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Abstract

Being the very first in the category of low-cost consumer-level depth sensors,

Microsoft Kinect has opened the door to a new generation of computer vi-

sion and biometric security applications after its release. This thesis focuses

on designing new methodologies for Kinect-based gait recognition systems

that utilize the Kinect 3D virtual skeleton to construct effective and robust mo-

tion representations. Our goal is to propose a gait recognition method that

focuses on designing a feature descriptor that can capture person-specific dis-

tinct motion patterns, caused by the influence of human physiology and be-

havioral traits. In this regard we use pre-existing representations of skeletal

data namely Joint Relative Distance and Joint Relative Angle. The proposed

methodologies contain more representations using mean and standard devi-

ation of the data which can effectively handle view and pose variations. We

used a dynamic time warping-based kernel that takes a collection of sequences

as parameters and computes a dissimilarity measure between the training and

the unknown sample. It can effectively handle variable walking speed without

any need of extra pre-processing. The effectiveness of the proposed method-

ologies are evaluated using 3D skeletal gait database captured with a Kinect

v1 sensor. In our experiments, fusion of mean and standard deviation achieves

promising results, as compared against the previous implementations.
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Chapter 1

Introduction
In this chapter, we first present an overview of our thesis that includes the sig-

nification of the problem and the problem statement in detail. Research chal-

lenges to be faced in the whole scenario is also discussed based on the prob-

lem statement. Thesis objectives, motivations and our contribution are noted

in sections. The end of this chapter has the description of the organization of

the thesis.

1.1 Overview

1.1.1 Gait

Gait is the pattern of movement of the limbs of animals, including humans,

during the locomotion over a substrate. Most animals use a variety of gaits,

selecting gait based on speed, terrain, the need to maneuver, and energetic

efficiency. Different animal species may use different gaits due to differences

in anatomy that prevent use of certain gaits, or simply due to evolved innate

preferences as a result of habitat differences.

Human gait refers to locomotion achieved through the movement of human

limbs. Human gait is defined as bipedal, biphasic forward propulsion of center

of gravity of the human body, in which there are alternate sinuous movements

of different segments of the body with least expenditure of energy. Different

gait patterns are characterized by differences in limb-movement patterns, over-

all velocity, forces, kinetic and potential energy cycles, and changes in the con-

tact with the surface (ground, floor, etc.). Human gaits are the various ways in

which a human can move, either naturally or as a result of specialized training

[1].

A (bipedal) gait cycle as shown in figure 1 [2] is the time period or se-

quence of events or movements during locomotion in which one foot contacts

the ground to when that same foot again contacts the ground, and involves
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forward propulsion of the centre of gravity. A single gait cycle is also known

as a stride.

Figure 1: Human gait cycle

1.1.2 Gait Recognition

Gait recognition refers to an algorithm that essentially aims to recognize a per-

son by automatically extracting movement characteristics of the walking per-

son in a video [3].

Biomechanics literature denotes gait recognition procedure as, “A given

person will perform his or her walking pattern in a fairly repeatable and char-

acteristic way, sufficiently unique that it is possible to recognize a person at a

distance by their gait” [4].

1.1.3 Tracking Skeletal Data

Microsoft Kinect can be used to track skeletal data. Kinect(codenamed Project

Natal during development) as shown in figure 2 is a line of motion sensing in-

put devices that was produced by Microsoft for Xbox 360 and Xbox One video

game consoles and Microsoft Windows PCs. Based around a webcam-style

add-on peripheral, it enables users to control and interact with their console/-

computer without the need for a game controller, through a natural user inter-

face using gestures and spoken commands. Kinect uses structured light and

machine learning to detect skeletal data. It is a two-stage process:

• Compute depth map using structured light

• Infer body position using machine learning

2



Figure 2: Kinect for XBOX 360

The depth map is constructed by analyzing a speckle pattern of infrared laser

light. Microsoft licensed this technology from a company called PrimeSense.

The depth computation is all done by the PrimeSense hardware built into Kinect.

Details of this hardware are not publicly available. Based mostly on Prime-

Sense patent applications [5], the technique of analyzing a known pattern is

called structured light. General principle of this approach is to project a known

pattern onto the scene and inferring depth from the deformation of that pat-

tern. Kinect uses infrared laser light, with a speckle pattern of infrared laser

light. It combines structured light with two classic computer vision techniques:

depth from focus, and depth from stereo.

Depth from focus uses the principle that stuff that is more blurry is further

away. Kinect dramatically improves the accuracy of traditional depth from fo-

cus. It uses a special “astigmatic” lens with different focal length in x- and y-

directions. A projected circle then becomes an ellipse whose orientation de-

pends on depth. On the other hand, if we look at a scene from another angle,

stuff that is closer gets shifted to the side more than stuff that is far away. This

phenomenon is known as parallax. Kinect analyzes the shift of the speckle

pattern by projecting from one location and observing from another.

Body parts are inferred using a randomized decision forest, learned from

over 1 million training examples, mapping depth images to body parts [6].

3



1.2 Problem Statement

Gait recognition has recently gained more and more interests from researchers

due to its several attractive properties. It is an emerging and ever changing

field of technology that can be implemented into just about anything that re-

quires a security protocol. Generic gait recognition systems typically comprise

three basic components: i) a sensor or camera to collect the data, ii) a feature

representation, and iii) a classifier. The feature representation describes the

characteristics of the captured gait data (obtained from the sensor), which is

then used by the classifier to recognize the person. However, even using the

best classifier will result in poor recognition performance, if provided with

features having low discriminating ability or inadequate information. Hence,

designing an effective and discriminative feature representation is one of the

main challenges in gait recognition. An effective and discriminative feature

descriptor can be characterized as: i) having high inter-class variations and

low intra-class variations, ii) providing robustness in uncontrolled environ-

ment under the presence of view and scale changes, and iii) having a low-

dimensional feature space to facilitate low computational cost [7, 8]. Since gait

recognition using Kinect is an emerging area of research, most of the existing

studies have been conducted under simplifying assumptions, such as constant

walking or movement speed, fixed distance and viewpoint, relatively smaller

datasets, etc. However, in order to deploy gait recognition systems in real-

world settings, constructing effective feature representations that can work in

unconstrained environment is an important task.

The primary goal of our thesis is “Developing effective methodology for

gait recognition using Skeletal Joint Data”. In particular, we aim to investi-

gate how the 3D skeletal motion data obtained from the Kinect can effectively

be utilized to design real-world gait recognition systems. The challenges we

aim to tackle are: i) finding a set of discriminative features that are robust

against view and scale changes as well as the speed of walking, and ii) utiliz-

ing these features in designing effective gait recognition systems that can attain

high recognition performance in uncontrolled environment.

4



1.3 Significance of Gait Recognition

Biometric is a technical term for body measurements and calculations and is

used in computer science for identifying people by their physical characteris-

tics. Biometrics is becoming an important field in science for several, not the

least of which is the heightened demand for security in a variety of situations.

Some of the biometric identification systems are very accurate, like those that

use patterns of blood vessels in the retina (the back of the eye). But gener-

ally, in order for a system like that to identify us, we have to voluntarily enroll

ourselves in the database. Then, when we try to gain access to a facility or to

classified information, the system takes a scan of our retina and matches it to

that stored file to verify our identity. This works great when we are trying to

selectively identify a small group of people with special access privileges. But

we cannot positively identify anybody who is not enrolled in the system, we

can tell who they are not but not who they are. Furthermore, we have to gener-

ally interact closely with these systems in order for them to check our identity.

Someone with malicious intentions would obviously avoid this type of identi-

fication system. So if we want to identify dangerous or suspicious individuals

from a distance, these systems would not help.

Secure real-time user authentication and access control management are

crucial for a wide variety of systems and services, such as secure access to fa-

cilities, cell phones, automated teller machines (ATM), computers, etc. Tradi-

tional approaches to the problem involve use of certain tokens, such as iden-

tification card or password verification. However, these solutions have some

drawbacks. For example, ID cards can be lost, stolen, or forged, while pass-

words can be compromised or forgotten [9]. As a result, these approaches are

vulnerable to forgery and unable to provide sufficient security [10]. In recent

years, rapid development of biometric technologies has opened the door to a

new class of fast and reliable identity management solutions [11], which are

being actively researched and deployed in both corporate and academic set-

tings [12, 13, 14].

