicists are holding interest in the mechanical properties of

biological tissues but this complex issue cannot draw the attention for some obvious

practical reason where the study of engineering materials are getting full concentra-

tion [6,7]. There is so little tabulated data existed which would be relevant to medical

diagnosis of biological tissue [8]. However, such quantitative measurements illus-

trates that changes in rigidity may discriminate between healthy and infected tissue in

numerous circumstances [8, 9, 19, 20]. This thesis will exploit such differences with

a diagnostic imaging technique and concentrate over the technical development of a

practical system for generating images related to mechanical properties for freehand

ultrasound scanning. This could be a beneficial approach to both 2D and 3D imaging

of differing tissues which is made on the existing abstract idea of quasistatic elasticity

imaging [11, 45].

This task is motivated by general medical interest in mechanical property imaging

and concreate opportunities linked with quasistatic elasticity imaging which can be

supported in the context of the alternatives which are being constructed elsewhere. An

elaborated exordium is given which is considered to be a range of connected ultrasonic

techniques, in which facile contrasts mask general principles. Some features of the

gesture processing method updated for 2D and 3D elasticity imaging using ultrasound

may be relevant to a scale of different imaging concepts.

To quote [1]: ‘Since the arrival of real time ultrasound in the 1980s, clinicians

have been eligible to notice movement in the scans. At the time of working with image

sequences, Dickinson and Hill established a mutual relationship method for measuring

small motions within tissue [30]. Thereafter, multifold researchers have come up with
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ultrasonic methods for assessing mechanical attributes, with broad variation the physi-

cal principles associated involved [12,21,30,31]. Each and every method is connected

with the in vivo application of reversible deformations to human tissue ,so imagery

techniques founded on measurement and reasoning of such elastic deformations are

defined as elasticity imaging.

In the mean-time, other researchers proposed methodology using magnetic res-

onance imaging (MRI) [32, 33]. One of the noteworthy favorable condition of ul-

trasound is the relative ease of manufacturing a real time display, which empowers

clinicians to scan investigatively and focus on regions of parts of interest. Generally

orthodox approaches to MRI and ultrasound have relative merits and likely to con-

tinue on to elasticity imaging. Moreover ultrasound devices are less expensive and

moveable. While achieving fairly isotropic image quality, MRI has the plus point of

producing 3D scans of large volumes. Though ultrasound can surpass the resolution

of MRI in the axial direction, the characteristic of ultrasound images are tremendously

anisotropic. Methodology for processing focused ultrasound beams are called beam-

forming. Conventional beamforming tends to weaker resolution in the lateral and ele-

vational direction (see Figure 2.1) [15]. Future advances may recover the non- axial

resolution [16]. However there are several methodologies for accomplishing 3D ultra-

sonic imaging with conventional beamforming [23,34,35] . In the long run, successful

techniques for elasticity imaging evolved with MRI.

Ultrasonic elasticity imaging can provides significant inlet for a wide range of clin-

ical applications. To discover Breast imaging and diagnose cancer is a significant

motivation of research and it is among the first application involved in routine clini-

cal practice [36, 37]. Other studies have viewed diagnosis prostate cancer [38, 39],

which drives analogous changes in mechanical properties. Further applications ap-

proximately emerge considering other soft tissues. By means of ultrasonic elasticity

measurement, a commercial system has already been developed for classify liber fibro-

sis [40]. Elasticity imaging systems altered for dermatological scanning may improve

skin cancer diagnosis [41, 42]; chronic dermatological conditions including schero-

derma and Ehlers- Danlos syndrome are also categorized by changes in skin elasticity

[43]. Various cardiovascular diseases are familiar for causing changes in mechani-

cal properties. Elasticity imaging may recover the detection and staging of deep vein

thrombosis [44], and the recognition of vulnerable plaque deposits in patients with

atherosclerosis [40,45]. Similar information would take credit in examinations of the

myocardium [46,47]. Furthermore non-diagnosis applications include monitoring the

formation of thermal lesions during ablation therapy (a form of non-invasive surgery)

[48,49]. Techniques which serve real time images may also have intra-operative uses,

such as ameliorating the delineation of tumor boundaries during neurosurgery [50].’
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Figure 2.1: Naming convention for three orthogonal directions relative to an ultrasound
probe. The "axial" direction is normal to the face of the probe (vertical in a 2D ultrasound
image), and the "lateral" direction is parallel to the transducer array (horizontal in a 2D ul-
trasound image). These are both orthogonal to the "elevational" direction (out-of-plane with
respect to a 2D ultrasound image). Figure reproduced by kind permission of Joel Edward
Lindop [1].

2.2 Theory of Elasticity Imaging

As noted in [1], An overflowing number of formally defined mechanical properties

could be accepted in the analysis of human tissue. Examples related with elastic defor-

mations are listed in Table 2.1. There is a probability of a subset of properties for which

measurements or images would be clinically fruitful, and another subset of properties

for which incident measurement or imaging has some possibilities. The overlap is the

type of property that may provide as the foundation for successful elasticity imaging.

An overview of relative theory is presented, framing the role of qualitative approaches

to elasticity imaging.

When researching ultrasound image to illustrate mechanical properties, deforma-

tion motion is required, i.e., compression, expansion or shear. A field of displacement

data has defined in the simplest manner about the recording tissue motion as a func-

tion of spatial position. A more useful elaboration is in terms of strain, i.e., quantities

measured by taking spatial derivatives of the displacement of the field to vanish com-

ponents connected with rigid body motion (bulk translation and rotation) which are

irrelevant to mechanical properties.

In 1D, strain is typically illustrated as the change in length divided by the original

length [6]. Definition differs noticeably when the large strains arrive (e.g. greater than

10%). Various definitions are appropriate for 3D analysis, where the most popular is

also simplest, and they converge when considering small deformation. Throughout the

thesis, strain means elements from Cauchys strain tensor.

To quote [1]: ‘Generally in 1D, strain is determined as the change in length divided

by either the original or the final length [6]. Large strains, which is greater than 10%,
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Table 2.1: Examples of formally defined mechanical properties. Table reproduced by kind
permission of Joel Edward Lindop [1].

Categories Names Symbols Descriptions

Linear
elasticity
[7,51]

Elastic modulus
tensor

Cijkl

A 3 × 3 × 3 × 3 matrix with up to
21 independent coefficients, describing
3D linear-elastic behavior of anisotropic
materials.

Lame
coefficients

μ, λ
Often used in physics, these coefficients
describe isotropic linear elasticity.

Shear modulus,
bulk modulus

G(G=μ),K
Referred to in engineering;
an equivalent description of isotropic
linear elasticity.

Young’s modulus,
Poisson’s ratio

E, v
An equivalent description
with appeal to intuitive understanding.

1D linear
viscoelasticity
[7,51,52]

Creep compliance,
relaxation
modulus

J(t), Y (t)
Functions of time indicating strain and
stress responses to step changes in stress
and strain respectively.

Complex
compliance

G1(ω) + jG1(ω)

A complex representation indicating the
magnitude and phase of strain divided by
stress as a function of frequency in tissue
subject to harmonic loading.

Linear
isotropic
poroelasticity
[53,54]

Young’s modulus,
Poisson’s ratio,
permeability

Es, νs, κ

The Kwan-Lai-Mow biphasic model of
porous media: these parameters describe
an isotropic linear-elastic matrix saturated
with fluid.

make a significant difference in the definition. Several definitions are favorable for 3D

analysis. One of the most popular definition is the simplest, and they converge when

accepting small deformations. Throughout this thesis, "strain" means elements from

Cauchys strain tensor:

εij =
1

2

(
∂ui

∂xj

+
∂uj

∂xi

)

, i, j = 1, 2, 3..... (2.1)

Whereui is displacement in directioni, andxj is pre-deformation position in di-

rection j. The different meanings of longitudinal and shear strain are indicated in

Figure 2.2.

Strain arises for the changes in the stress field (force per unit area) within the tissue,

and this in turn go behind changes in forces acting internally or no bounds defines as

mechanical excitation. The tissue may pressed by a compression plate [22], vibrated

from its surface [55], bumped on the surface by a small mass [21], or palpated inter-

nally by using the radiation pressure [56] (see Section 2.3.2) the resulting stress consist

of (1) an isotropic or hydrostatic component which causes change in volume (change

in pressure), and (2) anisotropic components which causes change of shape (shear
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(a) (b)

Figure 2.2: Components of 2D strain, (a) Longitudinal strain and (b) Shear strain. Figure
reproduced by kind permission of Joel Edward Lindop [1].

stresses and anisotropic components of longitudinal stresses). Components from 3D

stress tensor are classified in Figure 2.3.

Figure 2.3: Elements from the 3D stress tensor labelled on an infinitesimally small cube.
Force components acting on the surface of a finite object can be found by integration,
e.g.,dF11 = σ11dx2dx3. Strains with matching subscripts (not labelled above) indicate
matching deformations, so the tissue has stretched over direction 1 ifε11 is positive, while
a positive value ofε23 indicates warping in the 2-3 plane along the lines of Figure 2.2(b).
Figure reproduced by kind permission of Joel Edward Lindop [1].

For estimating mechanical properties, measurements or assumed calculation of de-

formation have to be merged with prior knowledge, estimates or reasonable predictions

regarding mechanical excitation. In accordance to the theory, deformation and excita-

tion are connected through constitutive equations contingent on mechanical properties

of the tissue. For example the theory of linear elasticity founded on Hooks law has been

developed by mathematicians, physicians and engineers. It is proven to be beneficial

for analyzing the properties of man-made construction as buildings and machines [51].

Much of the characteristics of general engineering materials, such as steel and timber,

is actually poorly illustrated by linear elasticity, but the theory is precious because
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engineers are acquainted with circumstance in which it applies relatively accurately

[57].

If there is any requirement for manufacturing quantitative images of a particular

mechanical property by solving an inverse problem, one of the major challenges is the

demand for accurate deformation measurements and it is considered at length in all the

term of the thesis. Basically, computational cost is also a notable issue, i.e. the time

which is required to produce each image and the quantity of computing power that

have to be constructed into the ultrasound scanner. Both reflections execute similarly

with the accordance of producing images which are related to mechanical properties

qualitatively.

Three other fundamental challenges are presented by quantitative imaging: (1)

Complexity: approximately this is the greatest hindrance. The mechanical deport-

ment of tissue is not strictly narrated by simple, convenient models [6]. (2) Computa-

tional stability: the increasing number of parameters diminishes the availability of the

chance of a unique solution, in the mean-time the quantity of data which is mandatory

for achieving acceptably low error boosts drastically [58]. (3) Unknown boundary

conditions: basically elasticity imaging is based on scanning a limited area of tissue,

spanning a low volume (3D scans not encircled the entire human body) or a slide

(2D scans). This creates problem, because some approaches to quantitative analysis

only produce the accurate solutions if the mechanical properties are known all over the

boundary [59].

σij =
∑

k

∑

l

Cijklεkl i, j, k, l = 1, 2, 3..... (2.2)

whereσ is the stress tensor,C is the elastic modulus tensor, ande is the strain tensor.

Symbolsi, j, k andl denote the three spatial dimensions. Stresses and strains are lon-

gitudinal wherei = j or k = l, while shear stresses and shear strains have subscripts

i 6= j or k 6= l. The mechanical properties described byC may vary throughout the tis-

sue. Equation 2.2 can be used to find out the stress and strain fields throughout an area

with known C subject to known boundary forces. Calculating strain fields based on

trial sets of mechanical properties and boundary forces can handle the inverse problem.

Likely parameter sets are spotted by predicting the degree of correspondence between

the estimated and measured strain fields. Generally the identification of approximate

parameter sets is also instructed prior prophecy regarding their connected plausibility

[58]. Adapting the most probable solution, coefficients inC can be charted to pixel

values in quantitative elasticity images.

This example is determined to point out the value of circumspection when deter-

mining how to analyze mechanical properties for elasticity imaging. As linear elastic
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theory enables acquainted linear algebra techniques, it is accepted logically [60], at the

time of agreeing the probability of real tissue being highly anisotropic. The mechanical

properties of every piece of tissue are elaborated inC by 21 independent coefficients

[51].consequently, static analysis demands reasonably exact prediction regarding the

21-dimentional mechanical properties over the circumference otherwise most of the

model is redundant. Concerning computational cohesion, a single still deformation

measured with perfect idea of the boundary conditions and perfect estimations of ev-

ery strain elements throughout the scan region is not suffice to yield a unique solution.

Any determined solution relies on prior prediction [58]. It can be possible specify dis-

tinctive maximum likelihood solution which is independent of prior to knowledge, if

various deformations are judged together. Whatever, the inverse problem may remain

in a poor condition; the most favorable solution may contain huge errors even for data

that are almost free of noise [60]. Previous knowledge stays significant for enforcing

a credible solution.

Linear elastic analysis may nevertheless accepted as a reliable approach to elas-

ticity imaging. Prior knowledge for practical analysis could embrace prediction of

dependent connectivity between some of the coefficients inC so as to diminish the

dimensionality of the difficulty. There is a little point in acclimating a highly complex

linear elastic model if there is any chance of tissue nonlinearity bounds its validity, and

the effects which are time dependent in the loading response bring up further errors.

An assorted range of coefficients can be measured to describe tissue characteris-

tics for analyzing ex-vivo samples [6, 7] but inclusive characterization of mechanical

property is different from a practical basis for elasticity imaging. The analysis needs to

concentrate on salient properties of interest to clinicians, considering that disregarded

properties may contribute to errors and artefact.

Fundamental biophysics encourages a range of techniques. Soft tissues in the hu-

man bodies are difficult composites. They are composed mostly of fluid filled sacks

(cells), which are almost incompressible, i.e. the volume here is static, but cells

presents almost no resistance to shear [6]. An extra-cellular networks of fiber provides

structural integrity, of which there are various types. Elastin demonstrates highly linear

characteristic but is only an insignificant constituent accept in the skin and vasculature.

