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Abstract 

 

Breast cancer is the second leading cause of death of women worldwide. Accurate 
lesion boundary detection is important for breast cancer diagnosis. Since many crucial 
features for discriminating benign and malignant lesions are based on the contour, shape, 
and texture of the lesion, an accurate segmentation method is essential for a successful 
diagnosis. Ultrasound is an effective screening tool and primarily useful for 
differentiating benign and malignant lesions. However, due to inherent speckle noise and 
the low contrast of breast ultrasound imaging, automatic lesion segmentation is still a 
challenging task. This research focuses on developing a novel, effective, and fully automatic 

lesion segmentation method for breast ultrasound images. By incorporating empirical domain 
knowledge of breast structure, a region of interest is generated. Then, a novel 
enhancement algorithm (using a novel phase feature) and a newly developed 
neutrosophic clustering method is developed to detect the precise lesion boundary. 
Neutrosophy is a recently introduced branch of philosophy that deals with paradoxes, 
contradictions, antitheses, and antinomies. When neutrosophy is used to segment images 
with vague boundaries, its unique ability to deal with uncertainty is brought to bear. In 
this work, we apply neutrosophy to breast ultrasound image segmentation and propose a 
new clustering method named neutrosophic l-means. We compare the proposed method 
with traditional fuzzy c-means clustering and three other well-developed segmentation 
methods for breast ultrasound images, using the same database. Both accuracy and time 
complexity are analyzed. The proposed method achieves the best accuracy (TP rate is 
94.36%, FP rate is 8.08%, and the similarity rate is 87.39%) with a fairly rapid processing 
speed (about 20 seconds). Sensitivity analysis shows the robustness of the proposed 
a method as well. Cases with multiple-lesions and severe shadowing effect (shadow areas 
having similar intensity values of the lesion and tightly connected with the lesion) is not 
included in this study. Ultrasound is one of the ways of detecting and identifying breast tumor. 

From the raw US signal (known as RF data), we get the B-mode image, in which the tumor 

might not be that much visible. For better tumor visibility, we need to form a strain image. 

From pre and post compressed US image of the breast, we can estimate strain and form a strain 

video. Each frame of the video does not have good tumor visibility. It is difficult and time 

consuming for a doctor to accurately detect the shape of the tumor from rapidly changing 

frames. Selecting the frames where the tumor is comparably more visible will help the 
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doctor/radiologist to detect the tumor more easily. In this paper, a method of semi-automated 

best frame selection from a strain video is proposed.  The method involves two ways to select 

the required frames and to show the best output frames in the form of a video. It is based on 

Mean Pixel Difference (MPD) and contrast as the Image Descriptors.
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Chapter 1 

1 Introduction 

 

Breast cancer is the second leading cause of death for women worldwide, and more 

than 8% of all women will suffer this disease during their lifetime [1]. According to 

cancer statistics 2010, it is estimated that 209,060 new cases of breast cancer will be 

diagnosed and approximately 40,230 deaths are expected in the United States alone [2]. 

Since the causes of breast cancer still remain unknown, early detection is the key to 

reduce the death rate (40% or more) [3]. The earlier the cancers are detected, the better 

the treatment that can be provided. Early detection requires an accurate and reliable 

a diagnosis which should also be able to distinguish between benign and malignant tumors. 

Further, a good detection approach should produce both a low false positive rate and a 

false negative rate. 

 

1.1 Ultrasound Imaging: Until recently, the most effective modality for detecting and 

diagnosing has been mammography [3, 4]. However, there are limitations of mammography in 

breast cancer detection. Many unnecessary (65–85%) biopsy operations are due to the low 

specificity of mammography [5]. The unnecessary biopsies not only increase the cost but also 

make the patients suffer from emotional pressure. Mammography has also proven less effective 

in detecting breast cancer in adolescent women with dense breasts. In addition, the 

ionizing radiation of mammography might be harmful to both patients and radiologists. 