Human biometric traits can roughly be divided into two categories: physio-

5



logical and behavioral. Physiological biometric systems utilize certain physical

characteristics, such as face, iris, ear, fingerprints, palmprints, etc. for individ-

ual recognition. On the other hand, behavioral biometric systems rely on hu-

man behavior-mediated activities, such as gait, voice, handwriting, signature,

etc. In most cases, a biometric system requires direct participation or coopera-

tion of the persons (in the form of physical contact or pose) being recognized

[15, 16]. However, gait recognition is one kind of biometric technology that

can be used to monitor people without their cooperation. Gait can be defined

as the movement patterns of certain body limbs and their interactions with the

surrounding environment during walking [17, 18]. It is a complex and dy-

namic behavioral trait, which makes it difficult to disguise someone’s own gait

or imitate some other person’s gait [19]. This characteristic makes gait recogni-

tion particularly useful in scenarios where other biometric traits are obscured

(often intentionally, such as a crime scene) or user cooperation is not intended

(such as surveillance in public places like airports, bus stations etc.) [19]. In

addition, gait analysis can potentially be utilized in virtual and augmented re-

ality, motion and video retrieval [20], 3D human body and animation [21, 22],

healthcare [23].

1.4 Research Challenges

The developed methodologies should satisfy the following criteria:

1. The constructed feature descriptors should be view and scale-invariant

and should effectively represent the human gait patterns in a robust man-

ner.

2. To ensure low computational cost, the developed methodologies should

incorporate effective feature selection techniques to obtain highly dis-

criminating feature representations in a low-dimensional space.

3. The developed methodologies should not require individuals to walk

only to a specific direction (fronto-normal or fronto-parallel).

4. The developed methodologies should be robust against variations in the

speed of walking resulting in variable length video sequences.

6



5. Fusion of disparate feature representations should be experimented to

check whether they improve the gait recognition performance.

1.5 Contributions

In this thesis, we presented new methodologies for gait recognition that uti-

lizes the 3D skeletal motion data captured using the Kinect depth sensor. The

strength of the proposed methods lies in constructing view and scale-invariant

feature representations that can effectively capture the underlying spatio - tem-

poral motion patterns of different skeletal joints. A brief overview of the con-

tributions of this thesis is as follows:

1. We managed to obtain better performance using less features than other

state of the art methods that were compared. The result is better in scale

and view variant situations. The performance is similar or better in sit-

uations where the distance from the camera and user remain same and

user walks in a single direction.

2. New feature named angle difference is introduced for gait motion repre-

sentation. This is robust against view and scale variations and along with

calculated angles can effectively capture the underlying motion patterns

of different skeletal joint-pairs.

3. Old feature representations methods like mean and standard deviation

have been rejuvenated to be combined and used with our feature repre-

sentations.

4. Dynamic time warping (DTW)-based classifier is introduced for gait clas-

sification that can effectively handle the differences in walking speed,

thus eliminating the need of extra pre-processing steps such as resam-

pling.

5. More robustness against noise compared to other methodologies. This

also contributed to the elimination of pre-processing steps such as noise

removal or gait cycle detection.

7



1.6 Organization of the Thesis

The rest of this thesis is organized as follows:

Chapter 2 gives an overview of different approaches for the gait recogni-

tion problem. This chapter also describes the reasons for choosing angles and

mean, standard deviation for gait recognition.

Chapter 3 proposes a solution to increase accuracy and robustness against

view and scale variant data. It contains the framework, implementation of

the proposed methodologies and also contains other methodologies that we

tested.

Chapter 4 presents result analysis and comparison with other implementa-

tions and studies.

Chapter 5 presents conclusions and discusses future work.

8



Chapter 2

Literature Review
The first section of this chapter gives a brief overview of the Microsoft Kinect

sensor with a discussion on some of the precursory works related to range sens-

ing. Next, we present a generic classification of different types of existing gait

recognition approaches and provide justifications for selecting model-based

marker-less approaches as the primary focus of our thesis. In the subsequent

sections, we explore existing approaches to human gait recognition including

some of the most recent Kinect-based methods. We also discuss the limitations

of some of these methods. Finally we will discuss the classification methods

used in these papers.

2.1 Background

From the advent of computer vision in the early 1960s, researchers are inves-

tigating how computers can acquire a realistic interpretation of the complex

three-dimensional world around us. One of the main objectives is to enable

computers to make sense of a complex environment with the help of sensory

input processing, which in turn, has the potential to be utilized in situation-

aware intelligent surveillance and access control systems in a natural and un-

obtrusive manner. Early computer vision methods were mostly based on 2D in-

tensity images, where mathematical techniques were used to model 3D shapes

and structures. However, recovering 3D information from 2D intensity images

is a challenging task, since projecting a 3D scene to a 2D space incurs signif-

icant loss of data. In fact, it is mathematically impossible to construct a 3D

representation of an object given only a single 2D intensity image [24]. Hence,

researchers are actively seeking new sensor technologies in order to recover 3D

shapes directly from the sensor, leading to more robust representations and in-

terpretations of 3D environments.

Early range sensors introduced in 1980s were typically based on sonar, in-

frared, and laser range finders [25]. One of the precursory works on laser
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range sensors presented by Gil et al [26]. They addressed the problem of com-

bining range and intensity data obtained from the same scene by extracting

edge maps from both representations and reducing the problem to combining

the two edge maps. Magee and Aggarwal [27] presented an extensive review

on 3D object description and recognition based on both intensity and laser-

based range imagery. They argued that combining the advantages of these

two modalities could potentially lead to more robust and computationally in-

expensive interpretation and recognition of 3D objects and structures. This ar-

gument was further supported by the study presented in [28], where intensity

information was utilized to reduce the time required for range sensing. Instead

of finding the range for every point in a scene, the authors used intensity image

to guide selective range sensing by first detecting potential points of interest.

Another work by Vemuri et al [29]. They utilized intrinsic surface properties

extracted from range data to construct 3D surface and object representations.

However, while the range sensors opened the door to a new class of computer

vision techniques, early sensors suffered from several limitations. For example,

sonar sensors are susceptible to noise caused by echo and reflections. On the

other hand, early infrared and laser range finders were expensive and could

only estimate the range of a single point in a scene. In addition, typically these

sensors were not suitable for capturing human motion data [24].

Figure 3: Different data streams obtained from Kinect Sensor

Being the very first sensor in the category of low-cost consumer-level depth

sensing, the recent release of the Microsoft Kinect has potentially opened the

door to a new generations of computer vision and biometric security applica-

tions [15]. It was originally introduced for the Xbox 360 gaming system as an

add-on device that can detect physical movements or voice commands of the

10



user and thus enable the user to play games without any physical controller

[12]. Kinect is made up of an array of sensors, which include i) a color cam-

era, ii) a depth sensor, and iii) a multi-array microphone setup as shown in

figure 3. The depth sensor comprises a monochrome CMOS camera and an

infrared (IR) emitter. Using these two components, Kinect can build 3D maps

of objects by emitting human eye-invisible IR and then analyzing the light and

shadow of the image captured by the CMOS camera. The multi-array micro-

phone has an ambient noise cancellation feature and can also be used to detect

the source location of voice. In addition, Kinect can construct a 3D virtual

skeleton of a human body using the depth information [6]. With all these ca-

pabilities along with its small compact size, the Microsoft Kinect has attracted

a significant attention from the computer vision, biometrics, and robotics re-

search community, leading to its application in home monitoring [30], face and

facial expression analysis [31], 3D object modeling [32], indoor navigation and

mapping [33], healthcare and rehabilitation [34], etc. In addition, some of the

recent works on pose estimation [35], human body modeling [21, 22], motion

retrieval [36], and activity recognition [37], etc have utilized the depth infor-

mation and computationally inexpensive 3D skeletons obtained from Kinect.

2.2 Overview of Gait Recognition Methods

Figure 4: Categories of gait recognition methods
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Human gait recognition techniques can be divided into two main categories:

i) sensor-based approach and ii) vision-based approach. This section presents

a brief overview of these methods.