The most noteworthy structural material is collagen, which is made of long, helical,

covalently-bonded protein molecules, twisted like rope. This is too much complicated

to analyze. The micro structure of the fiber network recognizes its macroscopic prop-

erties and these are usually anisotropic and nonlinear [8]. Abrasion associated with

reorganization of fibers contributed to atrocious behavior in most biological materials.

When writing, it feels sensitive to make fairly basic estimations so as to understand

practical imaging techniques, while the progression of convenient models that more

14



precisely characterize the mechanical properties of tissue is an advanced research topic

[7]. A small of elasticity imaging notion give priority to the value of measuring vis-

cous behavior. Stress in viscoelastic tissue relies on the rate of deformation and size.

This is assumed to be a notable in the behavior of all oft tissues [6]. It has been sup-

ported that measurements of viscoelastic time constants would connect to biochemical

changes, either giving information or impassable by ultrasonic methods [61]. Though

this is an interesting concept, viscoelastic modelling is extremely convoluted. Even 1D

theory places no boundary on the number of parameters that may be necessitated for

an accurate elaboration of loading responses over time, relying on which type of lin-

ear model nearly matches the tissue behavior [6, 52]. Researchers in ultrasound [62]

and MRI [63] preferred that the simplest viscoelastic model (the Kelvin- Voigt solid

[52], which is rather unlike tissue [6] can be implemented where viscosity would oth-

erwise be neglected or for improving the precision of quantitative images delineating

other elastic moduli. Although the escalation in accuracy has not measured, this sort

of development might be useful.

A more relatable application of viscoelastic analysis is poroelasticity imaging.

Hardly the fluid in the tissue can free to flow, except in vessels. It can do so in

case of oedema, where fluid collects and causes the swelling progression. Fluid flow

which is correlated with elevated porosity can be presumed qualitatively utilizing im-

ages founded on the changes in non-axial over period in tissue to an unchangeable load

[58, 62]. It should be possible to excerpt meaningful assumption of parameters to de-

scribe poroelastic behavior quantitatively and it is also assumed that the tissue consist

of a solid, isotropic , linear elastic matrix, imbued with compressible , near inviscid

fluid, which is recognized by a permeability coefficient that connects pressure gradi-

ents for flowing rates [54]. (see table 2.1). If or not development is made towards

quantitative poroeladticity imaging [59], primarily studies propose that the qualitative

images can be useful in themselves for presuming oedematous tissue [64,65].

On the other hand, the most general basis for elasticity imaging is a facilitation that

neglects the viscosity. Most noticeable differences between hard and soft tissues have

long been discovered by touch through manual palpation. It is predicted that elasticity

imaging techniques which are aspiring the same physical property may co-operate

by offering superior accuracy and/or spatial resolution. The mechanical properties

of tissues are diminished to a single parameter by hypothecating the characteristics to

be isotropic, linear-elastic, inviscid and incompressible.

Can these estimation be justified? At first while tissue is hardly isotropic, the

chance for condensing more information by adding to the model complicacy may be

bounded, as the mechanical properties in a single direction influences deformations

mainly. Secondly, tissue feature is highly nonlinear under large deformations but any
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deformations can be linearized if it is small enough. There are three common methods

of expressing the predicted constitutive equation under equilibrium condition [51].

σij =






λ
∑

k

εkk + 2μεij if i = j,

2μεij otherwise
(2.3)

=






K
∑

k

εkk + 2G

(

εij − 1
3

∑

k

εkk

)

if i = j,

2Gεij otherwise

(2.4)

=






E
1+υ

(

εij + υ
1+2υ

∑

k

εkk

)

if i = j,

E
1+υ

εij otherwise

(2.5)

(λ, μ), (K,G) and (E, v) are the parameter pairs associated with each formula-

tion (see Table 2.1) Equation (2.3) is the most elegant mathematical expression, but

Equation (2.4) is easier to explain. Change in volume multiplied byK gives the

isotropic component of stress, and anisotropic components of strain multiplied by 2G

give anisotropic stress components. The parameters in Equation (2.5) are also widely

referred to, despite the cumbersome 3D formulation. (For uniaxial stress,E is the ratio

between axial stress and strain, whilev is the ratio between non-axial and axial strain.)

In any event, these formulations are equivalent. Each parameterization separates com-

ponents of elastic behavior in a useful way if tissue is assumed to be incompressible.

This would be an unreasonable assumption for porous tissue, as discussed above, but

it applies fairly accurately in most healthy tissue, provided that fluid channels such as

blood vessels and lymph ducts are not a large fraction of the tissue volume. This fixes

one of the elasticity parameters (λ ' 8, K ' 8, or v = 0.5), so the remaining parame-

ter (μ, G, or E) fully characterizes any variation. These formulations are same at any

situation. If tissue cannot be compressed each parameterization distinguishes of the

compounds of elastic behaviour in an efficient way. As stated above this would be an

incomprehensible assumption for porous tissue but it applies properly in most healthy

tissue. Under the condition that fluid channels for example blood vessels and lymph

ducts are not a large portion of the tissue volume. This settle down one of the elastic-

ity parameters, so any changes are fully characterized by the remaining parameter. A

suggestion is that, this accounts almost fully for the useful information perceived by

manual palpation [10, 66]. It is probable to apply a little load to a region of tissue,

Calculate the deformation, explain the strain pattern to detect any changes in the shear

modulas,G, or young’s modulas,E. Many factors lend obscurity to this, not the least
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of which is viscosity.

Equation (2.3) concerns static load, on the other hand in reality all kinds of loads

are partially dynamic. If the loading rate is too much high, viscous damping may have

sufficient impact or if static loads are applied for a longer period(minutes or hours)

viscous creep may be sufficient [6]. Dynamic effects are insignificant at a "quasistatic"

loading rate which is somewhere between those extremes, hence "quasistatic" elasticity

imaging. In alternate order, by measuring and analyzing dynamic behavior, tissue

elasticity can be investigated. If viscous effect are not important, the reason behind the

difference between quasistatic and dynamic behavior is inertia. Newton’s second law

of motion gives the followings with the assumptions of isotropic linear elasticity [51].

ρ
∂2u

∂t2
=

(

K +
4

3
G

)

5 (5.u) − G 5×5×u, (2.6)

cp =

√
K + 4

3
G

ρ
, and cs =

√
G

ρ
. (2.7)

The amplitude of pressure waves in the ultrasonic frequency range which is reflected

back from inhomogeneities in soft tissue is showed by the usual ultrasound images

(B-scans). AsK andρ are most of the time constant to a great extent, socp , the

speed of sound exhibits little variation. After a pressure pulse has been sent from the

ultrasound probe into the tissue, the depth of a reflector can be thought proportional to

the incoming time of its echo. If the speed of sound alters, all kinds of composition of

ultrasound pictures are perverted, although minor distortion can be corrected by using

some opportunities [66].

To give entry of the improvement of shear waves which is propagating through the

tissue, its possible to gain raw ultrasound data rapidly when c is constant. AsK is very

large, the assumption of soft tissue being incompressible impliescp � cs. For instance,

in fat the wavespeed of pressure is at large1000 times greater than the wavespeed of

shear [67]. According to the assumed fact, the time taken for a shear wave to propagate

over the length of a picture can acquire up to 500 B-scans. Consequently, it is possible

to testament ultrasonic methods for calculating shear wavespeed and it is concerned

with the shear modulus by Equation (2.5). Practically, while viscosity makes minor

or partial changes to the wavespeed and causes attenuation, nonlinearity corrupts the

shear waveform. Nonetheless, information provided by effective calculation of shear

wavespeed will have great clinical value with considerable certainty.’
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2.3 Concepts of Elasticity imaging

Though the following review is not representing the entire factors, but it should pro-

vide as a significant context to judge the effectiveness of the approach followed in

this thesis. Quasistatic, dynamic (continuous), dynamic (transient) are the three cate-

gories based on the time dependency of mechanical excitation which are considered to

summarize the main ultrasonic concepts and to highlight the differences [68].

2.3.1 Quasistatic

The basic scanning method consists of (1) recording a "pre-deformation" ultrasound

image of unloaded tissue (2) applying a load (3) recording a "post-deformation" ul-

trasound image. A suitable single processing technique estimates the deformation be-

tween pre- and post- differentiation ultrasound frames and analyses to generate an

elasticity image.

As mentioned in [1], loading can be implemented at a quasistatic rate by various

means. For instance, research into itravascular elasticity imaging utilizes psychological

excitation : change in blood pressure over the cardiac cycle causes artery walls deform

[69]. The frequency of the loading is approximately 1Hz and it seems compatible for

quasistatic analysis. In terms of other tissues, breathing is the reason behind quasistatic

deformation.

Several investigation have been executed, by the use of the ultrasound probe as

the source of quasistatic mechanical excitation. To quote [1]: ‘When the probe is

pushed steadily against the surface the tissue is compressed, whereas relaxes at the

time when the probe is held gently (see Figure 2.4). Suppose that motion of the ultra-

sound probe results a big change in the axial element of longitudinal stress. Strain at

every point in the image is understood as inversely proportional to Young’s modulus

when the behavior is isotropic linear-elastic. Usually the stress field is nonuniform

and so strain data are confusing but strain imaging is the most understandable path of

showing quasistatic deformation data for providing a visual inkling of variation in me-

chanical properties. Techniques which are exploiting probe movement for mechanical

excitation can be differentiated into two subcategories. Automated scanning requires

additional hardware [22, 36], where freehand scanning is the common technique ap-

plied in conventional sonography [10, 38, 70]. The selection of significant scanning

technique has noteworthy consequences.

Deforming tissue by means of a carefully defined movement at the surface , auto-

mated scanning involves necessary consequences mounting an ultrasound probe on a

mechanical actuator .For example, tissue can be flatten by pressure by translating the

probe accurately 1 mm in the axial direction [22,36,71]. The prime opportunity is that
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(a) (b) (c) (d)

Figure 2.4: The principle behind quasistatic elasticity imaging [5]. Figure reproduced by
kind permission of Joel Edward Lindop [1].

a certain probe movement is repeatable specially if it is defined to lead to clear elastic-

ity images in a specific application. Moreover, the depended acquisition of appropriate

pre and post deformation ultrasound data explains that computation for manufactur-

ing an elasticity image can be performed off line. Probably this take time for lengthy

computational methodology to maximize the quality of the elasticity images.

Figure 2.4(a) demonstrates inhomogeneous tissue modelled as a set of springs,

where various spring constants symbolize diversification in Young’s modulus. The rest

are three times less stiffer than bold springs. The pre deformation state of the tissue

are recorded by an ultrasound images. Figure 2.4 (b) describes the tissue deformation

when the ultrasound is pressed dynamically against the surface, and a post deforma-

tion ultrasound image is documented .The deformation here is overvalued for illustra-

tive purpose (25% compressive strain). While examining human tissue, it is likely that

comparatively smaller deformations (strain on the order of 1%) are more relevant. Fig-

ure 2.4(c) illustrates the tissue deformation related to the ultrasound probe is illustrated

by analyzing the ultrasound images and strain is calculated by differentiation.

If the stress throughout the tissue is constant (as in this example), strain is oppo-

sitely part of the spring constant and so the strain in hard spring is three times lower

than anywhere else. By setting pixel intensities as stated by the strain values which is

presented in the figure 2.4(b) reveals the diversification in the spring constant.

Equally, the demand for correct prior idea of the probe movement is potentially

a hindrance. The transcendent movement for quasistatic elasticity imaging is vary-

ing from one patient to another. Automated scanning is clunky in comparison to the

freehand approach that clinicians are used to. Normally the sonographer grips an ul-
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trasound probe in his or her hand and change the position manually over the patients

skin to make images of approachable tissue from whichever angle illustrates to be the

most visible [38, 70]. There is certainly some difference in the pressure implemented

through the probe between the sequential ultrasound frames in a freehand scan [72],

which is a cradle of continuous mechanical excitation.

As it can potentially be applied on conventional ultrasound machines with neg-

ligible modification to the hardware and scanning procedure, the free hand scanning

methodology is highly charming. When it is needed in the time of routine sonography

elasticity imaging could be made accessible as a display option to switch on anytime.

Such an evolution might mirror the prior adoption of Doppler techniques for measuring

blood flow [73, 74], which has hastily become an essential accessory to conventional

ultrasound imaging [15].

In comparison to automated scanning, the distortion in a freehand scan is signif-

icant and unpredictable. Probably clinicians are not eligible to perform prescribed

probe movements precisely on a very high scale. For this, freehand deformation may

often be very low or high for inferring mechanical properties or the variety of deforma-

tion may simply be unacceptable. Figure (2.4) demonstrates axial probe movementby

which the compression is created. Freehand scanning is determined to throw up more

difficult movements such as rotation about the rising axis. Some freehand strain im-

ages are extremely less informative than automated strain images. On the other hand, a

chronological sequence of freehand strain images can examine a range of deformation,

so the best freehand images may be more visible than the best automated strain images

[70]. Moreover, the variation within a process of freehand deformation could rise the

dependence of inferences related to the mechanical properties. The value of a strain

image consequence must rely on the sonographers scanning technique. A live strain

play provides continual feedback to improve the usefulness freehand scanning signifi-

cantly, so the scanning tactics of sonographer can be adjusted by him/her towards what

seems to work best [70]. Live strain displays have been exhibited in the former period

rates as the same as conventional ultrasound imaging (some tens of Hz) [10,75]. The

geometry of regions distinguished by the mechanical properties of Quasistatic elastic-

ity imaging may be exhibited in fine detail, whether through automated or freehand

scanning. However, the effectiveness of the images will rely on how perfectly defor-

mation can be calculated using ultrasound, and how closely inferences relying on the

deformity calculates can be made to correspond to quantitative mechanical properties

of the tissue such as Young’s modulas.

