
A Novel Approach to Classify Electrocardiogram
Signals Using Deep Neural Networks

Authors
Tasnim Ahmed

Student ID: 154407

Ariq Rahman
Student ID: 154404

Supervisor

Tareque Mohmud Chowdhury

Assistant Professor

Department of Computer Science and Engineering (CSE)

Islamic University of Technology (IUT)
Organization of the Islamic Cooperation (OIC)

Gazipur, Bangladesh

November, 2019



Declaration of Candidates

This is to certify that the work presented in this thesis is the outcome
of the analysis and investigation carried out by the candidates under the
supervision of Tareque Mohmud Chowdhury in the Department of Computer
Science and Engineering (CSE), IUT, Dhaka, Bangladesh. It is also declared
that neither of this thesis nor any part of this thesis has been submitted
anywhere else for any degree or diploma. Information derived from the
published and unpublished work of others has been acknowledged in the
text and a list of references is given.

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
(Signature of the Candidate) (Signature of the Candidate)

Tasnim Ahmed Ariq Rahman

Student ID: 154407 Student ID: 154404

Academic Year: 2018-19 Academic Year: 2018-19

November, 2019 November, 2019

- - - - - - - - - - - - - - -
(Signature of the Supervisor)

Tareque Mohmud Chowdhury
Assistant Professor

Department of Computer Science & Engineering (CSE)
Islamic University of Technology (IUT)

November, 2019



Abstract

Atrial fibrillation (AF) is an abnormal heart rhythm that takes place
when electrical impulses fire off from multiple places in the atria (the top
chambers of the heart) in a disorganized way. This causes the atria to twitch
and results in an irregular heartbeat or pulse. Atrial fibrillation is a ma-
jor cause of stroke. Atrial Fibrillation is usually screened manually with
the help of Electrocardiodiagram (ECG) reading. Manually reading ECG
is usually a tedious and time-consuming task, which is laden with human
errors. Therefore, an automated process is quintessential. However, discern-
ing anomaly in heart function using an efficient automated process has been
a challenging task for quite some time. In this paper we propose two intri-
cate Neural Network architectures for the classification amongst four types
of heart condition-Normal, Atrial Fibrillation, Noisy Sinus Rhythm and Al-
ternative Rhythm, using a dataset from PhysioNet/2017 challenge. Volun-
teers in PhysioNet/2017 challenge dataset came from diverse background
and had a wide window of variation in their physical attributes, making
the dataset sufficiently reliable. Also, the size of this dataset exceeded any
other before it on this topic, which further adds to the comprehensiveness
of this dataset.Initially, a preprocessing is done on the dataset to make it
more robust and push the accuracy to its edge. We then trained a Deep
Neural Network, which combined feature extraction layers of CNN with
long-short term memory (LSTM). Our method reached a summit accuracy
of 91.19%.The second model just applied a CNN model and the resulting
output reached an accuracy of 84.3%
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Chapter 1

Introduction

1.1 Overview

Cardiovascular disease (CVD) has been one of the most pernicious Non-
communicable maladies in the world. Commensurately, more people have
succumbed from Cardiovascular disease that any other[3].On the scales of
statistic, approximately half (17.5 million ) of the Non-communicable disease
was the result of CVD in 2012 amongst 56 million deaths recorded globally
at that time. The occurrence of CVDs are prognosticated to hit 22.2 million
by 2030 [3] and increasingly major healthcare has been set aside for this
cause only. By 2030 around US$20 trillion are expected to be spent for
CVD[1].

1.2 Problem Statement

Traditionally, CVD has been manually diagnosed from ECG signals and
aside from being taxing and time-consuming task, it is also susceptible to
human error. Recent endeavours have tried to computerize the process of
detecting CVD from using ECG signals and some of them are mentioned
below in the related work section. Majority of the work majority is being
focused on Myocardial infarction and similar type of CVD. We propose
mechanisms to computerize the process using new set of data that is based
on Physionet/Cinc dataset . We try to classify four types of heart conditions
mentioned later using CNN and CNN + LSTM.

7



CHAPTER 1. INTRODUCTION 8

1.3 Research Challanges

Attaining perfect computerized process is laden with challenges. These
challenges occlude the way to receiving a pristine set of out comes. Some
arise from the laggings of even the present state of the art technology and
some arise from the inherent problem with the procedure itself. Mitigating
these laggings will create way for the process to evolve further .Some of them
are mentioned below:

1. Features: Different features are needed to ascertain different different
charectericstics of the ECG signal. A collection of features reflect the
kind of heart condition the person has .For eg T wave ST elevation etc

2. Noise: Noise can be a nuisance. The presence of noise deforms the
signal. Where the shape of the signal is quintessential for determining
the heart condition. It is of upmost necessity that all form of noises
should be removed.However, removing noise is not an easy task . Mul-
tiple state of the art filters are being used and even after that , the
filters are incapable of bringing perfection.

3. Scarcity of data: Scarcity of data is an inherent challenge. Atomiza-
tion of malady detection using deep neural network is a relatively new
field and the same goes for heart codition . There are only few datasets
available for the public. Therefore , it is very difficult to cross check
the results with other similar ECG dataset and hence puts a mark on
the validity and reliability of the outcome.

4. Age, Gender, Sex, etc.: Age,gender race varies across a wide spec-
trum . These variable makes the grounds for comparison more arbi-
trary. For eg a 13 year olds ecg may be different from the 60 year olds
for the same heart condition. Also, as the dataset is collected from a
particular region on the globe, an model based on the dataset tends
to be skewed

5. Computational power: Large amount of data needs to be scruti-
nized before right set of parameters for the deep network is obtained.
This takes huge computational cost. In some cases the computational
cost may supersede the benefit

6. Storage space: Large amount of space is needed to store the volumi-
nous amount of data. This incurs an extra cost .This cost may surpass
the benefit from the goal.
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1.4 Thesis Objectives

Already the challenges of the project has been discussed .The objective
now would be to choose the right set of parameters to better computerize
the whole project . This includes either choosing the right set of features,
working with a prolific dataset , mitigating the effect of gender , age and
culture variation, making sure that the output can be reached using right
set of parameters and cutting down on the space and time complexity.

1.5 Thesis Contributions

We worked on a relatively new dataset. This dataset is large in number
and contains data from a wide variation of people including gender. We
also did some data sampling and data augmentation. We were able to reach
promising accuracy of 91.1% that was better than any other previously.

1.6 Organization Of The Thesis

The rest of the thesis will be organized as follows: in Chapter 2 we present
the literature review of existing methods and their performance as well as
limitations for the detection process. In Chapter 3, we propose our dataset
and type of resampling used.

In Chapter 4,we discuss the types of prepossessing used. Our proposed
method with various challenges are shown. Finally, in Chapter 5, we de-
scribe the proposed architecture. and shows the future scopes for further
developing the proposed method.



Chapter 2

Literature Review

This section reviews the state-of-the-art methods for the considered prob-
lems.

In 2017,

2.1 CNN Implemention in 2s and 5s Networks

Acharya.et.al[1] devised a mechanism to detect coronary artery disease (CAD)
using deep convolutional neural network (CNN) that consists of four con-
volutional layers, four max-pooling layers, and three fully-connected layers.
The novelty of their work lies in that it evades the taxing task of choosing
the right set of parameters as CNN automatically learns from it. The neural
network formulation is applied on two disparate samplings, Net1 (2s) and
Net2 (5s) , on the Fantsia database(for Normal) and St.Petersburg Institute
of Cardiology (for CAD).The CNN is able to distinguish between Normal
and abnormal with an accuracy of 94.95% for Net 1(2s) and accuracy of
95.11% for Net2(5s). Model architecture is shown in Fig.2.1.
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Figure 2.1: Proposed CNN Network - Net 1 and 2 by [1]

2.2 CNN with/without Noise

In 2017, Acharya.et.al[3] proposed another mechanism for the detection of
MI using the PTB database.This paper avoided the burden of feature selec-
tion by using convolutional neural network (CNN).The CNN consists of four
convolutional network , four max-pooling layers and three fully connected
layers.The dataset was processed into two fractions, one pertaining noise
and another doesn’t and both were equally trained in CNN. The results
showed an accuracy of 93.53% and 95.22% with and without noise respec-
tively, showing that noise dosen’t affect the output.

