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Abstract 

 

This work is the optimization of machining parameters in steel turning operation. In this 

study, the experimental work was carried out by turning Stainless Steel 304 by using 

carbide inserts. There were three main purposes of this study. First was to explain and 

demonstrate a systemic procedure to collect a combination of data of parameters and 

then apply when the turning operation is performed. The second was to find the optimal 

combination by using Optimization Algorithm- WOA and Grey Analysis. The main 

conclusion drawn from this study is that efficient turning operations can be performed 

on 304 SS which will save power and time. 

. 
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Chatper 1 Introduction 

 

Current world’s manufacturing, undisputedly, is governed mostly by the processes of metal removal. 

There have been major improvements in the processes at a systematic level that means by generation 

of the house of models (W. Grzesik n.d.). Experimentation and prototyping results were the data that 

were required for research in the zone of metal cutting (M. Salio 2006). This meant the researches 

were very expensive and also time-consuming (Amol Thakare n.d.). But it did not stop the researches 

in this field and the study have been undergoing for decades due to dependency of the manufacturing 

sector to understand better at addressing specific problems (M. Salio 2006). 

The software DX-7 was used for creating equations among the parameters. This software uses 

statistical modeling. In statistical modeling, regression analysis is a set of statistical processes for 

estimating the relationships among variables.  

AdvantEdge was used for our simulations. ThirdWave System’s AdvantEdge is a machining specific 

FEM package. It has preprogrammed modules for both 2D and 3D machining operations including 

turning and milling. AdvantEdge also comes with a workpiece modeler as well as a material property 

library. 

Our Study utilizes SAE 304 SS which is one of the most common stainless steel. The steel contains 

0.08% C, 2% Mn, 0.75% Si, 0.045% P, 0.03% S, 20% Cr, 10.5% Ni. It is an austenitic stainless steel. 

It is less electrically and thermally conductive than carbon steel and is essentially non-magnetic. It has 

a higher corrosion resistance than regular steel and is widely used because of the ease in which it is 

formed into various shapes. It has a wide range of applications in many industries. 

https://en.wikipedia.org/wiki/Stainless_steel
https://en.wikipedia.org/wiki/Austenitic_stainless_steel
https://en.wikipedia.org/wiki/Conductive
https://en.wikipedia.org/wiki/Carbon_steel
https://en.wikipedia.org/wiki/Corrosion


 

2 

 

We used lathe machine for the turning operation and collected all the necessary data. The values were 

incorporated in the optimization analysis to find the most optimal parameters. 

1.1 Optimization Algorithm: WOA and Grey Analysis 

For optimization, we considered Whale Optimization Algorithm (WOA) – a recently proposed, nature 

inspired meta-heuristic optimization algorithm, which mimics the social behavior of humpback 

whales. The algorithm is first published in Advances in Engineering Software by Seyedali Mirjalili 

and Andrew Lewis in 2016. WOA is tested with 29 mathematical optimization problems and 6 

structural design problems in the original paper and results are very instructive, it shows WOA 

algorithm is competitive enough compared to the state-of-art meta-heuristic algorithms as well as 

conventional methods. 

 

1.1.1 Whale Optimization Algorithm 

WOA algorithm is inspired form special hunting method of humpback, this foraging behavior is called 

bubble-net feeding method. Humpback whales prefer to hunt close to the surface by recognizing the 

location of prey and encircling them. This is the first step of the mathematical model of WOA 

algorithm. This behavior is represented by the following equations:  

�⃗⃗� =  |𝐶 . 𝑋𝑝
⃗⃗ ⃗⃗ (𝑡) − 𝑋 (𝑡)| 

𝑋 (𝑡 + 1) =  𝑋𝑝
⃗⃗ ⃗⃗  (𝑡) − 𝐴 �⃗⃗�  

Where 𝑡 indicates the current iteration, and 𝐴  and 𝐶  are coefficient vectors, 𝑋𝑝
⃗⃗ ⃗⃗  is the position vector 

of the prey, and 𝑋  indicates the position vector of a whale. 
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The vectors 𝐴  and 𝐶  are calculated as follows:  

𝐴  = 2𝑎 𝑟1⃗⃗⃗  − 𝑎  

𝐶 = 2. 𝑟2⃗⃗  ⃗ 

Where components of 𝑎  are linearly decreased from 2 to 0 over the course of iterations and 𝑟1⃗⃗⃗  , 𝑟2⃗⃗  ⃗  are 

random vectors in [0,1]. 

 

Figure: Bubble-net feeding behavior of humpback whale 

 

The second step is Bubble-net attacking method (exploitation phase), which consist of two mechanism 

that runs simultaneously. i) Shrinking encircling mechanism: where the circle shirks in order to get 

closed to the best position i.e. the prey location, ii) Spiral updating position: where a spiral equation is 
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created between the position of whale and prey to mimic the helix-shaped movement of humpback 

whales as follows:  

 

The final step is Search for prey (exploration phase): In many cases optimization algorithm might get 

fall into local minima or maxima. For this reason, an exploration phase is needed where the humpback 

whales search for prey randomly outside the search space. The mathematical model is as follows:  

 

 

 

 

 

 

 

 

 

The algorithm can be visualize more clearly using this flowchart: 
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1.1.2 Grey Relational Analysis 
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The grey system theory initiated by Deng in 1982 has been proven to be useful for dealing with poor, 

incomplete, and uncertain information. The grey relational analysis based on the grey system theory 

can be used to solve the complicated interrelationships among the multiple performance characteristics 

effectively. In grey relational analysis, black represents having no information system has a level of 

information between black and white. In other words, in a grey system, some information is known 

and some information is unknown. In a white system, the relationships among factors in the system 

are certain; in a grey system, the relationships among factors in the system are uncertain. 

