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Abstract

Automatically generating or predicting tags for movies can help recommendation

engines improve retrieval of similar movies, and help viewers know what to expect

from a movie in advance. It improves the search results of a movie recommender

system by predicting high weighted tags from a movie’s plot synopsis. We propose

a model in which we at first perform pre-processing of data(stopwords eradication,

stemming of data etc.) and then tokenize the data by a technique called BERT

and then vectorize it by TF-IDF process and then input those pre-processed data

to a deep learning technique to give us a prediction tag scores from a set of tags

for movies. We compare our system’s result with an already proposed model

with emotion flow encoded neural network and found that our model’s perfor-

mance shows improvement in result(TL, TR and F1 measure) specially due to

pre-processing of data and for using the techniques like BERT and TF-IDF.
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1 Introduction

1.1 Overview

A recommender system or a recommendation system (sometimes replacing

”system” with a synonym such as platform or engine) is a subclass of information

filtering system that seeks to predict the ”rating” or ”preference” a user would

give to an item. Recommendation systems use a number of different technologies.

We can classify these systems into two broad groups[3],

• Content-based systems examine properties of the items recommended. For

instance, if a Netflix user has watched many cowboy movies, then recommend

a movie classified in the database as having the “cowboy” genre.

• Collaborative filtering systems recommend items based on similarity mea-

sures between users and/or items. The items recommended to a user are

those preferred by similar users.

Tags for movies often represent summarized characteristics of the movies such as

emotional experiences, events, genre, character types, and psychological impacts.

As a consequence, tags for movies became remarkably convenient for recommend-

ing movies to potential viewers based on their personal preferences and user pro-

files. Tags can be used as strong search keywords and its an efficient feature for

recommendation engines. The capability of tags in providing a quick glimpse of

items can assist users to pick items precisely based on their taste and mood.

Natural language processing (NLP) is a field concerned about how to program

computers to process and analyze large amounts of natural language data. Using

NLP we can have a deep understanding of data and we can also take actions based

on the outcomes of data. Natural language processing mainly deals with syntax,

semantics, discourse and speech. Eradication of stopwords, lemmatization, stem-

ming of words, removal of special characters, word segmentation etc. are all parts
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of natural language processing. It has a wide range of applications like Sentiment

analysis, Text Classification, and Categorization, Automated Summarization etc.

Deep learning (also known as deep structured learning or hierarchical learning)

is part of a broader family of machine learning methods based on artificial neural

networks. It can be supervised, semi-supervised and unsupervised. Artificial neu-

ral networks (ANN) are computing systems that are inspired by, but not identical

to, biological neural networks that constitute animal brains. Such systems ”learn”

to perform tasks by considering examples, generally without being programmed

with task-specific rules. Neural networks are workhorses for deep learning. Neural

networks are multi-layer networks of neurons that we use to classify things, make

predictions, etc. Neural network mainly consist of three layers which are input

layer, zero,one or more than one hidden layers, output layer. These layers con-

stitutes the neurons with activation function and these neurons are all connected

together in a mesh network. ANN can be of many types like feed forward neural

network, convolutional neural network (CNN), recurrent neural network (RNN)

etc.

1.2 Problem Statement

The primary goal of a movie recommender system is to recommend movies to users

based on their interests. This recommender system performs more efficiently when

good tags are generated for each movies in its database. So when an user has a

particular interest for a movie the recommender system finds the movies similar

to the user’s interest more quickly and accurately based on the generated tags

for each movies. That means the more accurate the tags are generated for each

movies, the better will be the result of the recommender system. The challenge

for improving accuracy for better recommendation result is a burning research

area at the moment. Recommender systems are used in many places like Netflix,

Facebook, Google, YouTube etc. So our approach was to try to make a model

from existing resources in order to improve the accuracy for generating tags from

movie’s plot synopses which will help improve a movie recommender system.
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1.3 Motivation & Scopes

Recommender system is being used by many users in different platforms like Face-

book, YouTube, Netflix etc. The better the accuracy of recommendation the more

user friendly it will get. So in our thesis we mainly focused on movie recommender

system by improving the scores for tag generation from a movie’s plot synopses.

An already implemented approach to this is done by using emotion flow encoded

neural network[1]. After studying their methods then we focused on improving

their results of tags learned(TL), tags recall(TR) and F1 measure by trying out

a different model approach. On the mission to improve the accuracy we learned

about data pre-processing which is a vital step in data mining related works, then

we studied the techniques required for tokenizing and vectorizing and lastly to

train the data by a deep learning technique to generate best scores from a set of

given tags for movies.

The scope to improve the accuracy of our work will always remain open. Different

techniques are being researched by different researchers and its being implemented

to make new steps in a training model every now and then.

1.4 Research Challenges

The research challenges mainly includes:

• The time required to train the model. Some of our approach process required

even days to complete all the epochs for training the data.

• High computational power with good specification PC is required for training

the model.

• We tried two types of deep learning techniques in our model and when we

find an improved result in tags learned(TL) then we find a bit lower result

in F1 measure and vice-versa.
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1.5 Thesis Outline

In Chapter 1 we have discussed our study in a precise and concise manner. Chapter

2 deals with the necessary literature review for our study and there development

so far. In Chapter 3 we have stated the skeleton of our proposed method, pro-

posed algorithm and also the flowchart to provide a detail insight of the working

procedure of our proposed method. Chapter 4 shows the results and comparative

analysis of successful implementation of our proposed method. The final segment

of this study contains all the references and credits used.
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2 Literature Review

2.1 Recommender System

Recommender system is such a facility which is an extensive class of web applica-

tions that involve predicting user responses to options. Its an information filtering

system that predicts the preference an user would give to an item. We can intro-

duce a model for recommender system based on utility matrix of preferences.