2.3 KNN, MLP Implementation

In 2014, Safdarian et.al[4], presented a paper for the detection and lo-
calization of MI using features that were extracted from the PhysioNet
database.These features included the T wave integral (area under the T wave
) , which delineated the T wave structure and the total integral(area under
one cycle). These features were then fed and trained through a plethora of
classifiers such as Artificial neural network (ANN), Probabilistic Neural Net-
work (PNN),Kth Nearest Neighbor (KNN), Multilayer Perceptron (MLP)
and Näıve Bayes classifier. Their work touched an accuracy of 76% for de-
tection of MI and 96% for localization.
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2.4 KNN Implementation

In 2010, Arif et.al[5], published a paper for the detection and localization
of MI patients using features such a T wave amplitude. Q wave and ST
level deviation.This paper used the PTB database using 20160 ECG beats.
These features were used to formulate a Kth Nearest Neighbour for detection
and localization. Moreover, to wan this exorbitant size of data Arif-Fayyaz
pruning algorithm was being used. For MI detection the sensitivity and
specificity were shown to be 99.9% and after pruning the sensitivity and
specificity was plummeted down to 97% and 99.6% respectively.

2.5 Atrial Fibrilation

One of the CVDs is Atrial fibrillation(AF), which is also the central focus of
our paper.AF is an anomaly in heart rhythm that is characterized by rapid
and irregular beating of atria. Often it starts with short periods of abnormal
beating that intensifies over time. AF is a class of cardiac arrhythmia that
increases likely hood of a heart attack and is usually the most common form
of CVD ; thus drawing our attention to classify this condition. Recently, a
new dataset has been provided by the PhysioNet/Cinc challenge 2017. Phy-
sioNet/Cinc challenge 2017 contains an amalgamation of four short ECG
recordings marked as normal sinus rhythm, AF, other types of rhythm and
noise. A major drawback of the previous datasets was that its size was
small. Also, the variation of the attributes amongst entities was skewed.
This new dataset, PhysioNet/Cinc challenge 2017, contains entities from
diverse background and attributes. Although the accuracy obtained from
examples on the previous dataset were skyrocketing, still the results from
the new dataset are reliable and robust due to the large range of variation
between samples. Some of the works done with this dataset has been men-
tioned later.

Atrial Fibrillation (A Fib) is one of the most common abnormal heart
rhythms, particularly once a person reaches the age of 65 years, (earlier in
many patients). It is a major health problem. The heart is a pump, and in
order to function efficiently, it is regulated by an internal pacemaker that
regulates the beat of the heart. Normally the electrical impulse starts in the
top of the heart, travels downward from the upper chambers (the atria) to
the lower chambers (the ventricles) and results in a regular rhythmic con-
traction of the chambers.

With atrial fibrillation, control of electrical activity in the upper cham-
bers becomes disorganized and the atria fibrillate (quiver or twitch quickly)
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causing an irregular rhythm. Stroke is the greatest risk for the patient with
atrial fibrillation. Some patients are not aware of atrial fibrillation and in
them, the risk remains unrecognized. In these patients, the first indication
of AFib may be admission to a hospital with a stroke. Other patients may
be aware of an irregular heartbeat and the sensation may be uncomfortable.
If the heartbeat is very fast for a long period of time, it can also lead to
heart failure.

Therefore a major goal of the Heart Rhythm Society is create aware-
ness of atrial fibrillation in order to prevent stroke and heart failure. Atrial
fibrillation may be a primary electrical abnormality of the heart, be associ-
ated with underlying heart problems including problems with heart valves,
coronary arteries, heart muscle, congestive heart failure or be related to
problems with the thyroid gland or other disorders of metabolism.

2.6 CNN on Physionet/CinC

Martin et.al[6] proposed a paper that instituted two neural network architec-
ture for the identification of Atrial fibrillation (AF) from PhysioNet/CinC
Challenge 2017 dataset. One was a Convolutional Neural Network (CNN).
The second architecture combined the convolutional network for feature ex-
traction with long-short-term memory. Data augmentation was done on the
ECG data, which was one of the cardinal features of their work. Two main
data augmentation techniques were used: dropout bursts and random sam-
pling. This augmentation primarily served to mitigate the overfitting of the
neural network. The second architecture obtained a promising F1 score of
82.1%.

2.7 Morphology Based Feature on Physionet/CinC

In Dionisije.et.al[7], performed similar work for the detection of heart rhythm
was done with the PhysioNet database that contained an amalgamation of
Normal sinus rhythm, normal sinus rhythm and alternative rhythm.The
proposed work retrieved different morphology-based features of ECG sig-
nals that were then trained in multiclass classifier besides a random forest
classifier. A F1 score of 80% was obtained hidden test set of challenges.
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2.8 RNN on Physionet/CinC

Fernando.et.al[8] also classified four types of aforementioned classes from
the Physionet Challenge of 2017.They juxtaposed feature-based classifier,
implementing the WFDB Toolbox of Matlab , with a Residual Network
ResNet also known as RNN.The feature-based classifier secured F1 score of
72% on the training set and 79% on the hidden set.CNN,on the other hand,
secured 83% on the test set.

2.9 Morphological Feature with GA on Physionet/CinC

Ruhi.et.al[2] did similar classification on the same challenge dataset for the
classification of normal sinus rhythm, AF noisy, or other rhythms. Morpho-
logical, time and frequency domain features were extracted and the feature
space dimension was curbed using Genetic Algorithm (GA). Finally, the
data was trained in a random forest classifier that reached a tenfold cross-
validation accuracy of 82.7%. Detailed results are depicted in Fig.2.2.
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Figure 2.2: Detailed results by Ruhi et al. [2]

We propose, in our paper, two deep neural network based architectures
for the classification of four types of heart condition mentioned above. The
first architecture combines the feature extraction of convolution layers with
long-short term memory. Before that, a data augmentation method is ap-
plied to the dataset to make it more robust and increase accuracy. Our
results were promising and we reached an overall accuracy of 91.19%.The
second one applies a general convolutional model with resulted in an output
of 84.3%.

2.10 An Intro to CNN

Convolutional Neural Networks are very similar to ordinary Neural Net-
works from the previous chapter: they are made up of neurons that have
learnable weights and biases. Each neuron receives some inputs, performs
a dot product and optionally follows it with a non-linearity. The whole
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network still expresses a single differentiable score function: from the raw
image pixels on one end to class scores at the other. And they still have
a loss function (e.g. SVM/Softmax) on the last (fully-connected) layer and
all the tips/tricks we developed for learning regular Neural Networks still
apply.So what changes? ConvNet architectures make the explicit assump-
tion that the inputs are images, which allows us to encode certain properties
into the architecture. These then make the forward function more efficient
to implement and vastly reduce the amount of parameters in the network.

2.10.1 How CNN Process Inputs?

Neural Networks receive an input (a single vector), and transform it through
a series of hidden layers. Each hidden layer is made up of a set of neurons,
where each neuron is fully connected to all neurons in the previous layer,
and where neurons in a single layer function completely independently and
do not share any connections. The last fully-connected layer is called the
“output layer” and in classification settings it represents the class scores.
Regular Neural Nets don’t scale well to full images. In CIFAR-10, images
are only of size 32x32x3 (32 wide, 32 high, 3 color channels), so a single
fully-connected neuron in a first hidden layer of a regular Neural Network
would have 32*32*3 = 3072 weights. This amount still seems manageable,
but clearly this fully-connected structure does not scale to larger images.
For example, an image of more respectable size, e.g. 200x200x3, would lead
to neurons that have 200*200*3 = 120,000 weights. Moreover, we would al-
most certainly want to have several such neurons, so the parameters would
add up quickly! Clearly, this full connectivity is wasteful and the huge num-
ber of parameters would quickly lead to overfitting.