1.1.3 Data pre-processing 

Data pre-processing is normally required since the range and unit in one data sequence may differ from 

the others. Data preprocessing is also necessary when the sequence scatter range is too large, or when 

the directions of the target in the sequences are different. Data pre-processing is a means of transferring 

the original sequence to a comparable sequence. Depending on the characteristics of a data sequence, 

there are various methodologies of data pre-processing available for the grey relational analysis. If the 

target value of original sequence is infinite, then it has a characteristic of the “higher is better”. The 

original sequence can be normalized as follows: 

 

When the “lower is better” is a characteristic of the original sequence, then the original sequence 

should be normalized as follows:  
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Where i =1 … … … m; k = 1 … … … n; m is the number of experimental data items and n is the 

number of parameters 𝑥𝑖
0(𝑘) denotes the original sequence 𝑥𝑖

∗(𝑘) the sequence after the data pre-

processing, max 𝑥𝑖
0(𝑘) the largest value of 𝑥𝑖

0(𝑘), min 𝑥𝑖
0(𝑘) the smallest value of 𝑥𝑖

0(𝑘) and 𝑥𝑖
∗(𝑘) 

is the desired value, which is assumed 1. 

1.1.4 Grey relational coefficient 

In grey relational analysis, the measure of the relevancy between two systems or two sequences is 

defined as the grey relational grade. When only one sequence, 𝑥𝑖
∗(𝑘), is available as the reference 

sequence, and all other sequences serve as comparison sequences, it is called a local grey relation 

measurement. After data pre-processing is carried out, the grey relation coefficient 𝜉𝑜(𝑘)  for the 𝑘𝑡ℎ 

performance characteristics in the 𝑖𝑡ℎ experiment can be expressed as:  

 

where, ∆𝑢(𝑘) is the deviation sequence of the reference sequence and the comparability sequence.  

 

𝑥0
∗(𝑘) denotes the reference sequence and 𝑥𝑖

∗(𝑘) denotes the comparability sequence. 𝜁 is 

distinguishing or identification coefficient: 𝜁 ∈  [0,1] (the value may be adjusted based on the actual 

system requirements). A value of ζ is the smaller and the distinguished ability is the larger. 𝜁 =  0.5 is 

generally used. 

1.1.5 Grey relational grade 
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After the grey relational coefficient is derived, it is usual to take the average value of the grey relational 

coefficients as the grey relational grade. The grey relational grade is defined as follows:  

 

However, in a real engineering system, the importance of various factors to the system varies. In the 

real condition of unequal weight being carried by the various factors, the grey relational grade in 

equation above was extended and defined as:  

 

Three steps in Gray Analysis is summarized as follows: 
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Chatper 2 Literature Review 

 

In turning process parameters such as cutting tool geometry and materials, the depth of cut, feed 

rates, cutting speeds as well as the use of cutting fluids will impact the material removal rates and the 

machining qualities like the surface roughness, the roundness of circular and dimensional deviations 

of the product (Kalpakjian and Schmid, 2001) 

 

Yang and Tarng (1998) employed Taguchi method to investigate the cutting characteristics of S45C 

steel bars using tungsten carbide cutting tools. The optimal cutting parameters of the cutting speed, 

the feed rate and the depth of cut for turning operations with regard to performance indexes such as 

tool life and surface roughness are considered. 

 

Davim (2003) investigated the influence of cutting conditions (cutting velocity and feed) and cutting 

time on turning metal matrix composites. An orthogonal array and the analysis of variance are 

employed to investigate the cutting characteristics of flank wear (VB), power required (Pm) and 

surface roughness (Ra).  

 

Manna and Bhattacharyya (2004) took the significant cutting parameters into consideration and used 

multiple linear regression mathematical models relating the surface roughness height Ra and Rt to 

the cutting parameters for turning process of Al/SiC-MMC.  

 

Aslan et al. (2007) used an orthogonal array and the analysis of variance (ANOVA) to optimization 

of cutting parameters in turning hardened AISI 4140 steel (63 HRC) with Al2O3 +TiCN mixed 

ceramic tool. The flank wear (VB) and surface roughness (Ra) had investigated a process 
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optimization to determine optimal values of cutting parameters, such as cutting speed, feed rate and 

depth of cut.  

 

Nalbant et al. (2007) used Taguchi method to find the optimal cutting parameters for surface 

roughness in turning operations of AISI 1030 steel bars using TiN coated tools. Three cutting 

parameters, namely, insert radius, feed rate, and depth of cut, are optimized with considerations 

of surface roughness, and so on. 

 

However, very few studies have been conducted to investigate roundness under different turning 

parameter. Additionally, cutting fluids properly applied (Kalpakjian and Schmid, 2001; EI Baradie, 

1996), can increase productivity and reduce costs by choosing higher cutting speeds, higher feed 

rates and greater depths of cut. Effective application of cutting fluids can also increase tool life, 

decrease surface roughness, increase dimensional accuracy and decrease the amount of power 

consumed. The water-soluble (Water-miscible) cutting fluids are primarily used for high speed 

machining operations because they have better cooling capabilities (EI Baradie, 1996). 