In a recommendation-system application there are two classes of entities, which

we shall refer to as users and items. Users have preferences for certain items, and

these preferences must be teased out of the data. The data itself is represented

as a utility matrix, giving for each user-item pair, a value that represents what is

known about the degree of preference of that user for that item. Values come from

an ordered set, e.g., integers 1–5 representing the number of stars that the user

gave as a rating for that item. We assume that the matrix is sparse, meaning that

most entries are “unknown.” An unknown rating implies that we have no explicit

information about the user’s preference for the item. [3]

Figure 1: Sample Utility Matrix[3]

Above figure representing a sample utility matrix with ratings of movies on

a scale of 1 to 5. Notice that most user-movie pairs have blanks, meaning the

user has not rated the movie. In practice, the matrix would be even sparser, with

the typical user rating only a tiny fraction of all available movies. The goal of a

recommendation system is to predict the blanks in the utility matrix. Based on

the score of an user in a particular category of movie.

Considering the above figure would user A like SW2? There is little evidence
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from the tiny matrix. We might design our recommendation system to take into

account properties of movies, such as their producer, director, stars, or even the

similarity of their names. If so, we might then note the similarity between SW1

and SW2, and then conclude that since A did not like SW1, they were unlikely to

enjoy SW2 either. Alternatively, with much more data, we might observe that the

people who rated both SW1 and SW2 tended to give them similar ratings. Thus,

we could conclude that user A would also give SW2 a low rating, similar to user

A’s rating of SW1.[3]

Recommendation systems use a number of different technologies. We can classify

these systems into two broad groups[3],

• Content-based systems examine properties of the items recommended. For

instance, if a Netflix user has watched many cowboy movies, then recommend

a movie classified in the database as having the “cowboy” genre. Content-

Based systems focus on properties of items. Similarity of items is determined

by measuring the similarity in their properties. In a content-based system,

we must construct for each item a profile, which is a record or collection of

records representing important characteristics of that item. Based on this

characteristics of item the similarity measure with the item and user’s inter-

est is calculated by different processes like TF-IDF, Jaccard distance, Cosine

distance etc. Then according to this measured value the high weighted item

is recommended to user.[3]

• Collaborative filtering systems recommend items based on similarity mea-

sures between users and/or items. The items recommended to a user are

those preferred by similar users. Collaborative-Filtering systems focus on

the relationship between users and items. Similarity of items is determined

by the similarity of the ratings of those items by the users who have rated

both items. This similarity measure can be done by Jaccard distance or

Cosine distance measurement.[3]
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This diagram can give a proper understanding to these two categories of rec-

ommender system.

Figure 2: Recommender System Types[6]

2.2 Recommendation Goals

In the paper they developed three top level user recommendation goals which are

described briefly below[4],

• Objective Goal: It’s a request that can be answered without controversy.

These goals seek to filter the movie space by specifying an attribute such as

a genre, an actor, or a release date. It can be easily answered. However, they

found many examples of objective goals that cannot be easily answered using

a typical database of movie information. They label these goals as seeking

“deep features”, indicating that users wish to filter movies by nuanced

or specific criteria. Some examples of requests including deep features are

“apocalyptic special effects and “a movie about berlin wall”[4].

• Subjective Goal: It’s a request that involves judgment, uncertainty, and/or

personalization. Answering subjective queries — much like objective deep
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features which is difficult because neither metadata databases nor recom-

mender systems may track how much “clever plot” or “sad” a movie has.

Subjective goals can be divided into three sub-types which are[4]:

– Emotion request tend to specify a particular feeling that a movie

invokes in the viewer, e.g. “cheerful comedy”.

– Quality requests are either explicit about wanting good/best movies

(e.g., “Some good dystopic sci-fi would be nice.”), or specify the aspects

of the movie that make it good (e.g., “classic sci-fi movies’).

– Movie-based requests seek related movies, e.g., “something like Pulp

Fiction”. They considered movie-based requests to be subjective rather

than objective, because there is no objective and universally-held metric

to determine the similarity between any two movies

• Navigation Goal: They stated the navigation goal to be the simplest among

the three goals — the user wants navigation to see one or more particular

movies, so they state part or all of a title. Some examples in our dataset are

“the social network” (which matches one movie) and “Star Wars” (which

matches a series)[4].

Figure 3: Hierarchy of Coded Recommendation Goals.[4]
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A user query can have more than one goals together, for example: “Funny

romantic movie made in the 2000s” codes as genre (“romantic”), quality (“funny”).

Figure 4: Venn Diagram of Top-Level Recommendation Goals.[4]

The other coding methods they used to describe user responses are described

below briefly[4],

• Conversational: Some queries are phrased as though the user is conversing

with a human; they code these queries as conversational. Examples include

“I’m looking for a hard sci-fi movie” and “find a movie like eternal sunshine

of the spotless mind”. They found that 24.8% of the queries in their dataset

are conversational.

• Number of Modifiers: One measure of query complexity is the number of

modifiers the query contains, where each modifier serves to filter or reorder

the results. For example, “I’m looking for a movie that’s not sad” has a sin-

gle modifier (“not sad”), while “biographic dramas” has two (“biographic”,

“dramas”). In their dataset, 69.7% of the queries have a single modifier,

23.9% of the queries have two modifiers, 6.1% have three, and 0.3% have

four (the maximum in their data).

• Recommend: Some queries in their dataset explicitly seek recommended

movies. Some examples are “a good movie” and “I’m looking for the best
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sci fi horror movie”. Only 4.4% of the queries in their dataset are explicit

about seeking recommendations.

2.2.1 Follow-up Queries

Subjects who rate the results overall as “very poor” or “poor” are asked to explain

how the results could be improved using free text input; subjects who rate the

results as “fair” or better are asked to express a follow-up query (the interface

prompts: “I can improve these results. Tell me more about what you want.”).

Unlike subjects’ first queries, where their goals are typically explicit and recog-

nizable, follow-up queries are commonly ambiguous with respect to their goals.

For instance, a subject whose first query is “Science Fiction” and whose follow-up

query is “Horror” could plausibly either be specifying an additional genre filter,

or could be starting a new search. So it becomes ambiguous.