When estimating strain or inferring mechanical properties and when tends to am-

plify noise, raw displacement are spatially differentiated which is critical. By imple-

menting larger deformation, the signal strength can be enhanced but the deformations
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that are large, are unlikely to be desirable. As discussed in section 2.2, the response

is more nonlinear and also more troublesome to interpret exception of the basic issue

of patient comfort. That is to say, a notable deformations may not enhance the signal-

to-noise ratio, As a rise in the "deformation signal" results in greater decorrelation

between successive ultrasound frames, which as a result increase the level of estima-

tion noise [76]. This topic is considered thoroughly in this thesis. Although there

may be no simple means of assuring that all deformation calculates are properly accu-

rate, the feasibility of properly calculating tissue deformation using ultrasound data is

a fundamental premise behind this work.

On the second point, strain images along the lines of Figure 2.4(d) are not identical

to Young’s modulus images that are meant by nonuniformity while it is in the stress

field, can strain data be transformed into Young’s modulus images? The assumption of

isotropic, incompressible, linear-elastic behavior introduced in section 2.2 greatly sim-

plified the inverse problem. If the stresses or Young’s moduli are known at all points

over the scan boundary then it is possible to calculate Young’s moduli in the entire scan

region, by accepting the approximate nature of this analysis [59]. Many researchers

have tried to generate quantitative images on this basis [77, 78], but boundary con-

ditions that are not known are a significant obstacle. It is (probably) implausible to

determine all of the boundary stresses, so the information is necessary about boundary

values of Young’s modulus. By assuming uniformity over the boundary, it has been put

for consideration that images of relative Young’s modulus can be generated [79, 80],

but major mistakes can happen if the assumption of uniformity is not correct. The

choice of proper assumption is given priority in model based approaches, which may

be more fruitful for clearly identified well constrained tasks [81].

Challenges which are connected to the inverse problem will not follow the simpler

approaches to quasistatic elasticity imaging. In spite of the variation in stress, strain

images displays useful information. Limitations in exact strain images usually corre-

spond to boundaries with respect to mechanical properties, though the size of differ-

ences in strain does not keep pace with the size of differences in Youngs module [82].

Strain images cant give grounds for quantitative statements such as, Youngs module in

the lesion is 2.5 times higher than in the background, but it may often be having sound

judgement to make qualitative observation such as, the round lesion (diameter of 3

mm) is much stiffer than the background. This point of interpretation is cleared up in

Section 2.4. To date, strain imaging has come nearer to almost every clinical formal ex-

hibition of evidence by judging of quasistatic elasticity imaging. In one instance, data

were attained by automated scanning [36], but free hand scanning has been examined

more frequently [39, 70] with a centre of attention on breast and prostate examina-

tions. Sometimes successful strain images are better than established ultrasound for
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pointing out tumors [39]. Malignancy and diversified cancer may be distinguishable

on the basis of either strain constraint [36] or differences in geometrical appearance

in between conventional ultrasound and strain images [36, 70, 83, 84]. Reports con-

clude collectively that strain imaging could potentially be a beneficial detached tool,

but none has yet clearly showed truth of conclusive case for taking on routine clinical

practice. Stress variation issue and limitations seems not to be a prime issue, as the

qualitative information is still beneficial. The dubiosity of how to produce accurate

images is the main problem, because strain images is persisted to be undependable

[36, 70, 84]. The existence of many bad images makes assumption complicated and

vigorous for sonographers who are typically required to examine sequences of stored

strain images by using eye to choose those which are informative [84]. This thesis

confer towards improving the dependability of the prior prediction of the stress field

and hence Youngs modulus prediction.’

2.3.2 Dynamic (continuous)

Question might be asked, can better elasticity images be generated by techniques

founded on continuous dynamic mechanical action? As noted in [1], normally a vi-

brator acts on the tissue surface, dispatch shear waves in the same frequency range

similar as audible sound. Techniques with this form of actions are familiar as sonoe-

lastic imaging. In contrast, an oscillatory force in the audible frequency range can be

implemented to a small region within the tissue using high intensity focused ultrasound

by which the mechanical response is calculated in vibro acoustography.

Sonoelasticity imaging

As noted in [1], adaptation of Doppler methods was introduced by Lerner and Parker

et al. [85, 86]. They used it for generating vibration-amplitude pictures which show

patterns of steady-state vibration in soft tissue. When there is low frequency (10-1000

Hz), vibration is applied at the surface where the amplitude is 0.1 mm. In figure 2.5(a)

a typical imaging setup has been shown. For transmitting shear waves throughout the

scan region, vibrators should be set at suitable locations. Figure 2.6 is there for further

clarification. Rigid inclusions in soft tissues appears as dark portion of low vibration

amplitude. Two reasons can be identified for this. Firstly, a continuous travelling wave

of a given intensity possess lower amplitude within an inclusion of high shear modu-

lus. Secondly, reflections at inclusion boundaries intensifies the deviation in vibration

amplitude. In this process, while the background energy level is slightly increased,

reduction of the wave energy entering the inclusion is used.

Sonoelasticity has the advantage of the robustness and simplicity of signal process-

ing. In pulse-doppler method, the amplitude of vibration is measured by transmitting a

22



(a) (b) (c)

Figure 2.5: Setup for sonoelasticity imaging: (a) Vibration-amplitude imaging, (b) Crawling-
wave imaging and (c) Holographic-wave imaging. Figure reproduced by kind permission of
Joel Edward Lindop [1].

(a) (b) (c)

Figure 2.6: Vibration-amplitude images, reproduced by permission of Kenneth Hoyt, Uni-
versity of Rochester, NY, USA: (a) B-mode image showing a tissue-mimicking phantom with
a stiff spherical inclusion, 7 mm in diameter, of matched echogenicity. There is almost no
contrast between the inclusion and the background. (b) Vibration-amplitude image produced
by mechanical excitation at 150 Hz. (c) Vibration-amplitude image produced by mechanical
excitation at 250 Hz. Modal patterns dominate the 150 Hz image, so the 250 Hz image gives
a better indication of the inclusion geometry [5].

narrow-bandwidth pulse of ultrasound into the tissue. For estimating vibration ampli-

tude at various depths along the beam, it is needed to window the echoes and calculate

the spectral variance [87]. Kasaiet. al. [74] first described the well-known auto-

correction method to have fast computation and sufficient accuracy for the task. As

derivatives are not needed to be taken and there is insignificant noise level compared

to vibration-amplitude artifact, relatively low accuracy is not considered as a major

problem. However, for other elastic imaging concepts low accuracy is not acceptable.

The Vibration amplitude and stiffness is not directly linked. Owing to diffraction,

refraction, reflections and viscous losses (wave severity degrade away from the vibra-

tion source), vibration amplitude images are affected by nonuniform wave severity as

stress nonuniformity is a limitation of quasistatic strain images. Viscous losses are
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frequency-dependent, hence lower frequencies enter deeper into the tissue, and how-

ever the images then have lesser resolution [88]. Images such as Figure 2.6(c) show

that qualitative result of vibration-amplitude images which could sometimes be helpful

for lesion detection though there is no hope of transforming vibration amplitude into

quantitative estimates of mechanical properties [89].

Modal patterns are an important superfluous artifact in vibration-amplitude images.

As noted in [1], they arise for the reason of interference between steady-state shear

waves travelling in inverse direction [90], therefore regions with reduced vibration

amplitude appear in patterns not related to local changes in mechanical properties. The

overall geometry of the scan target, its global mechanical properties, and the position

and frequency of the vibrator determine the patterns. For example, the images in Figure

2.6(b) showing the vibration amplitude is dominated by modal patterns. Comparison

with image 2.6(c) indicates that the geometry and the strength of modal patterns is

dependent on frequency. By vibrating at multiple frequencies together, the artifacts

can be made less severe ; some modal patterns reject the joint vibration-amplitude

image, although they cannot be removed completely [68,90,91].

As an outcome, vibration-amplitude images are possibly more troublesome to in-

terpret than quasistatic strain images. Additionally, the practical scanning setup is more

complex. Limited improvement has been made looking forward to clinical demonstra-

tion: in vitro homogeneous phantoms are perfect and exact. Moreover, the practical

scaning setup is not that easy. Limited advancement has been made towards clini-

cal demonstration: though in vitro scanning of prostate tumors after excision pointed

out the possibility of producing useful images of germane biological tissue [92, 93],

the prospect of vibration amplitude imaging entering routine clinical practice seems

distant.

Other kinds of sonoelasticity imaging might be further fruitful. As noted in [1],

phase as well as amplitude is recovered by a more complicated and noisier extension

to the signal processing for vibration amplitude imagining. Yamakoshiet al. used

maps of amplitude and phase to form images of wavefront propagation through a ROI

[70]. Wavefront images are used for estimating shear wavespeed by a manual image-

analysis procedure [35] since vibration amplitude images were intended for detecting

small stiff inclusions [85,86,90]. For assessing diffuse conditions in large organ such

as the liver successful estimates would be useful.

As quote [1]: ‘The manual way to wavefront analysis provides as a noise rejection

strategy as users learn to ignore data that seem not reliable [94]. Practically, the final

output is a single number not an image. The stiffness has been evaluated in a clinical

test involving200 plus liver patients [94]. Despite surprisingly wide variation in the

speeds measured within each group, significant differences were recorded between the
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(a) (b)

Figure 2.7: Crawling-wave images, reproduced by permission of Kenneth Hoyt, University
of Rochester, NY, USA: (a) Vibration-amplitude image of a gelatin phantom containing a
stiff inclusion with a diameter of 5 mm. Vibration sources at 199.9 Hz and 200.1 Hz transmit
shear waves from either side. A special color map highlights the wavefronts, with red-black-
blue indicating low-medium-high vibration amplitude. (b) Shear wavespeed image (units of
ms-1) produced by analyzing a sequence of vibration-amplitude images. Shear wavespeed es-
timates differentiate successfully between the background and the stiff inclusion [11]. Figure
reproduced by kind permission of Joel Edward Lindop [1].

average wavespeed estimates from patients with different conditions. Including modal

patterns, many complicated effects associated with continuous vibration introducing

bias into wavespeed estimates [21]. The manual way to image analysis is very much

arduous and the wavespeed estimates need to accurate and useful to justify the effort.

Further technical development reported in [95] but the technique seems at last to have

been abandoned.

Modal patterns in vibration amplitude images are the most prospectus form of so-

noelasticity. Special interference patterns can be generated to support shear wavespeed

estimation. A standing wave with nodal spacing proportional to the shear wavespeed,

or a pair of vibrations at slightly different frequencies produces a moving interference

pattern(the crawling wave) with speed proportional to the sgear wave speed multiplied

by different frequency [96] is produced by two sources of equal frequency. On the

other hand, the ultrasound probe is vibrated at a frequency near that of the shear waves

converting steady state shear excitation from a single vibrator into a slow moiving in-

terference pattern (the holographic wave) [97]. Figure 2.6(b)-(c) shows the setups for

these techniques. Quantitative shear wavespeed images can be potentially through the

analysis of the interference patterns.

The major benefit of the crawling and holographic wave techniques compared to

the method of Yamakoshiet. al. [3, 94] is that larger quantities of more accurate

wavefront data are generated and is a more promising base for developing automatic
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analysis methods [96, 98]. When the wavespeed is measured in inhomogeneous me-

dia, the holographic wave technique seems to be biased which is described by [21].

For having a correct estimate of shear wavespeed by the using the crawling-wave tech-

nique, the interfering wavefronts should be planar and parallel which is difficult to have

and may be impossible in homogeneous tissue. So, further analysis [99] is needed to

overcome this particular limitation. Despite having biased absolute values, the qualita-

tive discrimination of a stiff inclusion has been displayed a number of times using vitro

scanning [97, 98]. For further clarification Figure 2.7 is referred. Whether crawling

or holographic-wave imaging can be applied successfully to in vivo scanning, will be

interesting to see in the view of a complicated experimental setup.’

Vibro-acoustography

Radiation force is the force induced by the absorption of energy near the focus of a

high-intensity focused ultrasound beam [100]. As mentioned in [10], in some special

cases, the force prevails within a small area near the focus [56]. Elasticity imaging

comprises several concepts which exploit this effect, especially in the dynamic cate-

gory. Besides, continuous excitation by radation force is used in vibro-acoustography

is deemed a form of elasticity imaging.

Figure 2.8: Setup for vibro-acoustography. A pair of confocal HIFU transducers at slightly
different frequencies produce an oscillatory force at the difference frequency at their focus,
from which sound is emitted and detected by a hydrophone. By scanning different points
throughout the tissue, an image can be constructed of the sonic amplitude, which is related
in a complicated way to mechanical properties [5]. Figure reproduced by kind permission of
Joel Edward Lindop [1].

As quote [1]: ‘Transmitting at slightly different frequencies, (see Figure 2.8), the

tissue is excited for a pair of confocal HIFU beams. The foci overlap in a dense con-

fined region, where radiation pressure muddled at the beat frequency (typically 10

kHz). A hydrophone detects the resulting motion around the focus makes an acoustic
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wave [12,101]. Scanning over the ROI construct an image and plotting the measured

power of the sound from each focal space. Pixels in a vibro-acoustogram symbolize the

merged effects of diversification in tissue properties above the focus (shadowing and

refraction), the level of engrossment at the focus, the size of the resultant fluctuated

motion (which relies on mechanical properties near the focus), and the transfer func-

tion to the signal which is recorded by hydrophone (which relies on mass mechanical

properties).

However, vibro-acoutogram are fully determined by mechanical properties. There

is no speckle in the images and it is advantageous in comparison to conventional ul-

trasound images, and they acquire high resolution, probably superior to that of any

other elasticity imaging abstract idea, [12, 101, 102]. However vibro-acoustography

provided information is not even close to similar to the quasistatic elasticity imaging.

