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Abstract

Understanding sophisticated user behavior-based feature interaction is crucial to optimizing

CTR for recommender systems. Despite having significant progress, the methods that are

used nowadays tend to have a strong bias towards low- or higher-order feature interactions

and involve a great deal of feature engineering. However, most of the feature engineering

methods are nontrivial and often requires rigorous feature engineering or exhaustive search-

ing. DNNs can learn feature interactions automatically; but they implicitly generate all of

those interactions and there is no control over the DNN about how it is generating all the

cross features thus resulting in many redundant crosses. The proposed model, incorporates

the strength of factorization machines for recommendation and applies PCA for learning

largest data variance to feed the important features to the deep model. Compared to the

Google’s new Wide Deep design, we used the regular input for the factorization machines,

but to get rid of the redundant cross features we feed the deep model with major features

that impacts the prediction most. The results are very promising and they show a significant

increase in accuracy on the predictions for CTR compared to state of the art Wide & Deep

and DeepFM model.
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Chapter 1

Introduction

We first provide an outline of our study in this section, which includes the problem statement

in detail. The research challenges to be faced in the overall scenario are also discussed on

the basis of the problem statement. The objectives, motivations and our contributions has

been presented in different sections. At the end of this chapter there is a description of the

organization of the thesis.

1.1 Overview

1.1.1 Recommender Systems

Recommender Systems, in a very general way, are algorithms designed to suggest relevant

items to users (e.g., items being movies to watch, articles to read, products to read or anything

else depending on the industry) [1]. In some sectors, recommendation systems are truly

critical since they can generate huge profits when they are effective or can also substantially

differentiate from competitors. They are widely recognized as playlist creators for video and

music services such as Netflix, YouTube and Spotify, product recommendations for services

such as Amazon, and user recommendations for social media platforms such as Facebook

and Twitter.

1
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1.1.2 Traditional Recommender Systems

The traditional recommender systems can be roughly categorized into three classes [2]:

content-based methods, collaborative filtering (CF) based methods, and hybrid methods.

Content-based methods [3] uses the user profile or product description for recommendation.

They utilize a series of discrete, pre-tagged characteristics of an item in order to recommend

additional items with similar properties. Collaborative filtering based methods [4] [5] make

use of a user’s past activities or preferences like, user ratings on items, user reviews etc

without using any product information or user information. Moreover, CF based methods

take into consideration whether any similar decisions made by other users or not. If so then

these information are used to predict items (or ratings for items) that the user may have an

interest in. The Hybrid approaches [6] [7] have the aim to merge content-based and CF-based

methods to achieve the best of both worlds.

1.1.3 Recent Trends in Recommender Systems

Over the recent years, deep learning has generated a considerable interest in many fields

of research, such as computer vision and natural language processing, not only because of

huge performance boost, but also because of the appeal of learning features from scratch.

Furthermore, the power of deep learning is widespread, showing its usefulness recently when

applied to work on information retrieval and advising programs. Clearly, in the recommender

model, the world of deep learning is thriving. Recommendation systems are important tools

for enhancing user experience and supporting sales/services for many online websites and

mobile applications [8] [9] [10]. For eg, 80% of films watched on Netflix came from recom-

mendations [10], 60% of video clicks came from YouTube’s home page recommendation [9].

Covington et al. [8] introduced a recommendation algorithm based on a deep neural network

for YouTube video recommendation. Cheng et al. [11] proposed a Google Play App Recom-

mender Framework with a wide and deep template. Shumpei et al. [12] provided Yahoo

News with an RNN-based news recommendation system.All these models stood the online

evaluation and demonstrated substantial improvement over traditional models. Therefore,



3

we can see that in industrial recommender applications, deep learning has contributed to a

groundbreaking revolution. In recent years, there has been an unprecedented increase in

the number of research publications on deep learning recommendation methods, provid-

ing strong evidence of the eventual presence of deep learning in recommendation system

science.

1.2 Problem Statement

Recommender systems have changed the notion of our shopping behavior completely by

regularly suggesting us products that we want to purchase with credible accuracy. But tradi-

tional methods sometimes provide irrelevant and inappropriate recommendation because

of sparsity or unavailability of user data. Newer methods like matrix factorization, topic

modeling etc are proposed to solve those problems, though they work best for small scale

problems. When they are given a large set of data, like user data of a large marketplace, they

tend to perform poorly because of scalability issues. Moreover, the traditional models fail

to learn from sophisticated feature interactions behind user behaviors as well as from low-

and higher-order feature interactions. This is where the deep learning approach shines, as

they can scale large set of data as well as can learn from multi-feature combinations. This

results in generalizing recommendations and thus giving us a more accurate and appropriate

recommendation. Deep learning approaches can work with large scale datasets and state

of the art methods can combine both linear and deep learning models to get the best out of

the dataset. However, in state of the art models, e.g., Wide & Deep [11], DeepFM [13] has no

control over the deep model where the higher-order feature combinations are created.

The primary goal of this thesis is "Improving the deep model’s feature interactions by dimen-

sionality reduction methods", so that only the major features that have higher impact in user

choices are used in to create higher-order feature combinations.
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1.3 Research Challenges

The developed methodologies should satisfy the following criteria:

(i) The model should be able to generalize recommendation for a new user, that is, the

cold-start problem should not affect the model in predicting user choices.

(ii) Even if the dataset is sparse, the model should be able to generate relevant recommen-

dation for a user.

(iii) To ensure simplicity and robustness of the recommender system, the proposed method

should be able to automatically generate lower-order feature combinations.

(iv) Higher-order feature combinations should be apposite and closely related to a user.

1.4 Contributions

The presentation of this thesis is based around our goal of improving the performance of

deep learning based recommender systems. The way this problem has been approached is

briefly described below:

(i) From our findings, we realised that in most of the state of the art models that use

deep learning approaches, the deep model fails to make efficient feature combination

due to the presence of some unimportant features in the dataset. We applied feature

transformation on the dataset such that only the important features are extracted.