2.2.1 Sensor-Based Methods:

Sensor-based techniques typically exploit wearable motion sensors attached to

different joints or body parts of the subject to measure various characteristics of

gait performed by the subject [38]. Some commonly used wearable sensors in-

clude accelerometer, gyroscope, magneto-resistive sensors, flexible goniome-

ter, electromagnetic tracking system (ETS), electromyography (EMG) sensor,

etc. [38]. Force sensors and pressure plates that can measure foot pressure

have also been successfully applied in human gait analysis [39]. However, al-

though sensor-based techniques can acquire reliable gait data, applications are

limited to diagnosis of medical conditions and rehabilitation research, typically

conducted under controlled laboratory environment [40].

Figure 5: Kinematic measurement based on accelerators and gyroscopes at-
tached on the foot, calf and thigh separately

2.2.2 Vision-Based Methods:

While sensor-based gait recognition techniques exploit motion and pressure

sensors, vision or image-based systems utilize videos of gait recorded using a

single or multi-camera setup in indoor or outdoor environment. The recorded
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video data is then processed to extract salient characteristics related to human

gait motion. This category of gait recognition systems can further be subdi-

vided into marker-based and marker-less analysis. In marker-based approach,

active or passive markers are attached to body parts of the subject, which fa-

cilitates extraction of accurate joint motion data from the video without exten-

sive video processing. On the other hand, in marker-less gait analysis, videos

are recorded with normal clothing with no marker attached. Different com-

puter vision and image processing techniques are then applied on the recorded

videos to extract human silhouette and motion data.

In our thesis, we focused on vision-based marker-less gait recognition meth-

ods. This choice was motivated by the social acceptability of vision-based

approaches, which is well-demonstrated by the widespread deployment and

general acceptance of video surveillance systems in public places like airports,

banks, bus and train stations, etc. On the other hand, sensor-based approaches

are typically difficult to accommodate in many real-world scenarios.

2.3 Vision-Based Gait Recognition Systems

Figure 6: Overview of a generic vision-based gait recognition system

A vision-based gait recognition system involves multistage processing of

video data acquired from a single or multi-camera setup. Figure 6 shows an

overview of a generic video camera-based gait recognition system. As shown
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in this figure, the first step involves pre-processing the raw sequence images

obtained from the camera to isolate human silhouette or motion. Typically, this

is achieved by modeling the background scene using a set of sequence images

and highlighting the difference in the current image with respect to the back-

ground. To facilitate robust background modeling, traditional gait data cap-

turing is performed with a fixed camera position in an environment where the

background is relatively uniform [41]. This approach of foreground segmen-

tation is often followed by noise reduction methods to reduce noise and distor-

tion caused by sub-optimal threshold selection [42]. Regular human walking

is considered to be a cyclic motion, which repeats in a relatively stable fre-

quency [43]. Hence, the next step involves detecting gait cycles since features

extracted from a single gait cycle can represent a complete gait pattern. Once

the gait cycle is detected, the corresponding silhouette or motion data is passed

to a feature extraction module which extracts the underlying characteristics of

individual gait. Success of a gait recognition system critically depends on the

discriminating ability of the extracted feature representation. Hence, it is im-

portant to remove redundant and noisy features and utilize only the most in-

formative and discriminating features to construct the final gait signature rep-

resentation. Lastly, the constructed feature representation is passed to a recog-

nition or verification module that uses machine learning techniques to match

unknown gait samples with the training gait models stored in a database.

Depending on the type of features being used, vision-based gait recognition

methods found in literature can be divided into two categories: i) model-based

approaches and ii) model-free or appearance-based approaches [44]. In the

following subsections, we present brief reviews of the past works in these two

categories. In addition, we also present a review of some of the most recent

works on Kinect-based gait recognition.

2.3.1 Model-Based Gait Recognition

In model-based approaches, movements of different body parts, such as legs,

arms, etc. are modeled explicitly based on a set of estimated parameters [43].

The variations of the parametric values are tracked over time, which is then
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used as the gait signature representation. However, constructing the model, fit-

ting it on the captured gait data, and estimating the parametric values are com-

putationally expensive, which makes model-based gait recognition approaches

time-consuming and difficult to accommodate in many real-world applications

[43]. BenAbdelkader et al. [45] proposed one of the early model-based gait

recognition methods, where two spatio-temporal parameters, namely cadence

and stride length were estimated to represent the gait biometric. Later, Urta-

sun and Fua [46] utilized 3D temporal motion model-fitting to synchronized

video sequences in their proposed gait recognition method. Individual gait

signature was represented based on the estimated motion parameters. A sim-

ilar approach was adopted by Yam et al. [47], where gait signatures obtained

from walking and running was differentiated by modeling human leg structure

and motion. Although their proposed gait recognition method offers view and

scale invariance, it depends heavily on the quality of the gait sequences [48].

Figure 7: The layered deformable model

More recently, Lu et al. [49] introduced layered deformable models (LDM)

(shown in figure 7) to represent shapes and dynamics of different human body

parts based on 22 different parameters. The parameters were used to capture

the size, position, and orientation of the body parts from fronto-parallel gait

sequences. While many of the existing model-based gait recognition meth-

ods focus on modeling the lower-body parts, the LDM models were applied

to construct a full-body representation of gait. Another full-body gait analy-

sis approach presented by Arai and Andrie [50] utilizes morphological oper-
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ations to obtain skeletal models from extracted silhouettes. Discrete wavelet

transformation (DWT) and Haar wavelets were applied on the extracted mod-

els to reduce feature dimensionality. However, morphological operation-based

skeleton extraction is not invariant against view and scale changes.

2.3.2 Appearance-Based Gait Recognition

While model-based approaches focus on modeling individual body parts and

their movements, model-free approaches involve constructing a compact holis-

tic representation of gait motion appearance by utilizing the silhouette sequences

extracted from the video [43]. Shutler et al. [51] introduced velocity moment

features to represent object and motion in image sequences for gait analysis.

In practice, the velocity moments capture the differences between the center of

mass of a moving object in successive images.

Figure 8: Key frames containing Motion Energy Image (MEI) of a person sit-
ting

Later, Bobick and Davis [52] proposed the motion energy image (MEI), which

is a temporal template representation of human movement. As shown in figure

8, the MEI representation comprises a static vector image, where each point is

a function of the motion attributes of the corresponding spatial location of the

point in a sequence image. BenAbdelkader et al. [53] utilized self-similarity

plots constructed from pairwise correlation of extracted silhouettes in the im-

age sequences. The obtained plots were then projected into a subspace, namely
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the EigenGait space using principal component analysis (PCA), which effec-

tively reduces the feature dimensionality. Both the motion energy image (MEI)

and the EigenGait based representation of human movement for gait analysis

contributed to the development of one of the most popular appearance-based

gait recognition methods, namely the gait energy image (GEI) [54].

Figure 9: Examples of normalized and aligned silhouette frames in different
human walking sequences. The rightmost image in each row is the average
silhouette image over the whole sequence - Gait Energy Image (GEI)

As shown in figure 9, the GEI is a spatio-temporal representation of all the

silhouette motion sequences accumulated in a single energy image. The GEI

method utilizes a fusion of principal component analysis (PCA) and multiple

discriminant analysis (MDI) [55] to reduce the feature dimensionality, while

maintaining a high class separability at the same time.

Some of the more recent model-free gait recognition methods focus on ex-

tending GEI to a more robust representation. One example is the frame dif-

ference energy image (FDEI) proposed by Chen et al. [56], which handles

silhouette incompleteness by utilizing denoising and clustering techniques.

Another approach proposed by Li and Chen [57] involves fusing foot energy

image (FEI) and head energy image (HEI), which facilitates the construction

of a more informative gait signature representation. Nevertheless, although

appearance-based approaches present a computationally inexpensive set of

gait recognition methodologies, their performance suffer due to scale and view

variations in an uncontrolled or changing environment [15].
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2.3.3 Gait Recognition Using Kinect

While vision-based biometric gait recognition has been a topic of interest over

the past twenty years, the invention of the low-cost Kinect sensor has opened

up new opportunities to address the problems related to real-time motion anal-

ysis, resulted in a spike in the interest in gait recognition using Kinect. In ad-

dition to different data streams that can be obtained from Kinect (RGB, depth,

audio), it can also construct a 3D virtual skeleton from human body and track

it in real-time rendering the traditional video pre-processing tasks (e.g. back-

ground modeling, silhouette extraction, etc.) unnecessary. As a result, some

of the recent gait recognition methods found in literature utilize the computa-

tionally inexpensive real-time depth sensing and skeleton tracking in order to

model the gait signature.