It would be highly difficult to relate pixel values in a in a vibro-acoustogram to a spe-

cific mechanical property such as Youngs module vibro-acoustography may be a good

methodology for pointing out microcalcifications in breast issue; the principal has been

proved by ex vivo scanning of histological samples [102,103]. However this thesis is

motivated to produce images that shows contrast between regions of tissue that are soft

or hard, which vibroacoustograms do not [104]. Similarly conventional ultrasound

images relies on mechanical properties but a clinician is not eligible to differentiate

between hard and soft tissue by looking at a conventional ultrasound display. ’

Dynamic (transient)

Transient concepts mean if impulsive mechanical excitation is used, tissue will have

a short duration response to the excitation. As noted in [1], the tissue in which the

transient excitation is applied, stresses spread to the nearby tissues at a finite rate which

varies as per the wavespeed. In the initial moments, how the response will be solely

depends on mechanical facets at the point of application.

As data is needed to be captured very fast so the realization of transient methods is

technically challenging. Ultrafast ultrasound scanning, a significant technological de-

velopment, employs novel beamforming to acquire 2D ultrasound frames up to 10000

Hz [105] which is 100 times faster than commercial scanners available in todays mar-

ketplace. So, it is feasible to acquire many 2D snapshots to record the propagation of

a single shear wave passing through soft tissue.

Transient shear imaging

As noted in [1], transient elasticity imaging with impulsive excitation has been pro-

posed as a solution to biases in shear wavespeed estimates basing on continuous ex-

citation by Cathelineet. al. [21]. Besides, vibration of the transducer can generate a
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Figure 2.9: Setup for usingFibroScanr to measure shear wavespeed. Figure reproduced
by kind permission of Lindop [1].

suitable shear wave impulse having a center frequency of 100 Hz spreading along axis

of single-element ultrasound transducer [106]. In Figure 2.9, it has been shown that

by mounting the transducer on vibration in a handheld device, a practical system was

constructed [106]. The need of using vivo scanning was there to display the accurate

measurement of shear wavespeed in homogeneous tissue. To generate 2D elasticity

images by tracking the motion of a plane wave in 2D, ultrafast ultrasound scanning has

been used [107]. It is possible to generate a shear wave by mounting the ultrasound

probe on a handheld vibrator by using the single-element device [107]. Compared

to the primary utility of shear wavespeed calculation characterizing big tissue regions,

the added value associated with 2D images from the instrument is limited as it is dif-

ficult to perceive surface-generated shear waves that spread sufficiently parallel to the

imaging plane covering the ROI for producing accurate images having good radiation

[31,107].

However, clinicians highly prefer the simple scanning system producing accu-

rate, repeatable measurements of shear wavespeed. FibroScan is the name of single-

transducer device exists as a commercial product [55]. It produces a single wavespeed

estimate for characterizing bulk stiffness in a big area of issue which is bound to be

affected by a diffuse condition near to the surface. For examples of the first clinical

study, Figure 2.10 is referred. As the liver has to be a potential target, so FibrosScan

has advanced swiftly towards widespread adoption as an apparatus for predicting liver

fibrosis, along with thousands of patients already comprehended in clinical trials.

Acoustic radiation force impulse (ARFI) imaging

For the generation of images portraying relative differences in tissue stiffness, Acoustic

Radiation Force Impulse (ARFI) imaging has been developed [29], in which the tissue

displacement response is monitored within the ROE, and image data are generated by
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(a) (b) (c)

Figure 2.10: TheFibroScanr display [39], reproduced by permission of Laurent Sandrin,
EchoSens, Paris, France (http://www.echosens.com). These images from clinical scans of
liver in vivo shows strain data over depth (vertical axis) against time (horizontal axis). The
gradient of the dark stripe is the axial component of the shear wave velocity, from which
stiffness may be inferred. (a) Healthy patient. (b) Mild fibrosis. (c) Liver cirrhosis. Figure
reproduced by kind permission of Joel Edward Lindop [1].

sequentially interrogating different lateral positions, as is done in conventional 2D ul-

trasound imaging. To recite [108]: ‘Images are then synthesized of tissue displacement

at a given time after radiation force excitation at each interrogation location. Monitor-

ing the displacement response within the ROE has the advantage of higher displace-

ment magnitude and SNR (as compared to outside of the ROE), but quantification of

tissue elasticity within this region is challenging due to inertial effects within the ROE.

To create quantitative elasticity images from impulsive radiation force excitations, the

displacement response is typically monitored outside of the ROE. The speed of the

shear wave propagation is quantified and used to estimate the tissue shear modulus, as

was originally proposed by Sarvazyan et al. [23] as shear wave elasticity imaging, or

SWEI, [27]. Early implementations of this approach utilized inversion of the homo-

geneous Helmholtz equation to estimate tissue shear modulus [5, 30]. However, most

groups have moved to utilization of time-of-flight wavespeed estimation methods, due

to challenges associated with differentiation of noisy ultrasonic displacement estimates

[31-34]. ARFI images are formed using commercial diagnostic ultrasound scanners to

both generate localized, impulsive acoustic radiation forces in tissues, and to monitor

the transient, dynamic displacement tissue response within the ROE using correla-

tion based methods. An ARFI pulse sequence consists of tracking beams and pushing

beams. The tracking beams are conventional B-mode ultrasound beams (A-lines), and

the pushing beams are transmitted along the same A-line and have higher intensity,

with typical parameters. A typical sequence involves transmitting a series of pre-push
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reference A-lines, which are used to monitor underlying physiologic motion, followed

by a pushing pulse along the same A-line, and then a series of tracking Alines that are

utilized to monitor the tissue displacement response within the ROE of the pushing

beam (typically for 3-5 msec at pulse repetition frequencies (PRFs) between 5 and 10

kHz). In ARFI images, the displacement data from multiple, sequentially interrogated

radiation force excitation locations are synthesized into a single dataset representing

the temporal displacement response from within each ROE throughout a 2D (or 3D)

tissue region of interest (ROI). As shown in Figure ARFI, these datasets are rich with

information about the transient tissue deformation. ARFI images have been generated

of tissue displacement at a given time after force application, the maximum tissue dis-

placement, the time the tissue takes to reach its peak displacement, and the time it

takes the tissue to recover [41]. In the presence of uniform acoustic attenuation, ARFI

displacement magnitude images generally reflect tissue structure and relative stiffness.

Images of the transient temporal behaviors, such as the time to peak displacement and

recovery time can be used to derive quantitative estimates of tissue stiffness [21, 37].

The majority of ARFI images generated in clinical applications portray relative dis-

placement at an early time after the force application (i.e. Figure 2.11(b)) in order to

optimize the accuracy of structural details [35].’

Supersonic shear imaging

Supersonic shear imaging was first introduced by Bercoff [26, 43]. To quote [109]:

‘The ultrafast echographic imaging approach was coupled with the remote generation

of a supersonic shear wave in tissues using a modified sequence of ultrasonic beams

transmitted by the echographic probe. This transient elastography approach, called su-

personic shear imaging (SSI), provides a way to apply both the mechanical vibration

and the ultrafast imaging of the resulting shear wave propagation by using a conven-

tional ultrasonic probe. The concept of remote palpation induced by the radiation force

of an ultrasonic focused beam is not new and was introduced in the medical imaging

community by [32]. Recently, Trahey et al. [18] and Nightingale et al. [22] proposed to

use this concept to induce motion in the focal area of the ultrasonic beam and to image

the resulting displacement at the location of the pushing beam. A complete strain map

can be computed by repeating, at every focal spot, the pushing beam and displacement

detection. However, this requires a significant amount of acoustic energy. Nightin-

gale et al. [22] also applied this concept to the visualization of shear waves generated

by the acoustic radiation force by repeating the acoustic radiation force for different

speckle-tracking locations. Finally, they emphasized the benefit of using the ultrasonic

radiation force to discriminate the liquid/solid behavior of tissues and consequently to

provide a clever discrimination between benign viscous cysts and soft tumors [24]. The
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(a) (b)

(c) (d)

Figure 2.11: Experimental data: matched B-mode (a) and normalized ARFI displacement
images, (b)-(d), of a Computerized Imaging Reference Systems, Inc. Norfolk, VA) custom
tissue mimicking phantom (E = 4 kPa) with two 3 mm spherical lesions (E=58kPa). The lesion
contrast in the ARFI images is largest at t=0.3 ms (b), decreases with time after excitation (c),
and reverses later in time (d). In addition, the lesion size appears to grow with time post-force,
which is caused by shear wave propagation and reflection at lesion boundaries [35]. Note also
the posterior enhancement, or increase of displacement beneath the lesions in (b) and (c). This
arises because the lesions were slightly less attenuating than the surrounding tissue, thus the
tissue beneath the lesions experienced larger radiation force than that adjacent to it. Figure
reproduced with permission from: [36].
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SSI approach tries to merge the advantages of the previous techniques by combining

the remote palpation of the acoustic radiation force imaging technique and the ultra-

fast echographic imaging approach of transient elastography into a single ultrasonic

sequence (lasting less than several tens of milliseconds). This combination is expected

to provide a quantitative elasticity imaging mode, with a significant reduction of oper-

ator dependence compared with static elastography [32]. This manuscript presents its

initial clinical investigation for breast cancer diagnosis. There were several purposes of

this preliminary study: to evaluate the ability of SSI in providing millimeter-resolution

images of breast elasticity, to examine SSIs ability to clearly emphasize the appearance

of various breast lesions on these images and to investigate SSIs role in the diagnosis

of breast lesions.’

2.4 Modulus reconstruction

Modulus imaging has great potential in soft-tissue characterization since it reveals in-

trinsic mechanical properties. A novel Youngs modulus reconstruction algorithm that

is based on surface stress and strain distribution is described in this thesis paper. To

quote [110]: ‘The elastic properties of biological tissues are usually modified by dis-

ease. Surgeons often describe the feel of excised abnormal tissues. As a result, a

quantitative measure of the elastic properties of tissue should be useful in diagnosing

abnormalities. The physical quantities that describe tissue elastic properties are stress,

strain, and elastic moduli, and methods have been developed to estimate each of these.

Palpation, which has been used for more than 4000 years, utilizes tissue surface stress

information to detect tissue abnormalities. Palpation remains an effective diagnostic

tool. In fact, the majority of breast tumors are discovered with palpation [1]. However,

palpation is qualitative and lacks sensitivity to small deep abnormalities. Quantitative

methods similar to palpation have been developed to visualize surface pressure [2],

[3]. Other recent developments in bioelasticity imaging techniques involve accurately

and noninvasively measuring the tissue strain distribution during external compression.

Studies have shown that these techniques show promise in diagnosing and monitoring

diseases of the breast [4], [7], kidney [8], [11], and blood vessels [12-13].

Mapping stress or strain distributions provides only relative information about tis-

sue elasticity. Using either stress or strain information alone, one can only identify a

region of tissue that is stiff (or soft) relative to its surroundings. Elastic moduli provide

an absolute measure of tissue elasticity that is intrinsic to the material.

The stress or strain distributions alone lack a one-to-one relationship with the elas-

tic moduli distribution. Images of the stress or strain distribution may also include

misleading artifacts that could lead to uncertainties in diagnosing tissue abnormalities.
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Therefore, it is desirable to measure elastic moduli in bioelasticity imaging techniques.

However, measuring the distribution of elastic moduli is more difficult than either the

stress or strain distribution. The theory of mechanics shows that to describe the com-

plete elastic properties of a material requires a tensor that has 81 components [14].

Clearly, it is impractical to measure all these components. Assumptions can be made

to simplify the problem and reduce the number of unique tensor elements. If a material

is assumed to be continuous, incompressible, and isotropic, then its elasticity can be

completely described by one elastic modulus, either Youngs modulus or shear modu-

lus. Strictly speaking, none of the above assumptions are valid for biological tissues,

but most biological tissues closely approximate continuous and incompressible mate-

rials. Some tissues, such as muscle, are anisotropic in their structure, function, and

mechanical properties. For this paper, however, we will assume tissue to be continu-

ous, incompressible, and isotropic as a first approximation.

Currently, ultrasonic-based techniques for measuring the elastic modulus of tissue

fall into two categories. First, dynamic compression techniques [15], [18], such as

sonoelasticity, use a vibrator to propagate low-frequency pumping waves into tissue.

In the most promising of these approaches, shear wave velocity or wavelengths are

estimated, and from these the shear modulus can be estimated. However, problems as-

sociated with this technique are high image noise, low spatial resolution, and difficulty

in propagating the shear wave energy across tissue boundaries.

The other category is referred to as (quasi)static compression techniques. In static

compression techniques, the tissue Youngs modulus distribution is estimated from the

tissue deformation and boundary pressure measurements. The methods to estimate

tissue deformation have been extensively discussed in ultrasound based elastography

[19], [28]. The tissue is deformed either by an external force or an internal force. The

RF echo waveforms before and after an incremental deformation are recorded, and the

tissue displacement distribution is estimated by comparing these RF waveforms. Tis-

sue internal displacement can be also obtained using magnetic resonance imaging [29],

[31] and optical elastography [32] techniques. Youngs modulus estimation can be per-

formed utilizing the tissue deformation information obtained with the strain imaging

techniques. In addition to the displacement distribution, some Youngs modulus esti-

mation methods also require knowledge of the pressure or force boundary conditions.

There are four methods in the literature for reconstructing the Youngs modulus

distribution based on static compression techniques for displacement estimation. The

first method estimates Youngs modulus by numerically solving a second-order partial

differential equation that describes a linear, isotropic, incompressible medium under

static deformation [33]. That method requires significant spatial smoothing of the dis-

placement estimates to obtain second-order partial differentials that are also smooth.

33



Hence, with noisy displacement estimates, that method inherently has low spatial res-

olution. Another problem associated with that method is that for a two-dimensional

(2-D) analysis, the force boundary condition of the medium must be known on all

sides. However, in practice, the force distribution can only be (easily) measured on

one side (the compression surface) of the medium.

The second method uses an iterative technique to reconstruct the modulus distribu-

tion [34], [35]. That method uses finite element analysis (FEA) to solve the forward

elasticity problem. The input to the FEA algorithm is the measured displacement field,

the assumed boundary conditions, and an initial guess of the modulus distribution.

