

Thesis Title

Development of a Short Term Forecasting Model for Electrical Energy Consumption Profile of a Base Station Using Artificial Neural Network

By

M. Abdullah Al-Amin

A thesis submitted to Islamic University of Technology in partial fulfillment

of the requirements for the degree of

M.Sc. in Electrical and Electronic Engineering

Department of Electrical and Electronic Engineering Islamic University of Technology (IUT) Organization of Islamic Cooperation (OIC) Board Bazar, Gazipur-1704, Bangladesh

Certificate of Approval

The thesis titled "Development of a Short Term Forecasting Model for Electrical Energy Consumption Profile of a Base Station Using Artificial Neural Network" submitted by M. Abdullah Al-Amin, Student No. 122611 of Academic Year 2018-2019 has been found satisfactory and accepted as partial fulfillment of the requirements for the Degree of Master of Science in Electrical and Electronic Engineering.

BOARD OF EXAMINERS:

1	
(Signature)	
Name: Prof. Dr. Md. Ashraful Hoque (Supervisor)	
Designation: Professor	Chairman
Address: EEE Dept., IUT, Board Bazar, Gazipur-1704.	

Declaration

It is hereby, declared that the work presented in this paper is the outcomes of the investigation performed by me under the supervision of Prof. Dr. Md. Ashraful Hoque, Professor, Department of EEE, Islamic University of Technology (IUT), Dhaka, Bangladesh. I also declare that no part of this paper has been submitted elsewhere for the award of any degree.

(Signature of the Supervisor) **Prof. Dr. Md. Ashraful Hoque** Professor, Department of EEE Islamic University of Technology, Board Bazar, Gazipur-1704, Bangladesh. (Signature of the Candidate) M. Abdullah Al-Amin Student No.:122611 Academic Year: 2018-2019 Date: 23rd October, 2019.

Acknowledgement

I would like to offer my deepest gratitude to my thesis supervisor Prof. Dr. Md. Ashraful Hoque, whose encouragement, guidance, support and most importantly the belief in me, from the initial to final level helped me a lot to understand the subject.

Secondly, I would like to thank my parents without whom; my existence and all my success would not be possible.

Lastly, thanks to all of our faculty members, friends, classmates and every person who has helped me and has been supported me in this way to make this thesis possible.

Finally, thanks ALLAH, for His blessing.

Abstract

Renewable storage device has built a significant place in energy sector. Recently this has achieved a vast development all around the world. With that motivation, this research is focused on forecasting the energy consumption of a BTS of the following day based on previous energy consumption model, and comparing the forecasting results with several popular Short Term Load Forecasting models.

Load forecasting is an important component for power system energy management. Precise load forecasting helps the electric utility to make unit commitment decisions, reduces spinning reserve capacity and schedule device maintenance plan properly. It also reduces the generation cost and increases reliability of power systems. In this work, an artificial neural network (ANN) for short term load forecasting is attempted along with support vector machine (SVM) and auto regressive integrated moving average (ARIMA). Time and load of same week day load are used as the independent variables for short term load forecasting. Based on the time and similar previous day load, ANN, ARIMA and SVM models are built, which are eventually used for the short term load forecasting. This comparison leads to the conclusion that, the forecasting performance of ANN gives more appropriate results than the other two techniques. ANN model forecasted the energy more accurately with increasing number of neurons. Using the curve fitting technique a mathematical model has been established from the data to independently measure the errors of the model. MATLAB SIMULINK package is used here in this work for system designing and simulation. Load data from different BTS is considered for the short term load forecasting.

Table of Content

		Page No.
	Chapter 1 Introduction	1
1.1	Research Background	1
1.2	Literature Review	4
1.3	Research Motivation	8
1.4	Research Goal	9
	1.4.1 Research Questions	10
1.5	Scope of Research	10
1.6	Research Approach	10
	1.6.1 Historical Data	11
	1.6.2 Forecasting of Consumption	12
	1.6.3 Storage Device Scheduling	12
1.7	Outline of the Report	13
	Chapter 2 Background	14
2.1	Base station Electricity Usage and storage	14
2.2	Benefits of forecasting	15
	2.2.1 Applications in deregulated electricity system	15
	2.2.2 Generation scheduling	16
	2.2.3 Control of the distribution network	16
2.3	Historical view of load forecasting	16
2.4	Different approach of STLF	18
	2.4.1 Time Series Forecasting Model	19
	2.4.1.1 Auto Regressive Integrated Moving Average	20
	2.4.2 Machine Learning Model	20
	2.4.2.1 Support Vector Machine	22
	2.4.2.2 Artificial Neural Network	24