One of the precurosry work on Kinect-based gait analysis was done by Ball

et al [18], whose study investigated the possibility of recognizing individual

persons from their gait pattern using three-dimensional ‘skeleton’ data from

an inexpensive consumer-level sensor, the Microsoft Kinect. The skeletal in-

formation was extracted using Kinect SDK and suitable walk half-cycles were

subsequently extracted by hand. A walk cycle is defined here as the movement

where the person’s feet are a maximum distance apart, with the same foot in

front. Due to the limited distance over which skeletons could successfully be

extracted, walk half-cycles were used rather than full walk cycles as this choice

yielded many more data sets. The features used for clustering were based on

the lower limb joint angles. It was found that the limb length assigned by the

Microsoft Kinect SDK skeletal algorithm changed significantly as the person

walked across the camera field of view, so the limb length was not scale and

view invariant. The features selected for clustering were the mean, standard

deviation and maximum value of three angles for each of the left and right legs

of the extracted skeleton. The angle of the upper leg relative to the vertical, the

angle of the lower leg relative to the upper leg, and the angle of the foot relative

to the horizontal were used, giving a total of 18 angular features. They used

K-means clustering algorithm. A combined clustering accuracy of 43.6% was

obtained.
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Preis et al [58] presented an approach for gait recognition using Microsoft

Kinect by evaluating a number of body features together with step length and

speed. The Kinect SDK offers the detection and tracking of 20 different skeletal

points, from head over hips to the feet. Using these points, thirteen biometric

features were calculated for person identification. The height, the length of

legs, torso, both lower legs, both thighs, both upper arms, both forearms, the

step length, and the speed. The first eleven features are static and the rest two

are dynamic. The performance of the chosen features were evaluated with the

help of three classifiers: 1R, C4.5 decision tree and a Naı̈ve Bayes Classifier. The

accuracy of the identification are 62.7%, 76.1% and 85.1% respectively. How-

ever, as shown in figure 10, the users kept a certain distance from the sensor

while walking and walked in a specific direction.

Figure 10: Experimental setup for Preis et al.

Faisal et al [15] proposes a new 3D gait recognition method that utilizes

the Kinect skeletal data for gait representation. It proposes two new features,

namely joint relative distance (JRD) and joint relative angle (JRA), which are

robust against view and pose variations. There were several steps in this pro-

posed method. At first, complete gait cycles were detected (shown in figure

12) from video sequences recorded by the Kinect Sensor.

Next, the relevant JRDs and JRAs (shown in figure 11) were computed over

the complete gait cycle. Then, these variable length JRD and JRA sequences
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Figure 11: A graphical representation of the selected best JRDs and JRAs

were then matched with an unknown sample sequence. The sequences with

the lowest dissimilarity were selected and then a rank level fusion of the se-

lected JRD and JRA sequences was carried out. Gait cycle was detected by

tracking the horizontal distance between ANKLE LEFT and ANKLE RIGHT joints

over time. During the walking motion, the distance between the two ankle

joints will be the maximum when the right and the left legs are farthest apart

(heal strike) and will be the minimum when the legs are in the rest (stand-

ing) position. Therefore, by detecting three subsequent maxima, it is possible

to find the two subsequent occurrences of the same leg in the heal strike posi-

tion, which corresponds to the beginning and ending points of a complete gait

cycle, respectively [59]. Joint relative distance (JRD) between any two skeletal

joints p1(x1, y1, z1) and p2(x2, y2, z2) can be defined as the the Euclidean distance

between these two joints in a 3D space [60]. It can be denoted as:

δ(p1, p2) = sqrt(x1 − x2)2 + (y1 − y2)2 + (z1 − z2)2 (1)

The Joint Relative Angle (JRA) between two joints p1 and p2 can be defined as

the angle formed by p1 and p2 with respect to a reference point r. Given the

coordinates of 3 points p1, p2 and r in a 3D space, the angle:

θp1,p2 = cos−1
~p1r × ~rp2
| ~p1r| × | ~rp2|

(2)

SPINE BASE was selected as the reference point in this study, since this joint re-

mains almost stationary during walking. A total of 300 JRD or JRA sequences
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was possible as there were 25 skeletal joints. Genetic algorithm was used to

find the relevant JRD and JRA sequences. Dynamic Time Warping (DTW) clas-

sifier was utilized to design a kernel for gait recognition that takes a collection

of JRD/JRA time series data originated from different joint-pairs as the param-

eter and outputs the dissimilarity measure between two given gait samples.

The JRD/JRA sequences with the lowest dissimilarity measure was selected.

Use of DTW in this case allows the alignment of different length JRD/JRA se-

quences, which enables the classifier to match gait samples without any inter-

mediate resampling stage. Then a rank level fusion of JRD and JRA was done.

Both JRD and JRA were used individually to generate rank lists of candidates

and the top 3 candidates from both rank lists were selected for majority voting.

The candidate with the highest number of votes was selected as the match.

Accuracy of identification was 92.1%.

Figure 12: Detection of complete Gait Cycle by tracking the distance between
the left and right ankle joints

Another one by Faisal et al [16] introduces a new 3D skeleton-based gait

recognition method for motion captured by a low-cost consumer level camera,

namely the Kinect. A new representation of human gait signature was pro-

posed based on the spatio-temporal changes in relative angles among differ-

ent skeletal joints with respect to a reference point. JRA sequences originated

from different joint pairs were then evaluated to find the most relevant JRAs for

gait description. It used similar method as discussed before to detect gait cycle
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(shown in figure 12) and calculate JRA. A statistics based relevant joint pair

selection approach was used that utilizes histogram of JRA features to eval-

uate the level of engagement of the corresponding joint pair. For joint pairs

that has high relative motion during gait, the joint relative angles computed

over the full gait cycle should have high temporal changes. On the other hand,

joint pairs that remains stationary or moves little during gait should have lit-

tle variation of JRA over the full gait cycle. This can also be represented using

histogram of JRA values. For a particular joint pair that has high relative mo-

tion during gait, the histogram should have a wide distribution. On the other

hand, for joint pairs that has little relative movement the JRA values will oc-

cupy only a few number of bins in the histogram. The more the number of

occupied bins in the JRA histogram of a particular joint pair, the more relevant

is that joint pair. Again DTW was utilized to design a kernel for gait recog-

nition that takes a collection of selected JRA time series data originated from

different joint-pairs as the parameter and outputs the dissimilarity measure be-

tween two given gait samples. The JRA sequence with the lowest dissimilarity

measure was selected. Use of DTW in this case allows the alignment of differ-

ent length JRA sequences, which enables the classifier to match gait samples

without any intermediate resampling stage.

Figure 13: Experimental setup for Dikovski et al

Dikovski et al [61] the feature sets were constructed and evaluated with the

purpose of finding out the role of different types of features and body parts in

the gait recognition process. Here the distance between camera and the user

remained same and the user walked in a specific direction (shown in figure
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13). The feature sets were constructed from skeletal images in three dimen-

sions made with a Kinect sensor. Distance between each pair of adjacent joints

(19 in total), person height and distance between two ankle joints were calcu-

lated using Euclidean distance. The height was calculated as the sum of the

following distances between joints

Height = (d(l ankle, l knee) + d(l knee, l hip) + d(r ankle, r knee)

+ d(r knee, r hip))/2 + d(c hip, spine) + d(spine, c shoulder)

+ d(c shoulder, head) (3)

9 joint triplets were considered. They were Head - CenterShoulder - Cen-

terHip, LeftWrist - LeftElbow-LeftShoulder, RightWrist - RightElbow - Right-

Shoulder, LeftAnkle - LeftKnee - LeftHip, RightAnkle - RightKnee - RightHip,

LeftHip - RightHip - LeftKnee, LeftHip - RightHip - RightKnee, LeftShoulder

- RightShoulder - LeftElbow, LeftShoulder - RightShoulder - RightElbow. An-

gle between triples of joints was calculated. Angle between joints i, j and kwas

calculated in the following way:

A =
√

(xi − xj)2 + (yi − yj)2 + (zi − zj)2 (4)

B =
√

(xi − xk)2 + (yi − yk)2 + (zi − zk)2 (5)

C =
√

(xj − xk)2 + (yj − yk)2 + (zj − zk)2 (6)

θ = cos−1
B2 − A2 − C2

2AC
(7)

The angle of rotation between the line of the shoulder joint points and the line

of the hip joint points was added. Next the distances between the centroid

of the hip, shoulder and spine joint points, and both arm (shoulder, elbow

and wrist joint points) and leg (hip, knee and ankle joint points) centroids. A

centroid of N joints was calculated as:

C =

∑N
i {xi, yi, zi}

N
(8)

Finally, all these features were aggregated for the whole gait cycle and the

23



mean, standard deviation, minimum, maximum and mean difference between

subsequent frames were calculated. Using these feature vectors, 7 different

datasets were generated. SMO, J48 and MLP was performed. MLP provided

89.80% accuracy on dataset 3.

