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Abstract 
 

Many crucial molecular processes and cellular pathways are based on the interactions among 

genes. The genes in living cells regulate each other to control the production of gene products. 

Gene regulatory networks provide information on the control at gene expression level and 

can be inferred from a number of data-sets expressed in different ways. There are two types 

of gene expression data used for gene regulatory network construction: time series and 

perturbation experiments. Time series expression data enables biologists to investigate the 

temporal pattern in biological networks. Perturbed expression data provides the information 

on interactions directions. In the past, gene regulatory networks were constructed by using 

the clustering approach. However, this approach failed to identify significant transcriptional 

network interactions. Hence, many computational approaches have been developed for 

constructing gene regulatory networks more effectively. Reverse engineering from given 

data-sets can prove to computationally challenging, so the approach taken aims to construct 

stable and scalable gene regulatory networks from given steady state data. 
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1. Introduction 
1.1. Gene Regulation 
 

Proteins control a cell’s metabolism and are the building blocks of life, responsible for most 

of the structural and chemical functions in a living organism. The blueprint for the organism 

is found in its DNA and each gene within it codes for a different protein. Gene expression 

usually refers to the transcriptional and translational processes within cells. Sophisticated 

programs of gene expression are widely observed in biology, for example to trigger 

developmental pathways, respond to environmental stimuli, or adapt to new food sources. 

Virtually any step of gene expression can be modulated or regulated by a variety of factors, 

such as the rate of transcription, the processing of mRNA, the stability of the mRNA, and the 

rate of translation. It can also be encouraged or inhibited by a type of protein known as a 

transcription factor. They bind to specific sites on the DNA as per their role. As transcription 

factors are proteins, they are also synthesized from genes, which means genes themselves 

play a role in the expression of genes. 

 

 

 

Figure 1 - The process of protein synthesis 
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1.2. Gene Expression Using Microarrays 
  

DNA microarrays or DNA biochips act as trays containing the complementary sequence of the 

gene whose expression is required to be measured. Several cells can be tested simultaneously 

through extraction of cDNA and hybridization. Labelling of the separate cDNA molecules 

allows them to be identified in the final expression data. Once the hybridized solution reacts 

or binds with the complementary DNA sequence in the microarray, each specific gene is said 

to be expressed and can be visually represented. For example, if the same cDNA is labeled 

‘red’ in a cancer cell and ‘green’ in a control cell, the individual gene expression can be 

monitored, displaying their participation under the different conditions as seen in Figure 2. 

Microarrays can pave the way to biological discovery of new and better molecular diagnostics, 

molecular targets for therapy, finding and refining biological pathways, and for mutation and 

polymorphism detection. Recent examples include molecular diagnosis of leukemia and 

breast cancer. 

 

 

 

Figure 2 - The result of a DNA microarray experiment 
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1.3. Gene Expression Data 
 

Results from microarrays can be converted into what we call gene expression data. 

Microarray data sets are commonly very large, and analytical precision is influenced by a 

number of variables. Statistical challenges include considering effects of background noise 

and appropriate normalization of the data. Image analysis and class detection analysis can be 

used to generate the required information and description from the visual representation of 

the expression data. The following table depicts several genes and their expression levels 

within different samples. 

 

 

 

Figure 3 - Several genes and their expression levels 
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1.4. Constructing Gene Regulatory Networks from 

Data 
 

Gene Regulatory Networks are composed of the participating genes and other regulatory 

molecules which help to govern the gene expression. These entities interact with each other 

in several ways, including activation and inhibition. The nodes of this network are genes and 

the edges between nodes rep- resent gene interactions through which the products of one 

gene affect those of another. These interactions can be inductive, with an increase in the 

expression of one leading to an increase in the other, or inhibitory, with an increase in one 

leading to a decrease in the other. A series of edges indicates a chain of such dependences, 

with cycles corresponding to feedback loops. 

The modulation and functionality of the entire network can act as a blueprint for researchers 

who are willing to observe the relationship between genes. The systematic understanding of 

molecular mechanisms underlying biological processes can aid in the discovery of triggering 

mechanism and adaptability techniques. Several novel experimental and computational 

approaches have recently been developed which helps to comprehensively characterize these 

regulatory networks by enabling the identification of their genomic or regulatory state 

components. 