Convolutional Neural Networks take advantage of the fact that the in-
put consists of images and they constrain the architecture in a more sensible
way. In particular, unlike a regular Neural Network, the layers of a ConvNet
have neurons arranged in 3 dimensions: width, height, depth. (Note that
the word depth here refers to the third dimension of an activation volume,
not to the depth of a full Neural Network, which can refer to the total num-
ber of layers in a network.) For example, the input images in CIFAR-10
are an input volume of activations, and the volume has dimensions 32x32x3
(width, height, depth respectively). As we will soon see, the neurons in a
layer will only be connected to a small region of the layer before it, instead
of all of the neurons in a fully-connected manner. Moreover, the final output
layer would for CIFAR-10 have dimensions 1x1x10, because by the end of
the ConvNet architecture we will reduce the full image into a single vector
of class scores, arranged along the depth dimension.



CHAPTER 2. LITERATURE REVIEW 17

A simple ConvNet is a sequence of layers, and every layer of a ConvNet
transforms one volume of activations to another through a differentiable
function. We use three main types of layers to build ConvNet architectures:
Convolutional Layer, Pooling Layer, and Fully-Connected Layer (exactly as
seen in regular Neural Networks). We will stack these layers to form a full
ConvNet architecture.

Example Architecture: We will go into more details, but a simple
ConvNet for CIFAR-10 classification could have the architecture [INPUT -
CONV - RELU - POOL - FC].

2.10.2 Conv Layer Function

Convolutional layer(Conv Layer) will compute the output of neurons that
are connected to local regions in the input, each computing a dot product
between their weights and a small region they are connected to in the input
volume. This may result in volume such as [32x32x12] if we decided to use
12 filters. RELU layer will apply an elementwise activation function, such
as the max(0,x) thresholding at zero. This leaves the size of the volume
unchanged ([32x32x12]). Pool layer will perform a downsampling operation
along the spatial dimensions (width, height), resulting in volume such as
[16x16x12]. FC (i.e. fully-connected) layer will compute the class scores, re-
sulting in volume of size [1x1x10], where each of the 10 numbers correspond
to a class score, such as among the 10 categories of CIFAR-10. As with or-
dinary Neural Networks and as the name implies, each neuron in this layer
will be connected to all the numbers in the previous volume. In this way,
ConvNets transform the original image layer by layer from the original pixel
values to the final class scores. Note that some layers contain parameters
and other don’t. In particular, the CONV/FC layers perform transforma-
tions that are a function of not only the activations in the input volume,
but also of the parameters (the weights and biases of the neurons). On the
other hand, the RELU/POOL layers will implement a fixed function. The
parameters in the CONV/FC layers will be trained with gradient descent
so that the class scores that the ConvNet computes are consistent with the
labels in the training set for each image.The Conv layer is the core build-
ing block of a Convolutional Network that does most of the computational
heavy lifting.

Lets first discuss what the Conv layer computes without brain/neuron
analogies. The Conv layer’s parameters consist of a set of learnable filters.
Every filter is small spatially (along width and height), but extends through
the full depth of the input volume. For example, a typical filter on a first
layer of a ConvNet might have size 5x5x3 (i.e. 5 pixels width and height,
and 3 because images have depth 3, the color channels). During the forward
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pass, we slide (more precisely, convolve) each filter across the width and
height of the input volume and compute dot products between the entries
of the filter and the input at any position. As we slide the filter over the
width and height of the input volume we will produce a 2-dimensional acti-
vation map that gives the responses of that filter at every spatial position.
Intuitively, the network will learn filters that activate when they see some
type of visual feature such as an edge of some orientation or a blotch of
some color on the first layer, or eventually entire honeycomb or wheel-like
patterns on higher layers of the network. Now, we will have an entire set of
filters in each Conv layer (e.g. 12 filters), and each of them will produce a
separate 2-dimensional activation map. We will stack these activation maps
along the depth dimension and produce the output volume.

The brain view: If you like the brain/neuron analogies, every entry
in the 3D output volume can also be interpreted as an output of a neuron
that looks at only a small region in the input and shares parameters with all
neurons to the left and right spatially (since these numbers all result from
applying the same filter).

Local Connectivity: When dealing with high-dimensional inputs such
as images, as we saw above it is impractical to connect neurons to all neu-
rons in the previous volume. Instead, we will connect each neuron to only a
local region of the input volume. The spatial extent of this connectivity is
a hyperparameter called the receptive field of the neuron (equivalently this
is the filter size). The extent of the connectivity along the depth axis is
always equal to the depth of the input volume. It is important to emphasize
again this asymmetry in how we treat the spatial dimensions (width and
height) and the depth dimension: The connections are local in space (along
width and height), but always full along the entire depth of the input volume.

Now considering a small example, suppose that the input volume has
size [32x32x3], (e.g. an RGB CIFAR-10 image). If the receptive field (or
the filter size) is 5x5, then each neuron in the Conv Layer will have weights
to a [5x5x3] region in the input volume, for a total of 5*5*3 = 75 weights
(and +1 bias parameter). Notice that the extent of the connectivity along
the depth axis must be 3, since this is the depth of the input volume.

2.10.3 CNN Computation Example

Suppose an input volume had size [16x16x20]. Then using an example re-
ceptive field size of 3x3, every neuron in the Conv Layer would now have a
total of 3*3*20 = 180 connections to the input volume. Notice that, again,
the connectivity is local in space (e.g. 3x3), but full along the input depth
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(20).

Spatial arrangement:We have explained the connectivity of each neuron
in the Conv Layer to the input volume, but we haven’t yet discussed how
many neurons there are in the output volume or how they are arranged.
Three hyperparameters control the size of the output volume: the depth,
stride and zero-padding. We discuss these next:

First, the depth of the output volume is a hyperparameter: it corre-
sponds to the number of filters we would like to use, each learning to look
for something different in the input. For example, if the first Convolutional
Layer takes as input the raw image, then different neurons along the depth
dimension may activate in presence of various oriented edges, or blobs of
color. We will refer to a set of neurons that are all looking at the same re-
gion of the input as a depth column (some people also prefer the term fibre).
Second, we must specify the stride with which we slide the filter. When the
stride is 1 then we move the filters one pixel at a time. When the stride
is 2 (or uncommonly 3 or more, though this is rare in practice) then the
filters jump 2 pixels at a time as we slide them around. This will produce
smaller output volumes spatially. As we will soon see, sometimes it will be
convenient to pad the input volume with zeros around the border. The size
of this zero-padding is a hyperparameter. The nice feature of zero padding
is that it will allow us to control the spatial size of the output volumes (most
commonly as we’ll see soon we will use it to exactly preserve the spatial size
of the input volume so the input and output width and height are the same).
Use of zero-padding. In the example above on left, note that the input di-
mension was 5 and the output dimension was equal: also 5. This worked out
so because our receptive fields were 3 and we used zero padding of 1. If there
was no zero-padding used, then the output volume would have had spatial
dimension of only 3, because that it is how many neurons would have “fit”
across the original input. In general, setting zero padding to be P=(F−1)/2
when the stride is S=1 ensures that the input volume and output volume
will have the same size spatially. It is very common to use zero-padding
in this way and we will discuss the full reasons when we talk more about
ConvNet architectures.

Note again that the spatial arrangement hyperparameters have mutual
constraints. For example, when the input has size W=10, no zero-padding
is used P=0, and the filter size is F=3, then it would be impossible to use
stride S=2, since (W−F+2P)/S+1=(10−3+0)/2+1=4.5, i.e. not an integer,
indicating that the neurons don’t “fit” neatly and symmetrically across the
input. Therefore, this setting of the hyperparameters is considered to be
invalid, and a ConvNet library could throw an exception or zero pad the
rest to make it fit, or crop the input to make it fit, or something. As we
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will see, sizing the ConvNets appropriately so that all the dimensions “work
out” can be a real headache, which the use of zero-padding and some design
guidelines will significantly alleviate.