2.4 Classifiers

In this section, we will discuss the classifiers used in different methods.

2.4.1 k-means Clustering

k-means clustering[62] is a method of vector quantization, originally from sig-

nal processing, that is popular for cluster analysis in data mining. k-means

clustering aims to partition n observations into k clusters in which each obser-

vation belongs to the cluster with the nearest mean, serving as a prototype of

the cluster. This results in a partitioning of the data space into Voronoi cells.

Figure 14: k-means clustering

The problem is computationally difficult (NP-hard); however, there are ef-

ficient heuristic algorithms that are commonly employed and converge quickly

to a local optimum. These are usually similar to the expectation-maximization

algorithm for mixtures of Gaussian distributions via an iterative refinement ap-

proach employed by both k-means and Gaussian mixture modeling. Addition-

ally, they both use cluster centers to model the data; however, k-means cluster-
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ing tends to find clusters of comparable spatial extent, while the expectation-

maximization mechanism allows clusters to have different shapes.

The algorithm has a loose relationship to the k-nearest neighbor classifier,

a popular machine learning technique for classification that is often confused

with k-means due to the k in the name. One can apply the 1-nearest neighbor

classifier on the cluster centers obtained by k-means to classify new data into

the existing clusters. This is known as nearest centroid classifier or Rocchio

algorithm.

Given a set of observations (x1, x2, . . . , xn), where each observation is a d-

dimensional real vector, k-means clustering aims to partition the n observa-

tions into k(≤ n) sets S = {S1, S2, . . . , Sk} so as to minimize the within-cluster

sum of squares (WCSS) (i.e. variance). Formally, the objective is to find:

arg min
k∑

i=1

∑
x∈Si

|x− µi|2 = arg min
k∑

i=1

|Si|V ar Si (9)

where µi is the mean of points in Si. This is equivalent to minimizing the pair-

wise squared deviations of points in the same cluster:

arg min
k∑

i=1

1

2|Si|
∑

x,y∈Si

|x− y|2 (10)

The equivalence can be deduced from the identity

∑
x∈Si

|x− µi|2 =
∑

x 6=y∈Si

(x− µi)(µi − y) (11)

Because the total variance is constant, this is also equivalent to maximizing

the sum of squared deviations between points in different clusters (between-

cluster sum of squares, BCSS), which follows easily from the law of total vari-

ance.

2.4.2 1R Classifier

The 1R procedure[63] for machine learning is a very simple one that proves

surprisingly effective on the standard datasets commonly used for evaluation.
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This paper describes the method and discusses two areas that can be improved:

the way that intervals are formed when discretizing continuously-valued at-

tributes, and the way that missing values are treated. Then we show how the

algorithm can be extended to avoid a problem endemic to most practical ma-

chine learning algorithms – their frequent dismissal of an attribute as irrelevant

when in fact it is highly relevant when combined with other attributes.

Like other empirical learning methods, 1R takes as input a set of examples,

each with several attributes and a class. The aim is to infer a rule that predicts

the class given the values of the attributes. The 1R algorithm chooses the most

informative single attribute and bases the rule on this attribute alone. The basic

idea is:

For each attribute a, form a rule as follows:

For each value v from the domain of a,

Select the set of instances where a has value v

Let c be the most frequent class in that set

Add the following clause to the rule for a:

If a has value v then the class is c

Calculate the classification accuracy of this rule

Use the rule with the highest classification accuracy

The algorithm assumes that the attributes are discrete. If not, then they must

be discretized.

Any method for turning a range of values into disjoint intervals must take

care to avoid creating large numbers of rules with many small intervals. This

is known as the problem of “overfitting”, because such rules are overly specific

to the data set and do not generalize well. Holte achieves this by requiring all

intervals (except the rightmost) to contain more than a predefined number of

examples in the same class. Empirical evidence led him to a value of six for

datasets with large numbers of instances and three for smaller datasets (with

less than about 50 instances) [64].

Missing values are handled in the algorithm by treating them as a separate

value in the enumeration of an attribute Missing values are treated by Holte’s

system as a separate value that an attribute may assume. This implies that
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whether or not an attribute is missing constitutes information that is useful for

prediction. In some circumstances this is plausible, but it is a risky assumption

across all datasets. When using 1R as a filter, it can be particularly misleading

to choose attributes with large numbers of missing values that seem to make

highly accurate predictions.

2.4.3 C4.5 Algorithm

C4.5[65] is an algorithm used to generate a decision tree developed by Ross

Quinlan. C4.5 is an extension of Quinlan’s earlier ID3 algorithm. The deci-

sion trees generated by C4.5 can be used for classification, and for this reason,

C4.5 is often referred to as a statistical classifier. Authors of the Weka machine

learning software described the C4.5 algorithm as “a landmark decision tree

program that is probably the machine learning workhorse most widely used

in practice to date” [66].

C4.5 builds decision trees from a set of training data in the same way as

ID3, using the concept of information entropy. The training data is a set S =

s1, s2, . . . of already classified samples. Each sample si consists of a p-dimensional

vector (x1,i, x2,i, . . . , xp,i), where the xj represent attribute values or features of

the sample, as well as the class in which si falls.

At each node of the tree, C4.5 chooses the attribute of the data that most ef-

fectively splits its set of samples into subsets enriched in one class or the other.

The splitting criterion is the normalized information gain (difference in en-

tropy). The attribute with the highest normalized information gain is chosen

to make the decision. The C4.5 algorithm then recurses on the partitioned sub-

lists.

This algorithm has a few base cases.

• All the samples in the list belong to the same class. When this happens,

it simply creates a leaf node for the decision tree saying to choose that

class.

• None of the features provide any information gain. In this case, C4.5

creates a decision node higher up the tree using the expected value of

the class.
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• Instance of previously-unseen class encountered. Again, C4.5 creates a

decision node higher up the tree using the expected value.

According to [67], in pseudo code, the general algorithm for building decision

trees is:

• Check for the above base cases.

• For each attribute a, find the normalized information gain ratio from

splitting on a.

• Let a best be the attribute with the highest normalized information gain.

• Create a decision node that splits on a best.

• Recur on the sublists obtained by splitting on a best, and add those nodes

as children of node.

2.4.4 Naive Bayes classifier

In machine learning, Naive Bayes classifiers[68] are a family of simple “prob-

abilistic classifiers” based on applying Bayes’ theorem with strong (naive) in-

dependence assumptions between the features. Naive Bayes has been studied

extensively since the 1950s. It was introduced under a different name into the

text retrieval community in the early 1960s [69].

Naive Bayes is a simple technique for constructing classifiers: models that

assign class labels to problem instances, represented as vectors of feature val-

ues, where the class labels are drawn from some finite set. There is not a single

algorithm for training such classifiers, but a family of algorithms based on a

common principle: all naive Bayes classifiers assume that the value of a par-

ticular feature is independent of the value of any other feature, given the class

variable. For example, a fruit may be considered to be an apple if it is red,

round, and about 10 cm in diameter. A naive Bayes classifier considers each of

these features to contribute independently to the probability that this fruit is

an apple, regardless of any possible correlations between the color, roundness,

and diameter features.
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For some types of probability models, naive Bayes classifiers can be trained

very efficiently in a supervised learning setting. In many practical applications,

parameter estimation for naive Bayes models uses the method of maximum

likelihood; in other words, one can work with the naive Bayes model without

accepting Bayesian probability or using any Bayesian methods.