Ultrasound (US) imaging is an important alternative to mammography. Researchers 

and practitioners are showing an increasing interest in the use of ultrasound images for 

breast cancer detection [6-8]. Statistics show that more than one out of every four studies. 
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1.2 Computer-Aided Diagnosis 

Since sonography is much more operator-dependent than mammography, reading 

ultrasound image requires well-trained and experienced radiologists. Further, even well-trained 

experts may have a high inter-observer variation rate; therefore, computer-aided 

diagnosis (CAD) is has been investigated to help radiologists in making accurate 

diagnoses. One advantage of a CAD system is that it can obtain some features, such as 

computational features and statistical features, which cannot be obtained visually and 

intuitively by medical doctors. Another advantage is that CAD can minimize the 

operator-dependent nature inherent in ultrasound imaging [16] and make the diagnosis 

process reproducible. It should be noted that research into the use of CAD is not done so 

with an eye toward eliminating doctors or radiologists, rather the goal is to provide 

doctors and radiologists a second opinion and help them to increase the diagnosis 

accuracy, reduce biopsy rate, and save them time and effort. Generally, ultrasound CAD 

systems for breast cancer detection involve four stages 

 

1. Image preprocessing: The task of image preprocessing is to enhance the image and 

to reduce speckle without destroying the important features of BUS images for 

diagnosis. 

2. Image segmentation: Image segmentation divides the image into non-overlapping 

regions, and it separates the objects (lesions) from the background. The boundaries of  the 

lesions are delineated for feature extraction. 

3. Feature extraction and selection: This step is to find a feature set of breast cancer 

lesions that can accurately distinguish lesion/non-lesion or benign/malignant. The 

feature space could be very large and complex, so extracting and selecting the most effective 

features are very important. 

4. Classification: Based on the selected features, the suspicious regions will be 

classified into different categories, such as benign findings and malignancy. Many 

machine learning techniques such as linear discriminant analysis (LDA), support 

vector machine (SVM) and artificial neural network (ANN) have been studied for 

lesion classification. 
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Figure1. 1:  A CAD system for breast cancer 

 

1. Image preprocessing: The task of image preprocessing is to enhance the image and 

to reduce speckle without destroying the important features of BUS images for 

diagnosis. 

2.  Image segmentation: Image segmentation divides the image into non-overlapping 

regions and it separates the objects (lesions) from the background. The boundaries 

of the lesions are delineated for feature extraction. 

3. Feature extraction and selection: This step is to find a feature set of breast cancer 

lesions that can accurately distinguish lesion/non-lesion or benign/malignant. The 

feature space could be very large and complex, so extracting and selecting the 

most effective features are very important. 

4.  Classification: Based on the selected features, the suspicious regions will be 

classified into different categories, such as benign findings and malignancy. Many 

machine learning techniques such as linear discriminant analysis (LDA), support 

vector machine (SVM) and artificial neural network (ANN) has been studied for 

lesion classification. 
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1.3 Lesion Segmentation 

Segmentation is an important step in CAD systems. Both automation and accuracy of 

segmentation is crucial. Automation of segmentation is important because it facilitates 

the complete automation of the CAD system. A fully automatic CAD can minimize the 

effect of the operator-dependent nature inherent in ultrasound imaging [16] and make the 

diagnosis process reproducible. Accuracy of segmentation is important because many 

crucial features for discriminating benign and malignant lesions are based on the contour, 

shape, and texture of the lesion (ACR BI-RADS lexicon [17]). These features can be 

effectively extracted after the lesion boundary is correctly detected. Thus, an accurate 

segmentation method is essential for a correct diagnosis. However, there are 

characteristic artifacts, such as attenuation, speckle, shadows, and signal dropout, which 

make the segmentation task complicated; these artifacts are due to the orientation 

dependence of acquisition that can result in missing boundaries. Further complications 

arise as the contrast between areas of interest is often low [18]. How to do one of the 

oldest image processing tasks, image segmentation, for breast ultrasound, is a challenging 

task. 