 

Recently, Deng (1989) proposed a Grey relational analysis. The Grey relational analysis is a method 

for measuring the degree of approximation among the sequences using a Grey relational grade. 

Theories of the Grey relational analysis have attracted considerable interest among researchers. 

Some other researchers have also examined the optimization of process parameters. For example, 

Huang and Lin (2002) applied the Grey relational analysis to design the die-sinking EDM machining 

parameters. Fung et al. (2003) studied the Grey relational analysis to obtain the optimal parameters 

of the injection molding process for mechanical properties of yield stress and elongation in 

polycarbonate/acrylonitrilebutadiene- styrene (PC/ABS) composites. Shen et al. (2004) studied 
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different polymers (such as PP, PC, PS, POM) with various process parameters of the microgear. 

The simulation used the Taguchi method and the Grey relational analysis were 

provided. 

 

Aggarwal et al. (2008) apply a response surface methodology and Taguchi's technique for optimizing 

power consumption in CNC turning of AISI P-20 tool steel. The effect of the cutting speed, feed rate, 

depth of cut, nose radius, and cutting environment (dry, wet, and cryogenic) has been experimentally 

tested. It has been determined that the cryogenic coolant is the most significant factor for minimum 

power consumption, followed by the cutting speed and the depth of cut. The effect of feed rate and 

nose radius were found to be insignificant compared to other factors. 

Very similar results for the effect of cutting speed, feed rate, depth of cut, and nose radius on the 

minimization of power consumption have been achieved during the turning of Al alloy, SiC particle 

composites by applying a response surface methodology (Bhushan, 2013). 

 

In machining processes, the most commonly used optimization criterions are material removal rate 

(MRR), surface roughness (SR), cutting force, tool life and power consumption, which has been used 

from the beginning of the researches in this branch to some of the most recent works (Goparsamy et 

al., 2009). 

 

However, single objective approaches have a limited value to fix the optimal cutting parameters, 

where several different and contradictory objectives must be simultaneously optimized. Hence, 

multi-objective approaches which consider several different and contradictory objectives have been 

reported in cutting parameters optimization. 

 

Significant work has been done to optimize cutting parameters based on machining science and 
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economic considerations. A comprehensive literature review of optimization techniques in metal 

machining processes has been provided by Mukherjee and Ray (2006). 

 

In a turning operation, it is an important task to select cutting parameters for achieving high cutting 

performance. Usually, the desired cutting parameters are determined based on experience or by use 

of a handbook. However, this does not ensure that the selected cutting parameters have optimal or 

near optimal cutting performance for a particular machine and environment. To select the cutting 

parameters properly, several mathematical models [1–6] based on statistical regression techniques or 

neural computing have been constructed to establish the relationship between the cutting 

performance and the cutting parameters. Then, an objective function with constraints is formulated to 

solve the optimal cutting parameters using optimization techniques. Therefore, considerable 

knowledge and experience are required for using this modern approach. 

Furthermore, a large number of cutting experiments has to be performed and analyzed in order to 

build the mathematical models. Thus the required model buildings is very costly in terms of time and 

materials. In this paper, an alternative approach based on the Taguchi method [7–9] is used to 

determine the desired cutting parameters more efficiency. 

Basically, the Taguchi method is a powerful tool for the design of high quality systems. It provides a 

simple,efficient and systematic approach to optimize designs 

for performance, quality, and cost. The methodology is valuable when the design parameters are 

qualitative and discrete. Taguchi parameter design can optimize the performance characteristics 

through the settings of design parameters and reduce the sensitivity of the system performance to 

sources of variation. In recent years, the rapid growth of interest in the Taguchi method has led to 

numerous applications of the method in a world-wide range of industries and nations [10]. 

In the following, the Taguchi method is introduced first. The experimental details of using the 

Taguchi method to determine and analyze the optimal cutting parameters are described next. The 
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optimal cutting parameters with regard to performance indexes such as tool life and surface 

roughness are considered.  

 

Hauschild et al. (2005) report suggests that the deficiency in the evaluation of the life cycle and the 

process involved in product’s manufacturing to provide substantial consumption amounts of energy 

and other resources and, as a result, have a measurable impact on the environment. 

 

Reducing the energy consumption of machine tools can significantly improve the environmental 

performance of manufacturing systems. To achieve this, monitoring of energy consumption patterns 

in the systems is required. It is vital in these studies to correlate energy usage with the operations 

being performed in the manufacturing system. However, this can be challenging due to complexity 

of manufacturing systems and the vast number of data sources. Event stream processing techniques 

are applied to automate the monitoring and analysis of energy consumption in manufacturing 

systems (Vijayaraghavan and Dornfeld, 2010). 