Constructing dynamic GRNs is gaining significance in biomedical research and analysis. 

Reverse engineering is not a computationally simple problem because an enormous amount 

of time is required even with trivial approaches. 

 

 

 

Figure 4 - An example of a gene regulatory network 

  



  Thesis Report – Bio-Informatics 
 

Page | 8  
 
 

 

 

 

 

 

 

 

Figure 5 - A gene regulatory network in E. Coli. Nodes are operons. Some operons encode for transcription factors. 
Transcription factors regulate other operons 
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2. Problem Domain and  

Problem Statement 
 

2.1. Challenges and Research Issues 
 

The primary challenges encountered when modelling gene regulatory networks depend 

highly and almost entirely upon the model selected and the data set used. Usually, most 

models rely on data difficult to obtain, and the simpler ones do not sufficiently express the 

network pertaining to the given data-set. Computational effort is a major challenge when it 

comes to constructing networks as the simplest form can consist of thousands of genes which 

require extensive manipulation and calculation. Reducing computational effort compromises 

scalability of the approach. As a result, it is wiser to work with models which are justifiable in 

their process and procedure.  

 

2.2. Problem Statement 
 

“Model stable and scalable gene regulatory networks from given  

gene expression data.” 
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3. Literature Review 
3.1. Chai, et al. 
 

“Computational Approaches for Gene Regulatory Network Construction” [1] discusses six 

different inference techniques to identify gene regulatory networks from gene expression 

data. The paper highlights several existing computational models, analyzes the methodology 

of each model and provides examples of recent applications of each model in the construction 

of gene regulatory networks. It also compares them against each other, highlighting the 

strengths and weaknesses of each technique. 

 

Boolean Networks are the simplest inference model, with each gene being expressed as 

either on or off. They are fast and efficient from a computational perspective, and easy to 

visualize in the form of directed graphs due to only having two possible states for each node. 

The interaction types are divided into two classes: active and inactive when building a model 

which means the two possible states for a gene in such a network are on or off. Due to their 

simplicity, they may not be able to accurately represent finer details, such as a change in the 

rate of expression of a gene or other non-binary factors, and because of their deterministic 

nature, yield inconsistencies when exposed to noisy data. Updates are also time discrete and 

synchronous, whereas in most biological systems, updates are asynchronous. 

One application of Boolean Networks was it being used to model the cell cycle of fission yeast, 

Schizosaccharomyces pombe. The network dynamics accurately reproduced the protein 

activation based on a time sequence. 

 

Probabilistic Boolean Networks are an extension of Boolean Networks where a probability is 

assigned to each entity and a regulation function is selected based on probability. They can 

be described as a bound collection of Boolean Networks where at any given instance of time, 

the state transitions occur according to the rules constituent in one of the networks. This 

addresses the issue of the deterministic nature of Boolean Networks, however, it also makes 

it computationally expensive, making it more difficult to implement for larger networks.  

Probabilistic Boolean Networks showed dependencies between genes and their parents, 

derived using tumor cells as data. 
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Bayesian Networks model the relationship using directed acyclic graphs and conditional 

probability tables. They can easily deal with noisy data, and handle uncertainty. Belief 

propagation is used for inference, working by updating beliefs across the network based on 

evidence. The network is constructed during the model selection phase, but the probability 

values are estimated during parameter learning. Bayesian Networks can integrate prior 

knowledge to strengthen causal relationships and use statistics to infer the structure of a 

network. However, they cannot capture temporal information, deal with larger networks, find 

it difficult to distinguish between the origin and the target of an interaction, and don’t allow 

feedback loops. 

Bayesian Networks were used alongside other approaches to model networks in E. Coli. 

 

Dynamic Bayesian Networks are an extension of Bayesian Networks that can be used to 

model cyclic interactions, infer uncertainties and yield more reliable data using perturbation 

experiments. They infer interaction uncertainties between genes using a probabilistic 

graphical model. Cyclical interactions are modeled by the duplication of nodes. They can 

handle temporal data by using interconnecting time slices and can model direct or indirect 

causal relationships. However, this method is far more computationally expensive, and still 

cannot handle larger networks. 