26

Chapter 3 Methodology

3.1	Data	26
	3.1.1 Electricity use data	26
	3.1.1.1 Normal Energy Consumption Data	26
	3.1.1.2 Electrical Energy Consumption compromised with PV	28
	3.1.2 Qualitative variables	29
3.2	Data Pre-processing	30
3.3	Data Analysis	31
	3.3.1 Day identification number as input of ANN	31
3.4	Evaluation method	33
	Chapter 4 Model Building	36
4.1	ANN based forecasting model	36
	4.1.1 Historical Development of ANN	36
	4.1.2 Working Principle of Forecasting Model	37
	4.1.3 Network Architecture	39
	4.1.4 Selection of the Network	39
	4.1.5 Mathematical Model	42
	4.1.6 Network Training	43
	Chapter 5 Simulation Results and Analysis	44
5.1	Assumption	44
5.2	Electricity Consumption Forecasting	45
	5.2.1 Model Evaluation	45
	5.2.2 Demonstration of day-ahead consumption forecasting	47
	5.2.2.1 Consumption forecasting on mid-summer (June 01, 2013)	47
	5.2.2.1.1 Forecasting with FNN	49
	5.2.2.1.2 Forecasting with ARIMA	53
	5.2.2.1.3 Forecasting with SVM	58

	Chapter 6	Conclusion	67
6.1	Conclusion		67
6.2	Future Works		69
	Reference		70

List of Figures

No.	Title	Page
		No.
1.1	World-wide electricity consumption by sector[2]	1
1.2	OECD & Non-OECD country's electricity consumption by sector,	2
	2015[3]	
1.3	Growth rate of electrical energy consumption in residential sector[4]	3
2.1	Stages in the time series model building [41]	19
2.2	Basic Structure of SVM	24
3.1	Weekly consumption pattern	27
3.2	Daily load consumption	28
3.3	PV Compromised Electricity Consumption	28
3.4	Electricity consumption of some particular equipment	29
3.5	Average value for missing data on weekdays	30
3.6	Average value for missing data on weekend	31
3.7	SOM clustering of electricity use per day	33
4.1	Flow of information in biological neuron	36
4.2	A general ANN structure with one hidden layer	37
4.3	Illustration of networks weights in supervised learning process	38
4.4	The taxonomy of ANN architecture	40
4.5	Structure of FNN	40
5.1	Forecasting performance of FNN for consumer 5	49
5.2	MAPE of forecasted output of consumer 5 by FNN	50
5.3	Forecasting performance of FNN for consumer 8	50
5.4	MAPE of forecasted output of consumer 8 by FNN	51
5.5	Forecasting performance of FNN for consumer 2	52
5.6	MAPE of forecasted output of consumer 2 by FNN	53
5.7	Forecasting performance of ARIMA for consumer 5	54
5.8	MAPE of forecasted output of consumer 5 by ARIMA	54
5.9	Forecasting performance of ARIMA for consumer 8	55
5.10	MAPE of forecasted output of consumer 8 by ARIMA	56
5.11	Forecasting performance of ARIMA for consumer 2	57

5.12	MAPE of forecasted output of consumer 2 by ARIMA	58
5.13	Forecasting performance of SVM for consumer 5	59
5.14	Forecasting performance of SVM for consumer 8	59
5.15	Forecasting performance of SVM for consumer 2	60
5.16	MAPE Vs Number of Neurons	62
5.17	MSE Vs Number of Neurons	62
5.18	MSE Comparison of Consumers	64
5.19	MAPE Comparison of Consumers	65

List of Table

No.	Title	Page
		No.
5.1	Performance Evaluation	48
5.2	MSE Comparison for different consumer varying number of neurons	61
5.3	MAPE Comparison for different consumer varying number of neurons	61
5.4	Comparison of the models for consumer 5	63
5.5	Comparison of the models for consumer 2	64
5.6	Result comparison of Consumer 8 both by manual Vs MATLAB	66

List of Abbreviation

Acronyms	Description
ANN	Artificial Neural Network
ARIMA	Auto Regressive Integrated Moving Average
FNN	Feed-forward Neural Network
RES	Renewable Energy Source
MAPE	Mean Average Percentage Error
GUI	Graphical User Interface
MSE	Mean Squared Error
OECD	Organization for Economic Co-operation and Development
PV	Photo Voltaic
BTS	Base Transceiver Station
DSM	Demand Side Management
STLF	Short Term Load Forecasting
ES	Expert System
SVM	Support Vector Machine