The follow-up queries are divided into three parts which are briefly described

below[4],

• Refine: The subjects assume the system remembers their initial query, and

specify additional criteria that they wish the recommender system to con-

sider. It can be divided into two sub-parts which are[4],

– Refine with further constraints: Many refinement queries suggest

that the subject is still interested in the initial query, and wishes to

further constrain the universe of the search space.

– Refine with clarification: Other refinement queries reflect a disap-

pointment with the initial results. These subjects attempt to help the

digital assistant by providing more information.

• Reformulate: These subjects appear to remain interested in their original

query, but wish to completely restate the query to improve the recommen-

dations. These subjects do not assume that the recommender remembers

their last query, and typically reuse some portion of the original language.

It can be divided into two sub-parts which are[4],
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– Reformulate with further constraints: As with the refine queries,

some subjects appear to reformulate to further narrow the set of results.

– Reformulate with clarification: Other subjects reformulate queries

in an attempt to encourage the system to better results.

• Start Over: The third major theme they discovered in follow-up queries is

that subjects want to start a new query, even though the experimental

prompt says “tell me more about what you want” (emphasis not in the

interface). These subjects may be experimenting with the system, or may

realize that their first query is not at all what they are looking for.[4]

2.3 Natural Language Processing

By “natural language” we mean a language that is used for everyday communi-

cation by humans; languages such as English, Hindi, or Portuguese. In contrast

to artificial languages such as programming languages and mathematical nota-

tions, natural languages have evolved as they pass from generation to generation,

and are hard to pin down with explicit rules. We will take Natural Language

Processing—or NLP for short—in a wide sense to cover any kind of computer

manipulation of natural language. At one extreme, it could be as simple as count-

ing word frequencies to compare different writing styles. At the other extreme,

NLP involves “understanding” complete human utterances, at least to the extent

of being able to give useful responses to them. Technologies based on NLP are

becoming increasingly widespread. For example, phones and handheld comput-

ers support predictive text and handwriting recognition; web search engines give

access to information locked up in unstructured text; machine translation allows

us to retrieve texts written in Chinese and read them in Spanish. By providing

more natural human-machine interfaces, and more sophisticated access to stored

information, language processing has come to play a central role in the multilin-

gual information society.[5] Natural language processing mainly deals with syntax,

semantics, discourse and speech. Eradication of stopwords, lemmatization, stem-

ming of words, tokenization, removal of special characters, word segmentation etc.
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are all parts of natural language processing.

2.3.1 Stemming

It is possible to reduce certain words to a single word. Stemming is the concept

of removing last characters of word until we get a common word. Or in other

words, the stemming algorithm works by cutting out common suffixes from a

word. A word stem doesn’t have to be the same root as a morphological root

based on a dictionary, it’s just an equivalent or lower form of the word. Stemming

algorithms are typically rule-based. A word is analyzed and passed through a set

of conditionals that decide how it can be sliced. For example, we may have a

suffix rule that, based on a list of known suffixes, cuts them off. In the English

language, we have suffixes like “-ed” and “-ing” which may be useful to cut off in

order to map the words “cook,” “cooking,” and “cooked” all to the same stem of

“cook.”

Figure 5: Example of Stemming

2.3.1.1 Overstemming and Understemming

Nevertheless, it is far from ideal since stemming is usually based on heuristics.

Specifically, it is usually influenced by two issues: overstemming and understem-

ming. Overstemming comes from being cut off too much of a term. This may

result in ludicrous stems where all of the word’s meaning is lost or muddled. Or

it can lead to words being settled on the same roots, even though they should

ideally not be. Take the four words university, universal, universities, and uni-

verse. A stemming algorithm that resolves these four words to the stem “univers”

has overstemmed. While it might be nice to have universal and universe stemmed

together and university and universities stemmed together, all four do not fit. A
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fair approach could have the first two resolved to ”universe,” and the latter two

resolved to ”universe,” but the enforcement of rules could lead to more problems.

Figure 6: Overstemming and Understemming

Understemming is the other way around. This comes from having many words

that are also each other’s type. It would be good for them all to converge on the

same base, but they don’t, sadly. This can be seen if we have a stemming algorithm

that stems the words data and datum to “dat” and “datu.” What happens if we

resolve both of them to “dat”. What are we going to do with date, though?

And there’s a good rule in general? Or are we just for a very specific example

implementing a very specific rule? There are a number of stemming algorithms

but the most common algorithms are Porter, Lancaster and Snowball.

Figure 7: Types of Stemming
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2.3.2 Lemmatization

On the other hand, lemmatization takes into account the morphological analysis

of the terms. To do this, it is important to have comprehensive dictionaries that

can be looked through by the algorithm to connect the form back to its lemma.

Once, with the same example of words, you can see how it works.

Figure 8: Lemmatization

To solve a word to her lemma, lemmatization needs to know its part of the

speech. This requires additional computational linguistic power such as a talking

tagger component. This makes it possible to make better resolutions(like resolving

is and are to “be”).

2.3.3 Tokenization

We will start with some very simple text parsing to get started in natural language

processing. Tokenization is the method of taking a text stream like a sentence and

breaking it down to its most basic words. For instance take the following sentence:

“The red fox jumps over the moon.” Each word would represent a token of which

there are seven. To Tokenize a sentence using python:

Figure 9: Tokenization
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2.3.4 Stop Word Removal

Most sentences and paragraphs contain terms whose meaning or significance is

very little. These words include “a,” “and,” “an,” and “the.” Stop word removal

is a process of removing these words from a sentence or stream of words.

2.4 Deep Learning

Deep learning is a method of artificial intelligence that mimics the functioning of

the human brain in processing data and generating patterns for use in decision

making. Deep learning is a subset of machine learning in artificial intelligence

(AI) that has networks capable of learning from unstructured and unlabeled in-

formation without supervision. Also known as deep neural learning or deep neural

network. Deep learning learns from vast amounts of unstructured data that could

normally take humans decades to understand and process.