2.10.4 Conv Layer Example

A Real-world example of convolutional Layer will be discussed in lines fol-
lowing this. The Krizhevsky et al. architecture that won the ImageNet
challenge in 2012 accepted images of size [227x227x3]. On the first Convo-
lutional Layer, it used neurons with receptive field size F=11, stride S=4
and no zero padding P=0. Since (227 - 11)/4 + 1 = 55, and since the
Conv layer had a depth of K=96, the Conv layer output volume had size
[55x55x96]. Each of the 55*55*96 neurons in this volume was connected to
a region of size [11x11x3] in the input volume. Moreover, all 96 neurons
in each depth column are connected to the same [11x11x3] region of the
input, but of course with different weights. As a fun aside, if you read the
actual paper it claims that the input images were 224x224, which is surely
incorrect because (224 - 11)/4 + 1 is quite clearly not an integer. This has
confused many people in the history of ConvNets and little is known about
what happened. My own best guess is that Alex used zero-padding of 3
extra pixels that he does not mention in the paper.

Parameter Sharing: Parameter sharing scheme is used in Convolu-
tional Layers to control the number of parameters. Using the real-world
example above, we see that there are 55*55*96 = 290,400 neurons in the
first Conv Layer, and each has 11*11*3 = 363 weights and 1 bias. Together,
this adds up to 290400 * 364 = 105,705,600 parameters on the first layer of
the ConvNet alone. Clearly, this number is very high.

It turns out that we can dramatically reduce the number of parame-
ters by making one reasonable assumption: That if one feature is useful
to compute at some spatial position (x,y), then it should also be useful to
compute at a different position (x2,y2). In other words, denoting a single 2-
dimensional slice of depth as a depth slice (e.g. a volume of size [55x55x96]
has 96 depth slices, each of size [55x55]), we are going to constrain the
neurons in each depth slice to use the same weights and bias. With this
parameter sharing scheme, the first Conv Layer in our example would now
have only 96 unique set of weights (one for each depth slice), for a total
of 96*11*11*3 = 34,848 unique weights, or 34,944 parameters (+96 biases).
Alternatively, all 55*55 neurons in each depth slice will now be using the
same parameters. In practice during backpropagation, every neuron in the
volume will compute the gradient for its weights, but these gradients will
be added up across each depth slice and only update a single set of weights
per slice.
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If all neurons in a single depth slice are using the same weight vector,
then the forward pass of the Conv layer can in each depth slice be computed
as a convolution of the neuron’s weights with the input volume (Hence the
name: Convolutional Layer). This is why it is common to refer to the sets
of weights as a filter (or a kernel), that is convolved with the input.

2.10.5 Backpropagation in CNN

The backward pass for a convolution operation (for both the data and the
weights) is also a convolution (but with spatially-flipped filters). This is
easy to derive in the 1-dimensional case.
As a topic, several papers use 1x1 convolutions, as first investigated by Net-
work in Network. Some people are at first confused to see 1x1 convolutions
especially when they come from signal processing background. Normally
signals are 2-dimensional so 1x1 convolutions do not make sense (it’s just
pointwise scaling). However, in ConvNets this is not the case because one
must remember that we operate over 3-dimensional volumes, and that the
filters always extend through the full depth of the input volume. For exam-
ple, if the input is [32x32x3] then doing 1x1 convolutions would effectively
be doing 3-dimensional dot products (since the input depth is 3 channels).

A recent development is to introduce one more hyperparameter to the
Conv layer called the dilation. So far we’ve only discussed CONV filters
that are contiguous. However, it’s possible to have filters that have spaces
between each cell, called dilation. As an example, in one dimension a filter
w of size 3 would compute over input x the following: w[0]*x[0] + w[1]*x[1]
+ w[2]*x[2]. This is dilation of 0. For dilation 1 the filter would instead
compute w[0]*x[0] + w[1]*x[2] + w[2]*x[4]; In other words there is a gap of
1 between the applications. This can be very useful in some settings to use
in conjunction with 0-dilated filters because it allows you to merge spatial
information across the inputs much more agressively with fewer layers. For
example, if you stack two 3x3 CONV layers on top of each other then you
can convince yourself that the neurons on the 2nd layer are a function of
a 5x5 patch of the input (we would say that the effective receptive field
of these neurons is 5x5). If we use dilated convolutions then this effective
receptive field would grow much quicker.

2.10.6 Pooling

It is common to periodically insert a Pooling layer in-between successive
Conv layers in a ConvNet architecture. Its function is to progressively reduce
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the spatial size of the representation to reduce the amount of parameters
and computation in the network, and hence to also control overfitting. The
Pooling Layer operates independently on every depth slice of the input and
resizes it spatially, using the MAX operation. The most common form is a
pooling layer with filters of size 2x2 applied with a stride of 2 downsamples
every depth slice in the input by 2 along both width and height, discarding
75 percent of the activations. Every MAX operation would in this case be
taking a max over 4 numbers (little 2x2 region in some depth slice). The
depth dimension remains unchanged.

In addition to max pooling, the pooling units can also perform other
functions, such as average pooling or even L2-norm pooling. Average pool-
ing was often used historically but has recently fallen out of favor compared
to the max pooling operation, which has been shown to work better in prac-
tice.

Many types of normalization layers have been proposed for use in Con-
vNet architectures, sometimes with the intentions of implementing inhibition
schemes observed in the biological brain. However, these layers have since
fallen out of favor because in practice their contribution has been shown to
be minimal, if any.

2.10.7 Fully-connected Layer:

Neurons in a fully connected layer have full connections to all activations in
the previous layer, as seen in regular Neural Networks. Their activations can
hence be computed with a matrix multiplication followed by a bias offset.

2.11 Long Short Term Memory(LSTM):

Long Short Term Memory networks – usually just called “LSTMs” – are
a special kind of RNN, capable of learning long-term dependencies. They
were introduced by Hochreiter and Schmidhuber (1997), and were refined
and popularized by many people in following work.1 They work tremen-
dously well on a large variety of problems, and are now widely used.

LSTMs are explicitly designed to avoid the long-term dependency prob-
lem. Remembering information for long periods of time is practically their
default behavior, not something they struggle to learn!
All recurrent neural networks have the form of a chain of repeating modules
of neural network. In standard RNNs, this repeating module will have a
very simple structure, such as a single tanh layer.
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LSTMs also have this chain like structure, but the repeating module has
a different structure. Instead of having a single neural network layer, there
are four, interacting in a very special way.

The key to LSTMs is the cell state.The cell state is kind of like a con-
veyor belt. It runs straight down the entire chain, with only some minor
linear interactions. It’s very easy for information to just flow along it un-
changed. The LSTM does have the ability to remove or add information
to the cell state, carefully regulated by structures called gates. Gates are
a way to optionally let information through. They are composed out of a
sigmoid neural net layer and a pointwise multiplication operation. The sig-
moid layer outputs numbers between zero and one, describing how much of
each component should be let through. A value of zero means “let nothing
through,” while a value of one means “let everything through!”An LSTM
has three of these gates, to protect and control the cell state.

LSTM solved the problem of recurrent neural network.Recurrent Neu-
ral Networks suffer from short-term memory. If a sequence is long enough,
they’ll have a hard time carrying information from earlier time steps to later
ones. So if you are trying to process a paragraph of text to do predictions,
RNN’s may leave out important information from the beginning.

During back propagation, recurrent neural networks suffer from the van-
ishing gradient problem. Gradients are values used to update a neural net-
works weights. The vanishing gradient problem is when the gradient shrinks
as it back propagates through time. If a gradient value becomes extremely
small, it doesn’t contribute too much learning.