 

Ordinary Differential Equations involve continuous variables used for non-linear systems and 

changing concentrations of mRNA to infer stability. They are suited for steady-state and time 

series expression profiles and can work entirely in a classical category. Like DBN, they also 

allow the improvement of networks via the introduction of perturbation. They are the best 

analyzed approach for non-linear systems due to their use of continuous variables. However, 

due to the high computational cost, they are only feasible for smaller networks. 

 

Neural Networks capture dynamic and non-linear interactions within networks. They can 

handle noise and feedback loops and recurrent neural networks with clustering can be used 

to solve the issue of scalability. They are flexible and can recognize input patterns, modeling 

functional relationships and data structures, and can capture the nonlinear and dynamic 

interactions between genes. However, they are extremely expensive computationally, and it 

is difficult to obtain efficient training. 
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3.2. Vijesh, et al. 
 

“Modeling of Gene Regulatory Networks: A Review” [2] categorizes existing computational 

models and introduces new ones while highlighting their strengths and weaknesses. Their 

analysis can be summarized as follows: 

 

 

Figure 6 - The classification of various computational models 

 

Boolean Networks, as discussed previously, are simplistic but two states are insufficient as 

there can be multiple levels of gene expression, and they are deterministic, making them 

susceptible to noise. They also update synchronously, while typical biological systems update 

asynchronously. Also, despite how simple they are, only small networks can be reverse 

engineered using this method, even when using current algorithms. 

 

Probabilistic Boolean Networks are stochastic, overcoming the rigidity of the deterministic 

Boolean Network model. This is done by allowing each state to have several regulation 

functions, each of which is assigned a probability based on how closely it agrees with prior 

knowledge. However, the state space is still discrete. 
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Bayesian Networks are joint probability distributions over a set of random variables. 

Classification is done with the help of Bayes’ Theorem, and the approach is made naïve, or 

simplified, in order to reduce computational costs. This approach combines graph theory and 

probability to deal with noise and is stochastic but requires high computational effort to 

incorporate loops and fails to consider temporal dynamic aspects of the network. One major 

advantage of Bayesian Networks is their ability to learn from observed data and they have 

become a very popular method of modeling regulatory networks as a result.  

 

Differential Equations are highly customizable due to their use of simple homogenous 

structures. It is assumed that the rate of gene expression depends entirely on the 

concentration of products of genes from the nodes in a regulatory network, which implies 

that external factors such as the influence of other molecules are not considered. Despite 

the simplification, this approach can be used to decipher the basics of interactions between 

genes. However, this approach involves a large number of parameters – of the order O(d2), 

where d is the number of genes modeled. 

 

Linear Models do not require extensive prior knowledge but cannot capture non-linear 

aspects. One of the main draws to this model is the fact that each regulator contributes 

independently of other regulators to the regulation functions, in an additive manner, making 

it very easy to make surface level estimates about the network. However, they cannot be 

more than a simplification of the actual system, and are therefore, not widely used to reverse 

engineer entire models. 

 

Single Molecule Level Models are most detailed but extremely computationally expensive 

and are therefore only feasible when a small number of molecules are present. Due to the 

fact that the scale is of such fine grain, this provides the highest level of insight into the 

stochastic behavior of the gene regulatory process. 
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3.3. Zavlanos, et al. 
 

“Inferring Stable Genetic Networks from Steady-State Data” [3] illustrates the many 

weaknesses of most models, such as when encountering loops or addressing causality. 

Highlights include the lack of inferring causality in Boolean networks and inability to 

incorporate feedbacks when it comes to Bayesian networks. The study uses genetic 

perturbation experiments at steady-state, representing their findings in the form of matrices. 

Small perturbations are introduced to equilibrium states and the resulting gene expression 

activity is measured. The target is to introduce stability into the network and observe the 

performance of the results compared to existing networks through quantitative measures. 