Many techniques have been developed for BUS segmentation. They are categorized 

into histogram thresholding, region growing, model-based (active contour, level set, 

Markov random field), machine learning, and watershed methods.  

 

1.3.1 Histogram Thresholding and Region Growing 

Simple histogram thresholding [19, 20] or region-growing algorithms [21, 22] can find 

the preliminary lesion boundary. In a histogram thresholding method, an intensity 

the threshold is chosen at the valley of the image histogram to separate the image into 

background and foreground. For a region growing method, a region is grown from the 

seed point (start point) by adding similar neighboring pixels. Although efficient, these 

methods cannot generate a precise boundary because of their over-simplified concepts and 

the high sensitivity to noise. However, they can serve as an intermediate step to provide a 

rough contour [21] or can be combined with post-processing procedures such as 

morphological operations [19, 20, 23], disk expansion [24], Bayesian neural network [12], 

function optimization [25, 26], etc. For example, in the thresholding algorithm [19, 20], 

firstly, the regions of interest (ROIs) were preprocessed with a 4×4 median filter to 
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reduce the speckle noise and to enhance the features. Second, a 3×3 unsharp filter was 

constructed using the negative of a two-dimensional Laplacian filter to emphasize the 

elements with meaningful signal level and to enhance the contrast between object and 

background. Third, the ROIs were converted to a binary image by thresholding. The 

the threshold was determined by the histogram of ROIs. If a valley of a histogram between 

33% and 66% of the pixel population could be found, this intensity value was selected as 

the threshold. If there was no such valley in that range, the intensity of 50% of the pixel 

the population was selected as the threshold value. Finally, the selected nodule’s boundary 

pixels were obtained using morphologic operations. 

 

1.3.2 Model-Based Methods 

Model-based methods have strong noise-resistant abilities and are relatively stable at 

sonography demarcation. Commonly used models include level set [27-29], active 

contours [21, 30-33], Markov random fields (MRF) [34-38], etc. 

For instance, Sarti et al. [29] discussed a level set maximum likelihood method to 

achieve a maximum likelihood segmentation of the target. The Rayleigh probability 

distribution was utilized to model the gray level behavior of ultrasound images. A partial 

the differential equation-based flow was derived as the steepest descent of an energy function 

considering the density probability distribution of the gray levels, as well as 

smoothness constraints. A level set formulation for the associated flow was derived to 

search the minimal value of the model. Finally, the image was segmented according to 

the minimum energy. 

 

Madabhushi and Metaxas [21] combined intensity, texture information, and empirical 

domain knowledge used by radiologists with an active contour model in an attempt to 

limit the effects of shadowing and false positives. Their method requires training but in 

the small database. Using manual delineation of the mass by a radiologist as a reference, 

and the Hausdorff distance and average distance as boundary error metrics, they showed 

that their method is independent of the number of training samples, shows good 

reproducibility with respect to parameters, and gives a true positive area of 74.7%. Some 

active contour models have been applied to 3-D ultrasound segmentation, such as [30-33]. 

Boukerroui et al. [34] used a Markov random field to model the region process and to 

focus on the adaptive characteristics of the algorithm. Their method introduced a function 
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to control the adaptive properties of the segmentation process, and took into account both 

local and global statistics during the segmentation process. A new formulation of the 

segmentation problem was utilized to control the effective contribution of each statistical 

component. The merit of MRF modeling is that it provides a strong exploitation of the 

pixel correlations. The segmentation results can be further enhanced via the application 

of maximum a posteriori segmentation estimation scheme based on the Bayesian learning 

paradigm [18]. 

 

In most model-based approaches, an energy function is formulated, and the 

segmentation problem is transformed as finding the minimum (or maximum) of the 

energy function iteratively. However, the iterations on calculating energy functions and 

 reformulating the models are always time-consuming, especially for complex BUS 

images; and many models are semi-automatic with the requirement of pre-labeled ROI or 

manually initialized contour. 