(ii) We separated the input for the linear model and the deep model. This is because, in

some of the state of the art models we studied, manual feature combination is done

on the dataset and the new combined raw features are also sent as input to the linear

model. So, to keep the process unhindered, we did not modify the dataset in case of the

linear model.

(iii) We applied feature transformation techniques like PCA, kPCA etc. on the dataset and

then used the modified features to train the deep model.
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(iv) The justification behind applying said transformations has been presented.

(v) Instead of using feature selection methods, we opted for feature transformation methods

because we are looking to extracting the maximum un-correlated information from

features without losing much information.

(vi) Our initial experiments show promising results when compared to the standard state

of the art models that we studied. More on these models has been described in the

following sections.

1.5 Organization of the Thesis

The rest of this thesis is organized as follows:

Chapter 2 gives an overview of different approaches for the recommendation problem.

This chapter also discusses about various methodologies of recommender systems.

Chapter 3 proposes a method that can capture the major features for generating higher-

order feature combinations. It contains the framework, implementation of the proposed

methodologies and also contains other evaluation methodologies that the results are tested

against.

Chapter 4 presents result analysis and comparison with other implementations and

studies.

Chapter 5 presents conclusions and discusses future work.



Chapter 2

Literature Review

The first section of this chapter gives a brief overview of what a recommender system is and

the core idea behind its implementation. Next, we present a generic classification of different

types of traditional recommender systems and how they stack against each other. In the

subsequent sections, we explore a new field of recommender systems, that employ the power

of deep learning combined with traditional methods and how they perform when compared

to traditional models. We also discuss some of the limitations of these new recommender

systems. Finally, we will discuss about the core implementation process of these models.

2.1 Background

During the last few decades, with the rise of Youtube, Amazon, Netflix and many other such

web services, recommender systems have taken more and more place in our lives. From

e-commerce (suggest to buyers articles that could interest them) to online advertisement

(suggest to users the right contents, matching their preferences), recommender systems are

today unavoidable in our daily online journeys.

Recommendation systems are, in a very general way, algorithms designed to recommend

related elements to users (items like films to watch, text to read, goods to buy, etc.)

Joe Pine argues in his book "Mass Flexibility" that companies need to transition from the

ancient phenomenon of mass production where "uniform goods, standardized markets, long

life and development cycles were the norm" to the new world where "variety and flexibility

6
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replace standardized products." In a vastly competitive world as ours, Pine claims that it

is simply no longer sufficient to simply build a product. Companies must at least be able

to produce numerous items that meet the various needs of numerous consumers. The e-

commerce revolution has offered businesses more options for consumers. Nevertheless, by

moving to this new customization stage, businesses are increasing the amount of data they

have to process before they can choose which products they need. One fathomable approach

to dealing with this copious amount of data is the use of recommender systems [1].

E-commerce websites use recommendation systems to offer goods to their customers. Such

goods can be recommended on the basis of the best international sales on a web site, based

on customer statistics, or on a predictive analysis of the customer’s past buying activity [1].

This is the basic principle of any recommender system: Work on previous historical data to

generate new data with the most relevance to a user, such that the user is inclined to purchase

the article suggested by the recommender system.

Recommender systems are really critical in some industries as they can generate a huge

amount of income when they are efficient or also be a way to stand out significantly from

competitors. As a proof of the importance of recommender systems, we can mention that,

a few years ago, Netflix organised a challenges (the “Netflix prize”) where the goal was to

produce a recommender system that performs better than its own algorithm with a prize of 1

million dollars to win [14].

As such, it is imperative that there is a constant influx of research geared towards the improve-

ment of recommender systems.

2.2 Overview of Traditional Recommender Systems

In the first section we are going to overview the two major paradigms of recommender sys-

tems : collaborative and content based methods. The next two sections will then describe

various methods of collaborative filtering, such and matrix factorization and such. The fol-

lowing section will be dedicated to content based methods and how they work.

Note: Most of the following description has been cited from https://towardsdatascience.

https://towardsdatascience.com/introduction-to-recommender-systems-6c66cf15ada
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com/introduction-to-recommender-systems-6c66cf15ada. Interested readers are re-

ferred to the mentioned site for better understanding.

2.2.1 Collaborative Filtering

Collaborative methods for recommender systems are methods that are based solely on the

past interactions recorded between users and items in order to produce new recommenda-

tions. These interactions are stored in the so-called "user-item interactions matrix" as shown

in figure 2.1.

Figure 2.1: Illustration of the user-item interactions matrix

Then, the main idea that rules collaborative methods is that these past user-item interac-

tions are sufficient to detect similar users and/or similar items and make predictions based

on these estimated proximities.

The class of collaborative filtering algorithms is divided into two sub-categories that are

generally called memory based and model based approaches. Memory based approaches

directly work with values of recorded interactions, assuming no model, and are essentially

based on nearest neighbours search (for example, find the closest users from a user of interest

and suggest the most popular items among these neighbours). Model based approaches

https://towardsdatascience.com/introduction-to-recommender-systems-6c66cf15ada
https://towardsdatascience.com/introduction-to-recommender-systems-6c66cf15ada
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Figure 2.2: Overview of the collaborative filtering methods paradigm.

assume an underlying “generative” model that explains the user-item interactions and try to

discover it in order to make new predictions. This can be seen in figure 2.2.

Collaborative filtering (CF) systems predict a user’s affinity for items or information. Unlike

traditional content-based information filtering system, such as those developed using infor-

mation retrieval or artificial intelligence technology, filtering decisions in CF are based on

human and not machine analysis of content. Each user of an CF system rates items that they

have experienced, in order to establish a profile of interests. The CF system then matches

together that user with people of similar interests or tastes. Then ratings from those similar

people are used to generate recommendations for the user [15]. The more users interact with

items the more new recommendations become accurate: for a fixed set of users and items,

new interactions recorded over time bring new information and make the system more and

more effective.