 It models networks using differential equations to develop linear constraints and algorithms 

- three such models are developed and scaled to deal with larger volumes of data. The 

matrices involved include information on pairwise interaction of genes, transcription 

perturbations and associated steady-state mRNA concentrations. The initial linear 

programming approach proves to be very slow, so a convex relaxation is included for 

scalability. Prior knowledge is added to further augment the validity of the findings and weak 

interactions are eliminated. The stability of RNA is considered by introducing it as a constraint 

and the performance is measured using quantities such as Sensitivity and Specificity. ROC 

curves are compared for the three algorithms, where the third is the intended approach. The 

results yielded were stable and spares, implying the underlying network was stable, showing 

that stability is not only important for consistency with the problem assumptions, but also for 

better performance. This was tested on the SOS pathway of E. Coli to model known and 

inferred gene regulatory networks. 

All identifications obtained from algorithm 1 are unstable, while the obtained networks have 

connectivity approximately equal to 50%. Compared to this, algorithm 2 yields in a matrix 

with 7 false positives, 3 false negatives, 16 false zeros, and 26 false identifications in total. 

Algorithm 3 on the other hand has 3 false positives, 6 false negatives, 16 false zeros, and 25 

false identifications in total, while it is also stable and satisfies the desired sparsity pattern. 
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Figure 7 - SOS pathway in E. Coli 
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3.4. Larvie, et al.  
 

“Stable Gene Regulatory Network Modeling from Steady-State Data” [4] is a study on 

steady-state data featuring genetic perturbation experiments. It is a means to return a sparse 

and stable network without the use of prior knowledge from said noisy perturbation 

experiments. The convex nature of the algorithm used contribute to an output which can be 

efficiently scaled.  

A plethora of modelling approaches exist, but they lag behind in certain aspects such as 

describing causality or incorporating feedback motifs. Other models are computationally 

expensive or are suitable for only small-scale networks. Relying on temporal expression data 

also proves to be a hindrance as they are difficult to acquire. 

This study uses the Vector Autoregressive (VAR) model, which was initially developed for 

analysis and prediction of economic and time series. There are equations for each evolving 

variable and data around millions of genes can be effectively scaled. The technique is most 

flexible and easy to use for analyzing multivariate time series, resulting in a rise in use in 

neuroscience and most recently, in GRNs. 

It also uses the least absolute shrinkage and selection operator (LASSO) technique which 

selects covariates and improves prediction. The method also improves the interpretability of 

regression models by only selecting a subset of the original data set to be used in the problem. 

Variables which have substandard performance are set to zero by comparing to a penalty 

term. A stability constraint is introduced to work on steady-state data, and the optimization 

problem is solved using a penalty parameter. Zavlanos et al and Geršgorin’s theorem are 

utilized to incorporate the stability constraint while maintaining the convex nature of the 

entire network. The result is a sparse and stable matrix, from which a Gene Regulatory 

Network is constructed by converting the time series of gene expression into a matrix where 

the rows are expression of various genes and the columns are observations at different time 

points. This study was performed on E. Coli and yeast cells and the sensitivity and specificity 

were compared. The inferred network without prior knowledge is mostly accurate, stable, 

scalable and sparse. 

The following table shows how the proposed network identification algorithm without a priori 

knowledge of the network structure compares with that proposed by Zavlanos et al. with 30% 

a priori knowledge of the network. 

 

Figure 8 - The comparison of the LASSO-VAR and Zavlanos methods 
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Figure 9 - Known and inferred networks of SOS pathway in E. Coli 

The identification algorithm accurately identified the key regulatory associations in the 

network. 

For instance, the model correctly shows that lexA activates recA while negatively regulating 

its own transcription, whereas recA negatively regulates its own transcription. In addition, the 

model identified lexA as having the greatest regulatory influence on the other genes in the 

network. Due to the differences in network topology (e.g., recA, lexA and CDC20), 

inaccuracies are expected from either the current published model, the LASSO-VAR GRN 

recovery, or both. Some of these potential differences may alternatively be dependent on the 

dynamic state of the system as inferred from the temporal context. 
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3.5. Langfelder and Horvath 
 

“WGCNA: an R package for weighted correlation network analysis” [5] is a study into 

weighted gene correlation network analysis, a method for describing correlation patterns 

among genes across microarray samples. Using this method, several important applications 

are found, which have been compiled into an R package, accompanied by several tutorials to 

allow for consistent, user-friendly implementations of the various techniques discussed. 