 

The aim of the work reported by Hanafi and Khamlichi (2012), is to outlines the application of gray 

relational theory and Taguchi optimization methodology in order to optimize the cutting parameters 

for PolyEther Ether Keytone reinforced with 30% of carbon fibers. The material is turned by using 

TiN coated tools under dry conditions. The objective of optimization is to achieve simultaneously the 

minimum power consumption and the best surface quality. This involves in practice reducing the 

environmental footprint related to such manufacturing process while providing enhanced functional 

performance in terms of surface integrity of machined parts. The obtained results have indicated that 

cutting speed and depth of cut are the most influential parameters. The optimal setting of machining 

parameters achieving sustainability target in terms of minimum surface roughness and minimum 

cutting power was determined. 
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The aim of the work reported in Huseyin Cetin et al. (2011), was to evaluate the performances of six 

CFs, four different VBCFs from sunflower and canola oils with different ratios of extreme pressure 

(EP) additives, and two commercial types of CFs (semi-syntheticand mineral) for reducing of surface 

roughness, and cutting and feed forces during turning of AISI 304L austenitic stainless steel with 

carbide insert tool. Taguchi’s mixed level parameter design (L18) is used for the experimental 

design. Cutting fluid, spindle speed, feed rate and depth of cut are considered as machining 

parameters. Regression analyses are applied to predict surface roughness, and cutting and feed 

forces. ANOVA is used to determine effects of the machining parameters and CFs on surface 

roughness, cutting and feed forces. In turning of AISI 304L, effects of feed rate and depth of cut are 

found to be more effective than CFs and spindle speed on reducing forces and improving the surface 

finish. Performances of VBCFs and commercial CFs are also compared and results generally show 

that sunflower and canola based CFs perform better than the others. 

Cemal Cakir et al. [1] described a procedure to calculate the machining conditions for turning 

operation with minimum production cost as the objective function. The authors determined 

production time and cost for different work piece and tool material for the same input data. Meng et 

al. [2] described a machining theory to calculate optimum cutting condition in turning for 

minimizing cost or maximizing production rate. Lee et al. [3] developed a self-organizing adaptive 

modeling technique to find the relationship between cutting speed, feed, depth of cut and surface 

roughness, cutting force, and tool life. Uros Zuperl et al. [9] developed neural network to describe 

the multi-objective optimization of cutting conditions for machining. Franci Cus et al. [10] proposed 

Genetic algorithm for the determination of cutting parameters to reduce production cost and time. 

Experimental result shows that proposed Genetic algorithm is effective and efficient for solving 

optimization problem. Ezugwu et al. [12] developed a model for the analysis and prediction of the 
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relationship between cutting and process parameters during high speed turning of nickel-based 

Inconel 718 alloy. Ramon et al. [14] used Genetic algorithm for optimizing cutting parameters and 

made a remark on the advantages of multi-objective optimization approach over single objective 

function. Al-Ahmari [16] developed empirical model for tool life, surface roughness and cutting 

force for turning operations. Data mining techniques such as response surface methodology and 

neural network are used to develop the machinability model. 

 

The selection of optimal cutting parameters, like the number of passes, depth of cut for each pass, 

feed and speed, is a very important issue for every machining processes. In workshop practice, 

cutting parameters are selected from machining databases or specialized handbooks, 

but the range given in this sources are actually starting values, and are not the optimal values (Dereli 

et al., 2001). Optimization of cutting parameters is usually a difficult work (Kumar and Kumar, 

2000), where the following aspects are required: knowledge of machining; empirical equations 

relating the tool life, forces, power, surface finish, etc., to develop realistic constrains; 

specification of machine tool capabilities; development of an effective optimization criterion; and 

knowledge of mathematical and numerical optimization techniques (So¨ nmez et al., 1999). 

In any optimization procedure, it is a crucial aspect to identify the output of chief importance, the so-

called optimization objective or optimization criterion. In manufacturing processes, the most 

commonly used optimization criterion is specific cost, which has been used by many authors, from 

the beginning of the researches in this branch (Taylor, 1907) to some of the most recent works 

(Liang et al., 2001; Wang et al., 2002;Saravanan et al., 2003; Cus and Balic, 2003; Amiolemhen and 

Ibhadode, 2004). 

Sometimes, other criteria like machining time (Chuaet al., 1991), material removal rate (Ko and 

Kim, 1998; Chien and Tsai, 2003) or tool life (Molinari and Nouari, 2002) have been used too. 

However, these single objective approaches have a limited value to fix the optimal cutting 
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conditions, due to the complex nature of the machining processes, where several different and 

contradictory objectives must be simultaneously optimized. Some multi-objective approaches have 

been reported in cutting parameters optimization (Lee and Tarng, 2000; Zuperl and Cus, 2003; Cus 

and Balic, 2003), but mainly they use a priori techniques, where the decision maker combines the 

different objectives into a scalar cost function. This actually makes the multi-objective problem, 

single-objective prior to optimization (Van Veldhuizen and Lamont, 2000). 

On the other hand, in the a posteriori techniques, the decision maker is presented with a set of non-

dominated optimal candidate solutions and chooses from that set. These solutions are optimal in the 

wide sense that no other solution in the search space are superior to them when all optimization 

objectives are simultaneously considered (Abbass et al., 2001). They are also known as Pareto-

optimal solutions. Comparing citations by technique, in the last years, evidences the popularity of a 

posteriori techniques (Van Veldhuizen and Lamont, 2000). In dealing with multiobjective 

optimization problems, classical optimization methods (weighted sum methods, goal programming, 

min–max methods, etc.) are not efficient, because they cannot find multiple solutions in a single run, 

thereby requiring them to be applied as many times as the 

number of desired Pareto-optimal solutions. 

On the contrary, studies on evolutionary algorithms have shown that these methods can be efficiently 

used to eliminate most of the above-mentioned difficulties of classical methods (Soodamani and Liu, 

2000). In this paper, a multi-objective optimization method, based on a posteriori techniques and 

using genetic algorithms, is proposed to obtain the optimal parameters in turning processes. 