However, one of the glaring faults that plagues CF systems is the infamous "Cold Start Prob-

lem", where recommendations are required for items that no one (in the data set) has yet

rated. Pure collaborative filtering methods base their recommendations on community

preferences (e.g., user ratings and purchase histories), ignoring user and item attributes (e.g.,

demographics and product descriptions). They cannot help in a cold start setting, since

no user preference information is available to form any basis for recommendations. This

drawback can be addressed in different way: recommending random items to new users or
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new items to random users (random strategy), recommending popular items to new users

or new items to most active users (maximum expectation strategy), recommending a set

of various items to new users or a new item to a set of various users (exploratory strategy)

or, finally, using a non collaborative method for the early life of the user or the item. Some

methods include combining content and collaborative information by using expectation

maximization (EM) learning to fit the model to the data [16].

2.2.2 Content-based Filtering

Unlike collaborative methods that only rely on the user-item interactions, content based

approaches use additional information about users and/or items. If we consider the example

of a movies recommender system, this additional information can be, for example, the age,

the sex, the job or any other personal information for users as well as the category, the main

actors, the duration or other characteristics for the movies (items).

Then, the idea of content based methods is to try to build a model, based on the available

“features”, that explain the observed user-item interactions. Still considering users and movies,

we will try, for example, to model the fact that young women tend to rate better some movies,

that young men tend to rate better some other movies and so on. If we manage to get such

model, then, making new predictions for a user is pretty easy: we just need to look at the

profile (age, sex, . . . ) of this user and, based on this information, to determine relevant movies

to suggest.
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Figure 2.3: Overview of the content based methods paradigm

Formally, an item in a content based system is described as a vector X = (x1, x2, ..., xn) of

n components. The components can have binary, nominal or numerical attributes and are

derived from either the content of the items or from information about the users’ preferences.

The task of the learning method is to select a function based on a training set of m input

vectors that can classify any item in the collection. The function h(X ) will either be able to

classify an unseen item as positive or negative at once by returning a binary value or return a

numerical value. In that case a threshold can be used to determine if the item is relevant or

irrelevant to the user. A content-based filtering system selects items based on the correlation

between the content of the items and the user’s preferences as opposed to a collaborative

filtering system that chooses items based on the correlation between people with similar

preferences. PRES is a content-based filtering system. It makes recommendations by com-

paring a user profile with the content of each document in the collection. The content of a

document can be represented with a set of terms. Terms are extracted from documents by

running through a number of parsing steps [17]. In PRES the similarity between the profile

vector and a document is determined by using the cosine measurement. Documents that

have already been visited by the user or already appear as hyperlinks on the current page are

filtered out. The remaining documents are then sorted by rank.
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Content based methods suffer far less from the cold start problem than collaborative ap-

proaches: new users or items can be described by their characteristics (content) and so

relevant suggestions can be done for these new entities. Only new users or items with previ-

ously unseen features will logically suffer from this drawback, but once the system becomes

old enough, this has few to no chance to happen.

2.2.3 Matrix Factorization

The main assumption behind matrix factorisation is that there exists a pretty low dimensional

latent space of features in which we can represent both users and items and such that the

interaction between a user and an item can be obtained by computing the dot product of

corresponding dense vectors in that space.

For example, consider that we have a user-movie rating matrix. In order to model the

interactions between users and movies, we can assume that:

• there exists some features describing (and telling apart) pretty well movies.

• these features can also be used to describe user preferences (high values for features

the user likes, low values otherwise)

However we don’t want to give explicitly these features to our model (as it could be

done for content based approaches that we will describe later). Instead, we prefer to let

the system discover these useful features by itself and make its own representations of both

users and items. As they are learned and not given, extracted features taken individually

have a mathematical meaning but no intuitive interpretation (and, so, are difficult, if not

impossible, to understand as human). However, it is not unusual to ends up having structures

emerging from that type of algorithm being extremely close to intuitive decomposition that

human could think about. Indeed, the consequence of such factorisation is that close users

in terms of preferences as well as close items in terms of characteristics ends up having close

representations in the latent space.
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Figure 2.4: Illustration of the matrix factorization method

In this subsection, we will give a simple mathematical overview of matrix factorization.

More especially, we describe a classical iterative approach based on gradient descent that

makes possible to obtain factorizations for very large matrices without loading all the data at

the same time in computer’s memory.

Let’s consider an interaction matrix M (nxm) of ratings where only some items have been

rated by each user (most of the interactions are set to None to express the lack of rating). We

want to factorise that matrix such that

M ≈ X .Y T

where X is the “user matrix” (nxl) whose rows represent the n users and where Y is the “item

matrix” (mxl) whose rows represent the m items:

useri ' Xi ∀i ∈ {1, ...,n}

i tem j ' Yi ∀ j ∈ {1, ...,m}

Here l is the dimension of the latent space in which users and item will be represented. So,
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we search for matrices X and Y whose dot product best approximate the existing interactions.

Denoting E the ensemble of pairs (i,j) such that M_ij is set (not None), we want to find X and

Y that minimise the "rating reconstruction error"

(X ,Y ) = ar g mi n
∑

(i , j )∈E
[(Xi )(Y j )T −Mi j ]2

The matrices X and Y can then be obtained following a gradient descent optimisation process

for which we can notice two things. First, the gradient do not have to be computed over

all the pairs in E at each step and we can consider only a subset of these pairs so that we

optimise our objective function “by batch”. Second, values in X and Y do not have to be

updated simultaneously and the gradient descent can be done alternatively on X and Y at

each step (doing so, we consider one matrix fixed and optimise for the other before doing the

opposite at the next iteration).

Once the matrix has been factorised, we have less information to manipulate in order to

make a new recommendation: we can simply multiply a user vector by any item vector in

order to estimate the corresponding rating. Notice that we could also use user-user and

item-item methods with these new representations of users and items: (approximate) nearest

neighbours searches wouldn’t be done over huge sparse vectors but over small dense ones

making some approximation techniques more tractable.