For instance, WGCNA can be used to find clusters, or modules of highly correlated genes. In 

an unsigned co-expression network, modules correspond to clusters of genes with high 

absolute correlations. In a signed network, modules correspond to positively correlated 

genes. 

The clusters can then be summarized into eigengenes, defined as the first principal 

component of a given module. It can be considered a representative of the gene expression 

profiles in a module. 

Trait data can be incorporated along with the module eigengenes to identify potentially 

significant genes. This allows the association of genes to external factors and a way to 

mathematically determine the significance of physical traits. 

While some of the above techniques have been discussed in other papers, this paper provides 

a user-friendly implementation, a consistent software platform, and the tutorials required to 

study the code. It succeeds in doing so in the form of a library of R functions to be used in 

network construction, module detection, gene selection, calculations of topological 

properties, data simulation, visualization, and even interfacing with external software. Not 

only that, the paper also provides step by step tutorials detailing each step of the process. 

Our main purpose of reviewing this paper was to have a better understanding of the 

methodology involved with analyzing gene regulatory networks from weighted coexpression 

data. Using the tutorials provided, a solid grasp of the procedure involved with the analysis of 

micro-array gene data was obtained.  
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4. Methodology 
 

For the construction of the Gene Regulatory Network, we have used R v3.5.1 alongside 

RStudio 1.1.456. We used the R package WGCNA (Weighted Gene Co-expression Network 

Analysis) developed by Peter Langfelder and Steve Horvath [5] on a dataset of gene 

expression levels obtained from the livers of female mice with over 3600 expression profiles 

filtered from over 20000 samples collected [6]. 

It allows pairwise correlation between variables to be studied to a considerable extent. The 

functionalities provided can be widely applied to high-dimensional data sets, making it a 

valuable asset in the field of genomics. The method allows formation of clusters or modules 

and network nodes with regard to module membership, paving a simpler way to the analysis 

of relationships between co-expression modules, and to the comparison of network topology 

of different networks. Apart from the reduction of data, it is also suitable for feature selection 

and clustering.  

 Once we had a grasp of the internal concept and functions provided by the package, we 

applied the method on a dataset of the Yeast Saccharomyces Cerevisiae, containing 4000 

genes and their expressions taken at different times. [7] The process of weighted gene co-

expression network is detailed in the following sections. 
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4.1. Input and Pre-processing 
 

We begin by loading the given expression data and removing any unnecessary auxiliary 

information that may be contained within. Following this, we analyze the data, which now 

only contains gene expression data for severe outliers and entries with too many missing 

values and remove them from the data to be processed. Outliers are found by clustering the 

samples hierarchically and then choosing an appropriate height cut as shown in Figure 10. 

 

Figure 10 - A clustering dendrogram of samples based on Euclidean distance.  
F2_221 is the outlier and is omitted from the data. 

 

From Figure 10, we can see that an outlier is clearly visible. We look to identify cases such as 

this and remove those points from the data. We then have the expression data required for 

network analysis.  
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Compared to the liver data, the Yeast data contains no extreme outliers. Therefore, we 

choose not to perform a height cut. From here on outwards, all figures will refer to the yeast 

dataset unless mentioned otherwise. 

 

 

 

Figure 11 – Clustering dendrogram of yeast showing no extreme outliers. 
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4.2. Construction of the Gene Regulatory Network 

and module detection 
 

The primary interest regarding genes with similar expression patterns lies in the fact that they 

have a greater chance of being tightly co-regulated based on their expression levels and this 

in turn gives an indication of their relationship in terms of their functionalities. Constructing 

a network mathematically and visually will aid us in identifying which genes are highly co-

related and regulate the expression of other genes. Additionally, we can decipher which 

pathway they belong to and the different interactions between each. 