 

1.3.3 Machine Learning Methods 

Machine learning methods (such as neural network and support vector machine) [39- 

43] are popular in image segmentation, which transforms the segmentation problem into a 

classification decision based on a set of input features. In [42], Dokur and Ölmez 

proposed a neural network-based segmentation method. Images were divided into square 

blocks and features were extracted from each block using the discrete cosine transform 

(DCT). Then a three-layer hybrid neural network was trained to classify the blocks into 

two categories: background and foreground. The method was applied to the region of 

interest (ROI) which needed to be selected by the user. Kotropoulos and Pitas [39] 

employed a support vector machine with a radial basis function kernel to classify 

different patterns. In this method, patterns were collected by a running window with size 

of 15x15 over the entire image. To train the SVM, 1128 positive patterns (lesion) and 

1128 negative patterns (background) were selected from the training set. Experiments 

showed that the trained SVM could generate reasonable segmentation result. 

For machine learning methods, feature selection and training process are two key steps 

that play an important role in segmentation result. If features are sufficiently 

distinguishable and the method is well trained, machine learning methods can generate 

satisfactory lesion contours. However, over-training or insufficient training (trapped by 
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 local minimum) may severely affect the segmentation performance on new data. And the 

the training process is usually quite time-consuming. 

 

1.3.4 Watershed-Based Methods 

Watershed-based approaches have shown promising performances for ultrasound 

image segmentation. The methods consider the image as topographic surface wherein the 

grey level of a pixel is interpreted as its altitude. Water flows along a path to finally reach 

a local minimum. The biggest challenge for such methods is over-segmentation; to 

address the problem, many approaches have been proposed and can be categorized into 

two types: marker-controlled [44-46] and cell competition [47-49]. 

Marker-controlled methods inundate the gradient landscape of image and define 

watersheds when the flooding of distinct markers rendezvous with each other. Hence, the 

identification of makers is very crucial in solving the over-segmentation problem. The 

the method proposed in [44] was a texture-based approach that selected the marker 

candidates as seeds for the water-level immersion. A self-organization map was trained to 

identify the texture of lesions as the flooding markers. Distinctively, the method in [45] 

adopted a thresholding and morphological operation scheme to seek flooding markers. It 

required a heuristic estimation of the best thresholding of markers to achieve the task of lesion 

delineation. 

Cell competition approaches, on the other hand, alleviate the over-segmentation 

the problem in a different way. A two-pass watershed transformation [47] was performed to 

generate the cell tessellation on the original ultrasound image or ROI. In this method, a 

competition scheme based on the cell tessellation was carried out by allowing merge and 

split operations of cells. The cost function was devised to characterize boundary saliency 

and regional homogeneity of an image partition, and it drove the competition process to 

converge to a prominent component structure. However, neither marker-controlled nor 

cell competition approaches guarantee to solve the over-segmentation problem 

completely [48]. 

 

 

Commonly used segmentation approaches are summarized in Table 1.1. which is given on the 

next page 
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Table 1.1. Summary of Segmentation Methods for BUS Images. 

 

 

 

In summary, the major drawbacks of current methods are:  

1) Human interactions such as the pre-labeled ROIs or manually initialized contours are 

required, which impede full automation;  

2) Intensity features are most typically used for boundary detection. Since 

BUS images have low contrast and are degraded by speckle noise, features based on 

intensity gradients are always sensitive to noise and cannot guarantee accurate 

segmentation result;  

Methods  Descriptions  Advantages  Disadvantages 

Histogram 

thresholding  

The threshold value is 

selected 

to segment the image. 
Simple and fast.  

Only works for 

bimodal histograms and 

has no good results for 

BUS images 

Region growing  

The region is grown from 

the 

seed point by adding 

similar neighboring pixels. 

The concept is 

simple. Multiple 

stop criteria can be 

chosen. 

A seed point is required; 

sensitive to noise. 

Model-based 

(includes 

active contour, 

level set, 

Markov random 

fields) 

A model is used to 

formulate the lesion 

contour and the model is 

revised based on local 

features such as edges, 

intensity gradient, texture, 

and so on. 