 

Cemal Cakir et al. [1] described a procedure to calculate the machining conditions for turning 

operation with minimum production cost as the objective function. The authors determined 

production time and cost for different work piece and tool material for the same input data. Meng et 

al [2] described a machining theory to calculate optimum cutting condition in turning for minimizing 
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cost or maximizing production rate. Lee et al. [3] developed a self-organizing adaptive modeling 

technique to find the relationship between cutting speed, feed, depth of cut and surface roughness, 

cutting force, and tool life. Uros Zuperl et al. [9] developed neural 

network to describe the multi-objective optimization of cutting conditions for machining. Franci Cus 

et al. [10] proposed Genetic algorithm for the determination of cutting parameters to reduce 

production cost and time. Experimental result shows that proposed Genetic algorithm 

is effective and efficient for solving optimization problem. Ezugwu et al. [12] developed a model for 

the analysis and prediction of the relationship between cutting and process parameters during high 

speed turning of nickel-based Inconel 718 alloy. Ramon et al. [14] used Genetic algorithm for 

optimizing cutting parameters and made a remark on the advantages of multi-objective 

optimization approach over single objective function. Al-Ahmari [16] developed empirical model for 

tool life, surface roughness, and cutting force for turning operations. Data mining 

techniques such as response surface methodology and neural network are used to develop the 

machinability model. 
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Chatper 3 Methodology and Development of 

Experimental Setup 

3.1 INTRODUCTION 

 The objective of this chapter is to determine the optimum parameters for turning process of 304 

stainless steel through multiple objective optimization. For this optimization process, multiple 

parameters are taken into account such as heat rate, surface roughness and peak tool temperature. 

The multiple objective optimization process is based on single objective optimization and grey 

analysis. 

 There can be several combinations of parameters to conduct a turning operation on 304 SS. But to 

gain minimal chatter or corrosion of the cutting tool, an optimum set of parameters can be really 

helpful and elongates the lifespan of the cutting tool.  

 To optimize the turning process, combination sets of cutting speed and the depth of cuts are fixed 

and experiments and simulations are done accordingly.  

 The experiments were done with High Speed Steel or HSS. These are carbide tipped inserts that are 

used for the turning operation. Using the same parameters, the simulations were done through a 

software called AdvantEdge that is an FEA product to understand metal cutting process and the 

Work piece  Dimensions (mm) 

Diameter 25 

Length 5 
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results were compared to find the parameters that are most suitable to optimize the turning process 

and are directly related to the job process. 

Design of Experiment: 

Experimental Plan: 

 

   Figure: Experimental job piece and cutting tool model 
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Work piece Composition and Dimension: 

 

 

 

  

 

 

 

 

 

 Tool Parameters: 

 

 

\ 

 

 

Table:  Parameters used for cutting tool 

Experimental design is widely used to control the effects of parameters in many processes. The usage 

of experimental designs reduces the number of experiments, usage time and material resources. 

Moreover, the analysis performed based on the results is realized with ease and the errors done in the 

experiments can bi minimized. Statistical method measures the effects of change in operating 

variables and their mutual interactions on process through experimental design way. The three 

Components Weight (%) 

C 0.03 

Cr 19.0 

Mn 2.0 

Ni 10.0 

P 0.045 

S 0.03 

Si 0.75 

Parameters Dimensions 

Cutting Edge Radius 0.2 (mm) 

Rake Angle 10 (Degree) 

Relief Angle 10 (Degree) 
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steused are numerical approach using the software AdvantEdge, experimentation done in turning 

machine with controlled parameters and optimizing the whole process in case of parameters. 

 

3.2 Experimentation: 

In order to determine the optimum parameters, the three parameters cutting 

speed, depth of cut and feed were kept fixed and changed at regular interval to 

conduct the turning process. 

To form the cutting tool, at first sawing process were done. Then to form the 

cutting tool, grinding process were done to get the proper rake angle and relief 

angle. To form the cutting tool properly, expert supervision was ensured.    

The cutting speeds were altered within five values that were permitted by the 

turning machine.  
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S. 

No. 

Input 

Cutting 

Speed 

(m/s) 

Feed 

(mm/min) 

Depth 

of Cut 

(mm) 

1 11.00 0.18 0.4 

2 28.27 0.18 0.4 

3 11.00 0.36 0.4 

4 28.27 0.36 0.4 

5 11.00 0.18 0.8 

6 28.27 0.18 0.8 

7 11.00 0.36 0.8 

8 28.27 0.36 0.8 

9 7.42 0.27 0.6 

10 31.85 0.27 0.6 

11 19.64 0.14 0.6 

12 19.64 0.4 0.6 

13 19.64 0.27 0.32 

14 19.64 0.27 0.88 

15 19.64 0.27 0.6 

16 19.64 0.27 0.6 
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17 19.64 0.27 0.6 

18 19.64 0.27 0.6 

19 19.64 0.27 0.6 

20 19.64 0.27 0.6 

 

Table : Parameters used in the turning operation 

The depth of cut and feed were changed within ranged values and the intermediary differences were 

generated by using DX7. The software uses normal distribution to generate the values from the given 

sets of values. 

Using the generated depth of cuts, feeds and the permitted cutting speeds the turning operations were 

initiated. The job piece was set within the lathe chuck and the spindle was set to rotate at the given 

speed. The job piece that is made of 304 stainless steel was to turn by the carbide tipped cutting tool 
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made from High Speed Steel or HSS. After the turning process, the surface roughness was measured 

using the surface roughness measuring machine and were tabulated.  