2.4.1 Feed Forward Neural Network(FFNN)

Neural networks are multi-layer networks of neurons (the blue and magenta nodes

in the chart below) that we use to classify things, make predictions, etc. Below

is the diagram of a simple neural network with five inputs, 5 outputs, and two

hidden layers of neurons.[7]

Starting from the left we have in Figure:9

1. The input layer of our model in orange.

2. Our first hidden layer of neurons in blue.

3. Our second hidden layer of neurons in magenta.

4. The output layer (a.k.a. the prediction) of our model in green.

The arrows that connect the dots shows how all the neurons are interconnected

and how data travels from the input layer all the way through to the output layer.

So in the neural network,
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Figure 10: Feed Forward Neural Network[7]

1. The input(orange) is the lone feature that we give to our model in order to

calculate a prediction.

2. The blue or magenta neurons are the hidden layers consisting of activation

function which takes product of weight and input value as the neurons input

and output it to another hidden layer or to the output layer according to

the activation function like sigmoid function.

Figure 11: Activation Function in Neural Network[7]

3. Finally we get our predicted probability score as our output(green) from the

neurons depending on the activation function.
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2.4.2 Encoding Emotion Flow with a Neural Network

This neural network model was showed in a paper in which they explore the

problems of creating tags for movies from their plot synopses and with that they

propose a novel neural network model that merges information from synopses and

emotion flows throughout the plots to predict a set of tags for movies.[1] They

conducted the experiment on the Movie Plot Synopses with Tags (MPST) corpus

which is a collection of plot synopses for 14,128 movies collected from IMDB and

Wikipedia.[11]

The emotion flow encoded neural network model is described below:

1. Convolutional Neural Network (CNN): At first from the plot synopses they

design a model that takes word sequences as input, where each word is

represented by a 300-dimensional word embedding vector. They stacked 4

sets of one-dimensional convolution modules with 1024 filters each for filter

sizes 2, 3, 4, and 5 to extract word-level n-gram features. Convolution units

of filter size c calculate a convolution output using a weight map Wc, bias

bc, and the ReLU activation function. Then Maxpool operation is applied to

these convolution outputs and have taken the maximum value as the feature

produced a particular filter. From these we get out textual features of the

plot synopses.[1]

2. Bidirectional Long Short Term Memory (Bi-LSTM): To model the flow of

emotions throughout the plots, we divide each synopsis into N equally-sized

segments based on words. For each segment, we compute the percentage

of words corresponding to each emotion and polarity type (positive and

negative) using the NRC emotion lexicons. NRC emotion lexicons is a list

of 14,182 words and their binary associations with eight types of elementary

emotions from the Hourglass of Emotions model (anger, anticipation, joy,

trust, disgust, sadness, surprise, and fear) with polarity. These lexicons

have been used effectively in tracking the emotions in literary texts and

predicting success of books.
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Figure 12: Emotion Flow Encoded Neural Network[1]
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This bidirectional LSTM layer tries to summarize the contextual flow of

emotions from both directions of the plots. The forward LSTMs read the

sequence from s1 to sN, while the backward LSTMs read the sequence in

reverse from sN to s1. These operations will compute the forward hidden

states and backward hidden states. For input sequence s, the hidden states

ht are computed using the following intermediate calculations:

it = σ(Wsist +Whiht−1 +Wcict−1 + bi)

ft = σ(Wsfst +Whfht−1 +Wcfct−1 + bf )

ct = ftct−1 + ittanh(Wscst +Whcht−1 + bc)

ot = σ(Wscst +Whcht−1 + bc)

ht = ottanh(ct)

where, W and b denote the weight matrices and bias, respectively. σ is

the sigmoid activation function, and i, f, o, and c are input gate, forget

gate, output gate, and cell activation vectors, respectively. Then they apply

attention mechanism on this representation to get a unified representation

of the emotion flow.[1]

3. Feed Forward Neural Network with two hidden layers: From CNN we get tex-

tual feature and from Bi-LSTM we get emotional features of the plot syn-

opses and they concatenate the representation of the emotion flow produced

by the attention operation and the output vector with the vector represen-

tation generated from the CNN module. The concatenated vector is then

fed into two hidden dense layers with 500 and 200 neurons. To improve

generalization of the model, we use dropout with a rate of 0.4 after each

hidden layer. Finally, we add the output layer with 71 neurons to compute

predictions for 71 tags. Then they normalize the output layer by applying

a softmax function which gives us the probabilities of those 71 tags in the

output layer. Then they chose the tags with high probability value.[1]
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2.4.3 Long Short Term Memory(LSTM)

Long Short-Term Memory (LSTM) networks are a modified version of recurrent

neural networks, which makes it easier to remember past data in memory. So

before we describe it further we say a bit about recurrent neural network.

Recurrent Neural Network is a generalization of feedforward neural network that

has an internal memory. RNN is recurrent in nature as it performs the same func-

tion for every input of data while the output of the current input depends on the

past one computation. After producing the output, it is copied and sent back into

the recurrent network. For making a decision, it considers the current input and

the output that it has learned from the previous input.[9]

Figure 13: Recurrent Neural Network[9]

The vanishing gradient problem of RNN is resolved by LSTM. LSTM is well-

suited to classify, process and predict time series given time lags of unknown

duration. It trains the model by using back-propagation.[9] The LSTM network

has three gates:

1. Input Gate: It discovers which value from input should be used to modify

the memory. Sigmoid function decides which values to let through 0,1 and

tanh function gives weightage to the values which are passed deciding their

level of importance ranging from -1 to 1.[9]

it = σ(Wi.[ht−1, xt] + bi)

Ct = tanh(Wc.[ht−1, xt] + bc)
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2. Forget Gate: It discovers what details to be discarded from the block. It is

decided by the sigmoid function. It looks at the previous state(ht-1) and the

content input(Xt) and outputs a number between 0(omit this)and 1(keep

this)for each number in the cell state Ct1.[9]

ft = σ(Wf .[ht−1, xt] + bf )