2.2.4 Factorization Machines

Factorization Machines (FM) [18] are a new model class that combines the advantages of

Support Vector Machines (SVM) with factorization models. Like SVMs, FMs are a general

predictor working with any real valued feature vector. In contrast to SVMs, FMs model all

interactions between variables using factorized parameters. Thus they are able to estimate

interactions even in problems with huge sparsity (like recommender systems) where SVMs

fail.

There are many different factorization models like matrix factorization, parallel factor analy-

sis or specialized models like SVD++, PITF or FPMC. While these models require specialized
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input data and are not applicable for general prediction tasks, FMs can mimic these models

just by specifying the input data (i.e. the feature vectors). This makes FMs easily applicable

even for users without expert knowledge in factorization models.

In sparse environments, not enough information is usually available to explicitly and inde-

pendently estimate interactions between variables. Even in these environments, factorization

machines can accurately estimate interactions by desecrating their independence from in-

teraction parameters. Generally speaking, this means that information for one interaction

also helps to determine the parameters for related interactions. FMs model all possible

interactions between values in the feature vector x using factorized interactions instead of

full parametrized ones. This has two main advantages:

(i) The interactions between values can be estimated even under high sparsity. Especially,

it is possible to generalize to unobserved interactions.

(ii) The number of parameters as well as the time for prediction and learning is linear. This

makes direct optimization using SGD feasible and allows optimizing against a variety of

loss functions.

It has been proved in [18], that FMs have a closed model equation that can be computed in

linear time. Thus, the model parameters (wo , w and V) of FMs can be learned efficiently by

gradient descent methods – e.g. stochastic gradient descent (SGD) – for a variety of losses,

among them are square, logit or hinge loss. The gradient of the FM model is:

δ

δθ
ŷ(x) =


1, i f θ i s wo

xi i f θ i s wi

xi
∑n

i=1 v j , f x j vi , f x2
i i f θ i s vi , f

The sum
∑n

i=1 v j , f x j is independent of i and thus can be precomputed (e.g. when computing

ŷ(x)). In general, each gradient can be computed in constant time O(1). And all parameter

updates for a case (x, y) can be done in O(kn) – or O(km(x)) under sparsity.
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2.3 Deep Learning for Recommender Systems

Deep learning can be generally considered to be subfield of machine learning. The typical

defining essence of deep learning is that it learns deep representations, i.e., learning multiple

levels of representations and abstractions from data. For practical reasons, we consider any

neural differentiable architecture as ’deep learning’ as long as it optimizes a differentiable

objective function using a variant of stochastic gradient descent (SGD). Neural architectures

have demonstrated tremendous success in both supervised and unsupervised learning tasks

[19]. Before diving into the whys and hows of deep learning in recommender systems, it is

important that we are accustomed to some of the architectural paradigms concerning deep

learning:

• Multilayer Perceptron (MLP) is a feed-forward neural network with multiple (one or

more) hidden layers between the input layer and output layer. Here, the perceptron can

employ arbitrary activation function and does not necessarily represent strictly binary

classifier. MLPs can be intrepreted as stacked layers of nonlinear transformations,

learning hierarchical feature representations. MLPs are also known to be universal

approximators.

• Autoencoder (AE) is an unsupervised model attempting to reconstruct its input data

in the output layer. In general, the bottleneck layer (the middle-most layer) is used as

a salient feature representation of the input data.There are many variants of autoen-

coders such as denoising autoencoder, marginalized denoising autoencoder, sparse

autoencoder, contractive autoencoder and variational autoencoder (VAE) [20, 21].

• Convolutional Neural Network (CNN) [21] is a special kind of feedforward neural

network with convolution layers and pooling operations. It can capture the global and

local features and significantly enhance the efficiency and accuracy. It performs well in

processing data with grid-like topology.

• Recurrent Neural Network (RNN) [21] is suitable for modelling sequential data. Unlike

feedforward neural network, there are loops and memories in RNN to remember former
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computations. Variants such as Long Short Term Memory (LSTM) and Gated Recurrent

Unit (GRU) network are often deployed in practice to overcome the vanishing gradient

problem.

• Restricted Boltzmann Machine (RBM) is a two layer neural network consisting of a

visible layer and a hidden layer. It can be easily stacked to a deep net. Restricted here

means that there are no intra-layer communications in visible layer or hidden layer.

• Attentional Models (AM) are differentiable neural architectures that operate based

on soft content addressing over an input sequence (or image). Attention mechanism

is typically ubiquitous and was incepted in Computer Vision and Natural Language

Processing domains. However, it has also been an emerging trend in deep recommender

system research.

It should be noted that every year, there are many advanced versions of neural networks

coming out, but here we list just a few briefly. For those who want to learn more or more

about advanced models, refer to [21].

The description of these paradigms has been cited and quoted from [22].

So, why exactly apply deep learning techniques to recommender systems? It is evident that

numerous deep recommender systems have been proposed in a short span of several years.

At this point, it would be easy to question the need for so many different architectures and/or

possibly even the utility of neural networks for the problem domain. Along the same tangent,

it would be apt to provide a clear rationale of why each proposed architecture and to which

scenario it would be most beneficial for. All in all, this question is highly relevant to the issue

of task, domains and recommender scenarios. One of the most attractive properties of neural

architectures is that they are (1) end-to-end differentiable and (2) provide suitable inductive

biases catered to the input data type. As such, if there is an inherent structure that the model

can exploit, then deep neural networks ought to be useful.

To summarise briefly, the strengths of deep learning based recommender systems can be

stated as follows [22]:

• Nonlinear Transformation. Contrary to linear models, deep neural networks is ca-
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pable of modelling the non-linearity in data with nonlinear activations such as relu,

sigmoid, tanh, etc. This property makes it possible to capture the complex and intricate

user item interaction patterns. Conventional methods such as matrix factorization,

factorization machine, sparse linear model are essentially linear models. For example,

matrix factorization models the user-item interaction by linearly combining user and

item latent factors [23]; it is well-established that neural networks are able to approx-

imate any continuous function with an arbitrary precision by varying the activation

choices and combinations [24, 25]. This property makes it possible to deal with complex

interaction patterns and precisely reflect user’s preference.