Robust, self 

adapting in search 

of a minimal energy 

state. 

Time-consuming; pre 

labeled ROI or initial 

contour is required; 

easy to get stuck in 

local minima states. 

Machine learning  

Features to separate the 

lesion from the 

background are extracted 

first, and a machine 

the learning method is 

trained 

to do the classification 

based on pixel-level or 

region-level. 

Stable; different 

lesion 

characteristics can 

be incorporated by 

feature extraction. 

Long training time; 

over-training problem; 

test images should 

come from the same 

platform as the training 

images. 

Watershed 

(includes 

marker-controlled 

watershed and 

cell 

competition 

watershed) 

Considers image as 

topographic surface 

wherein grey level of a 

pixel is interpreted as its 

altitude. Water flows along 

a path to finally reach a 

local minimum. 

It ensures closed 

region boundaries. 

Over-segmentation 

problem is not 

completely solved. 
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3) Reformulating the models and training the methods are always 

time-consuming, especially for complex BUS images. As the image resolution increases, 

the computational complexity for processing a BUS image also increases. 
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Chapter 2 

2 Background and Motivation 

 

 

2.1 Motivation: 

 

Breast Cancer is one of the leading causes of death due to cancer among women all over the 

world. If it can be detected in the early phase, the chances of curing it become high. Breast 

cancer originates from a breast tumor. Breast tumors are of two types – Benign and Malignant. 

The malignant type tumor results in cancer. So, detecting the tumor at an early phase and taking 

measures to cure it can decrease the chances of producing cancer and thus can save a life.  

 

The existing methods of detecting breast tumor lesion includes Breast Exam, Mammogram, 

MRI, Biopsy, and Ultrasonography. The details of these methods are given below: 

 

Breast exam: The doctor will check both of the breasts and lymph nodes in the armpit, feeling 

for any lumps or other abnormalities. Lump, Inverse/ Pulled in nipples, dimpling, dripping, 

redness/rush, skin change are the symptoms indicating breast tumor. This method can give a 

vague idea about the existence of tumor lesion inside the breast. But it doesn’t give any 

information about the tumor being benign or malignant. Thus, it cannot be reliably used to 

identify the condition of the tumor. 

 

 

Mammogram: Mammography is an imaging technique used for diagnostic screening and 

surveillance imaging of breast cancer. Using low energy x-rays and standardized views of the 

breast, mammograms can be used to inspect breast tissues for lumps, lesions, and calcification. 

Early mammographic examinations can reveal cancer symptoms to the radiologists which 

allow early treatment and hence increased survival rates(WHO, n.d.). A mammogram is an x-

ray picture of the breast. It can also have drawbacks. Mammograms can sometimes find 

something that looks abnormal but isn't cancer. This leads to further testing and can cause you 

anxiety. Sometimes mammograms can miss cancer when it is there. [1] Women with dense 
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breasts have more false-negative results. False-positive results are more common in women 

who are younger, have dense breasts, have had breast biopsies, have breast cancer in the family, 

or are taking estrogen. Screening mammograms can find invasive breast cancer and ductal 

carcinoma in situ (DCIS, cancer cells in the lining of breast ducts) that need to be treated. But 

it’s possible that some of the invasive cancers and DCIS found on mammograms would never 

grow or spread. (Finding and treating cancers that would never cause problems is called 

overdiagnosis.) These cancers are not life-threatening and never would have been found or 

treated if the woman had not gotten a mammogram. The problem is that doctors can’t tell these 

cancers from those that will grow and spread. [2] 

 

 

Figure2 1: Mammogram image to detect a   

 

2.1Ultrasound 

Ultrasound is sound waves with frequencies higher than the upper audible limit of human 

hearing. Ultrasound is not different from "normal" (audible) sound in its physical properties, 

except that humans cannot hear it. This limit varies from person to person and is approximately 
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20 kilohertz (20,000 hertz) in healthy young adults. Ultrasound devices operate with 

frequencies from 20 kHz up to several gigahertz. 