3. Output Gate: The input and the memory of the block is used to decide the

output. Sigmoid function decides which values to let through 0,1. and tanh

function gives weightage to the values which are passed deciding their level

of importance ranging from-1 to 1 and multiplied with output of Sigmoid.[9]

ot = σ(Wo.[ht−1, xt] + bo)

ht = ot ∗ tanh(Ct)

Figure 14: LSTM Gates[9]
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2.5 BERT: Bidirectional Encoder Representations from Trans-

formers

BERT, which stands for Bidirectional Encoder Representations from Transform-

ers, is a neural network-based technique for natural language processing pre-

training. For example, in the phrases “nine to five” and “a quarter to five,”

the word “to” has two different meanings, which may be obvious to humans but

less so to search engines. BERT is designed to distinguish between such nuances

to facilitate more relevant results. The breakthrough of BERT is in its ability

to train language models based on the entire set of words in a sentence or query

(bidirectional training) rather than the traditional way of training on the ordered

sequence of words (left-to-right or combined left-to-right and right-to-left). BERT

allows the language model to learn word context based on surrounding words

rather than just the word that immediately precedes or follows it.[2]

2.5.1 BERT Tokenization

Anyone, of course, will intrigued by the idea of a single model with a broad

common vocabulary for 104 languages. This is exactly what BERT(Bi-directional

Representation from Transformers) offers. The vocabulary is 119,547 WordPiece

model, and the input is tokenized into word pieces (also known as subwords) so

that each word piece is an element of the dictionary. Non-word-initial units are

prefixed with ‘’ as a continuation symbol except for Chinese characters which are

surrounded by spaces before any tokenization takes place. The tokenizer favors

longer word pieces with a de facto character-level model as a fallback as every

character is part of the vocabulary as a possible word piece.[8] An example of such

tokenization using PyTorch implementation of BERT looks like this:
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Figure 15: PyTorch implementation of BERT

This segmentation is purely frequency based and it is very different from what

a true morphological segmenter would output (El-végez-het-itek). This example

is certainly longer than an average Hungarian word and the average word is not

tokenized this aggressively but BERT does produce a large number of word pieces

for certain languages.[8]

2.6 Bag of Words and Term Frequency-Inverse Document

Frequency

A common technique for extracting features from text in natural language pro-

cessing is to put all the words that appear in the text in a bucket. This aproach

is called a bag of words model or BoW for short. It’s referred to as a “bag” of

words because any information about the structure of the sentence is lost.

Bag of Words (BoW) is an algorithm that counts how many times a word appears

in a document. It’s a tally. Such counts of words allow us to compare documents

and determine their similarities for applications such as search, identification of

documents and topics modeling. BoW is a also method for preparing text for

input in a deep-learning net. BoW lists terms combined with each document’s

word counts. Each row is a word, each column is a document, and each cell is

a word count in the table where the words and documents that actually become

vectors are stored. Each of the documents in the corpus is represented by columns

of equal length. Those are wordcount vectors, an output stripped of context.
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Words Doc1 Doc2 Doc3

car 27 4 24

auto 3 33 0

insurance 0 33 29

best 14 0 17

Table 1: Example of Bag of Words (BoW)

In the table considering the first row it means that the word ’car’ is found 27

times in Doc1, 4 times in Doc2, 24 times in Doc3 and the rest of the rows are

created similarly.

Term-frequency-inverse document frequency (TF-IDF) is another way of judging

an article’s subject by its words. With TF-IDF, words are given weight – TF-IDF

measures relevance, not frequency. That is, word counts are replaced throughout

the entire dataset with TF-IDF scores. First, TF-IDF calculates the number of

times that words appear in a particular document (i.e. ”term frequency”). But

because words like ”and” and ”the” often appear in all documents they need to

be discounted systematically. That’s the inverse-document frequency part. The

more documents a word appears in, the less valuable that word is as a signal to

differentiate any given document. That’s intended to leave only the frequent AND

distinctive words as markers. Each word’s TF-IDF relevance is a normalized data

format that also adds up to one.

Wi,j = tfi,j ∗ log( N
dfi

)

tfi,j = number of occurences of i in j

dfi = number of document containing in i

N = total number of documents

Those marker words are then fed to the neural net as features in order to determine

the topic covered by the document that contains them. The main difference is that

Word2vec produces one vector per word, whereas BoW produces one number (a

wordcount). Word2vec is great for digging into documents and identifying content

and subsets of content. Its vectors represent each word’s context, the ngrams of

which it is a part. BoW is a good, simple method for classifying documents as a

whole.
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3 Proposed Method

3.1 Skeleton of Proposed Method

Our method predict tags from movie’s plot synopses using deep learning tech-

niques. At first we do pre-processing of data in our dataset. Pre-processing of

data includes removal of stopwords, removal of special characters, stemming of

data, lemmatization. Then we tokenize the input data into sub pieces by BERT

tokenizer. Afterwards we use TF-IDF vectorizer to generate a score of importance

of a particular tokens for a particular movie’s plot synopses. Thus our X(train)

data is formed. Our Y(train) data is created by count vectorizer which keeps the

count of the tags occured for a particular movie’s plot synopses in training data.

With our X(train) and Y(train) data we input it in our neural network to generate

a model. Then we input our test data in that model to generate probabilites of a

total of 71 tags and the those tags with highest probability score (Top 1, Top 3,

Top 5, Top 10) is selected to be the tags for that particular movie’s plot synopses.

We also made another model by using LSTM with different constraints where we

got another set of results for different movies plots.

3.2 Proposed Algorithm

Our proposed algorithm describing all the steps are given below:

3.2.1 Dataset

We conduct our experiments on the Movie Plot Synopses with Tags (MPST)

corpus, which is a collection of plot synopses for 14,828 movies collected from IMDb

and Wikipedia. Most importantly, the corpus provides one or more fine-grained

tags for each movie. The reason behind selecting this particular dataset is two-fold.