The output of the FEA algorithm is an estimate of the displacement distribution. The

difference between the measured displacement distribution and the FEA prediction is

used to adjust the modulus distribution from its initial guess. By repeating the process

multiple times, one can obtain a modulus distribution that minimizes the displacement

distribution difference in a least squares sense. The advantage of that approach is that

it does not require knowledge of the pressure boundary conditions. However, without

knowing the boundary pressure, only relative modulus estimates can be obtained. In

other words, the ratio of the modulus between different locations can be determined.

Although that method can reduce the artifacts in strain images, it does not provide ab-

solute measurement of the tissue modulus distribution which can be useful in tumor

discrimination as suggested in [36], and an incorrect initial modulus guess may result

in convergence to an incorrect modulus distribution. For media, such as tissue, that

have a complicated modulus distribution, a good initial guess for the modulus distri-

bution is difficult to obtain.

In the third modulus reconstruction method, a finite-difference approach is used

to describe the elasticity problem in a medium [37]. That approach rearranges linear

equations that describe the forward problem so that the modulus distribution becomes

unknown variables in these equations. The modulus distribution can then be solved.

However, that method also requires knowledge of the boundary conditions on all sides

of the object.

The fourth approach uses a variational method to formulate the forward solution

[38]. Then the terms with unknowns are rearranged to derive a matrix equation similar

to ours. However, the boundary force condition was not utilized in their treatment.

Hence, this method can only reconstruct the ratio between the Lame constants and

tissue mass density.’
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2.5 Conclusion

The elasticity methods obtaining viscoelastic characterization of tissue provide effi-

cient indicators identifying diseased tissue versus normal tissue. Elasticity methods

can be commercial applications, a true testament to the progress of the field. Gen-

eral Electric (GE) and Philips 1.5T MRI scanners have been used in MREs report.

Siemants, Philips, GE, Hitachi, Toshiba, Aloka, Ultrasonix implemented Quasi-static-

elastography on many systems. Transient elastography has been implemented in the

FibroScan product produced by Echosens (Paris, France) in an effort to quantify liver

stiffness to diagnose liver fibrosis. The literature has many clinical studies reported.

In Summary the viscoelastic material properties of soft tissue can be characterized us-

ing elasticity imaging methods. These viscoelastic material properties vary between

normal and diseased tissue providing a unique difference mechanism for diagnosis of

different pathologies. A number of elasticity measurement and imaging methods have

been embodied and improved. This model has great potential for many different appli-

cations to assist to identify disease and improve patient outcomes. In the next chapter

a novel algorithm is discussed. This algorithm can be used for the influential modulus

prediction process.
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Chapter 3

Proposed Approach for Modulus Estimation

3.1 Introduction

A reconstruction technique for breast tissue elasticity modulus is described in this

chapter. This technique assumes that the geometry of normal breast and pathologi-

cal tissues is available from a realistic FEM model. Furthermore, it is assumed that the

modulus is constant throughout each tissue volume. The technique, which uses quasi-

static strain data, is iterative where each iteration involves modulus updating followed

by stress calculation. Breast mechanical stimulation is assumed to be done by the

pressure given by the ultrasound probe. As a result, stress is calculated using the finite

element method based on the well-controlled boundary conditions of the compression

plates. Using the surface stress, calculated stress in other area and the measured strain,

modulus updating is done element-by-element based on Hooke’s law.

3.2 Proposed Algorithm

The proposed method was developed assuming that the tissue is linearly elastic and

isotropic undergoing small deformation. As such, the following equation, which is

derived from Hooke’s law, governs each point in the tissue domain:

E =
σ

ε
(3.1)

In this equation,ε andσ denote the tissue strain and stress developed under me-

chanical stimulation, respectively. The tissue was assumed to be a near-incompressible

material, hence tissue’s Poisson’s ratio 0.49 was employed in the reconstruction. The

reconstruction technique is iterative as the YM followed aE(i+1) = f(Ei) recursive

formulation used in each iteration, wheref involves strain calculation using finite ele-

ment method. In this approach, it is assumed that the tissue elasticity uniform through-
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out the volume of each of the normal and pathological tissues. The proposed novel

modulus reconstruction algorithm follows the following steps:

1. Actual Strain distribution will be calculated from pre and post compression US

data. At the same time, only the upper surface stress data will be collected by

the 1D pressure sensor attached with the US probe (model proposed in Figure

3.6).

2. First predicted stress distribution is calculated based on the surface known stress

and known strain distribution,εactual (Equation 3.5).

3. First YM distribution is calculated based on the first predicted stress distribution

and known strain distribution(εactual) using Hooks law.

4. The YM is clustered for a defined number of clusters based on the structure of

the tissue viewed in the B-mode image.

5. Then the full cluster is replaced by the average value of that clusters YM.

6. Simulated tissue model is created based on previous step. Same amount of stress

is placed on the top surface for this simulated model.

7. From the simulated model, directly the strain distribution (εi) is collected.

8. The error distribution value of the strain is calculated (Equation 3.7) compared

with the actual strain(εactual) to the simulated strain distribution (explained in

the previous step).

9. Strain distribution is updated based on the error distribution of the strain value

Δ, actual strain value and top surface stress value (Equation 3.6).

10. Step 2 to 7 will be repeated targeting to a certain level of average error distribu-

tion value of the strain.

The flow diagram of the proposed method is shown in Figure 3.1.

3.3 Finite Element Modeling

A model of breast tissue is created using COMSOL Multiphysics software. COMSOL

Multiphysics is a cross-platform finite element analysis, solver and multi-physics sim-

ulation software [111]. It allows for the creation of a conventional physics-based user

interface. The size of the overall model is taken as 3 cm width and 3.6 cm depth. The

tumor is modeled by 1 cm diameter circular structure and placed in different positions
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Figure 3.1: Flowchart illustrating the YM reconstruction procedure using surface stress.

Figure 3.2: Geometry of the FE model of breast tissue
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for analysis. Skin and fat tissue depth are taken as 0.1 cm and 0.5 cm respectively

where the width is 3 cm.

Water is the selected material used to represent various parts of the model. Dis-

tinctions were made between soft tissue, tumor, skin and fat by varying the mechanical

properties. The altered properties included the Poisson’s ratio and Young’s modulus

according to the literature [11]. Poisson’s ratio is the ratio of the proportional decrease

in a lateral measurement to the proportional increase in length in a sample of material

that is elastically stretched. Young’s modulus is a measure of the ability of a mate-

rial to withstand changes in length when under lengthwise tension or compression.

Sometimes referred to as the modulus of elasticity, Young’s modulus is equal to the

longitudinal stress divided by the strain. Poisson’s ratio is taken as 0.495 for soft tis-

sue, tumor, skin and fat. Young’s modulus is considered as 10 kPa, 40 kPa, 200 kPa

and 1.5 kPa for soft tissue, tumor, skin and fat respectively. It is assumed that bone is

at that side. All the other sides were left free for movement.

Table 3.1: Mechanical properties of tissue components of breast

Tissue type Poisson’s ratio Young’s modulus

Soft tissue 0.495 10 kPa
Tumor 0.495 40 kPa
Skin 0.495 200 kPa
Fat 0.495 1.5 kPa

For Young’s Modulus reconstruction, stress and strain values are required. In a

practical scenario, compression is made by the ultrasound probe. The stress field is

usually non-uniform, so strain data are ambiguous, but strain imaging is the simplest

way of displaying quasistatic deformation data to provide a visual indication of vari-

ation in mechanical properties [7, 12]. Our model utilizes a fixed displacement of

0.03 cm to represent the compression from an ultrasound probe.

3.4 Realizing Strain data

3.4.1 Strain resolution

In the practical case, the strain data will be calculated from the pre and post RF data.

The most obvious restriction on strain image resolution comes from the spacing be-

tween neighboring estimation locations, but it is less important than filtering effects

related to the size of windows and kernels. The only disadvantage of dense estimation

spacing is increased computation time, while it improves both resolution and SNR .

The estimation locations used in this chapter are very closely spaced, so as to focus on
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Figure 3.3: Ultrasound probe is pressed at the top surface which is represented by fixed
displacement of 0.03 cm

the significance of the other parameter choices.

The Effects on strain estimates of changes to window and kernel size are similar,

though not identical, to denoising by applying a moving average (MA) filter. The over-

all error decreases as a MA filter gets larger, because uncorrelated error components

spanned by the filter average to zero. However, the output from a large MA filter has

coarse resolution. There is no universal definition of resolution that can be applied sen-

sibly to all imaging tasks. For the present analysis, the resolving limit is defined as the

feature scale,Lr, at which there is no longer any positive contrast between two or more

bands of low strain sandwiching and surrounded by background material with higher

strain (see Figure 3.4). The resolving limit is reached when strain estimates after the

filter exhibit zero contrast between the low and high strain bands. For example, the

resolving limit of a MA filter is half the filter length. The resolving limit is assumed

similarly to be approximately proportional to window and kernel dimensions, although

the constant of proportionality may not be the same in both cases. The greatest estima-

tion accuracy at a given resolution will usually be achieved by windows and kernels of

the maximum allowable size.

3.4.2 Strain estimation error

Differentiation amplifies estimation noise, particularly if the displacement estimates

are closely spaced. Figure 3.5 illustrates this point for 1 D strain estimation. Predicting

strain estimation error requires an understanding of how displacement estimation error

filters through. There are various techniques for reducing noise in gradient estimates,
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(a) (b) (c)

(d) (e) (f)

Figure 3.4: Effect of a MA filter on the contrast between low and high strain bands. (a) The
axial resolving limit is the axial length scale at which features are just resolved, with a strain
field that is uniform in the lateral direction. (b) Displacement and strain fields against distance.
(c) A MA filter (length=Lr) easily resolves the different strain regions. (d) Resolution is
still achieved with length=1.5Lr. (e) The contrast is zero when the filter length is 2Lr. (f)
Filter lengths > 2Lr register negative contrast. Figure reproduced by kind permission of Joel
Edward Lindop [1].

Figure 3.5: 1D illustration of strain estimation. Errors in strain estimates depend on the
resolution of the gradient estimator, but the original sources of error are the locations and
values of displacement estimates. Figure reproduced by kind permission of Joel Edward
Lindop [1].
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including lowpass filtering and wavelet denoising. As noted in [1], the following anal-

ysis focuses on piecewise-linear least squares regression, which is more commonly

applied. Analysis of alternative approaches would involve similar considerations. The

simplest unweighted least squares gradient estimate is [11]

ε̂ =

∑

Ωnε Km

y̌nûn

∑

Ωnε κ

y̌2
n

(3.2)

wherey denotes axial distance. The strain estimate,ε̂, is produced using data from

a set of displacement estimation windows, {Ωn}, comprising displacement estimates

{ûn} at locations{x̌n, y̌n} (measured relative to the center of kernelKm). Note that,

although{y̌n} are axial location estimates, the kernel is usually 2 D, taking displace-

ment estimates from multiple neighbouring columns. The set of displacement estimate

locations must be symmetric about the center of the kernel to ensure that the strain

estimate has greatest validity at that point. The scale of strain estimation errors is

predicted by evaluating the variance of this estimator. In general, there are errors in

both displacement and location, all of which lead to strain estimation error. Location

errors in{y̌n} are assumed to be negligible, having been substantially reduced by am-

plitude modulation correction (AMC). This leaves errors only in{ûn}, resulting in the

following strain estimation variance if covariances are negligible [11]:

σ2
ε̂ =

∑

Ωiε Km

y̌2
i σ

2
ui

(
∑

Ωiε κ

y̌2
i

)2 (3.3)

It is also possible that the displacement estimator introduces significant covari-

ances, in which case a more complicated expression must be evaluated:

σ2
ε̂ =

∑

Ωiε Km

∑

Ωjε Km

y̌iy̌jσuiσuj

(
∑

Ωiε κ

y̌2
i

)2 (3.4)

3.4.3 Simulated Strain data

In this thesis work, the simulated strain data is taken as the input. Simulated strain

data is collected from the COMSOL platform based on the FEM model. Simulated

strain data provides the actual strain information which can be taken as the base-line

of the iteration method. For establishing optimization method this strain data works
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Figure 3.6: Ultrasound probe with pressure sensor.

as the reference. In practice, the strain data will face the problem with scattered noise

and other sources of noise. Those sources of error will make the prediction system

more challenging. Those challenges have been taken into account during the modulus

prediction. Strain data is taken from the COMSOL platform to the MATLAB platform

for further calculation.

3.5 Estimation of Stress and Modulus

Prediction of the stress value is dependent on the boundary condition. In this thesis, the

lower boundary is kept bounded and fixed. Right and left side remains free. Figure 3.2

shows the geometry of the FEM for the simplified model. To collect the pre and post

RF data, ultrasound probe will be used and at the top of the probe one pressure sensor

matrix will be implanted in such a way so that the ultrasound transmitting and receiving

signal do not have any distortion. From COMSOL, it is easy to realize the surface

stress in each point. Practically, it is not possible to get continuous stress value for all

the surface points but it is easy to get the stress value if we have at least a few stress

values for different points by using interpolation. In COMSOL, a fixed displacement

is created to simulate the pressure on the surface and the stress data is taken from the

top surface.

From the FEM structure, the strain data is exported to the MATLAB for the whole

structure. At first, it is a scattered data which is difficult to handle. So it is converted to

matrix data for easier calculation. Based on the surface stress data and strain data, the

modulus value is being predicted. For this, Hooke’s law is the governing theory. In this

phase, the surface stress value is taken as it is. All other stress values are calculated

based on the surface stress and a certain percentage of change of strain value.
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(a) (b)

Figure 3.7: (a) Predicted value without implementing Gaussian filter, (b) after implementing
Gaussian filter.

σi0+1,j = σi0,j × α ×
∣
∣εi0+1,j − εi0,j

∣
∣ (3.5)

Equation (3.5) shows the stress prediction process based on the surface stress and

the strain change. Here,σi0,j is the soft tissue surface stress,σi0+1,j is the predicted

stress of the next row just under the top surface,α is the empirical percentage and

εi0+1,j , εi0,j are the two consecutive strains from the top, respectively.