Abstractly, naive Bayes is a conditional probability model: given a problem

instance to be classified, represented by a vector x = (x1, . . . , xn) representing

some n features (independent variables), it assigns to this instance probabili-

ties p(Ck|x1, . . . , xn) for each of K possible outcomes or classes Ck.

The problem with the above formulation is that if the number of features n

is large or if a feature can take on a large number of values, then basing such a

model on probability tables is infeasible. We therefore reformulate the model

to make it more tractable. Using Bayes’ theorem, the conditional probability

can be decomposed as

p(Ck|x) =
p(Ck)p(x|Ck)

p(x)
(12)

In plain English, using Bayesian probability terminology, the above equation

can be written as

posterior =
prior × likelihood

evidence
(13)

2.4.5 Sequential Minimal Optimization

Sequential minimal optimization (SMO) [70] is an algorithm for solving the

quadratic programming (QP) problem that arises during the training of sup-

port vector machines. It was invented by John Platt in 1998 at Microsoft Re-

search. SMO is widely used for training support vector machines.

SMO is an iterative algorithm for solving the optimization problem de-

scribed above. SMO breaks this problem into a series of smallest possible sub-

problems, which are then solved analytically. Because of the linear equality

constraint involving the Lagrange multipliers αi, the smallest possible prob-

lem involves two such multipliers. Then, for any two multipliers α1 and α2,

29



the constraints are reduced to:

0 ≤ α1, α2 ≤ C (14)

y1α1 + y2α2 = k (15)

and this reduced problem can be solved analytically: one needs to find a mini-

mum of a one-dimensional quadratic function. k is the negative of the sum over

the rest of terms in the equality constraint, which is fixed in each iteration.

The algorithm proceeds as follows:

Find a Lagrange multiplierα1 that violates the Karush-Kuhn-Tucker (KKT)

conditions [71] for the optimization problem.

Pick a second multiplier α2 and optimize the pair (α1, α2).

Repeat steps 1 and 2 until convergence.

When all the Lagrange multipliers satisfy the KKT conditions (within a user-

defined tolerance), the problem has been solved. Although this algorithm is

guaranteed to converge, heuristics are used to choose the pair of multipliers so

as to accelerate the rate of convergence. This is critical for large data sets since

there are n(n− 1)/2 possible choices for αi and αj .

2.4.6 J48 Decision Trees

A decision tree is a predictive machine-learning model that decides the target

value (dependent variable) of a new sample based on various attribute values

of the available data. The internal nodes of a decision tree denote the different

attributes, the branches between the nodes tell us the possible values that these

attributes can have in the observed samples, while the terminal nodes tell us

the final value (classification) of the dependent variable.

The attribute that is to be predicted is known as the dependent variable,

since its value depends upon, or is decided by, the values of all the other at-

tributes. The other attributes, which help in predicting the value of the depen-

dent variable, are known as the independent variables in the dataset.
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The J48 Decision tree classifier is an implementation of C4.5 [65] developed

by the WEKA [72] project team. It follows the following simple algorithm. In

order to classify a new item, it first needs to create a decision tree based on

the attribute values of the available training data. So, whenever it encounters

a set of items (training set) it identifies the attribute that discriminates the var-

ious instances most clearly. This feature that is able to tell us most about the

data instances so that we can classify them the best is said to have the highest

information gain. Now, among the possible values of this feature, if there is

any value for which there is no ambiguity, that is, for which the data instances

falling within its category have the same value for the target variable, then we

terminate that branch and assign to it the target value that we have obtained.

For the other cases, we then look for another attribute that gives us the

highest information gain. Hence we continue in this manner until we either get

a clear decision of what combination of attributes gives us a particular target

value, or we run out of attributes. In the event that we run out of attributes,

or if we cannot get an unambiguous result from the available information, we

assign this branch a target value that the majority of the items under this branch

possess.

Now that we have the decision tree, we follow the order of attribute selec-

tion as we have obtained for the tree. By checking all the respective attributes

and their values with those seen in the decision tree model, we can assign or

predict the target value of this new instance.

2.4.7 Multilayer perceptron

A multilayer perceptron (MLP) is a class of feedforward artificial neural net-

work. An MLP consists of, at least, three layers of nodes: an input layer, a

hidden layer and an output layer. Except for the input nodes, each node is a

neuron that uses a nonlinear activation function. MLP utilizes a supervised

learning technique called backpropagation for training. [73, 74]. Its multiple

layers and non-linear activation distinguish MLP from a linear perceptron. It

can distinguish data that is not linearly separable [75].

A multilayer perceptron (MLP) is a deep, artificial neural network. It is
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composed of more than one perceptron. They are composed of an input layer

to receive the signal, an output layer that makes a decision or prediction about

the input, and in between those two, an arbitrary number of hidden layers that

are the true computational engine of the MLP. MLPs with one hidden layer are

capable of approximating any continuous function.

Figure 15: Example multilayer perceptron network

Multilayer perceptrons are often applied to supervised learning problems:

they train on a set of input-output pairs and learn to model the correlation (or

dependencies) between those inputs and outputs. Training involves adjusting

the parameters, or the weights and biases, of the model in order to minimize

error. Backpropagation is used to make those weigh and bias adjustments rel-

ative to the error, and the error itself can be measured in a variety of ways,

including by root mean squared error (RMSE).

Feedforward networks such as MLPs are like tennis, or ping pong. They

are mainly involved in two motions, a constant back and forth. You can think

of this ping pong of guesses and answers as a kind of accelerated science, since

each guess is a test of what we think we know, and each response is feedback

letting us know how wrong we are.

In the forward pass, the signal flow moves from the input layer through

the hidden layers to the output layer, and the decision of the output layer is

measured against the ground truth labels.

In the backward pass, using backpropagation and the chain rule of calculus,

partial derivatives of the error function w.r.t. the various weights and biases

are back-propagated through the MLP. That act of differentiation gives us a

gradient, or a landscape of error, along which the parameters may be adjusted

as they move the MLP one step closer to the error minimum. This can be done

with any gradient-based optimization algorithm such as stochastic gradient
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descent. The network keeps playing that game of tennis until the error can go

no lower. This state is known as convergence.

2.4.8 Dynamic Time Warping

In time series analysis, dynamic time warping (DTW)[76] is one of the algo-

rithms for measuring similarity between two temporal sequences, which may

vary in speed. For instance, similarities in walking could be detected using

DTW, even if one person was walking faster than the other, or if there were

accelerations and decelerations during the course of an observation. DTW

has been applied to temporal sequences of video, audio, and graphics data

– indeed, any data that can be turned into a linear sequence can be analyzed

with DTW. A well known application has been automatic speech recognition,

to cope with different speaking speeds. Other applications include speaker

recognition and online signature recognition. Also it is seen that it can be used

in partial shape matching application.

Figure 16: Sequence alignment in Dynamic Time Warping

In general, DTW is a method that calculates an optimal match between two

given sequences (e.g. time series) with certain restriction and rules:

• Every index from the first sequence must be matched with one or more
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indices from the other sequence, and vice versa

• The first index from the first sequence must be matched with the first

index from the other sequence (but it does not have to be its only match)

• The last index from the first sequence must be matched with the last index

from the other sequence (but it does not have to be its only match)

• The mapping of the indices from the first sequence to indices from the

other sequence must be monotonically increasing, and vice versa, i.e. if

j > i are indices from the first sequence, then there must not be two

indices l > k in the other sequence, such that index i is matched with

index l and index j is matched with index k, and vice versa

The optimal match is denoted by the match that satisfies all the restrictions and

the rules and that has the minimal cost, where the cost is computed as the sum

of absolute differences, for each matched pair of indices, between their values.

The sequences are “warped” non-linearly in the time dimension to deter-

mine a measure of their similarity independent of certain non-linear varia-

tions in the time dimension. This sequence alignment method is often used

in time series classification. Although DTW measures a distance-like quantity

between two given sequences, it doesn’t guarantee the triangle inequality to

hold.

In addition to a similarity measure between the two sequences, a so called

”warping path” is produced, by warping according to this path the two signals

may be aligned in time. The signal with an original set of points X(original),

Y (original) is transformed to X(warped), Y (warped). This finds applica-

tions in genetic sequence and audio synchronization. In a related technique

sequences of varying speed may be averaged using this technique.