So in recurrent neural networks, layers that get a small gradient update
stops learning. Those are usually the earlier layers. So because these layers
don’t learn, RNN’s can forget what it seen in longer sequences, thus having
a short-term memory.

The tanh activation is used to help regulate the values flowing through
the network. The tanh function squishes values to always be between -1 and
1.
When vectors are flowing through a neural network, it undergoes many
transformations due to various math operations. So imagine a value that
continues to be multiplied by let’s say 3. You can see how some values can
explode and become astronomical, causing other values to seem insignificant.

A tanh function ensures that the values stay between -1 and 1, thus reg-
ulating the output of the neural network. You can see how the same values
from above remain between the boundaries allowed by the tanh function.
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So that’s an RNN. It has very few operations internally but works pretty
well given the right circumstances (like short sequences). RNN’s uses a lot
less computational resources than it’s evolved variants, LSTM’s and GRU’s.

The LSTM has got many gates. First, we have the forget gate. This
gate decides what information should be thrown away or kept. Information
from the previous hidden state and information from the current input is
passed through the sigmoid function. Values come out between 0 and 1. The
closer to 0 means to forget, and the closer to 1 means to keep.Secondlly,To
update the cell state, we have the input gate. First, we pass the previous
hidden state and current input into a sigmoid function. That decides which
values will be updated by transforming the values to be between 0 and 1.
0 means not important, and 1 means important. You also pass the hidden
state and current input into the tanh function to squish values between -1
and 1 to help regulate the network. Then you multiply the tanh output
with the sigmoid output. The sigmoid output will decide which information
is important to keep from the tanh output.Now ,we should have enough
information to calculate the cell state. First, the cell state gets pointwise
multiplied by the forget vector. This has a possibility of dropping values
in the cell state if it gets multiplied by values near 0. Then we take the
output from the input gate and do a pointwise addition which updates the
cell state to new values that the neural network finds relevant. That gives
us our new cell state.Last we have the output gate. The output gate decides
what the next hidden state should be. Remember that the hidden state
contains information on previous inputs. The hidden state is also used for
predictions. First, we pass the previous hidden state and the current input
into a sigmoid function. Then we pass the newly modified cell state to the
tanh function. We multiply the tanh output with the sigmoid output to
decide what information the hidden state should carry. The output is the
hidden state. The new cell state and the new hidden is then carried over to
the next time step.
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Datasets and Pre-processing

We performed comparisons on two types of datasets. The first one is com-
paratively new and is enriched with data of entities from various background.
The second one is a bit archaic and has limited amount of data.

3.1 Physionet Dataset

This dataset is obtained from Computing in Cardiology Challenge 2017
which was organised by Physionet decribed in [9]. An aggregation of 8,528
short single lead ECG recordings were provided by AlivCor in this dataset.
ECG recordings were sampled as 300 Hz and they have been band pass
filtered by the AliveCor device. All data are provided in MATLAB V4
WFDB-compliant format (each including a *.mat file containing the ECG
and a *.hea file containing the waveform information). These samples have
a minimum duration of 9.0 s and a maximum duration of 61.0 s. There are
in total 4 different classes in this dataset. They are - normal sinus rhythm,
atrial fibrillation (AF), an alternative rhythm, or is too noisy to be classified.
More details on the dataset is shown in Table 3.1. Labels for each classes
were provided by AlivCor.

Table 3.1: Class Information in Dataset

Type Sample Count
Mean Time Length

(Seconds)

Normal 5154 31.9

AF 771 31.6

Other Rhythms 2557 34.1

Noisy 46 27.1

25
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3.1.1 Physionet Dataset Samples

Few samples of each of the described four categories in our dataset is
depicted below. All of these signals have been trimmed (up to 500 data
points in each sample) for plotting. Fig. 3.1 shows the normal ECG signals.
Fig. 3.2 shows the AF rhythms. Fig. 3.3 shows other types of abnormal
rhythms. Fig. 3.4 consists of ECG signals that are too noisy to recognize.

(a) (b)

(c) (d)

Figure 3.1: Normal ECG Rhythms
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(a) (b)

(c) (d)

Figure 3.2: AF Rhythms

(a) (b)

(c) (d)

Figure 3.3: Other types of abnormal Rhythms
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(a) (b)

(c) (d)

Figure 3.4: Too Noisy Rhythms

3.2 PTB Dataset

The ECGs in this collection were obtained using a non-commercial, PTB
prototype recorder with specifications like 16 input channels, (14 for ECGs,
1 for respiration, 1 for line voltage), innput voltage of ±16 mV, compensated
offset voltage up to ± 300 mV,input resistance of 100 Ω (DC),resolution of
16 bit with 0.5 µV/LSB (2000 A/D units per mV),bandwidth of 0 - 1 kHz
(synchronous sampling of all channels),noise voltage of max 10 µV (pp) and
finally 3 µV RMS with input short processing were there .

The database contains 549 records from 290 subjects (aged 17 to 87,
mean 57.2; 209 men, mean age 55.5, and 81 women, mean age 61.6; ages
were not recorded for 1 female and 14 male subjects). Each subject is rep-
resented by one to five records. There are no subjects numbered 124, 132,
134, or 161. Each record includes 15 simultaneously measured signals: the
conventional 12 leads (i, ii, iii, avr, avl, avf, v1, v2, v3, v4, v5, v6) together
with the three Frank lead ECGs (vx, vy, vz). Each signal is digitized at 1000
samples per second, with 16 bit resolution over a range of ± 16.384 mV. On
special request to the contributors of the database, recordings may be avail-
able at sampling rates up to 10 KHz. Within the header (.hea) file of most
of these ECG records is a detailed clinical summary, including age, gender,
diagnosis, and where applicable, data on medical history, medication and in-



CHAPTER 3. DATASETS AND PRE-PROCESSING 29

terventions, coronary artery pathology, ventriculography, echocardiography,
and hemodynamics. The clinical summary is not available for 22 subjects.
The diagnostic classes of the remaining 268 subjects are summarized below
fromt the :

Figure 3.5: PTB dataset classes

3.3 PTB Dataset Vs Physionet Dataset

Both these seemingly antithetical storage off data tends to serve the same
functionality - trying to provide adequate formatted data for training ma-
chine learning models. However, their distinction tends to become clear in
matters of the quality of data, the latter taking input from a more diverse
demographic context. Some other important comparative analysis regarding
the datasets are shown below in the table:

Table 3.2: A comparative analysis of PTB and Physionet Dataset
PTB dataset Physionet 2017 Cinc

It contains 549 recordings It contains 8528 short recordings

maximum sampling rate was 10KHZ It was sampled at 300Hz

MATLAB V4 WFDB-
compliant format was the default format
for the data

MATLAB V4 WFDB-
compliant format was the default format
for the data

maximum duration was 80.0s and
minimum duration was
19.0s for the signals

maximum duration was 61.0s
minimum duration was 9s for the signals

There were 9 different classes
of heart conditions

There were in all 4 different classes of
heart conditions

The Ecg recordings were provided by the
National Metrology Institute of Germany

The Ecg recordings were provided by a company
by the name of AlivCor
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3.4 Pre-Processing of ECG Signals

This section describes the pre-processing of the ECG samples which helped
us to get a better and robust result. This was done in two phases - Sample
Reshaping, Dataset Augmentation.

3.5 Sample Reshaping

In this step we made all the samples equal in shape. The shape of the
minimum length sample in the dataset is 1 x 2714 and maximum length sam-
ple is 1 x 18286. The method we used here is that - when a sample is smaller
than the size of the largest sample in the dataset, then it is concatenated at
the end of itself (completely or partially). This recursive process continues
until it becomes equal to the shape of the largest sample. A sample and its
reshaped form is depicted in Fig. 3.6 and in Fig. 3.7 respectively.