It is been observed that due to the skin and the fat layer, the first predicted modulus

values shows some mentionable errors. It is also important to mention that the stress

value and the stress profile just under the fat tissue or to be very specific, on the top

surface of the soft tissue are almost the same. So the top surface stress of the soft tissue

is taken as the top surface for the calculation. This will help to give good prediction

result from the very first step. For this reason, soft tissue along with the tumor is

selected as the field of view for predicting modulus and updating the stress value.

3.5.1 Filtering Unwanted Modulus value

The modulus is calculated from the strain data, stress data of the soft tissue and pre-

dicted stress data. It is observed that there is some sharp changes in the first predicted

modulus which is not practical. Different filtering options are tried and Gaussian filter

is applied to resolve the unwanted predicted modulus problem [112]. This filter helps

to smooth the predicted value. For the Gaussian filter, the standard deviation is taken

as 1.
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Figure 3.8: After implementing K-Means Clustering there are two distinct modulus.

3.5.2 Clustering Modulus values

In this phase, the adjacent modulus values are clustered by using the clustering algo-

rithm which mostly provides two prominent areas since the tissue in consists example

only of soft tissue and tumor. However, due to error in the prediction, there might

be more distinct areas present as well. The number of unwanted areas depends on

proper selection of the threshold value, clustering algorithm and matrix size. For this

thesis, K-Means Clustering, Mean-Shift Clustering, Density-Based Spatial Clustering,

Expectation-Maximization (EM) Clustering using Gaussian Mixture Models (GMM)

and Agglomerative Hierarchical Clustering are tried [113]. The K-Means Clustering

performs well for this purpose based on the error estimation which is shown in the

next section with the result. All the values of each cluster are replaced by one modulus

value which is calculated by taking the average of all those values under that cluster.

3.5.3 Updating stress value

Based on the cluster modulus data found in the MATLAB environment, FEM structure

is created in the COMSOL for the first iteration. On that new model, the same amount

of displacement is created on the top surface of the structure. Since this structure

is created based on the predicted stress profile, it will not provide the actual strain

distribution. Scattered strain data is imported to MATLAB again and converted to

matrix data. This is the first error strain data. In this phase, the actual strain data is

compared with the first error strain data. In the second iteration, the challenge is to

predict the stress value for each point based on the previously predicted stress value

and the first strain error distribution.

σi,j = σi−1,j−1 × β ×
∣
∣εi,j

actual − εi,j
error1

∣
∣ (3.6)
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Here ,σi,j is the new predicted stress value and is based on the previously predicted

stress,σi−1,j−1 and a percentage of deviation of the strain value,β. Empirically, β

should be selected to get less strain error in the next iteration and hence need less

iteration to converge.

This newly predicted stress value along with the surface stress and actual strain

distribution is taken as the input to find the next modulus distribution(Epredicted) based

on the Hooke’s law. After finding the predicted modulus in the second phase, the same

Gaussian filter is applied to get the smooth modulus distribution. Using the K-mean

clustering algorithm, modulus values are clustered and distinct regions are created.

Each of the regions is presented by a single modulus value as done in the last phase.

Now again, the FEM structure is created based on the modulus value found in the

MATLAB platform. The same amount of displacement is applied on the top of the

tissue structure and a new strain distribution is found (εi,j
error2). Then, the stress value

is updated according to the equation (3.6) and this process is repeatedly done until it

converges to a particularly targeted deviation,Δ. Here,

Δ =
∣
∣
∣εi,j

actual − εi,j
error(n)

∣
∣
∣ (3.7)

where,n is the number of iteration needed to converge.

3.6 Various position, size and characteristics of the tumor

The experimental processes are applied for the various position, size and characteris-

tics of the tumor. To get a targeted average deviation (Δ), for a different condition,

an altered number of iteration is needed. Based on the number of iterations, the com-

plexity of the structure is identified. Less iteration shows a more simple structure of

predicting the modulus, whereas large iteration shows the complex structure. If the

tumor is very close to the surface of the tissue structure, less number of iterations are

needed. The output shows more complexity when the tumor moves to the lower part

of the structure. Similarly, various size of the tumor shows its own characteristics. It’s

difficult to identify very small tumor whereas it is relatively easy to find the bigger

tumor. Similarly, for different modulus values of tumor the prediction is examined and

found that if the modulus is close to the background then it makes difficult to predict

the tumor. The experimental setup also shows that after a certain level of pressure

applied on the surface of the structure, it is difficult to identify the actual shape of

the tumor. Figure 3.9- 3.10 are showing the background tissue with inclusion for the

various size and position of the tumor.

For various parameters of the tumor, the reconstruction output will change. It is

expected that inclusion close to the surface will give more accurate modulus prediction
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Figure 3.9: Stress distribution for different position of the tumor.

than compared to the inclusion in the depth. In the next section, the simulation result

is presented and compared with different positions. Similarly, it is difficult to find out

small inclusion from elastography imaging. On the other hand, bigger tumor has its

large boundary. So it is expected that for a very small and large inclusion, the modulus

reconstruction method will face challenges to get the satisfactory result.

It is important to analyze those aspects in order to find out the prediction error. The

simulated result will give the guideline to test the proposed algorithm on the phantom

data. In the simulated result, the strain distribution is very accurate. However, in real

life, this strain distribution will be found from the pre and post-deformation US RF

data. In any situation, accurate strain distribution data give advantage to predict a good

modulus distribution.

3.7 Conclusion

In this thesis, surface stress is taken as the input for predicting the modulus of the tissue

structure. Similarly, strain distribution is taken without considering the surface stress

and based one this the modulus is predicted. For the same number of iterations the

results are compared and always found a satisfactory result when the surface stress is

considered. This comparison is presented in the next result section of the thesis. Other
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Figure 3.10: Stress distribution for different size of the tumor.

comparisons considering the different positions, sizes and characteristics of the tumor

are also presented in the result section.
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Chapter 4

Findings and Validation

4.1 Introduction

The tissue structure proposed in the chapter 3, is validated with the research outcome

compared to the experimental data of this thesis [114]. Water is the selected material

used to represent various parts of the model. Distinctions were made between soft

tissue, tumor, skin and fat by varying the mechanical properties. The altered proper-

ties included the Poisson’s ratio and Young’s modulus according to the literature [11].

Poisson’s ratio is the ratio of the proportional decrease in a lateral measurement to

the proportional increase in length in a sample of material that is elastically stretched.

Young’s modulus is a measure of the ability of a material to withstand changes in length

when under lengthwise tension or compression. Sometimes referred to as the modulus

of elasticity, Young’s modulus is equal to the longitudinal stress divided by the strain.

Poisson’s ratio is taken as 0.495 for soft tissue, tumor, skin and fat. Young’s modulus

is considered as 10 kPa, 40 kPa, 200 kPa and 1.5 kPa for soft tissue, tumor, skin and

fat respectively. It is assumed that bone is at that side. All the other sides were left free

for movement. A model of breast tissue is created using COMSOL Multiphysics soft-

ware. COMSOL Multiphysics is a cross-platform finite element analysis, solver and

multi-physics simulation software [111]. It allows for the creation of a conventional

physics-based user interface. The size of the overall model is taken as 3 cm with and

3.6 cm depth. The tumor is modeled by 1 cm diameter circular structure and placed

in different positions for analysis. Skin and fat tissue depth are taken as 0.1 cm and

0.5 cm respectively where the width is 3 cm.

In the experiment phase, it is found that the surface stress on the top surface is

almost equal to that of the stress distribution just under the fat tissue for the region of

interest (ROI). Figure 4.1 shows the stress profile along the surface and the surface of

the soft tissue for both the whole width and as well as for the ROI section. If the surface

stress is taken as the direct input for modulus prediction, it produces some unwanted

modulus value in different spaces of the tissue. Since the pattern and the value of the
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(a)

(b)

Figure 4.1: Stress distribution along to the surface of the structure and to the surface of the
soft tissue. (a) Showing the full width, (b) showing the ROI section only.

surface stress is almost equal to the stress distribution just under the fat, it is effective to

consider the top surface tissue (soft tissue) stress as the direct input and is considered

as the equivalent of the surface stress.

In this chapter, different evaluation and validation processes are described with the

result and shown with diagrams, tables and plots. The stress distribution is collected

from the COMSOL and saved as .xlsx file. This data is in scattered format rather than

in matrix format. By using MATLAB, this scattered data is converted to matrix distri-

bution. It helps to find out the specific point of interest and doing all the manipulations.

4.2 With and without considering surface stress

In case of conventional elastography imaging, the compression pressure or stress is not

considered for modulus reconstruction. Mostly in strain imaging, only the strain data

is considered to get an idea of the distribution of the variation of the modulus. In this

thesis, surface stress made by the ultrasound probe is taken as the additional informa-
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(b)

Figure 4.2: Predicted stress distribution with error due to skin and fat layer. (a) Showing the
full view and (b) showing the ROI view.
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(a) (b)

(c) (d)

Figure 4.3: (a) and (b) shows the scattered and matrix view of the strain distribution, (c) and
(d) shows actual stress distribution.
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tion to predict the stress distribution, hence to predict the modulus. In COMSOL, a

fixed displacement is created to simulate the pressure on the surface and the stress data

is taken from the top surface. From the FEM structure, the strain data is exported to

the MATLAB for the whole structure. At first, it is a scattered data which is difficult

to handle. So, it is converted to matrix data to make the calculation easy. Based on

the surface stress data and strain data, the modulus value is being predicted. For this,

Hooke’s law is the governing theory. In this phase, the surface stress value is taken

as it is. All other stress values are calculated based on the surface stress and a certain

percentage of change of strain value as stated in equation (3.4).

It is observed that due to the skin and the fat layer, the first predicted modulus

values suffers form mentionable errors. It is also important to mention that the stress

value and the stress profile just under the fat tissue or to be very specific, on the top

surface of the soft tissue are almost the same which is mention in the last section. So

the top surface stress of the soft tissue is taken as the surface stress. This will help to

give good prediction result from the very first step. For this reason, soft tissue along

with the tumor is selected as the ROI for predicting modulus and updating the stress

value.

For calculating the modulus distribution, this predicted stress based on the surface

stress and strain distribution is taken. It is observed that there are some sharp change

in the first predicted stress distribution which is not practical. Different filtering option

is tried and Gaussian filter is applied to resolve the unwanted predicted modulus prob-

lem [112]. This filtering helps to smooth the predicted value. For the Gaussian filter,

the standard deviation is taken as 1 empirically.

First stress distribution is predicted based on the equation (3.4), whereα has to

select. For the value ofΔ ≤ 5% and setting theβ as30%, the value ofα is varied from

10% to 100%. That refers to the range of theα from 0.1 to 1.0. The lowest number of

iteration to achieve the targetedΔ is done by settingα equals to0.5 (50%). If the α

value is increased or decreased, the iteration number need to be increased to achieve

the targeted mean error value. Figure 4.4 shows the relation between the different value

of α and number of iteration to catch the targeted mean error as less or equal to5%.

So it is reliable to select the value ofα as 0.5 for this experiment. According to the

Hookes law, modulus distribution is calculated. This ends the first iteration. For the

second step, the distribution of the first predicted modulus value is clustered by using

K-mean clustering algorithm and two distinct areas are selected for the next processing

in COMSOL. Here each cluster is filled with the average value of that cluster which

represents the modulus value input for the next iteration.

For the next iteration, this structure is taken as the input of the COMSOL where

the same amount of displacement is applied on the top of the surface. The strain value

53



Figure 4.4: Number of iteration needed for differentα.

(a)

(b)

Figure 4.5: (a) First predicted stress with noise, (b) first predicted stress by applying Gaussian
filter.

is exported to MATLAB for next step calculation. At this stage, the stress value is

updated based on the equation (3.5) whereβ is taken as0.3 or 30%. For the value of

Δ ≤ 5% and and setting theα as50%, the value ofβ is varied from10% to 100%. That

refers to the range of theβ from 0.1 to 1.0. The lowest number of iteration to achieve

the targetedΔ is done by settingβ equals to0.3 (30%). If the β value is increased

or decreased, the iteration number need to be increased to achieve the targeted mean

error value. Figure 4.7 shows the relation between the different value ofβ and number

of iteration to catch the targeted mean error as less or equal to5%. So it is reliable to

select the value ofβ as 0.3 for this experiment.

The predicted modulus is calculated as in the first step. This completes the second

iteration. The same steps are followed as long as the deviation of the strain distribution

(Δ) is equal to or less than a certain level. In this case,Δ is taken as1% which leads

the modulus average error less than4%. Figure 4.8- 4.10 shows all the outputs found
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(a)

(b)

Figure 4.6: Clustered modulus value using K-mean algorithm. Each area is filled by the
average value of that cluster.

Figure 4.7: Number of iteration needed for differentβ.

during those iterations. For this example, it takes ten iterations to reach theΔ to 1%.

The same process is executed for the same tissue structure but the surface stress is

not considered now. In this case, the initial stress distribution is considered as a con-

stant value and taken as 10,000 Pa [115]. Ten iterations are allowed for this modulus

prediction since by using the proposed novel algorithm, less than1% error is reached

by ten iterations. Figure 4.11 represents the percentage of error of modulus compar-

ing between the actual and predicted modulus in each iteration for both considering

surface stress and just taking a constant stress distribution at the beginning.

It is very significant that when the surface stress is considered, then the prediction

error becomes very close to5% by only 6 iterations. After that only2% error lessens
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(a) (b)

Figure 4.8: (a) Top view of actual strain, (b) 3D view of actual strain.

for next 4 iterations. If5% error is satisfactory, then only 6 iteration is enough for the

final modulus prediction which will save a substantial time for reconstruction. As, this

is a very time-consuming process, it may consider for practical evaluation purpose. On

the other hand, while surface stress is not considered, it provides a huge error for first 4

iterations. However, after8th iterations, it gives a very constant error which is around

10%.