 

2.1.1 Use of Ultrasound 

Most people associate ultrasound scans with pregnancy and breast imaging. These scans can 

provide an expectant mother with the first view of her unborn child. However, the test has 

many other uses like detecting a tumor in the breast. 

Some other uses: 

• bladder 

• brain (in infants) 

• eyes 

• gallbladder 

• kidneys 

• liver 

• ovaries 

• pancreas 

• spleen 

• thyroid 

• testicles 

• uterus 

• blood vessels 

 

2.2 Elastography 
 

Elastography is a medical imaging modality that maps the elastic properties and stiffness of 

soft tissue. The main idea is that whether the tissue is hard or soft will give diagnostic 

information about the presence or status of a disease. For example, cancerous tumors will often 

be harder than the surrounding tissue, and diseased livers are stiffer than healthy ones. 

The most prominent techniques use ultrasound or magnetic resonance imaging (MRI) to make 

both the stiffness map and an anatomical image for comparison. 
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Some Definitions: 

Stress: Stress is defined as force per unit area. 

 

Shear stress: Shear stress has the same units as normal stress but represents a stress that acts 

parallel to the surface (cross-section). 

 

Strain: Strain is the change in length per unit length. Computed as (Lf - L0) / L0 where Lf is 

the final length and L0 is the initial length. 

 

Strain Rate: Strain Rate specifies how quickly (or slowly) a material is being deformed or 

loaded, i.e. the amount of strain that occurs in a unit of time. Since strain is dimensionless, 

units are 1/time. 

 

Young's Modulus: Young's Modulus is the constant of proportionality between stress and 

strain. Units are the same as stress (i.e., force per unit area) and the most commonly used are 

psi, Pa (Pascal), kPa, and MPa. 

 

Poisson's Ratio: Poisson’s Ratio is the ratio of lateral strain to longitudinal strain. The typical 

range of values is between zero and 0.5. 
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• Tissue Elasticity Imaging methods are based on imaging differences in stiffness or 

Young’s Modulus between normal and abnormal tissue conditions. 

• Literature reports on stiffness variations between different tissue types are limited. 

• However, these results demonstrate significant stiffness variations between normal 

and pathological tissue. 
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                              Table 2.1: Various parameters of  breast tissues                                      

 

                      Figure2 2:ELF 3220 at UW-Madison  
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2.2.1 Applications of Elastography 

Elastography is used for the investigation of many disease conditions in many organs. It can 

be used for additional diagnostic information compared to a mere anatomical image, and it can 

be used to guide biopsies or, increasingly, replace them entirely. Biopsies are invasive and 

painful, presenting a risk of hemorrhage or infection, whereas elastography is completely 

noninvasive. 

 

Elastography is used to investigate disease in the liver. Liver stiffness is usually indicative of 

fibrosis or steatosis, which are in turn indicative of numerous disease conditions, including 

cirrhosis and hepatitis. Elastography is particularly advantageous in this case because when 

fibrosis is diffuse, a biopsy can easily miss sampling the diseased tissue, which results in a false 

negative misdiagnosis. 

 

Naturally, elastography sees a use for organs and diseases where manual palpation was already 

widespread. Elastography is used for detection and diagnosis of breast, thyroid and prostate 

cancers. Certain types of elastography are also suitable for musculoskeletal imaging, and they 

can determine the mechanical properties and state of muscles and tendons. 

 

Because elastography does not have the same limitations as manual palpation, it is being 

investigated in some areas for which there is no history of diagnosis with manual palpation. 

For example, magnetic resonance elastography is capable of assessing the stiffness of the brain, 

and there is a growing body of scientific literature on elastography in healthy and diseased 

brains. 

 

Preliminary reports on elastography used on transplanted kidneys to evaluate cortical fibrosis 

have been published showing promising results. 