First, the tagset is comprised of manually curated tags. These tags express only

plot-related attributes of movies (e.g. suspenseful, violence, and melodrama) and

are free of any tags foreign to the plots, such as metadata. Furthermore, grouping
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semantically similar tags and representing them by generalized tags helped to

reduce the noise created by redundancy in tag space. Second, the corpus provides

adequate amount of texts in the plot synopses as all the synopses have at least

ten sentences. We follow the same split provided with the corpus, using 80% for

training and 20% for test set.[1, 11] The statistics of the dataset is given below:

Split Plot Synopses Tags Tags per Movie Sentence per Synopsis Words per Synopsis

Train 11862 71 2.97 42.36 893.39

Test 2966 71 3.04 42.61 907.96

Table 2: Statistics of MPST corpus[1]

3.2.2 Pre-Processing of Data

Pre-processing of data is done by Natural Language Toolkit (NLTK) in python.

Data pre-processing steps are given below:

1. Removal of stopwords: Stopwords such as ’a’, ’an’, ’the’ etc which are

very frequently used in many sentences with no significant purpose are re-

moved for better processing of data. We implemented it using the following

code,[10]

import n l tk

from n l tk . corpus import stopwords

n l tk . download ( ’ stopwords ’ )

stopwords = set ( stopwords . words ( ’ e n g l i s h ’ ) )

2. Removal of special characters: Special characters or punctuations like

’,’, ’.’, ’’ are removed to help processing of data. We implemented it in our

code by,[10]

import re

sentence = re . sub ( ’ [ ˆA−Za−z ]+ ’ , ’ ’ , s entence )

3. Stemming and Lemmatization: Stemming and lemmatization has been

elaborately discussed in chapter 02. Among the three types of stemmer we
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used snowball stemmer. We implemented stemming and lemmatization of

data by the following python code:[10]

import n l tk

from n l tk . stem import WordNetLemmatizer

n l tk . download ( ’ wordnet ’ )

stemmed sentence = [ ]

for e in sentance . s p l i t ( ) :

i f e . lower ( ) not in stopwords :

s=(sno . stem ( lemmatizer . lemmatize ( e . lower ( ) ) ) ) .

encode ( ’ u t f 8 ’ )

stemmed sentence . append ( s )

sentance = b ’ ’ . j o i n ( stemmed sentence )

3.2.3 Tokenizing and Vectorizing

The data is tokenized using BERT tokenizer and these tokenized sub pieces of

words of plot synopses are used in TF-IDF vectorizer. The supervised tags for

each movie’s plot synopsis in training data is vectorized using count vectorizer.

Our implementation is given below:

• Tokenization

! pip i n s t a l l pytorch−pret ra ined−bert

import torch

from p y t o r c h p r e t r a i n e d b e r t import BertTokenizer ,

BertModel , BertForMaskedLM

Tokenizer = BertTokenizer . f r om pre t ra ined ( ’ bert−base−

uncased ’ )

Tokenizer . t oken i z e ( ” This here ’ s an example o f us ing

the BERT t o k e n i z e r us ing token i z e t h i s brother ” )
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• Count Vectorizer[10]

v e c t o r i z e r = CountVector izer ( t o k e n i z e r = lambda x : x .

s p l i t ( ’ , ’ ) , b inary=’ t rue ’ )

y t r a i n v e c t = v e c t o r i z e r . f i t t r a n s f o r m ( yTrain )

y t e s t v e c t = v e c t o r i z e r . t rans form ( yTest )

• TF-IDF Vectorizer

v e c t o r i z e r = T f i d f V e c t o r i z e r ( min df =10, max features

=20000 , smooth id f=True , norm=” l 2 ” , t o k e n i z e r=lambda x

: b e r t t o k e n i z e r . t oken i z e ( x ) , s u b l i n e a r t f=False ,

ngram range =(1 ,4) )

x tra in ngram = v e c t o r i z e r . f i t t r a n s f o r m ( xTrain )

x test ngram = v e c t o r i z e r . t rans form ( xTest )

3.2.4 Deep Learning Techniques

We use two different deep learning techniques to generate two set of results. The

techniques are given below:

3.2.4.1 Feed Forward Neural Network

Our implementation of Feed Forward Neural Network is given below:

import numpy as np

np . random . seed (1234)

import t en so r f l ow as t f

t f . ke ras . op t im i z e r s .Adam( l e a r n i n g r a t e =0.0001 , beta 1 =0.9 ,

beta 2 =0.999 , amsgrad=False )

model = t f . keras . models . S equent i a l ( )

model . add ( t f . ke ras . l a y e r s . F lat ten ( ) )
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model . add ( t f . ke ras . l a y e r s . Dense (128 , a c t i v a t i o n=t f . nn . r e l u )

)

model . add ( t f . ke ras . l a y e r s . Dropout ( 0 . 3 5 ) )

model . add ( t f . ke ras . l a y e r s . Dense (64 , a c t i v a t i o n=t f . nn . r e l u ) )

model . add ( t f . ke ras . l a y e r s . Dropout ( 0 . 3 5 ) )

model . add ( t f . ke ras . l a y e r s . Dense (71 , a c t i v a t i o n=t f . nn .

s igmoid ) )

model . compile ( opt imize r=’adam ’ , l o s s=’

c a t e g o r i c a l c r o s s e n t r o p y ’ , met r i c s =[ ’ accuracy ’ ] )

model . f i t ( X new train , Y new train , epochs =50)

pred = model . p r e d i c t ( X new test )