4.3 Considering different position

The same processes are applied to the same tissue structure where only the tumor

changes the position in the axial direction. All the other parameters remain constant as

mentioned in the last section. For all the different positions of the tumor, 10 iterations

are done rather makingΔ value fixed. It is always shows the possibility of getting the

less prediction error for more iteration. However, number of iterations will take much

time to complete the process.

It is completely visible from the Figure 4.12 that for all the iteration points, the

predicted modulus yields a better result for those tumors which are closer to the upper

surface of the structure. Here the position is varied from 1.2 cm to 2.2 cm from the top

surface of the tissue structure. It is observed that, after ten iterations, the percentage of

error converge to around3.25% to 6% which is quite acceptable.

4.4 Considering different size

The same processes are applied as discussed in section 3.2 for the same tissue structure

where only the tumor size is changed. All the other parameters remain constant as

mentioned in section 3.2. For all the different positions of the tumor, 10 iterations are
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(g) (h) (i)

(j)

Figure 4.9: (a) to (i) shows first to ninth iterated predicted modulus distribution respectively,
(j) is the 3 D view of the ninth iterated predicted modulus distribution.
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(c) (d)

(e) (f)

Figure 4.10: (a) and (b) is the predicted modulus distribution forΔ 6 1%, (c) and (d) is
the simulated modulus found from FEM model, (e) and (f) showing the error of modulus
prediction.
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Figure 4.11: Comparison of error in percentage of the modulus prediction for considering
and without considering surface stress.

Figure 4.12: For the first ten iteration, percentage of error for different position of the tumor.

done rather makingΔ value fixed. The size of the tumor is changed to 0.6 cm to 0.1 cm

radius. In all the cases the tumor is fixed in the center of the soft tissue.

Form the Figure 4.14, it is very significant to observe that the higher percentage of

error is formed from the tumor of 0.1 cm and 0.6 cm radius. On the other hand, the

lowest percentage of error is achived from the tumor of 0.3 cm radious and the second

lowest from 0.4 cm radius based tumor which shows that the prediction algorithm

produces a better result for a certain size of the tumor, whereas a larger or smaller

size tumor may face challenges. This result is logical since in case of the large tumor,

though the visibility is increased the boundary length of the tumor and soft tissue is

also increasing. The boundary area suffers to predict the stress distribution hence the

modulus distribution.
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Figure 4.13: After the10th iteration, the percentage of error in modulus prediction for dif-
ferent depth.

Figure 4.14: For the first ten iteration, percentage of error for different position of the tumor.

4.5 Considering mesh size of the structure

By using COMSOL software, the FEM simulation is carried out for this thesis. In real

life, the strain data will be calculated from the pre and post-compression data and the

surface stress data will be collected from the sensors. After that the processing will

depend on the COMSOL software capabilities and manipulation. The most significant

part of the manipulation is from the point of view of mesh size. It is possible to control

the mesh size when the tissue structure is designed. The modulus value for each cluster

is calculated from MATLAB for the first iteration. After that, the model is built in the

COMSOL environment. In this phase, the mesh pattern is being selected. It is possible

to select Extremely fine, Extra fine, Finer, Fine, Normal, Coarse, etc. pattern. The

important thing is the mesh size can be controlled in the design process. Finer mesh
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Figure 4.15: After the10th iteration, the percentage of error in modulus prediction for dif-
ferent size of the tumor.

will force to take longer time for calculation and that is the limitation. In this section,

the percentage of modulus error is calculated based on the pattern of the mesh.

Figure 4.16: For the first ten iteration, percentage of error for different mesh type.

The performance differs for different mesh types. So, it is a tradeoff between the

computation time and precise prediction of modulus distribution. Figure 4.16 shows

the complete variation of the percentage of error produced in each iteration for different

mesh type. This experiment is conducted for the same tissue structure.
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(a) (b)

Figure 4.17: (a) Tissue structure with two tumor with same characteristics, (b) strain distri-
bution of the structure.

4.6 Considering multiple tumors

For making the understanding clear for the multiple tumors, only two tumors are sim-

ulated inside the soft tissue as shown in Figure 4.17. One of the tumors has half the

radius than that of the other. Two of them have the same depth and same nature.

That means both of the tumor have the same modulus value (40 kPa) and poison ratio

(0.495).

For the above mentioned structure, the same processes are applied as mentioned

in section 4.2. The percentage of error is calculated for first ten iterations for the

multiple tumors in the same manner described as for the single tumor (larger one only).

Figure 4.19 represents the comparison between the patterns of the percentage of the

error of predicted modulus.

From the performance of the multiple tumor prediction, it can be mentioned that

the novel algorithm stated in this thesis is very much capable to predict the modulus

for multiple tumors as well. The percentage of error for the multiple tumor is only

7.5% [116]. The performance can be improved by implementing more iterations for

multiple tumor case. It will take a longer time to complete the process but it will give

more accurate prediction. Figure 4.17 shows the comparison between the modulus

prediction between two different and same sized tumor. It is clearly observed that, the

size of the tumor makes a minor effect to the modulus prediction.
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Figure 4.18: For the first ten iteration, percentage of error for different modulus value of the
tumor.

Figure 4.19: Percentage of error for the tumors having different and same size.

4.7 Considering different modulus value

For all the experiment, the modulus of the tumor and the soft tissue is taken as 40 kPa

and 10 kPa respectively. At the early stage of the cancer tumor, the modulus value is

very close to the surrounding soft tissue. So, it is important to examine the proposed

algorithm under the different value of tumor modulus starting from very similar value

of soft tissue to 40 kPa. Here, the tumor’s modulus is taken as 15 kPa, 20 kPa, 30 kPa

and 40 kPa for comparing the effect of the modulus prediction complexity due to the

variation of the modulus distribution.

As the modulus value is closer to the background tissue, the prediction algorithm

faces challenges. However, the proposed algorithm still shows satisfactory modulus

distribution prediction.
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Figure 4.20: For the first ten iteration, percentage of error for different modulus value fo the
tumor.

4.8 Validation with tissue mimicking phantom study

The proposed estimation method is validated with two tissue mimicking phantom stud-

ies of S. R. Mousaviet. al. [2] which practically use two phantoms where the dimen-

sion and the deformation data is given. According to those phantoms, the simulated

tissue structure is built and the proposed algorithm is run on those structure to validate

this proposed algorithm. S. R. Mousaviet. al. consisted of two parts in the phantom

which mimics the breast and tumor tissues. The phantom used in the first study had a

simple block-shape geometry while the one used in the second study had a more com-

plex breast-like geometry. These two phantoms are illustrated in Figure 4.21 [115].

The first phantom is manufactured by the Computerized Imaging Reference Systems

(CIRS; Pacific Northwest X-ray Inc., Gresham, USA). A mechanical device along with

the US probe was used for compressing the phantom with 0.3 cm. The second phantom

is constructed using gelatin and agar dissolved in water. A few drops of formaldehyde

were added to the dissolved gelatin and agar to increase the melting point of the mix-

ture and increase the phantom’s resistance against developing mould. Also, glycerol

is added to the mixture to regulate the ultrasound wave speed in both the normal and

tumor areas such that the wave speed is approximately 1540 m/s [115]. All the mate-

rials used to construct the phantom are manufactured by Sigma-Aldrich Co. LLC. To

have better image contrast between normal and tumor areas, different concentrations

of Sigmacel are added to the batch prepared for each tissue type to create nonuniform

backscattering. Indentation is conducted using an apparatus consisting of a load cell

along with a linear servo actuator and a computer controller. The actuator is equipped

with a circular plane-ended indenter.

The modulus of the inclusion and the background tissue for the first phantom are
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Table 4.1: Comparison with the recent published experimental data to the predicted modulus
value.

YM ratio YM ratio % of error by YM ratio %of error by
between between applying recent between applying proposed
inclusion over inclusion over algorithm (S.R. inclusion over algorithm
background background (S. Mousavi et. el. [2]) background
(actual) R. Mousavi et. el. [2]) (applying

proposed
algorithm)

First phantom 1.70 1.86 9.41% 1.68 1.17%
Second phantom 1.60 1.49 6.87% 1.56 4.69%

Table 4.2: Comparison with the actual phantom data to the predicted modulus value.

Inclusion Inclusion % of error Background Background % of error
modulus modulus for inclusion modulus modulus for background
(actual) (applying modulus (actual) (applying modulus

proposed prediction proposed prediction
algorithm algorithm)

First phantom 56 kPa 57.9 kPa 3.39% 33 kPa 34.320kPa 4%
Second phantom 40 kPa 41.3 kPa 3.20% 25 kPa 26.4 kPa 5.6%

56 kPa and 33 kPa (Einc/Ebkg =1.70), respectively. By using the proposed algorithm

the modulus of the inclusion and the background tissue is found as 57.9 kPa and

34.32 kPa respectively. This implies the inclusion modulus over the background tissue

modulus is equal to 1.687. S.R. Mousaviet. al. [2] found this inclusion to background

YM ratio is equal to 1.86. It implies9.41% error comparing with the actual phantom

data. Proposed algorithm shows the same error as1.17%. Similarly, for the second

phantom, the modulus of the inclusion and the background tissue and the background

tissue are 40 kPa and 25 kPa (Einc/Ebkg =1.6) respectively. By using proposed method

those moduli are found as 41.3 kPa and 26.4 kPa (Einc/Ebkg =1.56.4), respectively.

It implies the error comparing to the actual data as4.69%. On the other hand, recent

publication [115] can achieve6.87% error. In any concern, the proposed algorithm

presents better output compared with the recently developed algorithm. Table 4.1 and

table 4.2 represent the performance of the proposed algorithm.

4.9 Conclusion

The result in the validation phase shows the strength of the proposed algorithm. A

number of cases are considered and shown with the predicted modulus with the error.

For each case, the result shows a potential outcome. There are some other cases which

may be consider for rigorous analysis. For all the simulations, the isotopic behavior is

considered but for the real environment all the soft tissue, tumor, skin and fat could be

considered as anisotropic which will add more complexity to the structure and hence

the proposed algorithm will face challenges. Overall, the proposed algorithm can suc-

cessfully predict modulus value for tumor and the background tissue just by knowing

strain distribution and the surface stress of the structure.
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(a) (b)

Figure 4.21: Block-shape (left) and cylindrical (right) tissue mimicking phantoms consisting
of an inclusion (indicated with 3 arrows) mimicking the tumor [2].
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Chapter 5

Semi-automated Elastography Best Frame Selection

5.1 Introduction

Breast tumour is one of the significant causes of cancer for women. Different medical

imaging techniques are used to identify breast tumour and they have their own char-

acteristics. Ultrasound B-mode image is one of the imaging techniques by which the

tumour can be detected and characterized. However, in several cases, it is not possi-

ble to locate the tumour by using only B-mode image analysis. Elastogram or strain

imaging provides one further step of information to identify the malignant tumour.

Each frame of the video does not have good tumour visibility in case of elastogram

image. It is difficult and time consuming for a doctor to accurately detect the shape

of the tumour from rapidly changing frames. Selecting the frames where the tumour

is comparably more visible will help the doctor/radiologist to detect the tumour more

easily.

In this dissertation, a method of semi-automated best frame selection from a strain

video is proposed. The method involves two ways to select the required frames and

to show the best output frames in the form of a video. It is based on Mean Pixel Dif-

ference (MPD) and Gray-Level Co-occurrence Matrix (GLCM) contrast as the image

descriptors. The accuracy is also calculated by comparing it with the human visibility

to the automated selected frame. Few structural and statistical methods are tied to find

the quality of the image. Structural methods produce results with uncorrelated value

for image quality in case of US image. On the other hand statistical methods works

well for US image. Mean pixel Difference (MPD) and Grey Level Co-occurrence Ma-

trix (GLCM) are two most popular methods for specifying the texture, especially for

the gray level image.

In the earlier chapter, the modulus reconstruction method is described and the novel

algorithm is proposed. It is found that by using proposed algorithm, the modulus re-

construction can be improved. However, the best frame from the elastogram sequence

is still demanding to find out the best possible output in the shortest period of time. It
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will give more confidence to the doctor/radiologist. After getting the best frame, it will

be easy to set up to find the tumour boundary. The signal that is found directly from

ultrasonography is actually RF signal. From the envelop of the RF signal, A-mode im-

age is found. Then the A-mode image is converted into a 2D greyscale image known

as B mode image. In many cases, the tumour cannot be detected from B-mode image,

especially in the early stage of a malignant tumour. As these types of tumour have no

specific shapes and cannot be easily differentiated from the surrounding breast tissue,

B-mode image is less effective to detect the shape and size of the tumor. However, by

applying pressure over the area helps to obtain the strain image and, in these cases,

strain image may provide a better view of the tumour [85]. If the predicted stress data

is available then the predicted modulus distribution is also available for diagnosis.

Strain is found from the difference between the pre and post compression ultra-

sound images [85]. As the tumour is comparatively denser than the surrounding tissue,

applying pressure does not change the shape of the tumour that much. If we calculate

the strain of the tumour, the change of the surrounding tissue is at a much greater scale

than the tumour, which can be shown in the strain images. So, the tumour is more

visible in the difference image. The strain images from the radiologist are given in the

form of image sequences. Not every frame of the sequence provides a good visibility of

the tumour. Because of human error, while applying pressure during ultrasonography,

some frames of strain video may include more noise and the tumour may not be visible

in these frames. It is a troublesome process for a doctor/radiologist to go through each

and every frame and to find out the best frames based on the tumour visibility. In this

chapter, a robust and effective best frame selection method is proposed. This method

consists of four steps. The first step extracts the frames from the sequence. The second

step pre-processes the frames to make them smoother and enhanced by reducing the

speckles and noises. The third step categorises the frames according to the tumour

visibility using Mean Pixel Difference (MPD) and GLCM (contrast) [3] methods as

the image descriptor. The energy, homogeneity, and contrast of healthy and malignant

cells of the GLCM features are significantly distinctive [11]. The final step creates a

sequence with the best frames.