Since our chosen measure is correlation, a proper coefficient of correlation needs to be 

selected. While multiple measures exist within the WGCNA package itself, the Pearson 

coefficient is likely to be most useful as it is the standard and default measure. 

An adjacency matrix consisting of the correlation values is created and is later used to visualize 

the network. However, to amplify the disparity and easily identify between strong and weak 

correlations, the values are raised to a certain value to which the similarity or dissimilarity 

results will be raised to. For example, the following results are raised to a value of 4. 

 

𝑐𝑜𝑟(𝑖, 𝑗) = 0.8  

𝑐𝑜𝑟(𝑘, 𝑙) = 0.2  

New values:        |0.8|4= 0.4096 

   |0.2|4= 0.0016 

 

As we can see, the 4-fold difference between 0.8 and 0.2 has been amplified to a 256-fold 

difference. With our newfound values, we are ready to construct a fully connected network 

consisting of genes as nodes and the edge weights from the adjacency matrix. 

To construct a gene regulatory network from the data, a soft thresholding power has to be 

chosen, to which the co-expression similarity will be raised to in order to calculate 

adjacency. This power is selected based on the criterion of approximate scale-free topology. 

A function called pickSoftThreshold() analyses the network topology and helps the user pick 

the power from a set of candidate powers as shown in Figure 12. 
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Figure 13 - Selecting a power for the soft threshold. 

 

We aim for a scale independence of 0.9, therefore, 7 is chosen as the soft threshold power, 

due to it being the lowest power for which the scale-free fit index reaches 0.9. Using this, we 

generate an adjacency matrix raised to the power 7 from the expression data. This is the 

preliminary form of our network. The mean connectivity drops as power increases, so it is 

made certain that the connectivity does not drop too low. 

Our focus is on making the network scale-free which allows to extend the scalability 

depending on the dimension of the data-set. A scale-free network consists of many nodes 

which are the genes in our case while incorporating as few connections as possible. The 

degree distribution follows a power law where the probability for a node having k connections 

is k raised to some power. 

We then transform this adjacency matrix into a Topological Overlap Matrix; this reduces noise 

and false associations. The Topological Overlap Measure is a pairwise similarity measure 

between the network nodes or the genes. A high measure between two genes indicate that 

they have many shared neighbors. Thus, we can concur there exists a large overlap of their 

network neighbors or that the genes have similar expression patterns. 
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The process of calculating the matrix values is calculated from the following formula: 

 

 

 

 

 

 

Since we are concerned with the dissimilarity between different genes, a dissimilarity value is 

calculated by subtracting the TOM result from 1. The dissimilarity value is then normalized to 

0 and 1 where they indicate identical set of neighbors and no overlap of network neighbors 

respectively. 

 The matrix can be constructed using the TOMSimilarity() function, and consequently, a 

dissimilarity matrix is produced from this TOM to identify clustered genes. Following this, 

hierarchical clustering, using the hclust() function, is done to produce a dendrogram as shown 

in Figure 14. In the diagram, each leaf corresponds to a single gene.  

Highly co-expressed genes group together in branches, from which we can determine 

modules by separating branches through a process known as Dynamic Tree Cutting. Then we 

get different modules of highly co-expressed genes which are called “gene modules” and can 

provide extensive biological insight. 

 

 

Figure 14 - Clustering dendrogram of genes, with dissimilarity based on topological overlap. 
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Figure 15 - Clustering of eigengenes, with dissimilarity based on topological overlap 

Once we have the gene modules, we can visualize them through assignment of different 

colors. Afterwards, similar modules can be merged by performing a form of PCA to find the 

“eigengenes” which will contain the most information within each module and can be 

transformed into a one-dimensional data vector. This is beneficial in the sense that we take 

only a representative of each module instead of its entirety and can be performed using the 

moduleEigengenes() function. Clustering the eigengenes can give us the co-expresseion 

similarity based on correlation.  The clustered eigengenes and appropriate cut are shown 

below in figure 15. 
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Figure 16 - Merging on highly coexpressed modules with assigned module colors and merged colors 

Based on the eigengenes, we merge the modules with high co-expression similarity. The 

resulting modules are shown below in figure 15. Modules obtained can be used in 

mathematical operations to find out the degree of correlation between them or with other 

external traits. 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

Now we have the clustered tree along with modules, their eigengenes and other necessary 

information which can be used to construct necessary networks. It is also possible to relate 

said modules and their constituent genes with external traits and observe their relationship 

through the form of heatmaps. Gene significance can also be inferred. For now, we focus on 

constructing a network and analyzing its accuracy with existing ones. 
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4.3. Visualization of the network  
 

Now that we have the network from the Topological Overlap Matrix, we can visualize it 

through functionalities provided by the package or exporting the matrix to external 

compatible software. 