3.2.4.2 Long Short Term Memory(LSTM)

Our implementation of Long Short Term Memory(LSTM) is given below:

import numpy as np

np . random . seed (1234)

import t en so r f l ow as t f

from t en so r f l ow . keras . models import Sequent i a l

from t en so r f l ow . keras . l a y e r s import Dense , Dropout , LSTM

model = Sequent i a l ( )

model . add (LSTM(128 , input shape=(X new train . shape [ 1 : ] ) ,

a c t i v a t i o n=’ r e l u ’ , r e tu rn s equence s=True ) )

model . add ( Dropout ( 0 . 2 ) )

model . add (LSTM(64 , a c t i v a t i o n=’ r e l u ’ ) )

model . add ( Dropout ( 0 . 2 ) )

model . add ( Dense (71 , a c t i v a t i o n=’ s igmoid ’ ) )
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opt = t f . ke ras . op t im i z e r s .Adam( l r =0.0001 , decay=1e−6)

model . compile (

l o s s=’ c a t e g o r i c a l c r o s s e n t r o p y ’ ,

opt imize r=opt ,

met r i c s =[ ’ accuracy ’ ] ,

)

model . f i t ( X new train , Y new train , epochs =350)

pred = model . p r e d i c t ( X new test )

3.2.5 Outputs

The probability score of the tags for the movies plot synopses for test data is

extracted in pickle file format of python similar to the following code:

with open(OUTPUT PATH+’ t e s t l s t m 5 . p i c k l e ’ , ’wb ’ ) as f :

p i c k l e . dump( Y new test , f )

Then this output file is evaluated to generate the values of Tags Learned(TL), F1

measure and Tags Recall(TR). The code for generating these evaluation metrics

are given below:

• Output file extraction

import pandas as pd

import numpy as np

from r epo r t import Evaluat ionReports

import p i c k l e

t o p n l i s t = [ 1 , 3 , 5 , 8 , 10 ]

OUTPUT PATH =’ . . / output / ’

with open(OUTPUT PATH+’ pred nn gpt . p i c k l e ’ , ’ rb ’ ) as f

: p r e d i c t e d p r o b a b i l i t i e s l i s t = p i c k l e . load ( f )

with open(OUTPUT PATH+’ t e s t . p i c k l e ’ , ’ rb ’ ) as f :

t a r g e t t a g s l i s t = p i c k l e . load ( f )
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T = np . array ( t a r g e t t a g s l i s t ) . squeeze ( )

P= np . array ( p r e d i c t e d p r o b a b i l i t i e s l i s t ) . squeeze ( )

E = Evaluat ionReports ( )

r e s u l t s = E. g e t t l f 1 a n d t r (P,T, t o p n l i s t )

print ( ’now ’ )

print ( r e s u l t s )

• Evaluation of Outputs

from s k l e a rn . met r i c s import f 1 s c o r e

from s k l e a rn . met r i c s import hamming loss

from s k l e a rn . met r i c s import accu ra cy s co r e

from s k l e a rn . met r i c s import a v e r a g e p r e c i s i o n s c o r e

from s k l e a rn . met r i c s import r e c a l l s c o r e

from s k l e a rn . met r i c s import r o c a u c s c o r e

from s k l e a rn . met r i c s import z e r o o n e l o s s

from s k l e a rn . met r i c s import

l a b e l r a n k i n g a v e r a g e p r e c i s i o n s c o r e

from s k l e a rn . met r i c s import c o v e r a g e e r r o r

import numpy as np

import pandas as pd

class Evaluat ionReports :

@staticmethod

def g e t t o p n p r e d i c t i o n s ( pred prob matr ix , top n )

:

s o r t e d i d x = np . a r g s o r t ( pred prob matr ix )

for i in range ( s o r t e d i d x . shape [ 0 ] ) :

s o r t e d i d x [ i ] = s o r t e d i d x [ i ] [ : : − 1 ]
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outputs = [ ]

u n i q u e p r e d i c t i o n s = [ ]

for tn in top n :

s l i c e d = s o r t e d i d x [ : , : tn ]

un ique s e t = set ( s l i c e d . f l a t t e n ( ) )

one hot = np . z e r o s ( pred prob matr ix . shape )

for idx in range ( s l i c e d . shape [ 0 ] ) :

one hot [ idx ] [ s l i c e d [ idx ] ] = 1

outputs . append ( one hot )

u n i q u e p r e d i c t i o n s . append ( len ( un ique s e t ) )

return outputs , u n i q u e p r e d i c t i o n s

def g e t t r ( s e l f , y pred , y t rue ) :

pos=np . z e r o s ( ( 71 , 1 ) )

tpos=np . z e r o s ( ( 7 1 , 1 ) )

r e c a l l =0.0

for j in range ( y pred . shape [ 0 ] ) :

t rue=y t rue [ j ]

pred=y pred [ j ]

for i in range ( pos . shape [ 0 ] ) :

i f ( t rue [ i ]==1) :

pos [ i ]=pos [ i ]+1

i f ( t rue [ i ]==1 and pred [ i ]==1) :

tpos [ i ]= tpos [ i ]+1

for i in range (71) :

r e c a l l = r e c a l l + ( tpos [ i ] / pos [ i ] )
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t r = r e c a l l /71 .0

return t r [ 0 ]

def g e t t l f 1 a n d t r ( s e l f , y pred , y true , top n ) :

y pred = y pred

y t rue = y t rue

top preds , l e a r n e d t a g s = s e l f .

g e t t o p n p r e d i c t i o n s ( y pred , top n )

output = [ ]

for tp , l t in zip ( top preds , l e a r n e d t a g s ) :

m i c ro f1 = f 1 s c o r e ( y true , tp , average=’

micro ’ )

t r= s e l f . g e t t r ( tp , y t rue )

output . append ( [ round( l t , 5) ,round( micro f1

, 5) ,round( tr , 5 ) ] )

return output
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3.3 Flow Diagram

Figure 16: Flow Diagram of our Proposed Method
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4 Results & Discussion

4.1 Experimental Result

Our experimental results are evaluated based on three metrics which are:

• Tags Learned (TL): This value indicates the number of tags learned by

the model.