5.2 Methods

Figure 5.1 depicts the algorithm of our proposed method. The method can be divided

into four major parts namely, Extracting frames, Pre-processing, applying MPD and

GLCM, sorting and creating a video. According to the proposed method, the steps to

select the best frames from a strain video are as follows:

Extracting frames from the video: Form pre and post compressed breast US data,

68



Figure 5.1: Algorithm to find the best frame.
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(a) (b)

Figure 5.2: Pre-processing steps: (a) before pre-processing, (b) after pre-processing. Ultra-
sound taken at 10 MHz frequency and 5 cm depth.

the strain can be estimated and a strain video can be formed. These frames were

extracted from the video and stored in the hard drive for processing.

Pre-processing Frames: To reduce noise level and speckles, each frame was pro-

cessed. If each frame is filtered 7 times using Hybrid Filter consisting of the median

and Gaussian filter, the noise level is considerably reduced and becomes easier to pro-

cess [12]. So, this process was followed to pre-process each frame. Wiener filter is

used for de-noising before applying the MPD and GLCM. Wiener filter works well

in case of speckles patterns noise [15]. Wavelet based de-noising filte is also tried.

However, wavelet based filter gives the same result as wiener filter does though it takes

longer time to process.

Applying MPD & GLCM: From the nature of the ultrasound images, we know

that the tumour lesion, being denser, has much lower pixel values than the surrounding

tissue. As a result, in strain images, the tumour region looks relatively dark while the

surrounding tissue looks white.

So, the average pixel value of the whole frame must be higher than the average

pixel value of the area where the tumor is confined. If the tumor is not visible in any

frame, such a large mean pixel difference will not be present in that frame. As a result,

we can distinguish between the required frames and noisy frames using this logic.

This is where the semi-automated CAD was applied. The whole frame and the

only tumor region were selected manually. A vague idea about the location of the

tumor can be obtained by going through the strain video once. On the basis of that,

the tumor region was selected. Then the mathematical mean of the pixel values within

both the whole frame and the selected tumor region were found using the following

equation:
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(c) (d)

Figure 5.3: Some best output frames from strain videos using MPD method.

avg =

∑

i=1

ithpixel value

N
(5.1)

Where,N is the number of pixels within the area. Due to human error, it might happen

that the tumor might not be detected at the accurate location while taking the ultra-

sonography. It might move in any random direction. In order to overcome this short-

coming, after selecting the inner tumor region, the selected area was moved towards

up, down, right, left, upper right, upper left, down right, down left and the minimum

pixel average was taken as the tumor region mean pixel value, because of tumor region

having relatively lower pixel values.

After calculating the mean pixel values of both areas, the difference between both

mean values was found and stored for each frame. As the frames with good tumor

visibility will have a higher mean pixel difference, the frames were sorted according

to their MPD. This process was applied to different strain videos and the outputs were

noticeably better.

The other way to find the required frames is to calculate the Gray-Level Co-occurrence

Matrix (GLCM) properties for each frame as the image descriptor. GLCM is texture
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Figure 5.4: Some best output frames from strain video using GLCM contrast method.
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character profile and this determines different factors like smoothness, silkiness, rough-

ness and so on [13]. Among all of the features of GLCM, the property of contrast was

used. In short form, it is called a CON. Sum of Square Variance is another name of

Contrast. It defers the calculation of the intensity contrast linking pixel and its neigh-

bor over the whole image. At constant image, contrast value is 0. In contrast measure,

weight increases exponentially (0,1,4,9) as obtained from the diagonal [16].

avg =

∑

i,j

p(i, j) |i − j|2

N
(5.2)

Contrast is the difference in luminance or color that makes an object (or its rep-

resentation in an image or display) distinguishable. In visual perception of the real

world, contrast is determined by the difference in the color and brightness of the object

and other objects within the same field of view [14]. GLCM contrast returns a measure

of the intensity contrast between a pixel and its neighbor over the whole image. It is

low if the tumor is visible and is uniform. If there is noise which makes the tumor not

visible, there is no uniformly distributed tumor region and the GLCM contrast value

is relatively high. So, if the tumor is more visible in any frame, in other words, dis-

tinguishable from the surrounding tissue, it will have lower GLCM contrast value than

the not visible ones.

Following this process, GLCM contrast property was calculated for each of the

frames and was sorted in ascending order. The corresponding frames were sorted at

the same time and the required frames were found. It is observed that for our data set

the range of GLCM is between zero to one, whereas for MPD method it is between 0

to 100. This is why a normalizing factor 100 is taken to normalize the MPD value to

make comparable to GLCM method. After that by using liner ranking the best frame

is selected based on the GLCM and normalized MPD value.

Creating a video with the best frames: A required number of frames were merged to

form two videos where the tumor was most visible. Two best frames from both MPD

and GLCM contrast methods were taken to form the videos. The doctor/radiologist

may use these two videos to identify the tumor easily.

5.3 Result and Analysis

The proposed algorithm was implemented in MATLAB on a personal computer with

a 2.5 GHz Intel Core i5 processor 8GB RAM. In this case, several breast ultrasound

strain videos were used.In vivo breast data were acquired by Louise M. Mobbs and

Dr. Brian S. Garra, Department of radiology, Fletcher Allen Health Care, Burlington,
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Table 5.1: Missing frames in different methods

Video Missing Missing Missing
No. frame frame frame

for for for
MPD GLCM proposed

method

1. 0 1 0

2. 1 1 0

3. 0 0 0

4. 0 0 0

Table 5.2: Performances of different methods.

Total Missing Frame Missing Frame Missing Frame
manually frame missing frames missing frame by missing
selected by rate for by using rate for using rate for
frames using GLCM MPD MPD proposed proposed

GLCM method algorithm algorithm
08 02 25.0% 01 12.5% 00 0.0%

VT. The ultrasound images were taken at 6.6 to 14 MHz frequency and at 3.5 cm to

5.0 cm depth. Some of the final output frames are shown in the Figure 5.5. According

to the proposed algorithm, both the MPD and GLCM methods are used. After that,

the common frames of the selected frames are taken which makes the accuracy high.

The proposed method is applied on four (04) strain videos and the result of some

strain sequences (Best frame numbers selected manually and by proposed method) are

shown in the table 5.2. It is considered that, if the best frame found using the proposed

method within 3 frames of the manually selected frames, then it is considered as a

correct frame. In every cases, the frame selection shows a significant potential. The

visibility is fairly good. A video consisting of a number of frames provided a good

visual on the tumor. If the two methods are compared then the MPD method produce

the better tumor visibility. For all the strain sequences, two well visible frames are

selected and compared with the two afore mentioned methods, as well as with the

combination of those two methods. When the combination of those two methods are

considered a frame of the from each method is selected and finally all two of them are

arranged by ranking.

It is found from the result for a large data set that, frame missing rate for GLCM

and MPD method are 18.5% and 11.11%, respectively. One the other hand, the pro-

posed method frame missing rate is almost 3.5% which shows the improvement of the
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Figure 5.5: Some best output frames from strain video using proposed method.
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accuracy of the proposed method. However, for a very small data set it gives 0% miss-

ing frame rate for the proposed method, which shows the improved accuracy of this

method. Added with this fact the high quality strain image produced by the proposed

method improves the detection quality.

5.4 Conclusion

In this chapter, an algorithm is discussed which can be used to find out the quality

frame from a large number of stain sequences. It significantly improve the tumor

detection process and also saves the detection time. In recent years, ultrasonography

is becoming more and more popular and thus elastography has been widely used by

the clinicians. As one of the safest and cheapest methods of detecting breast cancer,

ultrasonography plays a vital rule to fight against it. One of the most complex tasks

is to pre-process the frames. A better pre-processing will yield a better result. After

collecting the quality frames, the segmentation process could be done easily. It will

also improve the visibility of the tumor. Faulty boundary detection may misguide the

doctors/radiologists. So the boundary detection should be done with careful selection

of the boundary detection algorithm. The proposed algorithm saves time and effort of

doctors/radiologists and helps them to detect breast tumor with higher accuracy.
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Chapter 6

Conclusion

6.1 Introduction

Modulus value can give the fundamental idea of a tissue stiffness. The main goal of

this dissertation is to reconstruct the modulus value by predicting stress value. Here the

pre and post compression data provides the strain distribution as the input parameter.

On the other hand the stress information collected from the top surface provides a

fundamental advantage to predict stress distribution in a lower computational expense.

A number of ways to ultrasonic elasticity imagining were considered in the literature

review section. Quasistatic methods have the potential advantage of high resolution

for depicting the geometry if tissue regions are separated by their relative mechanical

properties. Development and implementation of practical form of quasistatic elasticity

imagining on general purpose ultrasound machines can bring a lot of clinical benefits.

The freehand scanning technique cannot but produce meaningful images but should

not be too difficult or labour-intensive for sonographers. Easy implementation of the

technique across a wide range of hardware platforms will make it all the more valuable.

This research shows the proposed methodology for unconstrained full inversion

based breast elastrography considering the surface pressure of the top surface of the

field of view (FOV). This work also shows that, to compute the proper stress distribu-

tion the top surface stress information gives a significant advantage. So, it gives a real

edge to get the exact quantitative modulus data and the properties of the tumor. Then

again, this approach helps so that it can meet a satisfactory level in less computation.

This thesis is carried out focusing on the development of an analytical model of

the breast with the tumor referring to the practical physiology of the breast tissue. The

main focus of the dissertation is to develop a reconstruction algorithm so that we can

estimate stress distribution, which in turn estimate Youngs modulus distribution by

knowing the strain distribution and surface stress. Pre and post compression RF data is

the source of strain distribution and implanted sensors on the top of the US probe could

provide the stress data practically. Proposed approach for the simulated tissue structure
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generates a visible satisfactory outcome. Considering the surface stress, the prediction

mean error comes very close to 5% by only 6 iterations. Then for every 4 iterations

it changes only 2%. Considering 5% error satisfactory, only 6 iterations is enough for

the final modulus prediction. Which in turn saves considerable time for reconstruction.

It is a very time-consuming process and may consider for practical evaluation purpose.

Then again, by not considering the surface stress, it provides a significant error for first

4 iterations. Nevertheless, it gives a very constant and acceptable error from 10% to

6% after 8th iterations. It also shows that the challenge increases to predict as the depth

of the tumor increases. Then it considers different size of the tumor. The tumor of 0.1

cm and 0.6 cm radius forms the higher percentage of error which is very noteworthy.

And the tumor of 0.3 cm radius forms the lowest percentage of error and 0.4 cm radius

tumor forms the second lowest percentage of error. This shows that the prediction

algorithm gives better results for a certain size of tumor, a larger or smaller one may

get challenges.

After that, it considers the various positions of the tumor and presents the results.

Noteworthy experimental result for all the iteration points shows that the predicted

modulus generates greater result for the tumors close to the upper surface of the struc-

ture. After ten iterations the percentage of error comes to an acceptable percentage

around 3.25% to 6% which is observable. For validation, the approach is compared

with a real setup carried by S.R. Mousaviet. al. [2]. Their phantom structure and

the modulus value taken for the background tissue and inclusion was proclaimed in

their work by them. The dimension and the displacement on the top surface for their

work are also mentioned. The synthetic structure is made and the proposed algorithm

is applied in accordance to that guideline. Then comparing the result with the practical

data, it provides only 3.39% error for the first phantom inclusion and only 4% error

in case of the background tissue. On the basis of that guideline, the artificial structure

is developed and the predefined algorithm applied. In case of the second phantom,

it gives 3.20% error and 5.6% error for inclusion and background respectively. The

results are satisfactory enough.

This dissertation also described and compared with the current technologies for

finding the best frame for the strain imaging which can be used for the Modulus imag-

ing as well. Finally GLCM and MPD methods were compared with the proposed one.

It shows almost zero percent error in case of proposed method where as MPD and

GLCM provide 12.5% and 25% error respectively for a small data set. However for

large data set it gives 18.5% and 11.11% missing frame for GLCM and MPD method

respectively. On the other hand proposed algorithm gives 3.5% missing frame.
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6.2 Future work

In a way, all aspects of ultrasound scanning and quasistatic imaging depend on the

scan target. Before clinical testing, the propriety of specific modifications to the track-

ing, filtering and normalization schemes is ultimately unknown. Therefore feedback

between the clinical and technical strands of future work should be beneficial. While

some features of the imaging analysis may be advanced for general purpose, other

aspects such as normalization may be improved by task-specific modifications which

relate to the properties of particular tissues.

The proposed modulus reconstruction algorithm has some interesting and pleasant

properties. Definitely, most of the cases it works with the satisfactory result though

there remains scope to improve. Further technical development may improve the range

of applications and the general utility of the proposed approach.

A few suggestions are now made for strands of future development that are likely

to be worthwhile. These strands may be little vague. Maintaining known accuracy

followed by creative exploration of the combined deformation and precision data is

significant. Deformation estimation and the interface (or post processing) may be two

ways of development. The key factor for the ultimate estimation of stress and modulus

is deformation estimation. Strain estimation can be enhanced by enacting the efficient

algorithm and with a more careful section. For data acquisition, the hardware parts

have to be improved, pressure sensor should be implemented on the top of the US

probe. The RF signal quality should also be maintained. It should not be hampered by

the implanted pressure sensor.

Pertinent 3D tissue structure can be built for the analysis from CT or MRI data of

the breast section. For better realization, complexity should be increased. Known skin,

fat, background tissue and inclusion modulus and real characteristics should be consid-

ered while making phantom. Pre and post compression data should be collected from

that phantom and we need to find the strain data with a cautious selection of the tracing

algorithm after the validation of the proposed algorithm that can be implemented for

clinical application.

So the future work should be focused on hardware implementation, 3D tissue struc-

ture simulation and phantom-based data validation.
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