The pseudocode for DTW between two sequences s and t looks like:

DTW := array [0..n, 0..m]

for i := 1 to n

DTW[i, 0] := infinity

end for

for i := 1 to m
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DTW[0, i] := infinity

end for

DTW[0, 0] := 0

for i := 1 to n

for j := 1 to m

cost := d(s[i], t[j])

DTW[i, j] := cost + min(DTW[i-1, j],

DTW[i, j-1],

DTW[i-1, j-1])

return DTW[n, m]

where DTW (i, j) is the distance between s[1 : i] and t[1 : j] with the best

alignment. Here for two symbols x and y, d(x, y) is the distance between the

symbols.

The time complexity of DTW algorithm isO(NM), whereN andM are the

lengths of the two input sequences. More generally, without loss of generality,

assuming thatN ≥M , the time complexity can be said to be O(N2). The same

is true for space complexity.
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Chapter 3

Proposed Methodologies
This chapter presents our proposed Kinect-based 3D gait recognition method

that utilizes the skeleton data to construct a robust representation of a human

gait signature. The first section provides an overview of the proposed method-

ology by outlining the components of the system. In the subsequent sections,

these components are described in details.

3.1 Overview

The proposed model-based gait recognition system comprises multi-stage pro-

cessing of the 3D full-body skeleton data obtained from the Kinect sensor. In

this regard, we have proposed two methods for feature extraction.

In Angles and Angle Differences, first, joint data is extracted from the Kinect

sensor. In case of databases, the walk action sequences are extracted. Then 8

angles are calculated. These angles are most active angles according to [18, 61].

These angles are calculated over multiple frames. After that difference between

4 pairs are calculated. This is similar to the rate of change. The values are nor-

malized to ensure that it has the same effect as other 8 angles. The distance

from camera and direction of walking can cause change in angle, but the dif-

ference between two angles remain the same. This ensures view and scale in-

variant feature.

In Angles, Mean and Standard Deviation(SD), first the same 8 angles are cal-

culated. Then the mean and standard deviation of each 8 angles over multiple

frames are calculated.

3.2 Framework

The framework is developed based on joint angle, angle difference and mean.

The generalized classification steps look like:
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Figure 17: Gait Recognition Framework

3.3 Training Phase

3.3.1 Sensor

Kinect v1 can extract 20 joint points from a single person as seen in figure 18.

Figure 18: Joints Extracted By Kinect v1

3.3.2 Pre-Processing

As seen in the figure 17 contains collection of raw video sequence is captured

from Kinect sensor. The joint data is then extracted from the raw data. The joint

data contains 20 skeletal joints coordinates (x1, y1, z1), . . . , (xm, ym, zm)wherem

is the number of frames in the captured video sequence.
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3.3.3 Feature Extraction

Multiple frames for each user is recorded. For each frame, two types of angles

are calculated.

• Angle Between Joints

• Angle Between Lines

Angle between 3 joints a, b, c can be calculated using:

θa = cos−1
P 2
ba + P 2

bc − P 2
ac

2PbaPbc

(16)

Pba = sqrt((bx − ax)2 + (by − ay)2 + (bz − az)2) (17)

Pbc = sqrt((bx − cx)2 + (by − cy)2 + (bz − cz)2) (18)

Pac = sqrt((ax − cx)2 + (ay − cy)2 + (az − cz)2) (19)

(20)

The angles are then converted to degree using

θd =
θr × 180

π
(21)

The angles are now in range [0, 180].

Given two lines having endpoints a, b and c, d, the angle between these two

lines are calculated like this:

Px = bx − ax (22)

Py = by − ay (23)

Pz = bz − az (24)

Qx = dx − cx (25)

Qy = dy − cy (26)

Qz = dz − cz (27)

θl = cos−1
Px.Qx + Py.Qy + Pz.Qz

|~P |.| ~Q|
(28)

Again the angles are converted to degree.
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Angles and Angle Differences

The angles that were considered from the figure 19:

Figure 19: Extracted Joints

• Upper Body

1. Shoulder Center(2) - Shoulder Right(8) - Elbow Right(9)

2. Shoulder Center(2) - Shoulder Left(4) - Elbow Left(5)

3. Shoulder Right(8) - Elbow Right(9) - Wrist Right(10)

4. Shoulder Left(4) - Elbow Left(5) - Wrist Left(6)

• Lower Body

1. Hip Center(0) and Spine(1) Line - Hip Right(16) and Knee Right(17)

Line

2. Hip Center(0) and Spine(1) Line - Hip Left(12) and Knee Left(13)

Line

3. Hip Right(16) - Knee Right(17) - Ankle Right(18)

4. Hip Left(12) - Knee Left(13) - Ankle Left(14)

Figure 20 shows the angles that are considered. Some differences between

angles are calculated. They are:
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Figure 20: Considered Angles

• Upper Body 1− Upper Body 3

• Upper Body 2− Upper Body 4

• Lower Body 1− Lower Body 3

• Lower Body 2− Lower Body 4

These angles are then normalized using 0-1 normalization and multiplied by

180 so that they have same effect in classification:

θi′ =
θi −min(θ)

max(θ)−min(θ)
× 180 (29)

For each user, we get (8 + 4) = 12 sequences of length m.

Angles, Mean and Standard Deviation

In this method, 8 angles are calculated similar to the previous method. In ad-

dition to that, for each angle mean and standard deviation are calculated over

all frames.

We calculate mean using:

meanj =
1

m

m∑
i=1

θa (30)
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where j is in range [1, 8].

In similar manner, we calculate standard deviation:

SDj =

√
(θai −meanj)

m
(31)

where j is in range [1, 8].

We get two sequences each having 8 values. For each user, we get (8 + 1 +

1) = 10 sequences. The first 8 have length m, and the last 2 have length 8.

3.3.4 Training Database

The calculated feature vectors are stored in database. For each user, one file is

created.

3.4 Testing Phase

Figure 21: Gait Recognition Process in Testing Phase

In testing phase, unknown sequence goes through similar method as de-

scribed to get feature vector. This feature vector is then tested against the data

stored in the training database.

For each training sample, the unknown feature vector is compared with the

training feature vector. Here the feature vectors are considered as sequences.
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Dynamic Time Warping algorithm is used to calculate the dissimilarity be-

tween each user and the unknown sample. The training sample with the lowest

dissimilarity value is selected as the user. This is shown in figure 21.
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Chapter 4

Experimental Analysis
In this chapter, we discuss about the experimental setup, comparison, dataset,

result analysis based on different criteria.

4.1 Experimental Setup

The experiment was conducted on a personal computer having:

• Processor: AMD Ryzen 7 1700

– 8 core

– 16 CPUs

– 3.0Ghz

• Ram: 16GB

• Cache Size:

– L2 Cache: 4MB

– L3 Cache: 16MB

4.2 Evaluation Methodologies

These evaluation methodologies were used to compare our proposed method-

ologies with previous literature:

4.2.1 Feature Count

A feature is an individual measurable property or characteristic of a phenomenon

being observed. Choosing informative, discriminating and independent fea-

tures is a crucial step for effective algorithms in pattern recognition, classifi-

cation and regression. Feature count is the total number of features used in

the feature representation of a gait cycle. The total number of feature actually
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varies with each user as it depends on the number of frames for each user. The

actual feature count is equal to the number of features multiplied by the frame

count for each user.

4.2.2 Execution Time

Execution time is the time during which a program is running. In our case,

it is the time taken for a program to execute for both the training phase and

the testing phase. In our case, we trained each implementation with half the

dataset and matched them with other half. The time was calculated for all the

matches.

4.2.3 Accuracy

Accuracy is the quality or state of being correct or precise. It is the degree to

which the result of a measurement, calculation, or specification conforms to

the correct value or a standard. In our case, accuracy can be defined as the

percentage of unknown users correctly identified by using gait analysis.

4.3 Dataset

To evaluate the effectiveness of the proposed method, two publicly available

Kinect action databases were used, namely the UTKinect-Action3D Dataset

[77] and UPCV Action Dataset [78].

4.3.1 UTKinect-Action Dataset

Figure 22: UTKinect-Action Dataset

The UTKinect-Action Dataset comprises 10 types of human actions (walk, sit

down, stand up, pick up, carry, throw, push, pull, wave hands, clap hands) in
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indoor settings captured using a Kinect sensor at 30 frames per second (FPS).