Figure 3.6: Smallest sample in Dataset
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Figure 3.7: Reshaped form of the sample depicted in Fig. 3.6

In Fig. 3.6 we can see that, this sample has a shape of 1 x 2714. Then
it is reshaped and the new shape is now 1x18286 shown in Fig. 3.7. After
completing sample reshaping step, all of the samples now have same shape
which is 1 x 18286.

3.6 Dataset Augmentation

Number of parameters to be trained in our proposed method which is
described in Section 4 is relatively larger to the number of samples in out
dataset. Due to this phenomenon, we observed over-fitting in our training
without data augmentation. Data augmentation not only reduced over-
fitting, it also helped us to get a better accuracy results with a dataset
consisting of classes with imbalanced frequencies. Using data augmentation,
number of samples belonging to each classes were made equal and now, each
of these four classes consists of 4542 samples. Now the whole dataset consists
of 18168 samples. The augmentation of these time series data is done based
on the method described by T. T. Um et al. [10] and instead of using static
parameters we used probabilistic parameters for augmenting samples. Here,
we performed two types of data augmentation, they are described below.

• Jittering: We added noise with each samples, where sigma is a prob-
abilistic variable with a value ranging from 0.5 to 1.5. Sigma is the
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standard deviation of noise added with each sample.

• Scaling: Scaling is simple multiplying each data points with a value.
Let this value be alpha. And for this example our value ranges from
0.2 to 1.4 in a probabilistic manner.

So, our final dataset has a shape of 18168 x 18286 x 1.
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Proposed Method

In this section, we describe our method architecture and training parameters.

4.1 Architecture

Convolutional Neural Network, shortly known as CNN, is a feed-
forward neural network that is recently gaining popularity in the field of
signal processing, like in the manipulation ECG singals, for their efficiency
and portability. CNN is influenced by the biological process in that the
connectivity of the neuron resembles the organization of the visual cortex.
These are simply the regularized version of a multilayer perceptron. CNN
consists of three layers generally: convolutional, pooling and fully connected
layer. Convolutional neural network is used to figure out the relation be-
tween the inputs. The convolution layer makes convolution on the input
and passes it to the next layer. The next layer is the pooling layer that is
used to truncate the dimension and streamline the underlying computation.
A fully connected layer is used to connect every neuron in one layer to every
neuron in another layer and its function is to classify the input into a set
number of classes. Recurrent Neural Network (RNN) is a form of Neural
Network, which unlike the feed-forward neural network are circular. RNN
is particularly used for time series data where there is a lag of unknown
duration between the events in the time series and hence are good for the
classification, processing and predicting this kind of time series data. Long
short term Memory particularly has been designed to keep in a record of long
term dependencies with the help of memory cells. An LSTM is made out
of an input gate, an output gate and forget gate. LSTM keeps in the hold
of the output from the previous layer, or segments in time, and augments it
with the new input to produce the corresponding output. The properties of
CNN and LSTM makes it suitable for them to be used as some promising
tool for the inquiry and the classification of heart condition using the ECG

33
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data. The following sections have been devoted to detailing the description
of our proposed work.

4.1.1 CNN + LSTM

Our first proposed method contains an amalgamation of LSTM and
CNN. CNN is initially used to pluck out the hidden pattern in the ECG
dataset. On the other hand, LSTM is used to capture the amplitude tem-
poral pattern in the ECG dataset. Fig. 4.1 shows the overall layout of
the neural network architecture. Our proposed method contains an amalga-
mation of LSTM and CNN. CNN is initially used to pluck out the hidden
pattern in the ECG dataset. On the other hand, as the ECG dataset con-
tains an ordered sequence of entities, LSTM is being used to capture the
amplitude-temporal pattern in the ECG dataset. Finally, the multilayer
perceptron (MLP) is used to classify the mixed input data into four distin-
guishable aforementioned heart condition. Sequentially, our model consists
of four CNN layers and two LSTM layers. Fig. 4.1 shows the overall layout
of the neural network architecture.

The input is morphed into a dimension of 18286 x 1 blocks , and is fed
first into a 1-dimensional convolutional neural network. The third dimen-
sion, representing the number of samples, is variable. The output contains
128 output of size 18232 x 1 . This output is then trimmed, using the
maxpooling layer into dimension of 1823 x 1. The second layer , similarly ,
takes an input of 1823 x 128 from the maxpooling layer and produces 128
outputs of 1799 x 1. The same process repeats for the two more CNN layers,
according to the figure, before our output is being passed to the LSTM.

Our designed LSTM is used to integrate features detected in the con-
secutive overlapping data blocks. With the help of the internal cycle, it is
able to keep record of the preceding steps. As shown in the figure, our first
LSTM model generates a subtotal of 128 outputs which have size of 66 x 1
and after the second LSTM , we obtain a single output of size 64 x 1.

Finally, our output is tied with a fully connected MLP , tuned using
a softtmax layer, to produce a final output of size 4 x 1, distinguishing
amongst four aforementioned types of heart condition. Our model had a
total 8,44,164 with similar number of trainable parameters.
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Figure 4.1: CNN+LSTM Architecture

4.1.2 CNN

Here we implement a convolutional neural network. A Convolutional Neural
Network (ConvNet/CNN) is a Deep Learning algorithm which can take in
an input image, assign importance (learnable weights and biases) to various
aspects/objects in the image and be able to differentiate one from the other.
The pre-processing required in a ConvNet is much lower as compared to
other classification algorithms. While in primitive methods filters are hand-
engineered, with enough training, ConvNets have the ability to learn these
filters/characteristics. The architecture of a ConvNet is analogous to that of
the connectivity pattern of Neurons in the Human Brain and was inspired
by the organization of the Visual Cortex. Individual neurons respond to
stimuli. A ConvNet is able to successfully capture the Spatial and Tem-
poral dependencies in an image through the application of relevant filters.
The architecture performs a better fitting to the image dataset due to the
reduction in the number of parameters involved and reusability of weights.
In other words, the network can be trained to understand the sophistication
of the image better. A kernel is a matrix with the dimensions [h2 * w2 *
d1], which is one yellow cuboid of the multiple cuboid (kernels) stacked on
top of each other. For each kernel, we have its respective bias, which is a
scalar quantity.And then, we have a output for this layer, the green matrix
in Fig 2, which has dimensions [h3 * w3 * d2]. For each position of the
kernel on the image, each number on the kernel gets multiplied with the
corresponding number on the input matrix (blue matrix) and then they all
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are summed up for the value in the corresponding position in the output
matrix (green matrix). Now, coming to the functionality of the pooling
layer in detail. The main purpose of a pooling layer is to reduce the number
of parameters of the input tensor and thus - Helps reduce overfitting - Ex-
tract representative features from the input tensor - Reduces computation
and thus aids efficiency The input to a pooling layer is a tensor. In case
of Max Pooling, a kernel is moved across the matrix and for each position
the max value is taken and put in the corresponding position of the output
matrix. In case of Average Pooling, a kernel of size n*n is moved across
the matrix and for each position the average is taken of all the values and
put in the corresponding position of the output matrix. This is repeated
for each channel in the input tensor. And so we get the output tensor.So, a
thing to note is, Pooling downsamples the image in its height and width but
the number of channels(depth) stays the same. Now comes Fully connected
layer. Fully Connected Layer is simply, feed forward neural networks. Fully
Connected Layers form the last few layers in the network. The input to the
fully connected layer is the output from the final Pooling or Convolutional
Layer, which is flattened and then fed into the fully connected layer. In our
model from figure 9 below, we have a input of size 18286x1.The first layer
sweeps with a kernel of suitable size 50x1x128 and bias of 128.The output is
the used to train another convolutional layer of kernel 1x128x128 and bias
128 .Then a max-pooling of 1D is applied.Then the output is again passed
through two other convolutional layer of size 20x128x128 and 1x128x128
.Finally Global Average pooling 1D is applied and the input is finally sieved
through three dense layer before producing a output of bias 4 representing
the four heart conditions.