• Representation Learning. The advantages of using deep neural networks to assist

representation learning are in two-folds: (1) it reduces the efforts in hand-crafted

feature design. Feature engineering is a labor intensive work, deep neural networks

enable automatically feature learning from raw data in unsupervised or supervised

approach; (2) it enables recommendation models to include heterogeneous content

information such as text, images, audio and even video.

• Sequence Modelling. Deep neural networks have shown promising results on a num-

ber of sequential modelling tasks such as machine translation, natural language under-

standing, speech recognition, chatbots, and many others. RNN and CNN play critical

roles in these tasks. RNN achives this with internal memory states while CNN achieves

this with filters sliding along with time. Both of them are widely applicable and flexible

in mining sequential structure in data. Modelling sequential signals is an important

topic for mining the temporal dynamics of user behaviour and item evolution. For

example, next-item/basket prediction and session based recommendation are typical

applications. As such, deep neural networks become a perfect fit for this sequential

pattern mining task.

• Flexibility. Deep learning techniques possess high flexibility, especially with the advent

of many popular deep learning frameworks such as Tensorflow, Keras, Caffe, MXnet,

DeepLearning4j, PyTorch, Theano9 etc. Most of these tools are developed in a modular
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way and have active community and professional support. The good modularization

makes development and engineering a lot more effcient e.g. it is easy to combine

different neural structures to formulate powerful hybrid models, or replace one module

with others. Thus, we could easily build hybrid and composite recommendation models

to simultaneously capture different characteristics and factors.

Now, we shall look at a few state of the art models that employ the powers of deep learning in

recommendation systems.

2.3.1 Wide and Deep

The main inspiration behind the WDL model [26] is combining the power of memoriza-

tion and generalization. Memorization can be loosely defined as learning the frequent

co-occurrence of items or features and exploiting the correlation available in the historical

data. Generalization, on the other hand, is based on transitivity of correlation and explores

new feature combinations that have never or rarely occurred in the past. Recommendations

based on memorization are good for items that the user has previously interacted with. Gen-

eralization, on the other hand, tends to improve the diversity of the recommended items.

In industry settings, for massive-scale online recommendation and ranking systems, general-

ized linear models such as logistic regression are widely used because they are simple, scalable

and interpretable. The models are often trained on binarized sparse features with one-hot

encoding. E.g., the binary feature "user_installed_app=netflix" has value 1 if the user installed

Netflix. Memorization can be achieved effectively using cross-product transformations over

sparse features, such as AND(user_installed_app=netflix, impression_app=pandora"), whose

value is 1 if the user installed Netflix and then is later shown Pandora. This explains how the

co-occurrence of a feature pair correlates with the target label. Generalization can be added

by using features that are less granular, such as AND(user_installed_category=video, impres-

sion_category=music), but manual feature engineering is often required. One limitation of

cross-product transformations is that they do not generalize to query-item feature pairs that

have not appeared in the training data.

To combine the power of both memorization and generalization, Google introduced the Wide
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Figure 2.5: The spectrum of Wide Deep models.

and Deep Framework [26] for jointly training feed-forward neural networks with embeddings

and linear model with feature transformations for generic recommender systems with sparse

inputs. The basic architecture of the framework is shown in the middle of figure 2.5. The lin-

ear model captures niche features that are relevant to specific users, while the neural network

creates more diversified recommendations based on abstract and high order combination of

features.

Formally, the wide learning or linear part of the framework (left part of figure 2.5) is is defined

as follows:

y =W T
wi de {x,φ(x)}+b

where, W T
wi de and b are model parameters, {x,φ(x)} is the concatenated feature set consisting

of raw input feature x and cross product transformed features φ(x). Cross product feature

transformation is quinteseential for this model as it captures the interactions between the

binary features, and adds nonlinearity to the generalized linear model.

The deep component of the model (right of figure 2.5) is a feed forward neural network of the

form:

al+1 = f (W (l )
deep a(l ) +b(l ))

where l indicates the l th layer, and f (. . . ) is the activation function. W (l )
deep and b(l ) are weight

and bias terms.

The combined model is illustrated in figure 2.5 (center). For a logistic regression problem,

the model’s prediction is:

P (Y = 1|x) =σ(W T
wi de [x,φ(x)]+W T

deep a(l f ) +b)
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where Y is the binary class label, σ(. . . ) is the sigmoid function, φ(x) are the cross product

transformations of the original features x, and b is the bias term. Wwi de is the vector of all

wide model weights, and Wdeep are the weights applied on the final activations a(l f ).

One of the major benefits of training the model in such a joint manner is that for joint training

the wide part only needs to complement the weaknesses of the deep part with a small number

of cross-product feature transformations, rather than a full-size wide model.

While this model shows promising results, it has two glaring drawbacks:

(i) Manual feature engineering is required for creating cross product feature transforma-

tions which requires domain experts and is thus expensive and time consuming.

(ii) The simple structure of the deep feed forward neural network means that it works in an

uncontrolled manner and may create arbitrary previously unseen feature interactions

that may hinder proper recommendations.

2.3.2 DeepFM

Currently, most CTR prediction models "are skewed to low-and high-order feature interac-

tion," such as FNN, PNN [27] and other NN [23] models concentrate on implied high-order

feature correlation, while LR, FM [18], etc. focus on explicit feature correlation, both con-

sidered by Google’s 2016 Wide and Deep model, but the Wide component needs manual

feature engineering participation. The paper’s motive is very intuitive, both to understand the

relationship between high and low-level features and to save additional feature engineering.

The motivation of the paper is very intuitive, both to consider the high/low-level feature

interaction and to save additional feature engineering. It is a feasible practice to use FM to

replace the LR part of Wide. Of course, LR can construct higher order combination features

based on a priori, while FM only considers second order.