There are 10 subjects and each subject performs each action twice. The length

of each action sequence is usually between 9-151 frames.

4.3.2 UPCV Action Dataset

Figure 23: UPCV Action Dataset

The UPCV Action dataset consists of 10 actions performed by 20 different

individuals (10 males and 10 females), between the age of 22-50, in two sep-

arate sessions for each one. The actions set was chosen in order to contain

usual indoor and outdoor activities performed by pedestrians like walking,

grab something from the floor, looking at the wrist watch, scratching the head,

answer a cell phone, crossing arms and sitting on a chair, and some unusual

actions such as throwing a punch, kicking and waving hands. The length of ac-

tion sequences varies between 8 and 500 frames, with the 90% of the sequences

having a length in the range of 23- 167 frames.

4.4 Result Analysis

Number of features, execution time (both training and test) and accuracy was

used to compare the proposed methodologies with the previous ones:

4.4.1 Feature Count

The table 1 shows the number of feature sequences that we get in feature vector

for the different methods. Total number of features varies with each user as it

depends on the number of video frames for each user. Actual feature count is

equal to given count multiplied by frame count. The two proposed methods

has the lowest feature count as can be seen from the table.
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Method Count
JRD [79] 380

JRA 171
Most Relevant JRA [16] 40-50

JRD JRA Rank Level Fusion [15] (15+25)=40
JRD + JRA (380+171) = 551

Angles + Angle Differences 12
Angles + Mean + SD 10

Table 1: Comparison using Feature Count

Rahman et al. [79] used all possible combinations of angles relative to Spine.

They didn’t consider whether that angle was relevant or not. Faisal et al. [16]

tried to fix it using most relevant JRA. It was calculated using histogram. The

number of bins occupied in histogram by each angle joints were used to reduce

the number of features. In another paper, Faisal et al. used genetic algorithm

based approach to find relevant JRDs and JRAs to find out the angles that pro-

vide better classification.

In our methodologies, the angles chosen were inspired by Ball et al. [18]

and Tafazzoli et al. [80]. Ball et al. [18] argued that while walking the links of

the lower body was relevant as it is possible for the arms to be variously occu-

pied while walking and this variation of arm data may lead to poor clustering.

The features used for clustering were based on the lower limb joint angles. It

was found that the limb length assigned by the Microsoft Kinect SDK skeletal

algorithm changed significantly as the person walked across the camera field

of view. This variation precludes distance-based features from being used for

clustering, as the same person could walk past the camera twice and have two

different skeletal representations. It was found that noise was also present in

the link angle data. As the skeletal algorithm maintains link end-point con-

nectedness for the duration of the walk, however, the relative change in joint

position adds much less noise to angle-based features.

On the other hand, Tafazzoli et al. [80] chose a simple characteristic of

normal human walking as the basis. They argued that the swing amplitude

of the arms during normal walking is observed to be much larger than that

of the legs. One of the unique properties of walking bilateral symmertry; that

is, when one walks or runs the left arm and right leg interchange direction of
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swing with the right arm and left leg, and vice versa, with a phase shift of half

a period [47].

4.4.2 Execution Time

As we can from table 2, , the execution time for the proposed methods dur-

ing both testing and training is shorter than all the other methods. This is

true for both UTKinect-Action3D Dataset and UPCV Action Dataset. As our

Method
Execution Time (seconds)
UTKinect UPCV

Train Test Train Test
JRD [79] 1.249 6.286 3.756 90.226

JRA 0.958 6.289 3.004 84.165
Most Relevant JRA [16] 0.714 2.591 2.718 26.873

JRD JRA Rank Level Fusion [15] 0.859 2.738 2.922 27.403
JRD + JRA 2.107 12.356 6.964 172.743

Angles + Angle Differences 0.142 0.211 0.409 1.066
Angles + Mean + SD 0.134 0.187 0.401 0.966

Table 2: Comparison using Execution Time

methodologies used less features than the number of features used in other

methodologies, it took less time to calculate and compare the angles. Addi-

tionally, our proposed methodologies were more robust against the noise than

the other methods. As a result, we were able to avoid preprocessing.

4.4.3 Accuracy

UPCV Action Dataset:

Method Accuracy
JRD [79] 77.50%

JRA 71.25%
Most Relevant JRA [16] 65.00%

JRD JRA Rank Level Fusion [15] 66.25%
JRD + JRA 78.75%

Angles + Angle Differences 73.75%
Angles + Mean + SD 87.50%

Table 3: Comparison result for UPCV Action Dataset
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As we can see from table 3, the proposed method of Angles + mean + SD

performs better than the other proposed method. This can be attributed to the

dataset containing sequences of users walking in the same direction and the

distance from the camera remaining constant for all the users. This is evident

as we can see that other distance based methods perform better here.

UTKinect-Action3D Dataset:

Method Accuracy
JRD [79] 60.00%

JRA 62.50%
Most Relevant JRA [16] 60.00%

JRD JRA Rank Level Fusion [15] 72.50%
JRD + JRA 72.50%

Angles + Angle Differences 77.50%
Angles + Mean + SD 75.00%

Table 4: Comparison result for UTKinect-Action3D Dataset

As we can see from the table 4, the proposed method of Angle + Angle Differ-

ences performs better as the features are view and scale invariant and as the

dataset contains users walking in different directions and the distance of the

camera from the user did not remain constant as well. Other JRD based meth-

ods perform much worse here.

Overall:

Method Accuracy
JRD [79] 68.75%

JRA 66.88%
Most Relevant JRA [16] 66.25%

JRD JRA Rank Level Fusion [15] 69.38%
JRD + JRA 75.63%

Angles + Angle Differences 75.63%
Angles + Mean + SD 81.25%

Table 5: Comparison result overall

Both the proposed methods perform better or similar compared to the previ-

ous methods in overall. The proposed method of Angles + Angle Difference

method requires less memory and time than JRD + JRA method, so Angles +
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Angles Difference method is better even though they both have the same over-

all accuracy. The proposed method of Angles + Mean + SD performs the best

in overall. This is evident in table 5.
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Chapter 5

Conclusion

5.1 Summary

Model-based gait recognition is one of the most widely-studied problems in

the areas of biometric and computer vision, with potential applications in se-

curity and surveillance, human computer interaction, health-care, intelligent

systems, etc. The recent popularization of the Kinect sensor has resulted in a

spike in the interest in using the Kinect for gait recognition. Our work in this

thesis focuses on designing new methodologies for Kinect-based gait recogni-

tion that utilize the 3D virtual skeleton model to construct effective and robust

feature representations. In biometric gait recognition we aim to extract person-

dependent motion patterns which are unique to a person, typically caused by

the influence of human physiology and behavioral traits. For gait recognition,

we propose two new methods for effective gait signature representation. One

method took 8 angles and their angle differences and the other method took

the angles and the mean and standard deviation of those angles. These angle

sequences were matched with an unknown sample sequence using Dynamic

Time Warping (DTW). The angle sequence with the lowest dissimilarity mea-

sure is selected for biometric identification. The experimental result show that

the proposed method of the angles and the mean and standard deviation of

those angles worked best with an overall accuracy of 81.25%.

5.2 Future Work

Gait features are typically sensitive to changes in clothing and carrying condi-

tions, which makes recognition in dynamic environment a challenging task. In

addition, a few studies have shown that it is possible to spoof gait biometric by

imitating clothing and selecting individuals with similar physiological builds

and attributes. However, due to the lack of the availability of any Kinect-based

gait spoofing dataset, robustness of the proposed methodology under such at-
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tacks was not evaluated in this work. One possible alternative is to incorporate

other biometric modalities, such as face or voice, in order to increase the ro-

bustness of the system. Another promising direction is to incorporate context

information with gait features to boost the recognition performance. Another

way of improving the proposed method is to combine the mean and standard

deviation features with view and scale invariant angle different features so that

the features are view and scale invariant. We used only one classifier, Dynamic

Time Warping (DTW), in our proposed method. We would like to make an in

depth analysis of the change in accuracy when used for different classifiers.

We would like to incorporate more datasets to see if our results change or not.

We would also like to experiment with various new feature selection methods

so as to improve our biometric identification accuracy.
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