 

 

2.2.2 Ultrasound elastography 

There are great many ultrasound elastographic techniques. The most prominent are highlighted 

below. 
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Quasistatic elastography/strain imaging 

Quasistatic elastography (sometimes called simply 'elastography' for historical reasons) is one 

of the earliest elastography techniques. In this technique, an external compression is applied to 

tissue, and the ultrasound images before and after the compression are compared. The areas of 

the image that are least deformed are the ones that are the stiffest, while the most deformed 

areas are the least stiff. Generally, what is displayed to the operator is an image of the relative 

distortions (strains), which is often of clinical utility. 

 

From the relative distortion image, however, making a quantitative stiffness map is often 

desired. To do this requires that assumptions be made about the nature of the soft tissue being 

imaged and about tissue outside of the image. Additionally, under compression, objects can 

move into or out of the image or around in the image, causing problems with interpretation. 

Another limit of this technique is that like manual palpation, it has difficulty with organs or 

tissues that are not close to the surface or easily compressed. 

 

 

 Figure2 3: Manual compression (quasistatic) elastography of invasive ductal carcinoma, 

a breast cancer. 

 

Acoustic radiation force impulse imaging (ARFI) 

One of the major problems in the model-based reconstructive approaches is the need to 

incorporate boundary conditions to solve the forward problem. In practice, boundary 

conditions in tissue could be very complicated and the error in the definition of boundary 

conditions could significantly reduce the quality of reconstruction. A possible solution to 

https://en.wikipedia.org/wiki/File:Manual_compression_elastography_of_invazive_ductal_carcinoma_00132.gif
https://en.wikipedia.org/wiki/File:Manual_compression_elastography_of_invazive_ductal_carcinoma_00132.gif
https://en.wikipedia.org/wiki/Invasive_ductal_carcinoma
https://en.wikipedia.org/wiki/Breast_cancer
https://en.wikipedia.org/wiki/File:Manual_compression_elastography_of_invazive_ductal_carcinoma_00132.gif
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this problem was suggested in where acoustic radiation force of the focused ultrasound 

wave was used to induce the motion of the tissue. The dynamics of this highly localized 

motion is defined by the parameters of acoustic excitation and the mechanical properties of 

tissue, and only weakly depends on the boundary conditions. Analytical equations 

describing the spatial and temporal behavior of the radiation force induced shear 

displacement and waves in tissue-like media have been derived in. Figures 3 

and 4 adapted from [38] illustrate the calculated tissue response to acoustic radiation force 

generated by a focused ultrasonic wave. 

 

Figure 3 shows the distribution of axial displacement induced by a focused ultrasonic beam 

with a 3 MHz carrier frequency modulated with a 1 kHz sinusoid and spatial- and temporal 

peak intensity of 10 W/cm2. The parameters of tissue were chosen close to those of liver. 

The spatial distribution of axial displacement at an arbitrarily chosen time is shown. The 

absolute maximum of the displacement is near the geometric focus on the axis of the 

ultrasound beam. Neighboring local minima and maxima are about a half wavelength from 

each other. Figure 3 shows only axial displacement, however, that radial displacement is an 

order of magnitude smaller than axial displacement . 

 

Figure 4 illustrates the temporal behavior of the axial displacement in the focal plane, i.e., in 

the plane near the geometric focus of the transducer and parallel to the beam axis. A 

rectangular 100 μs duration acoustic pulse and a tissue with shear wave speed 5.2 m/s were 

used in this simulation. Initially, displacement magnitude along the beam axis increases with 

time. This increase continues due to inertia for some time after the acoustic pulse is 

terminated. Displacement reaches its maximum at the time needed for the shear wave to 

travel the distance equal to the depth of the focal region. After reaching the maximum, the 

displacement starts to decrease, due to the absorption of the shear wave as well as due to the 

formation of a diverging cylindrical wave propagating away from the axis. At that stage, the 

the distance between the wavefront and the axis of the beam linearly increases as in accordance 

with the speed of the shear wave, which is proportional to the square of shear elasticity modulus 

(in an infinite, isotropic and homogeneous medium). 