The network architecture of DeepFM [28] consists of two parts. There is an FM(factorization

machine) which is the wide part of the model and the deep part of the model is just a DNN

classifier.
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Figure 2.6: DeepFM network architecture

Looking closely at the above picture, the structure of DeepFM [28] is actually very simple:

take the Wide Deep framework , the difference is to replace the LR of the Wide part with FM

, thus automatically constructing the second-order feature cross multiplication instead of

manually designing the cross multiplication.

Figure 2.7: FM in the wide section

Pull out the Wide part of figure 2.7, which is the standard FM [18] structure, as shown in

figure2.6 above. It is worth noting that the FM layer and the NN layer share the same feature

embedding instead of embedding each learning their respective parts. The benefits of doing

this are:

(i) Reducing the complexity of the model

(ii) Receiving feedback from the "low & high order interaction" part of the embedding

learning to learn a better feature representation
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Also, it can capture interactions of the order-2 feature much more effectively than previous

approaches, especially when the dataset is sparse. In previous methods, only when feature

i and feature j both appear in the same data record can the parameter of an interaction of

features i and j be learned. The inner product of their latent vectors V i and V j is determined

while in FM. FM is able to train latent vector V i, V j whenever i (or j ) appears in a data record

thanks to this dynamic model. Therefore, interactions of features that are never or rarely

found in the training data are better learned by FM. The output of FM is the summation of an

Addition unit and a number of Inner Product units:

yF M = 〈w, x〉+
d∑

j1=1

d∑
j2= j1+1

〈Vi ,V j 〉x j 1 · x j 2

where w ∈ Rd and V i ∈ Rk (k is given). The Addition unit (〈w, x〉) reflects the importance

of order-1 features, and the Inner Product units represent the impact of order-2 feature

interactions.

Figure 2.8: DNN in the Deep section

The deep neural network component is a feed-forward network used to learn interactions

with high-order features. A data record (a vector) will be fed into the neural network as shown

in figure2.8. The structure of the sub-network takes input from the embedding layer. The two

interesting features of this network structure that are to be emphasized are: 1) while different

input field vectors may have different lengths, their embedding is of the same size (k); 2)

latent vectors (V ) in the FM serves as network weights trained and used to transform input
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field vectors into embedding vectors. The output of the embedding layer is denoted by:

a(0) = [e1,e2,e3, .........,em]

where e i is the embedding of the i -th field and m is the number of fields. Then, a(0) is fed into

the DNN and the forward process is:

a(l+1) =σ(W (l )a(l ) +b(l ))

where l is the layer depth and σ is an activation function. a(l), W (l), b(l) are the output, model

weight, and bias of the l -th layer.

The contributions of DeepFM [28] are:

(i) Proposing a novel neural network model combining the architectures of FM and DNN

(ii) DeepFM shares the same input vector for both the FM and Deep part compared to Wide

& Deep [11] model.

(iii) It models lower-order feature interactions in the FM and higher-order feature interac-

tions in the DNN without any manual feature engineering

Despite the major contributions of the model, it still has some drawbacks:

(i) The FM can only create two-order feature combinations, not more than that.

(ii) The higher order feature combinations are created in an uncontrolled manner thus

many irrelevant feature combination forms.

2.3.3 Deep and Cross Network

Cross feature transformations have proven to show significant performance gain in a model’s

expressiveness when it comes to recommendation. Linear models [29] are simple, inter-

pretable and easy to scale; however, they are limited in their expressive power. Then again,

cross feature transformations are expensive as they often require exhaustive manual feature
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engineering which causes the model to become expensive to train and deploy. One of the

ways to mitigate manual feature engineering is the use of FM networks as in [28]. However,

such models suffer from the fact that the FM module is only capable of generating low order

interactions, mainly interactions of order 2. Higher order interactions are computationally

expensive to calculate. Deep and Cross Network (DCN) [30] proposes a novel architecture

that aims to avoid task-specific feature engineering by introducing a novel neural network

structure - a cross network - that explicitly applies feature crossing in an automatic fash-

ion. DCN consists of multiple layers, and the depth of each layer represents the order of

interactions for that corresponding layer. Each layer produces higher-order interactions

based on existing ones, and keeps the interactions from previous layers. The reason DCN

performs better than deep neural network is that DCN can explicitly capture high order cross

features and requires much fewer number of parameters. Deep neural network can capture

very complex interaction among features but requires an order of magnitude more model

parameters. So the cross network is jointly trained with a deep neural network which greatly

improves the recommendation prowess of the model.

The basic architecture of DCN is shown in figure ??

Figure 2.9: The Deep Cross Network
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In CTR predictions, categorical features are often encoded into one-hot vectors e.g. [0,1,0].

But this introduces high dimensionality for large vocabularies. To reduce dimensionality,

DCN employs an embedding layer and converts these binary features into dense vectors of

real values i.e. embedding vectors:

xembed ,i =Wembed ,i xi

where xembed ,i is the embedding vector, xi is the binary input in the i th category, and

Wembed ,i xi ∈ Rne X nv is the corresponding embedding matrix. The embedding vectors are

finally stacked along with the normalized dense features xdense , into one vector:

x0 = [xT
embed ,1, . . . , xT

embed ,k , xT
dense ]

Then, x0 is fed into the network.

The cross network is composed of cross layers, with each layer being calculated using the

following formula:

xl+1 = x0X T
l wl +bl +xl = f (xl , wl ,bl )+xl

where xl ; xl+1 ∈Rd are column vectors denoting the outputs from the l th and (l +1)th cross

layers, respectively; wl ,bl ∈Rd are the weight and bias parameters of the l th layer. Visually, a

cross layer looks like figure 2.10:

Figure 2.10: Visualization of a cross layer

The deep network is a fully-connected feed-forward neural network, with each deep layer

having the ReLu function as the activation function.