A heatmap can be constructed using the TOMPlot function which plots a heatmap with all the 

genes positioned on the row and column of the graph. The colors are an indication of the 

coexpression between the genes. Lighter colors indicate low adjacency and darker indicates 

higher adjacency or overlap. Additionally, we add the gene dendogram and module colors to 

indicate which module the genes belong to and show that the ones within a module are highly 

coexpressed.  

The following figure depicts the said heatmap. It can be seen that the colors are darkest in 

the diagonal which indicates the modules. Throughout the matrix there are patches of lighter 

yellow colors and progressively darker red colors to identify which genes are highly 

coexpressed and which are not. 
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Figure 17- Visualizing the gene network using a heatmap plot. The heatmap depicts the Topological Overlap Matrix (TOM) 
among all genes in the analysis. Light color represents low overlap and progressively darker red color represents higher 

overlap. Blocks of darker colors along the diagonal are the modules. The gene dendrogram and module assignment are also 
shown along the left side and the top. 
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Figure 18- Network of genes in the 'brown' module of the yeast cell cycle 

 

Since it is hard to decipher crucial information from a heatmap, we proceed to transfer the 

network to other software with robust visualization options to aid us in extracting valuable 

details. Such a software we have used is VisANT. 

Here we first show the network of a single module within our network. It is possible to display 

a certain number of genes if needed or show relationship between modules. 

We can vary the threshold before exporting to eliminate some weights which have low values.   



  Thesis Report – Bio-Informatics 
 

Page | 30  
 
 

Figure 19- The figure on the left shows the known GRN of the early cell cycle of yeast. On the right, the recovered GRN using 
the method described by Larvie et al. 

5. Comparative Analysis 
 

Using our constructed network, we can extract a sub-network which is composed of 14 genes. 

These 14 genes are named FUS3, SIC1, FAR1, CDC6, CDC20, CDC28, CLN1, CLN2, CLN3, CLB5, 

CLB6, SWI4, SWI6 and MBP1 and they are known to be involved in the early cell cycle of the 

yeast Saccharomyces cerevisiae. The cell cycle describes the series of events that precedes its 

division and duplication. Larvie et al have produced the following gene regulatory network 

through their method and the details of their results are given below. [4] 

 

 

 

 

 

 

 

 

 

 

 

The recovered network contains complexes including one or several genes which are 

considered as a ‘gene’ in the network. There are 10 complexes, including CLN3/CDC28, 

SWI4/SWI6, MBP1/SWI6, CLN1/CLN2/CDC18, and CLB5/CLB6/CDC28. Other nodes that are 

made of one single gene only, CDC20, CDC6, SIC1, FAR1, and FUS. The following assumptions 

are made: 

1. Genes CLN3 and CDC28 are only considered as possible regulators, as they are starters of 

the cell cycle network. 

2. All discovered links from any gene in one complex to any other genes in a different complex 

are considered as a single regulation. 

3. All regulations among genes in the same complex are ignored. 
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Figure 20- Constructed GRN from weighted coexpression network. Red indicates inhibition, Blue indicates 
activation, and Green indicates membership within the same complex. 