Fig. 4.2 shows the overall layout of the neural network architecture.
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Figure 4.2: CNN Architecture

4.2 Training

For training our model, we used a server with a 2x Intel Xeon Silver
4116 2.1Ghz processor and a RAM of 512 GB DDR4. Integrated HD Graph-
ics were used as the Graphics Processing Unit (GPU). The whole training
process was conducted under a python 3.7 environment with Tensorflow
and Keras libraries with other necessary libraries. With a batch size of 32,
the CNN model was trained for 200 epochs and CNN + LSTM model was
trained for 50 epochs. For both of the models Adam optimizer with a learn-
ing rate 0.01 was used. The model with the best validation accuracy was
saved and it was obtained at 191 epoch for CNN model and at 22 epoch for
CNN + LSTM model. The main contributions to our training method are
given below:

4.2.1 Weight Initialization

We have implemented weight initialization for the CNN + LSTM model
described in Section 4.1.1. Usually, weight values in TensorFlow or Keras
are initialized with 0 or random values. If it is initialized with 0, then the
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derivative concerning loss function will be W[1] for every w. So, weights
will be the same for all win every iteration. Using random values have two
problems, if it is very high, it will take a long time to be minimized. If it is
too low, then vanishing gradient problem will occur for activation problems
like Sigmoid. To overcome this problem, we replaced two LSTM layers with
Fully Connected Dense layers and trained the model. Then we saved the
weights in a separate file. Now, we initialize the weights from the saved
values and again replaced dense layers with LSTM and trained the model.

4.2.2 Adaptive Learning Rate

Instead of fixed learning rate of 0.01, we used a adaptive learning rate. An
adaptive learning rate can be implemented in many ways like Time decay
or Step decay. We choose Step decay. After every epoch the learning rate
was decreased. Algorithm 4.2.3 to calculate the learning rate of the current
epoch is given in Algorithm 4.2.3.

4.2.3 Algorithm for Step Decay Learning Rate

Algorithm 1 Calculating Adaptive Learning Rate

initial lrate = 0.01
drop = 0.05
epochs drop = 10.0
lrate = initial lrate * power(drop, floor((1+epoch)/epochs drop))

Figure 4.3: Change of model accuracy over epochs (CNN)
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Figure 4.4: Change of loss over epochs (CNN)

Change of model accuracy and loss changed for our CNN + LSTM model
over epochs is depicted in Fig. 4.5 and Fig. 4.6 respectively.

Figure 4.5: Change of model accuracy over epochs (CNN + LSTM)
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Figure 4.6: Change of loss over epochs (CNN + LSTM)

Adam was set as optimizer and categorical crossentropy was used as loss
function in both cases. The model with the best validation accuracy was
saved and it was obtained at 191 epoch for CNN model and at 22 epoch for
CNN + LSTM model.



Chapter 5

Performance Evaluation

In this section, we expound on the computer efficiency that we obtained and
have reached the promulgated benchmarks.. Table 5.1 lists a comparison
of the output of our model alongside similar proposals from other authors
mentioned in the beginning .

Table 5.1: Comparison of Proposed method to Other Authors’ with same
database

Paper Name Proposed Method Dataset No. of Celasss Accuracy

Martin et.al CNN+LSTM
Physionet2017
8528 recordings

2 82.1%

Dionisije.et.al
multiclass classifier
+random fores

Physionet2017
8528 recording

4 80%

Ruhi et.al Random Forest
Physionet2017
8528 recordings

2 82.7%

Fernando.et.al CNN
Physionet 2017
8528 recordings

4 83%

Our method (1) CNN
Physionet2017
8528 recordings

4 84.3%

Our method (2) CNN+LSTM
Physionet2017
8528 recordings

4 91.19%
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Table 5.2: Results from other authors using dfferent database
Paper Name Proposed Method Dataset No. of Classes Accuracy

Safaradin et.al PNN+KNN
Pysionet PTB
549 record

2 76%

Acharya.et.al CNN
Fantasia database
1285 samples(5s)
514 samples(2s)

2

94.95% for
Net(2s)
95.11%for
Net(5s)

Acharya et.al CNN single network
Pysionet PTB
549 record

2 94.95%

Arif et.al KNN+pruning
Physionet PTB
549 record

2 94.7%

Our method(1) CNN
Physionet PTB
549 record

2 86%

Our method(2) CNN + LSTM
Physionet PTB
549 record

2 97%

From Table 5.1, we can observe that the dataset we have used has the
largest number of samples and we have also augmented the dataset in such
a way so that all kinds of classes have the same number of samples. This not
only increased the number of samples but also reduced over-fitting. Because
for such a huge number of trainable parameters described in Section 4, the
number of samples should be of a good amount to get rid of over-fitting.
This makes our model more robust. And our model has achieved a very
good accuracy comparing to other authors’.

Our results shows that the output accuracy tends to be deviate within an
approximate margin of 3% using the Convolutional Neural Network model
and within a margin of approximately 6% when a CNN + LSTM model is
being implemented. There may be several plausible reasons pertaining to
these slight digressions. Some of these causes relegating the output accu-
racy’s in in different boundaries are hypothesized in the following lines and
paragraphs.

Firstly, the different nearly non-mutually exclusive sets of human entities
having different gender, race, age in the two data-sets may contribute to the
difference in output. It has been proven that the peaks and troughs of ECG
signals are dependent on ethnicity. There may also be a causal link to the
other aforementioned qualities. Therefore, it may not come as surprise that
our model , which is heavily dependent on plucks out pattern , will respond
differently to data-sets containing different patters of peaks and trough .
This may be the cause of difference in accuracy. Had it been not for the fact
that the data-sets were different with respect to the attributes of their en-
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tities, we would have seen the output accuracy congregate on the same value.

Secondly, coming to a more sticking point: why does the accuracy of
second data-set, PTB, run below the first one. To formulate a cogent rea-
son, we have to again scrutinize their respective datasets. In the first one,
i.e the first data-set, the dataset is more voluminous , containing sufficient
and sheer amount of data. What does that indicate? This indicates chances
of less over-fitting. A data-set containing limited amount of data tends to
adapt the model to highly adulate in favor for its output. This leads to
over-fitting. An over-fitted data tends to show high accuracy compared to
a normal one. This may look tempting at the first sight , however, the ad-
versity to that is the trained model when being run on a new, unseen set
of data , performs poorly, even though its accuracy sky-rocketed amidst the
training dataset. On the contrary, the second model in brimmed with data
from a diverse background. Any possibility, therefore, of getting over-fitted
is being ameliorated at the very beginning.

Another interesting fact to notice is that the accuracy for the CNN
model , both for the PTB data-set and the Physionet data-set, tends to
be low compared to the CNN + LSTM model. The inherent architectural
nature of the respective models account for this dichotomy. CNN model is
better for image and has proven its merits, giving acuuracy greater tham
50%. On the other hand, LSTM is geared to work well on time series data,
which our whole implementation is predicated upon. When a CNN model is
being fused with a LSTM model it outperforms in results given by the CNN
model alone. The minute dependencies between corresponding intervals is
delineated meticulously by the LSTM model conjoined with the CNN model.
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Conclusion and Future
Works

We developed a neural network architecture, CNN +LSTM, for the detec-
tion classification of ECG signal from the PhysioNet/2017 challenge into
four types. Our dataset is relatively new and is enriched with entities that
have a diverse background, making our dataset robust. We proposed an
augmentation scheme in our paper that was able to push the accuracy to
the epitome. We made a comparison of our results with other similar clas-
sification mechanisms from different authors on a similar line of research.
Our results show promising outcome with an accuracy of 91.19%. Future
studies may take into account of different features such as the T wave, QRS
complex e.t.c and their corresponding relation with the heart conditions,
hence provide new insight into features reflecting specific heart maladies.
Further, our model can also be integrated into software for mobile devices
that are geared to detect ECG signals.
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Appendix