The combination layer concatenates the outputs from two networks and feed the concate-
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nated vector into a standard logits layer. The following is the formula for a two-class classifi-

cation problem:

p =σ([xT
L1

,hT
L2

]wlog i t s)

where,

xT
L1

∈Rd , hT
L2

∈Rm = outputs from the cross network and deep network, respectively.

wlog i t s ∈Rd+m = weight vector for the combination layer

σ= 1/(1+exp(x)).

The standard logloss function is used as loss function with some regularization parameters.



Chapter 3

Proposed Architecture

This chapter presents our proposed modified recommendation models that utilizes the

proposed transformed feature space.T he first section provides an overview of the proposed

methodology by outlining the components of the system. In the subsequent sections, these

components are described in details.

3.1 Overview

Our proposed model suggests that we use the raw features obtained from the dataset as input

to the linear model. However, before feeding the features into the deep model, we do some

preprocessing i.e. feature transformations that project both the categorical and real-valued

features onto lower dimensional space and utilizes the high variance in data to capture most

of the important information, while discarding the lesser important ones.

This results in a reduced feature set with the important information intact. This new

feature set is fed into the deep model and trained jointly with the linear model. Standard

logloss with backpropagation is used as loss function along with adam optimizer [31].

The workflow we have followed throughout our thesis has been shown in figure 3.1

28
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Figure 3.1: Research Workflow

3.2 Framework

Our proposed framework is shown in figure 3.2. We have highlighted the part we will be

working on in yellow. As is evident in the framework, initially, the features will be normalized

for both the linear and deep models. Thereafter, the sparse and dense features will be fed

directly into the linear model. Note, that in case of Wide Deep model, manual feature

crossings will also be included in the feature-set for linear model. As for the deep model, we

perform our feature transformation on both the sparse and dense features and as output we

get a reduced dataset. This reduced dataset is fed into the deep model. The output from both

the linear and the deep model is passed into an activation function as the combined result is

calculated.

3.3 Modules of Framework

Label Encoding and Feature Transformation

Datasets for machine learning often contain a combination of categorical features and dense

features. Categorical features are non-numeric features (nominal, ordinal etc.) that cannot

be directly processed by machine learning models. In such cases, we need to convert them to

a format that is understandable by said models. We use the Label Encoder class to convert



30

Figure 3.2: Proposed Architecture

this form of categorical text information into model-understandable numerical data. Thanks

to open libraries like Scikit learn, we can do so very easily using the LabelEncoder class. All

we have to do, is import the class, fit and transform the first column of the data, and then

replace the existing text data with the new encoded data. The code will look something as

follows:

Figure 3.3: Label Encoding

For the dense features, we need to scale or normalize them so that the model does not

show any unwanted bias towards certain features. The transformation is also done using the

help of Scikit learn. Sample code snippet is as follows:

Figure 3.4: Simple Transformation
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3.3.1 Feature Transformation

In this part, we perform the required feature transformation on our dataset to reduce it

and project it onto a lower dimensional space. In this paper, we have applied two feature

transformation techniques, Principal Component Analysis (PCA) and Kernel PCA (kPCA).

Principal Component Analysis (PCA):

PCA is a way to detect patterns in information and to convey data so that similarities and

variations can be recognized. PCA is a strong tool for analyzing data since data patterns are

difficult to find in high dimensions where the luxury of graphical representation is unavailable.

The other major benefit of PCA is that once these data patterns have been detected, data can

be compressed, i.e. by reducing the number of measurements, not much loss of information

occurs. PCA projects the original feature space onto a low dimensional feature space, that

maximizes the variance between samples. Thus, without much loss in information, we get a

representation of the same data, but by using lesser number of features. The steps required

to perform PCA are as follows:

• Get the dataset

• Subtract the mean of the dataset from each sample

• Calculate covariance matrix of the dataset

• Calculate eigenvectors and eigenvalues from the covariance matrix

• Select the eigenvectors with the highest eigenvalues. These vectors are the principal

components

• Project the original data into the new vector space

This whole process is simplified by using Scikit learn’s open library. Following code snippet

shows the process of applying PCA in our case:



32

Figure 3.5: Applying PCA

Kernel PCA:

According to Wikipedia,

In the field of multivariate statistics, kernel principal component analysis (kernel

PCA) is an extension of principal component analysis (PCA) using techniques

of kernel methods. Using a kernel, the originally linear operations of PCA are

performed in a reproducing kernel Hilbert space.

PCA is a linear method. That is, it can only be applied to datasets which are linearly separable.

It does an excellent job for datasets, which are linearly separable. But, if we use it to non-

linear datasets, we might get a result which may not be the optimal dimensionality reduction.

Kernel PCA uses a kernel function to project data in a higher dimensional space where it can

be segregated linearly. The concept of support vector machines is similar. So, while PCA does

an excellent job at projecting datasets which are linearly separable, kernel PCA works better

in terms of non linear datasets as PCA fails to transform them accurately. Kernel PCA can be

applied using Scikit learn. Sample code snippet:

Figure 3.6: Applying kPCA

3.3.2 Linear Model

In our experiments, we have applied our proposed approach to three models: Wide Deep

(WDL), DeepFM and Deep Cross Network. The linear model in case of WDL is a a generalized

linear model of the form y = w T x +b, where

y = prediction
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x = x1, x2, . . . , xd is a vector of d features

w = w1, w2, . . . , wd = the model parameters b = bias. The feature set includes both raw input

features and transformed features. In this case, the transformed features are cross feature

combinations of the raw features. For DeepFM, the linear model is an FM or Factorization

Machine [28] as shown in figure 2.7. With the aim to capture high order feature interaction,

besides a linear (order-1) interactions among features, FM also models pairwise (order-2)

feature interactions as inner product of respective feature latent vectors. In case of Deep and

Cross network, there is no linear model. However, there is a cross network that replaces the

FM module or linear model and this cross network is responsible for explicitly capturing high

order feature interactions in an efficient manner.

