

Thesis Title

Simulation and Analysis of Photovoltaic System with Interleaved Boost Converter

By

Md. Khairul Alam

A thesis submitted to Islamic University of Technology in partial fulfillment

of the requirements for the degree of

M.Sc. in Electrical and Electronic Engineering

Department of Electrical and Electronic Engineering Islamic University of Technology (IUT) Organization of Islamic Cooperation (OIC) Board Bazar, Gazipur-1704, Bangladesh

Certificate of Approval

The thesis titled "Simulation and Analysis of Photovoltaic System with Interleaved Boost Converter" submitted by Md. Khairul Alam, Student No. 122610 of Academic Year 2018-2019 has been found satisfactory and accepted as partial fulfillment of the requirements for the Degree of Master of Science in Electrical and Electronic Engineering.

BOARD OF EXAMINERS:

1.		
	(Signature)	
	Name: Prof. Dr. Md. Ashraful Hoque (Supervisor)	
	Designation: Professor	Chairman
	Address: EEE Dept., IUT, Board Bazar, Gazipur-1704.	
2.		
	(Signature)	
	Head, EEE Dept.	Member
	Address: IUT, Board Bazar, Gazipur-1704.	(Ex-Officio)
	Address. 101, Doard Dazar, Gazipur-1704.	
3.		
	(Signature)	
	Name: Dr. Golam Sarowar	Member
	Designation: Associate Professor	
	Address: EEE Dept., IUT, Board Bazar, Gazipur-1704.	
4.		
	(Signature)	Member
	Name: Prof. Dr. Md. Fayzur Rahman	(External)
	Designation: Chairperson	(· · · · · · · · · · · · · · · · · · ·
	Address: EEE Dept., Green University Bangladesh, Dhaka.	

Declaration

It is hereby, declared that the work presented in this paper is the outcomes of the investigation performed by me under the supervision of Prof. Dr. Md. Ashraful Hoque, Professor, Department of EEE, Islamic University of Technology (IUT), Dhaka, Bangladesh. I also declare that no part of this paper has been submitted elsewhere for the award of any degree.

(Signature of the Supervisor) **Prof. Dr. Md. Ashraful Hoque** Professor, Department of EEE Islamic University of Technology, Board Bazar, Gazipur-1704, Bangladesh. (Signature of the Candidate) Md. Khairul Alam Student No.:122610 Academic Year: 2018-2019 Date: 23rd October, 2019.

Acknowledgement

Firstly, I would like to express my sincere gratitude to my thesis supervisor Prof. Dr. Md. Ashraful Hoque, for the continuous support of my study and related research, for his patience, motivation, and immense knowledge. His guidance helped me in all the time of research and writing of this thesis. I could not have imagined having a better supervisor and mentor for my M. Sc. study.

Secondly, I would like to thank my family: my parents, my wife and sister for supporting me spiritually throughout writing this thesis and my life in general.

My sincere thanks also goes to all of our faculty members, friends, classmates and every person who has helped and supported me to make this thesis possible.

Finally, thanks to ALLAH, for His blessing.

Abstract

In today's world, energy is a global issue and energy demand is increasing day by day. To satisfy the increasing demand renewable energy sources are fast gaining importance over non-renewable. Among different source of renewable solar power generation system tops the list as it provides a clean, cheap and environment friendly solution. Though PV system has lots of advantages it is less efficient and the power available from photovoltaic source is variable in nature. The voltage, current and consequently the power continuously vary depending on the load and the climate condition such as solar irradiance, cloud, and temperature. To minimize the effect DC-DC boost converter is used between the source and the load.

This thesis focuses on Interleaved DC-DC boost converter (IBC) for photovoltaic system. Input current ripple and output voltage ripple are two important performance parameters of IBC. The main source of the ripple in IBC is inductors which usually switched at a high frequency. A stable output voltage from a variable input voltage can be maintained by switching the inductors at different duty cycle and this duty cycle and inductance of inductors determine the amount of ripple on the input current which indirectly affects the efficiency of the converter as well as whole PV system. The effects of input voltage, duty ratio and inductor value on input current ripple are analyzed in this paper. It is found that using different inductor at different duty cycle can reduce the input ripple current and increase the efficiency.

In this paper three optimized inductor values for three adjacent duty cycle ranges is chosen. Using these different inductors a new boost converter topology is proposed. A digital controller is required for the converter and based on the input voltage/duty ratio switching among different inductor is occurred to maintain minimum input current ripple. The new proposed circuit is simulated using MATLAB/Simulink and the result is presented in this paper. From the simulation result it is also found that the inductor value has no remarkable contribution on output voltage ripple. For implementing switching logic for the digital controller an algorithm and flow chart is also developed and presented. Using the proposed controller with the proposed controlling algorithm a stable output voltage from a variable solar output with a minimized ripple current can be achieved. The input current ripple measured using the proposed controller is 3.3% lesser than the traditional IBC and the efficiency is improved by 0.87%. The proposed converter can be used in high power solar application as well as low power application. As the ripple is further reduced it can be a good choice for battery less solar powered IoT sensor node.