• Tags Recall (TR): Tag recall value is calculated based on the following

formula

∑|T |
i=1 Ri

|T |

where |T | is the total number of tags in the corpus and Ri is the recall for

the ith tag.

• F1 measure: The F1 measure is the harmonic mean, or weighted average,

of the precision and recall scores. So the formula to calculate F1 measure is

2 ∗ Precision∗Recall
Precision+Recall

The experimental result values are shown for two different models in two different

tabular formats which is sectioned below:

4.1.1 With Feed Forward Neural Network

The result table for Feed Forward Neural Network is shown below:

Number

of Epochs
Layers

Learning

Rate

Unit Values

in Layers

Top 01 Top 03 Top 05 Top 08 Top 10

TL F1 TR TL F1 TR TL F1 TR TL F1 TR TL F1 TR

50 04 0.0001
(128,64,32,71)

Dropout: 0.35
30 24.68 3.75 51 35.57 9.13 59 35.31 14.22 67 32.06 21.43 71 29.64 26.75

50 04 0.0001
(256,128,64,71)

Dropout: 0.35
63 24.16 4.7 68 35.11 11.76 69 34.88 17.76 71 31.39 24.71 71 28.92 28.88

50 03 0.0001
(128,64,71)

Dropout: 0.35
60 24.11 4.8 68 34.83 11.18 69 34.6 17.07 71 31.35 25.43 71 28.94 31.19

Table 3: Results with Feed Forward Neural Network
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4.1.2 With Long Short Term Memory

The result table for Long Short Term Memory is shown below:

Number

of Epochs
Layers

Learning

Rate

Unit Values

in Layers

Top 01 Top 03 Top 05 Top 08 Top 10

TL F1 TR TL F1 TR TL F1 TR TL F1 TR TL F1 TR

50 04 0.001
(128 lstm,128 lstm,

32 dense,71 dense)
58 23.22 4.12 67 33.59 10.37 70 33.76 15.89 71 31.10 23.37 71 28.46 27.79

150 03 0.0001
(128 lstm,64 lstm,

71 dense)
56 23.82 4.5 65 34.15 11.11 69 34.74 16.89 71 31.72 24.84 71 29.37 30.14

200 03 0.0001
(128 lstm,64 lstm,

71 dense)
63 22.92 4.5 68 33.56 11.16 71 33.77 16.55 71 30.96 24.68 71 28.70 29.69

Table 4: Result with Long Short Term Memory(LSTM)

4.2 Comparative Analysis

Comparative results of our work with previous related works can be shown by the

following table:

Top 03 Top 05 Top 10
Methods

TL F1 TR TL F1 TR TL F1 TR

Baseline: Most Frequent 3 29.7 4.23 5 28.4 14.08 10 28.4 13.73

Baseline: Random 71 4.2 4.21 71 6.4 15.04 71 6.6 14.36

Baseline: Kar et al. (2018) 47 37.3 10.52 52 37.3 16.77 - - -

CNN without class weights 24 36.8 7.99 26 36.7 12.62 27 31.3 24.52

CNN with class weights 49 34.9 9.85 55 35.7 14.94 67 30.8 26.86

CNN-FE 58 36.9 9.4 65 36.7 14.11 70 31.1 24.76

CNN-FE + FastText 53 37.3 10.0 59 36.8 15.47 63 30.6 26.45

FFNN (128,64,32,71)

with pre-processing
51 35.57 9.13 59 35.31 14.22 71 29.64 26.75

FFNN(256,128,64,71)

with pre-processing
68 35.11 11.76 69 34.88 17.76 71 28.92 28.88

FFNN(128,64,71)

with pre-processing
68 34.83 11.18 69 34.6 17.07 71 28.94 31.19

LSTM(128 lstm, 128 lstm,

32 dense, 71 dense)

with pre-processing (50 epoch)

67 33.59 10.37 70 33.76 15.89 71 28.46 27.79

LSTM(128 lstm, 64 lstm,

71 dense) with pre-processing

(150 epoch)

65 34.15 11.11 69 34.74 16.89 71 29.37 30.14

LSTM(128 lstm, 64 lstm,

71 dense) with pre-processing

(200 epoch)

68 33.56 11.16 71 33.77 16.55 71 28.70 29.69

Table 5: Comparative Results with Related Works
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From the table we can evaluate our comparative result analysis as follows:

1. Shaded region results are the results of related works.[1] The bold scores

in this region represents the maximum value for the particular evaluation

metric.

2. White region results are the results from our model. The bold scores in this

region represents the maximum value for the particular evaluation metric.

3. We can see better results of TL and TR in our model from Table 05.

4. From Table 05 we can see that our model’s F1 measure is a bit less but closer

to the results of the related works.

5. After result extraction with different constraints (epoch number, layer num-

ber of FFNN/LSTM etc.) in our model we analysed that for a particular

constraint when TL and TR increases then the F1 measure slightly decreases

and on the other hand the constraints for which F1 measure value increases

then the value of TL and TR slightly decreases.
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5 Conclusion and Future Work

In our thesis work we proposed a model where we represent each plot synopsis as

feature vectors which we create through pre-processing, tokenization and vector-

ization. Then with these vectors we input it in our feed forward neural network

model and our LSTM model to get two sets of probability score of the tags. From

that we get TL, TR and F1 measure values. Comparing with previous related

works we have found slight improvement in TL and TR values keeping F1 mea-

sure value a bit lower than the results of the previous related works. Improvement

in the result has been found due to pre-processing, tokenizing and vectorizing of

data. But still there are future works that can be done from our thesis work such

as:

• There is still a possibility that the accuracy of our work can be increased by

applying different approach or model, or by twitching with some parameters

of our work’s model.

• In related works we see that one of the model used the flow of emotions

with CNN to predict tags from movie’s plot synopses.[1] But in our work

we didn’t consider the flow of emotion with our model. So integrating the

flow of emotions with our model may give better result of evaluation metrics

which can be a good future work.
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