3.3.3 Deep Model

Deep Model is where our transformed or compressed features are fed. For the WDL and

DeepFM models, the deep component is a simple feed forward neural network (FFM). In our

experiments, we have used 128 hidden layers with 128 units to train the model. We have used

an embedding layer of 8 and ReLu as the activation function of the hidden layers. In case of

DCN, both the deep component and the DNN component uses our transformed feature set

as input. The configuration of the DNN is the same as WDL and DeepFM.

3.3.4 Activation Function

We have used sigmoid function σ(. . . ) as the final activation function. The error is back

propagated to both the linear models and deep models so that they can be jointly trained.



Chapter 4

Evaluation

In this chapter, we discuss about the experimental setup, comparison, dataset, result analysis

based on different criteria.

4.1 Experimental Setup

4.1.1 Dataset

The effectiveness and efficiency of our proposed method has been evaluated on the following

dataset. Criteo Dataset: The Criteo dataset includes 45 million user click records.There are

13 continuous (real-valued) features and 26 categorical features. Though the exact nature of

the features is unknown to us, according to a competition admin (Olivier Chapelle), they fall

in the following categories:

(i) Publisher features, such as the domain of the url where the ad was displayed;

(ii) Advertiser features (advertiser id, type of products,. . . )

(iii) User features, for instance browser type;

(iv) Interaction of the user with the advertiser, such as the number of the times the user

visited the advertiser website.

For our experiment,
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(i) We randomly sampled 10,000 samples for overall training, validation and testing process

(ii) The same samples are used across all the models

(iii) 64% of the data has been used for training, 16% for validation and 20% is used for test

data

4.2 Evaluation Methodologies

These evaluation methodologies were used to compare our proposed methodologies with

previous literature:

4.2.1 Log-Loss

Log Loss is the most important classification metric based on probabilities. It’s hard to

interpret raw log-loss values, but log-loss is still a good metric for comparing models. For any

given problem, a lower log-loss value means better predictions.

The logloss function is given below:

Hp (q) =−1/N
N∑

i=1
yi · log (p(yi ))+ (1− yi ) · log (1−p(yi ))

where y is the label of our target value and p(y) is the predicted probability for all N points.

The graph below shows the range of possible log loss values given a true observation.
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Figure 4.1: Logloss

As the predicted probability approaches 1, log loss slowly decreases. As the predicted prob-

ability decreases, however, the log loss increases rapidly. Log loss penalizes both types of

errors, but especially those predictions that are confident and wrong!

4.2.2 AUC

When we need to check or visualize the performance of the multi - class classification prob-

lem, we use AUC (Area Under The Curve) ROC (Receiver Operating Characteristics) curve.

It is one of the most important evaluation metrics for checking any classification model’s

performance. It is also written as AUROC (Area Under the Receiver Operating Characteristics).

AUC - ROC curve is a performance measurement for classification problem at various thresh-

olds settings. ROC is a probability curve and AUC represents degree or measure of separability.
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Figure 4.2: AUC and ROC

It tells how much model is capable of distinguishing between classes. Higher the AUC, better

the model is at predicting 0s as 0s and 1s as 1s. By analogy, Higher the AUC, better the model

is at distinguishing between patients with disease and no disease.

4.3 Result Analysis

4.3.1 Log-Loss

Figure 4.3: Logloss Comparison



38

4.3.2 AUC (Area Under ROC)

Figure 4.4: AUC Comparison

4.4 Confusion Matrix

4.4.1 Comparison against WDL

Figure 4.5: Wide & Deep Model Comparison
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4.4.2 Comparison against DeepFM

Figure 4.6: DeepFM Model Comparison

4.4.3 Comparison against DCN

Figure 4.7: DCN Model Comparison

According to our Logloss and AUC comparison histograms, it is pretty obvious that the model

performance substantially increases after applying our data transformation. Due to the data

transformation, the DNN part of all the models make better predictions, thus improving the

overall model performance. We can further increase our model performance by tuning the

hyper parameters.

Looking at the confusion matrices, it is evident that our proposed modified model performs

better when classifying the 0 label. However, a common theme that can be observed is that

the modified model misclassifies the 1 label more than the original model. The reasoning

behind this is that our dataset contains about 75% label 0, the remaining being label 1. Since
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it’s a skewed dataset, PCA and kPCA tend to favour the label 0 more as it carries the most

variance. Hence, the misclassification of label 1 increases.



Chapter 5

Conclusion

5.1 Summary

The effective and efficient identification of feature interactions has been the key to success

for many prediction models. Unfortunately, the process sometimes needs manual feature

engineering and rigorous searching from domain experts. Use of DNNs has massively im-

proved the learning of features from a dataset. However, most often the features learned

are implicit and highly non-linear, consequently the network becomes unnecessarily large

and inefficient in learning certain features. Our research provides insight into potential

performance gain by using careful feature transformation techniques. The transformation

or reduction of the feature space allows us to project both the categorical and real-valued

features onto lower dimensional space and uses the high variance in data to capture most of

the important features and discards the rest. The high priority features are then used to create

feature combinations easily and efficiently which has significant impact in our prediction.

This has a two-part impact: We can compress the dataset as well as discard the features that

may hinder proper recommendation as they can be potential noise. Our experimental results

have demonstrated improved performance over the state-of-art algorithms on both sparse

and dense datasets, in terms of both model loss calculations and accuracy.
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5.2 Future Work

The problems that we faced during our experiment is that when the dataset is skewed towards

one class particularly, then the proposed model can not predict the other class with great

accuracy. So, in our future work we would like to explore more in this area about how we

can improve the prediction of both classes even if the dataset is skewed. Also, we have plans

to implement different feature transformation techniques like, autoencoders [32], etc. We

also want take a closer look into the deep model and improve it further for strengthening

the ability to learn most useful higher order feature interactions. For that, we want try out

different combinations of the nodes and layers of the network to improve overall prediction

accuracy.
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