Table of Content

Content No. and Name

	Content No. and Name	Page No.
	CHAPETR 1: INTRODUCTION	
1.1	Introduction	2
1.2	Literature review	2
1.3	Research Motivation	4
1.4	Problem Definition	5
1.5	Thesis Objective	6
1.6	Scope of the Thesis	6
1.7	Research Approach	7
1.8	Outline of the Report	8
	CHAPTER 2: BACKGROUND	
2.1	Photovoltaic Cells	9
	2.1.1 Mathematical Model of Solar Cell	11
2.2	DC-DC Converter	12
2.3	Types of DC-DC Converter	13
2.4	Study of DC-DC Converter	13
	2.4.1 The Buck Converter	14
	2.4.1.1 Continuous Conduction Mode	15
	2.4.1.2 Discontinuous Conduction Mode	17
	2.4.2 The Boost Converter	19
	2.4.2.1 Operating principle of Boost Converter	20
	2.4.2.2 Continuous Conduction Mode	22
	2.4.3 Buck-Boost Converter	25
	2.4.3.1 Continuous Mode of BUCK-BOOST Converter	26
	2.4.3.2 Continuous Mode of BUCK-BOOST Converter	28

	2.4.4 Interleaved Boost Converter	31
	2.4.4.1 Design Aspect of IBC	32
	CHAPTER 3: MODEL BUILDING	
3.1	Finding Suitable Topologies of Boost Converter for Photovoltaic System	34
3.2	Choosing Interleaved Boost Converter for PV application	35
3.3	Traditional IBC	35
3.4	Why Two Phase IBC	36
3.5	Selecting Suitable Components for IBC	37
3.6	Output Voltage vs Duty Ratio for IBC	37
3.7	Effect of Inductance on IBC	39
3.8	Finding Optimum Inductor Value for IBC	39
3.9	Operation of the Proposed IBC	44
3.10	SIMULINK Model for Simulation	46
3.11	Controller of the Proposed IBC	48
3.12	Flow Chart of Switching Algorithm	49
	CHAPTER 4: SIMULATION AND ANALYSIS	
4.1	Simulation Result	50
	4.1.1 Simulation of IBC with fixed Input Voltage	50
	4.1.2 Simulation of IBC with variable Input	58
4.2	Practical Implementation	64
	CHAPTER 5: CONCLUSION	
5.1	Conclusion	70
5.2	Future Scope	71
	REFERENCES	72

List of Figures

No.	Title	Page
		No.
2.1	Construction of photovoltaic cell	10
2.2	Equivalent Circuit of PV Cell	11
2.3	The buck converter	14
2.4	On and Off state of buck converter	15
2.5	Evolution of the voltages and currents with time in an ideal buck converter	17
	operating in continuous mode	
2.6	Evolution of the voltages and currents with time in an ideal buck converter	18
	operating in discontinuous mode	
2.7	Boost Converter Schematic	20
2.8	The two configurations of a boost converter, depending on the state of the	21
	switch S.	
2.9	Waveforms of current and voltage in a boost converter operating in continuous	22
	mode.	
2.10	Waveforms of current and voltage in a boost converter operating in	24
	discontinuous mode.	
2.11	Schematic of buck-boost converter	25
2.12	The two operating states of a buck-boost converter	26
2.13	Waveforms of current and voltage in a buck-boost converter operating in	27
	continuous mode	
2.14	Waveforms of current and voltage in a buck-boost converter operating in	29
	discontinuous mode	
2.15	Evolution of the normalized output voltage with the normalized output current	30
	in a buck-boost converter	
2.16	Interleaved Boost Converter	31
3.1	Circuit Diagram of IBC	36
3.2	Effect of duty ratio on the minimum inductance and capacitance for IBC	38
3.3	Effect of duty ratio variation on the effective input impedance of a buck-boost	38

converter

3.4	Input phase current and switching pattern	40
3.5	Inductor current and input current according to the switching pattern	41
3.6	Input current ripple magnitude equations for different duty ratio	42
3.7	Input current ripple vs Input voltage graph	42
3.8	Proposed IBC with three separate inductors	43
3.9	Timing diagram of the proposed converter	44
3.10	Operation state for 45V input	45
3.11	Operation state for 55V input	45
3.12	Operation state for 35V input	46
3.13	Simulink Model for Proposed IBC	47
3.14	Switching algorithm of proposed IBC	49
4.1	Solar Irradiance for different month	51
4.2	Solar Irradiance in an day	51
4.3	Typical output voltage of solar PV	52
4.4	Transient response for three different inductor value when input voltage is 45 V	53
4.5	Stedy state response for three different inductor value when input voltage is 45	53
	V.	
4.6	Output voltage for different inductor value	54
4.7	Transient response for three different inductor value when input voltage is 35 V	55
4.8	Stedy state response for three different inductor value when input voltage is 35	55
	V.	
4.9	Transient response for three different inductor value when input voltage is 55 V	56
4.10	Stedy state response for three different inductor value when input voltage is 55	57
	V.	
4.11	Output voltage for different inductor	57
4.12	Input current for different inductor at different input voltage	58
4.13	Input and Output voltage of proposed IBC	59
4.14	Input current for existing and proposed IBC	60
4.15	Closer response of the input current	61
4.16	Transient response of both converter	61

4.17	Amplified view of ripple current	62
4.18	Transient created for sharp change in input voltage	63
4.19	Comparison of input current	63
4.20	Schematic diagram of practical IBC	64
4.21	Practical setup of the converter	65
4.22	Input and Output Voltage	65
4.23	Input current	66
4,24	Output voltage from solar panel	66
4.25	Output voltage from the IBC	67
4.26	Inductor current of the IBC	67
4.27	Transient response of output voltage	68
4.28	Ripple in input current	68
4.29	Switching pulse for two mosfets	69
4.30	Switching pulse	69

List of Table

No.	Title	Page
		No.
3.1	Optimum inductor value and duty cycle	43
3.2	Optimum inductor value for different branches	47
3.3	Solar Module Specification	47

List of Abbreviation

Acronyms	Description
PV	Photovoltaic
IBC	Interleave Boost Converter
SCM	Synchronous Conduction Mode
MPP	Maximum power point
IoT	Internet of Things
PID	Proportional Integral Derivative
ССМ	Continuous Conduction Mode
DCM	Discontinuous Conduction Mode
SMPS	Switching mode power supply
SEPIC	Single Ended Primary Inductor Converter