 

The coolant that was used in the experiment was a composition of 10% chrysan, C225 soluble oil. 

The temperature that the coolant was used was 20 degree Celsius. The heat transfer co-efficient of 

the coolant was 9933 W/m^2.k. (reference) 

 

 

Figure : Surface Roughness Measurement Machine 

 

 

3.3 Simulation Process 

AdvantEdge is the Premier Finite Element Analysis (FEA) product used to understand the metal 

cutting process. AdvantEdge features a full suite for analysis including chip formation, temperatures 

and stresses and forces on the tool and workpiece. The software has a validation process and material 
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models built into the program. Specifically for metal cutting, this allows the user to make confident 

decisions without physical testing. 

The sole purpose for numerical analysis is to reduce the physical testing and limit the error to a 

minimal curb. The numerical analysis was done with the AdvantEdge software that simulates the 

turning process according to the given parameters and conditions. 

The parameters used in these simulations were set as per the chart formulated from the software 

DX7. Using the sets of values, set by the software, the simulations were run and changed 

accordingly. 

Work-piece Geometry  

Step 1: Setting the process type and selecting the defining dimension (figure) 

 

Figure: Process selection 

Step 2:  Setting the turning process parameter (figure)\ 
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Figure : Importing turning process parameters 

 

Step 3: Setting the turning tool parameters 

 

Figure : Parameter input for cutting tool 
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Step 4: Appointing the work piece dimensions (figure) 

 

Figure : Dimension input for work piece 

Step 5: Choosing the cutting tool material (figure) 

 

Figure : Determination of tool material 
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Step 6: Selecting the material for work piece 

 

Figure: Selection of job piece material 

Step 7: Selection of coolant for the operation and defining its properties (figure) 

 

Figure: Coolant properties 
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Step 8: Initiation of simulation and selecting the properties (figure) 

 

Figure: Imitation of simulation 

 

Step 9:  Obtaining result using Techplot (figure) 

 

 

Figure: Visual representation of Techplot 
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3.3.1 Mesh Generation 

All the parameters and conditions were prefixed and controlled. The meshes for the simulation were 

auto generated.  

 

 

Figure: Mesh type 

 

The mesh values were set automatically according to the parameters that the users defined.  

The mesh had the following values: 

Mesh Refine = 2 

Mesh Coarse = 6 

Mesh type: Dynamic 
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3.4 Surface Roughness Visualization 

3.4.1 SEM Images 

A scanning electron microscope (SEM) is a type of electron microscope that produces images of a 

sample by scanning the surface with a focused beam of electrons. To get a better idea on the parameter 

surface roughness, a number of SEM images have been captured at the BCSIR. The work pieces, that 

were taken SEM image of were 4mm in width and 3 mm in height.  

Parameters used to prepare the specimen: 

Cutting Speed: 7.42  

Depth of Cut: 0.32 

Feed Rate: 0.14 

  

(a)               (b) 
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                                    (c)                               (d)                    

  

                                     

        

   (e)                 (f)    



 

33 

 

  

 

 

 

  (g) 

 

3.4.2 Optical Microscopic Images 

The optical microscope, often referred to as the light microscope, is a type of microscope that 

uses visible light and a system of lenses to magnify images of small subjects. Basic optical 

microscopes can be very simple, although many complex designs aim to improve resolution and 

sample contrast. 

The image from an optical microscope can be captured by normal, photosensitive cameras to generate 

a micrograph. Purely digital microscopes were used which use a CCD camera to examine the sample, 

showing the resulting image directly on a computer screen without the need for eyepieces. 

 

 

Figure: SEM Images (a) Magnified 30,000 times, 

(b) Magnified 20,000 times, (c) Magnified 10,000 

times, (d) Magnified 5,000 times, (e) Magnified 

1,000 times, (f) Magnified 500 times, (g) 

Magnifie4.1d 200 times 

 

https://en.wikipedia.org/wiki/Microscope
https://en.wikipedia.org/wiki/Visible_spectrum
https://en.wikipedia.org/wiki/Lens_(optics)
https://en.wikipedia.org/wiki/Simple_microscope
https://en.wikipedia.org/wiki/Optical_resolution
https://en.wikipedia.org/wiki/Contrast_(vision)
https://en.wikipedia.org/wiki/Photosensitivity
https://en.wikipedia.org/wiki/Micrograph
https://en.wikipedia.org/wiki/Digital_microscope
https://en.wikipedia.org/wiki/Eyepiece
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    (a) 

 

 

    (b) 

 

Specimen Parameter: 

Cutting speed-11 m/s, feed-

0.18 mm/min, depth of cut-

0.4mm  

Specimen Parameter: 

Cutting speed-28.27 m/s, feed-

0.18 mm/min, depth of cut-

0.4mm  
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    (c) 

 

 

    (d) 

Specimen Parameter: 

Cutting speed-11 m/s, feed-

0.36 mm/min, depth of cut-

0.4mm  

Specimen Parameter: 

Cutting speed-28.27 m/s, feed-

0.36 mm/min, depth of cut-

0.4mm  



 

36 

 

 

 

 

    (e)  

 

    (f) 

Figure: Optical Microscopic Images of specimens machined under various parameters.

Specimen Parameter: 

Cutting speed-11 m/s, feed-

0.18 mm/min, depth of cut-

0.8mm  

Specimen Parameter: 

Cutting speed-11 m/s, feed-

0.36 mm/min, depth of cut-

0.8mm  
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Chatper 4 Results 

 

Table: AdvantEdge software has been used to generate the values in this table. The maximum value 

from the simulations has been taken. 