Through the use of weighted gene coexpression, we have constructed a network of 4000 

genes which include the 14 involved in the early cell cycle development. The datasets include 

their expression levels at different times, similar, but not exact to the one used by Larvie et 

al. Our constructed network is shown in Figure 20 followed by an alternative simplified 

representation in Figure 21. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The weight coefficients of the edges created from the Topological Overlap Matrix were 

related to the regulation of the genes. Coefficients for activation and inhibition lie within their 

respective ranges of threshold and they have been colored blue and red respectively for 

simplicity of understanding. Grouping of genes which constitute a complex is indicated by 

green edges and are highly coexpressed. 
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The same network is remodeled in light of the ones depicted in Larvie et al. The true positives 

and false positives have been identified along with comparative measures. This can be done 

due to this pathway being known and recorded in the Kyoto Encyclopedia of Genes and 

Genomes (KEGG). This allows us to calculate specificity, sensitivity and precision for both our 

results and the existing results in order to compare them. 

 

 

 

Figure 21 - Pathway drawn from the constructed network.  
Blue indicates activation, Red indicates inhibition. False Positives are marked as such. 
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The comparative analysis is shown below: 

  TP FP TN FN Sensitivity Specificity Precision 

WGCNA 10 5 76 0 1 0.938272 0.666667 

LASSO-VAR 7 3 80 1 0.875 0.963855 0.7 

 

From the table, it can be seen that WGCNA obtained a higher sensitivity due to correctly 

identifying all the pathways. However, a significantly higher number of false positives were 

also obtained, reducing the specificity and overall precision. Furthermore, as the sample size 

for this calculation is quite small, it is safe to assume the sensitivity of WGCNA will go down 

with larger samples. 

We were able to identify the CDC6 interaction correctly, however, we also encountered 

several false positives, particularly on inhibiting relations. 
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6. Motivation and Future Work 
 

We elected to use WGCNA as our method due to several advantages it provides. Not only 

does it cluster samples based on expression, it further defines modules of highly 

interconnected genes and provides additional network statistics. Separating large networks 

into modules also allows external traits to be compared to a smaller number of values, greatly 

increasing scalability. 

Some drawbacks of the LASSO method include the fact that due to being a type of model 

selection, it tends to eliminate variates from the system by shrinking coefficients to 0 as it 

progresses. This does not help if prediction is the primary focus as it would tend to suffer the 

drawbacks of predictive discrimination. For example, if the sample has some relevant genes 

and some genes unimportant to the study at hand, LASSO works well as it would eliminate 

the unneeded genes from the model. However, in certain studies, such as vibrational 

spectroscopic data sets, tend to have data spread out over large ranges, in which case 

dropping variates would be undesirable. For two highly correlated variates, LASSO may also 

drop one. In cases such as these, ridge regression is a better option. It may be possible to 

improve the process if these factors were also taken into consideration.  

However, from our analysis, we have determined that under most circumstances, the LASSO-

VAR approach is the optimal choice for the modeling of Gene Regulatory Networks. 

Therefore, we aim to devise an approach to improve on the work done regarding this 

approach. One alternate that is used in certain cases is ridge regression, a stepwise variable 

selection method.  

Furthermore, LASSO-VAR performs without the use of prior knowledge which is favorable in 

most cases, but whether or not the results can be further improved by including prior 

knowledge merits further study as this could be one possible way of improving the predictive 

power of the method. 

Upon researching on the strengths and weaknesses of VAR, a method initially developed for 

use on economic models, we came across Bayesian Vector Autoregression (BVAR). BVAR is 

similar to VAR, except that the model parameters are treated as random variables with prior 

probabilities assigned to them. It also performs well on modelling large datasets, making it an 

ideal candidate for further study with regards to Gene Regulatory Network modelling. We 

believe combining the findings of the papers analyzed with the techniques proposed would 

allow us to achieve our objective – a version of LASSO-VAR that can adapt to the introduction 

of prior knowledge and potentially improve on the results, LASSO-BVAR. 
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Figure 22- Module-trait relationship of mice liver dataset. The more red a value is, the more the trait is expressed by the module. 

To utilize BVAR however, we will require datasets containing probability values. We can also 

get better results from WGCNA itself if trait data for a given dataset is also incorporated. The 

trait data can be used in tandem with the module data to identify which modules are 

responsible for which traits. Doing so would allow us to determine which gene pathways are 

responsible for which physical characteristics. For example, the trait data of the liver dataset 

[6] can be incorporated to form a module-trait relationship as shown in the following figure. 
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