7.1 Code for Library and Input data

from s k l ea rn . met r i c s import con fus ion matr ix , a c cu racy s co r e
from keras . c a l l b a c k s import ModelCheckpoint
#from biosppy . s i g n a l s import ecg
from s k l ea rn . m o d e l s e l e c t i o n import S t ra t i f i edKFo ld
from s k l ea rn . p r e p r o c e s s i n g import MinMaxScaler , RobustScaler
import pandas as pd
import s c ipy . i o as s i o
from os import l i s t d i r
from os . path import i s f i l e , j o i n
import numpy as np
import keras
from keras . models import Sequent i a l
from keras . l a y e r s import Dense , Act ivat ion ,
Dropout , Conv2D , MaxPooling2D , Flatten , LSTM, Conv1D ,
GlobalAveragePooling1D , MaxPooling1D
from keras import r e g u l a r i z e r s
import matp lo t l i b . pyplot as p l t

import p i c k l e
with open ( ’ Tasnim/ train 18168 19092019 ECG augmented . p i ck l e ’ , ’ rb ’ )
as f :

X tra in aug , Y tra in aug = p i c k l e . load ( f )
with open ( ’ Tasnim/ val idation 853 19092019 ECG augmented . p i ck l e ’ , ’ rb ’ )
as f :

X val , Y val = p i c k l e . load ( f )
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X = np . concatenate ( ( X tra in aug , X val ) , a x i s =0)
Y = np . concatenate ( ( Y tra in aug , Y val ) , a x i s =0)

from s k l ea rn . m o d e l s e l e c t i o n import t r a i n t e s t s p l i t
X train , X val , Y train , Y val = t r a i n t e s t s p l i t (X, Y, t e s t s i z e =0.2 ,
s h u f f l e=True )
X tra in . shape , Y tra in . shape , X val . shape , Y val . shape

7.2 Code for CNN Model Training

num ber o f c l a s s e s = 4
# de f crea te mode l ( ) :
model = Sequent i a l ( )
model . add (Conv1D(128 , 50 , a c t i v a t i o n=’ r e l u ’ , input shape =(18286 , 1 ) ) )
model . add ( MaxPooling1D ( 1 0 ) )
model . add ( Dropout ( 0 . 2 ) )
model . add (Conv1D(128 , 20 , a c t i v a t i o n=’ r e l u ’ ) )
model . add ( MaxPooling1D ( 5 ) )
model . add ( Dropout ( 0 . 2 ) )
model . add (Conv1D(128 , 10 , a c t i v a t i o n=’ r e l u ’ ) )
model . add ( MaxPooling1D ( 5 ) )
model . add ( Dropout ( 0 . 2 ) )
model . add (Conv1D(128 , 5 , a c t i v a t i o n=’ r e l u ’ ) )
model . add ( GlobalAveragePooling1D ( ) )
# model . add ( F la t t en ( ) )
model . add ( Dense (128 , k e r n e l i n i t i a l i z e r=’ normal ’ , a c t i v a t i o n=’ r e l u ’ ) )
model . add ( Dropout ( 0 . 2 ) )
model . add ( Dense (64 , k e r n e l i n i t i a l i z e r=’ normal ’ , a c t i v a t i o n=’ r e l u ’ ) )
model . add ( Dropout ( 0 . 2 ) )
model . add ( Dense (16 , k e r n e l i n i t i a l i z e r=’ normal ’ , a c t i v a t i o n=’ r e l u ’ ) )
model . add ( Dropout ( 0 . 2 ) )
model . add ( Dense ( number o f c l a s s e s , k e r n e l i n i t i a l i z e r=’ normal ’ ,
a c t i v a t i o n=’ softmax ’ ) )
model . compile ( l o s s=’ c a t e g o r i c a l c r o s s e n t r o p y ’ , opt imize r=’adam ’ ,
met r i c s =[ ’ accuracy ’ ] )
checkpo inte r = ModelCheckpoint ( f i l e p a t h=’ Conv models cnn aug 2 /
Best model . h5 ’ , monitor=’ v a l a c c ’ , verbose =1, s a v e b e s t o n l y=True )
h i s t = model . f i t ( X tra in aug , Y tra in aug ,
v a l i d a t i o n d a t a =(X val , Y val ) , b a t c h s i z e =64, epochs =200 , verbose =2, s h u f f l e=True , c a l l b a c k s =[ checkpo inte r ] )
pd . DataFrame ( h i s t . h i s t o r y ) . t o c s v ( path or bu f=’ Conv models cnn
aug 2 / History . csv ’ )
p r e d i c t i o n s = model . p r e d i c t ( X val )
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s co r e = accu racy s co r e ( change ( Y val ) , change ( p r e d i c t i o n s ) )
print ( ’ Last epoch \ ’ s v a l i d a t i o n s co r e i s ’ , s c o r e )
df = pd . DataFrame ( change ( p r e d i c t i o n s ) )
df . t o c s v ( path or bu f=’ Conv models cnn aug 2 / Preds ’ +
str ( format ( score , ’ . 4 f ’ ) ) + ’ . csv ’ , index=None , header=None )
pd . DataFrame ( con fus i on matr ix ( change ( Y val ) ,
change ( p r e d i c t i o n s ) ) ) . t o c s v ( path or bu f=’ Conv models cnn aug 2
/ Result Conf ’ + str ( format ( score , ’ . 4 f ’ ) ) + ’ . csv ’ , index=None ,
header=None )

7.3 Code for CNN + LSTM Model Training

model = Sequent i a l ( )
model . add (Conv1D(128 , 55 , a c t i v a t i o n =’ re lu ’ , input shape =(18286 , 1 ) ) )
model . add ( MaxPooling1D ( 1 0 ) )
model . add ( Dropout ( 0 . 1 ) )
model . add (Conv1D(128 , 25 , a c t i v a t i o n =’ re lu ’ ) )
model . add ( MaxPooling1D ( 5 ) )
model . add ( Dropout ( 0 . 1 ) )
model . add (Conv1D(128 , 10 , a c t i v a t i o n =’ re lu ’ ) )
model . add ( MaxPooling1D ( 5 ) )
model . add ( Dropout ( 0 . 1 ) )
model . add (Conv1D(128 , 5 , a c t i v a t i o n =’ re lu ’ ) )

model . add (LSTM(128 , a c t i v a t i o n =’tanh ’ , r e tu rn s equence s=True ) )
model . add (LSTM(64 , a c t i v a t i o n =’tanh ’ , r e tu rn s equence s=False ) )
model . add ( Dense (4 , k e r n e l i n i t i a l i z e r =’normal ’ , a c t i v a t i o n =’softmax ’ ) )
model . compi le ( l o s s =’ c a t e g o r i c a l c r o s s e n t r o p y ’ , opt imize r =’adam ’ ,
met r i c s =[ ’ accuracy ’ ] )

f i l e p a t h =”Conv mode l s aug la te s t 2 /CNN+LSTM weights−improvement−
{ epoch :02 d}−{v a l a c c : . 2 f } . h5”
checkpo int = keras . c a l l b a c k s . ModelCheckpoint ( f i l e p a t h ,
monitor=’ va l acc ’ , verbose =1, s a v e b e s t o n l y=True , mode=’max ’ )
c a l l b a c k s l i s t = [ checkpo int ]
h i s t o r y = model . f i t ( X train , Y train ,

b a t c h s i z e =32,
epochs =50,
verbose =2,
c a l l b a c k s=c a l l b a c k s l i s t ,
s h u f f l e = True ,
v a l i d a t i o n d a t a =(X val , Y val ) )
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model . save ( ’ Conv mode l s aug la te s t 2 /CNN+LSTM tasnim+07 19 aug ’ )
model . s ave we ight s ( ’ Conv mode l s aug la te s t 2 /
weights CNN+LSTM W 2007 aug . h5 ’ )
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