Experimental  

Roughness Peal Tool 
Temperature (C) 

Heat Rate(W/mm3) Power Force X Force Y 

2.2 307 1018 32.5 179 143 

2 420 2617 83 176 150.2 

2.5 338 509 53.5 293 174 

2.3 465 1308 135 286 180 

2.25 300 1018 65.5 358 285 

2.05 420 2618 164 348 288 

2.6 335 509 107.2 582 350 

2.4 466 1309 271 575.5 367 

2.55 277 457 43.9 357 248 

2.2 460 1966 185 349 250 

2.1 362 2337 19.8 60.8 55.7 

2.7 420 818 155 474 280 

2.3 390 1212 62 188 132 

2.55 389 1212 170 517 365 

2.45 382 1212 115.5 353 249 

2.46 382 1212 115.5 353 249 

2.46 382 1212 115.5 353 249 

2.45 382 1212 115.5 353 249 

2.46 382 1212 115.5 353 249 

2.45 382 1212 115.5 353 249 
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Table: Using DX-7 and the values from the simulations, a regression equation was generated and the 

values were generated from the equation. 

Emperical 

Roughness Peal Tool 
Temperature (C) 

Heat Rate(W/mm3) Power Force X Force Y 

2.20 304.7 1006.6 30.1 166.2 133.2 

1.99 422.8 2663.9 76.8 163.5 139.9 

2.52 336.4 497.5 49.5 272.1 162.1 

2.31 466.7 1316.4 125.0 265.6 167.7 

2.28 299.2 1006.4 60.6 332.5 265.5 

2.06 422.3 2664.9 151.8 323.2 268.3 

2.66 333.1 497.5 99.2 540.5 326.1 

2.44 470.0 1317.1 250.9 534.5 341.9 

2.49 281.2 478.7 51.2 413.9 285.8 

2.18 452.3 1896.2 215.9 404.6 288.1 

2.10 361.7 2311.4 23.0 70.1 63.8 

2.62 419.7 835.2 179.7 546.2 320.8 

2.31 390.7 1218.2 72.6 218.6 152.5 

2.46 387.6 1218.5 199.0 601.2 421.8 

2.47 382.1 1210.0 109.8 336.4 237.7 

2.47 382.1 1210.0 109.8 336.4 237.7 

2.47 382.1 1210.0 109.8 336.4 237.7 

2.47 382.1 1210.0 109.8 336.4 237.7 

2.47 382.1 1210.0 109.8 336.4 237.7 

2.01 275.5 921.1 7.0 55.8 49.1 

. 
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Table: Normalized data set 

Data preprocessing values 

Roughness Peal Tool 
Temperature (C) 

Heat Rate(W/mm3) Power Force X Force Y 

0.4868 0.1615 0.2037 0.0363 0.1053 0.1363 

0.2668 0.6437 0.7032 0.1098 0.1028 0.1462 

0.8264 0.2911 0.0503 0.0669 0.1977 0.1792 

0.6036 0.8228 0.2971 0.1855 0.1920 0.1875 

0.5703 0.1390 0.2037 0.0843 0.2504 0.3328 

0.3482 0.6417 0.7035 0.2277 0.2423 0.3369 

0.9699 0.2773 0.0503 0.1450 0.4321 0.4227 

0.7420 0.8361 0.2973 0.3835 0.4268 0.4462 

0.7911 0.0657 0.0447 0.0695 0.3215 0.3628 

0.4702 0.7639 0.4719 0.3284 0.3134 0.3663 

0.3841 0.3940 0.5970 0.0251 0.0213 0.0332 

0.9258 0.6308 0.1521 0.2715 0.4370 0.4148 

0.6007 0.5124 0.2675 0.1031 0.1510 0.1650 

0.7600 0.5000 0.2676 0.3018 0.4850 0.5649 

0.7688 0.4775 0.2650 0.1617 0.2538 0.2915 

0.7688 0.4775 0.2650 0.1617 0.2538 0.2915 

0.7688 0.4775 0.2650 0.1617 0.2538 0.2915 

0.7688 0.4775 0.2650 0.1617 0.2538 0.2915 

0.7688 0.4775 0.2650 0.1617 0.2538 0.2915 

0.2931 0.0424 0.1780 0.0000 0.0089 0.0114 
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Table: Normalized Data have been subtracted by 1 

Deviation sequences   

Roughness Peal Tool 
Temperature (C) 

Heat Rate(W/mm3) Power Force X Force Y 

0.5132 0.8385 0.7963 0.9637 0.8947 0.8637 

0.7332 0.3563 0.2968 0.8902 0.8972 0.8538 

0.1736 0.7089 0.9497 0.9331 0.8023 0.8208 

0.3964 0.1772 0.7029 0.8145 0.8080 0.8125 

0.4297 0.8610 0.7963 0.9157 0.7496 0.6672 

0.6518 0.3583 0.2965 0.7723 0.7577 0.6631 

0.0301 0.7227 0.9497 0.8550 0.5679 0.5773 

0.2580 0.1639 0.7027 0.6165 0.5732 0.5538 

0.2089 0.9343 0.9553 0.9305 0.6785 0.6372 

0.5298 0.2361 0.5281 0.6716 0.6866 0.6337 

0.6159 0.6060 0.4030 0.9749 0.9787 0.9668 

0.0742 0.3692 0.8479 0.7285 0.5630 0.5852 

0.3993 0.4876 0.7325 0.8969 0.8490 0.8350 

0.2400 0.5000 0.7324 0.6982 0.5150 0.4351 

0.2312 0.5225 0.7350 0.8383 0.7462 0.7085 

0.2312 0.5225 0.7350 0.8383 0.7462 0.7085 

0.2312 0.5225 0.7350 0.8383 0.7462 0.7085 

0.2312 0.5225 0.7350 0.8383 0.7462 0.7085 

0.2312 0.5225 0.7350 0.8383 0.7462 0.7085 

0.7069 0.9576 0.8220 1.0000 0.9911 0.9886 
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Table: Using the Gray Coefficient formula, we have calculated the grade for each set of parameters. 

Grey relational coefficient  
 
  Grade Roughness Peal Tool 

Temperature (C) 
Heat 

Rate(W/mm3) 
Power Force X Force Y 

0.4509 0.4878 0.6077 0.7628 0.7269 0.6844 0.5873 

0.3607 0.7696 0.9996 0.8032 0.7256 0.6894 0.6642 

0.7344 0.5411 0.5424 0.7791 0.7786 0.7067 0.6871 

0.5199 0.9796 0.6557 0.8494 0.7752 0.7112 0.7360 

0.4982 0.4797 0.6077 0.7887 0.8116 0.8002 0.6251 

0.3895 0.7677 1.0000 0.8776 0.8063 0.8030 0.7069 

1.0000 0.5349 0.5424 0.8240 0.9502 0.8673 0.8078 

0.6351 1.0000 0.6559 1.0000 0.9455 0.8868 0.8393 

0.6894 0.4548 0.5402 0.7805 0.8607 0.8214 0.6761 

0.4425 0.8990 0.7697 0.9530 0.8548 0.8239 0.7480 

0.4038 0.5924 0.8790 0.7570 0.6854 0.6361 0.6111 

0.8999 0.7578 0.5840 0.9089 0.9546 0.8610 0.8433 

0.5179 0.6650 0.6397 0.7993 0.7516 0.6992 0.6573 

0.6540 0.6565 0.6398 0.9319 1.0000 1.0000 0.7779 

0.6636 0.6418 0.6384 0.8343 0.8138 0.7727 0.7168 

0.6636 0.6418 0.6384 0.8343 0.8138 0.7727 0.7168 

0.6636 0.6418 0.6384 0.8343 0.8138 0.7727 0.7168 

0.6636 0.6418 0.6384 0.8343 0.8138 0.7727 0.7168 

0.6636 0.6418 0.6384 0.8343 0.8138 0.7727 0.7168 

0.3696 0.4474 0.5956 0.7444 0.6797 0.6268 0.5394 
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4.1.1 Effects of cutting parameters on Roughness 

   

(a)                                                                                   (b) 

  

   (c)                                                                                    (d) 

      

   (e)                                                                                        (f) 

Figure: Roughness versus (a) & (b)cutting speed, (c) & (d)feed rate, (e) & (f)depth of cut 
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4.1.2 Effects of cutting parameters on Peak Tool Temperature 

   

(a)                                                                                (b)   

   

   (c)                                                                                  (d) 

     

   (e)                                                                                  (f) 

Figure: Peak Tool Temperature versus (a) & (b) cutting speed, (c) & (d) feed rate, (e) & (f) depth of 

cut 
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4.1.3 Effects of cutting parameters on Heat Rate 

 

(a)                                                                                  (b) 

 

   (c)                                                                                     (d) 

 

   (e)        (f) 

Figure: Heat Rate versus (a) & (b) cutting speed, (c) & (d) feed rate, (e) & (f) depth of cut 
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4.1.4 Effects of cutting parameters on Power 

 

(a)                                                             (b) 

 

   (c)                                                                   (d)  

 

 

(e)                                                                  (f) 

 

Figure: Power versus (a) & (b) cutting speed, (c) & (d) feed rate, (e) & (f) depth of cut 
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4.1.5 Effects of cutting parameters on Force X 

   

(a)                                                                        (b) 
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Figure: Force X versus (a) & (b) cutting speed, (c) & (d) feed rate, (e) & (f) depth of cut 
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4.1.6 Effects of cutting parameters on Force Y 

 

(a)                                                                  (b) 

 

  

   (c)                                                                  (d) 

 

  

   (e)                                                                  (f) 

Figure: Force Y versus (a) & (b) cutting speed, (c) & (d) feed rate, (e) & (f) depth of c 
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4.2 Results 

Gray analysis has 4 steps. After performing the steps of the Gray analysis on the 20 sets of parameters, 

most optimized set has been found. The optimized parameter is having cutting speed 19.64 m/s, feed 

rate of 0.4 mm/min, and depth of cut of 0.6 mm. 

Gray analysis is only applicable for this 20 sets of data and that is why we used Whale Optimized 

Algorithm. WOA is used to get the most optimized set within the specified range of values from the 

table.  

After 150 iterations, the algorithm has converged to find the most optimized set of parameters which 

is using the lowest cutting speed, depth of cut and feed rate. This is realistic because using lower cutting 

speeds and depth of cut, produces lesser stress on the cutting tool, thus generating small temperature 

rise and requires less power. Usually a higher cutting speed gives a lower surface roughness but here 

multiple parameters are being optimized simultaneously, we end up need lower cutting speed rather 

than high.  
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