 

Local viscoelastic properties of tissue may also be evaluated from the data on tissue motion 

induced by a radiation force impulse in the focal region of the focused ultrasound beam, which 

is the basis of Acoustic Radiation Force Impulse (ARFI) imaging. 
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Here, we consider an example of the model-based reconstructive approach based on a 

semianalytical solution for focused ultrasound loading. In the case of the tissue response to 

the focused ultrasound radiation force impulse, the problem is symmetrical with respect to 

the direction of the ultrasound beam. Therefore, the problem could be considered in a 

cylindrical coordinate system (r,φ,z), where the z-axis is aligned with the acoustic radiation 

force F. Displacements and force depend only on coordinates r and z. In cylindrical 

coordinates the equations of dynamic equilibrium (1) has a form: 

 

 

 

where ur, uz and σrr, σzz, σφφ, σrz are components of displacement vector and stress tensor in 

the cylindrical coordinate system. An incompressible medium with zero volume viscosity 

was assumed in (2). Using the Hankel transform of the force F, displacements ur, uz and the 

pressure p, equations (12) are reduced to a single differential equation for function W: 

  

 

where L(W) = WIV - 2α2W″ + α4W, primes mean differentiation with respect to z, W and f 

are the Hankel transforms of the displacement uz and the force F, respectively, and α is the 

variable of integration: 

The boundary conditions for (13) assume that W and W′ are zero away from the focus. If the 

dependence f(α,z,t) is known or can be evaluated, equation (13) can be solved numerically 

using, for example, a three-level difference scheme. Thereby, the general 3D problem is 

reduced to a 1D problem, which can be solved fast and with high accuracy. 

Figures 5a and 5b present the time dependence of the axial displacement uz at the focal point 

for various elastic and viscous properties of the medium. In the calculations the load was 

distributed over the focal spot as an ellipsoid of rotation. 
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The results show that the time dependence of the displacement is sensitive to changes in the 

mechanical properties of the medium. An increase in elasticity of the medium leads to 

the decrease in both displacement magnitude and time needed for the displacement to reach the 

maximum. High viscosity reduces the displacement amplitude and increases the relaxation 

time. 

Using the solution to this forward problem, the inverse problem can be solved by 

minimizing the error function 

 

In shear-wave elasticity imaging (SWEI),  similar to ARFI, a 'push' is induced deep in the tissue 

by acoustic radiation force. The disturbance created by this push travels sideways through the 

tissue as a shear wave. By using an imaging modality like ultrasound or MRI to see how fast 

the wave gets to different lateral positions, the stiffness of the intervening tissue is inferred. 

Since the terms "elasticity imaging" and "elastography" are synonyms, the original term SWEI 

denoting the technology for elasticity mapping using shear waves is often replaced by SWE. 

The principal difference between SWEI and ARFI is that SWEI is based on the use of shear 

waves propagating laterally from the beam axis and creating elasticity map by measuring shear 

wave propagation parameters whereas ARFI gets elasticity information from the axis of the 

pushing beam and uses multiple pushes to create a 2-D stiffness map. No shear waves are 

involved in ARFI and no axial elasticity assessment is involved in SWEI. SWEI is implemented 

in supersonic shear imaging (SSI), one of the most advanced modalities of ultrasound 

elastography. 

 

 

Supersonic shear imaging (SSI) 

Supersonic shear imaging (SSI) gives a quantitative, real-time two-dimensional map of tissue 

stiffness. SSI is based on SWEI: it uses acoustic radiation force to induce a 'push' inside the 

tissue of interest generating shear waves and the tissue's stiffness is computed from how fast 

the resulting shear wave travels through the tissue. Local tissue velocity maps are obtained with 

a conventional speckle tracking technique and provide a full movie of the shear wave 

propagation through the tissue. There are two principal innovations implemented in SSI. First, 

by using many near-simultaneous pushes, SSI creates a source of shear waves which is moved 

through the medium at a supersonic speed. Second, the generated shear wave is visualized by 

using ultrafast imaging technique. Using inversion algorithms, the shear elasticity of medium 

is mapped quantitatively from the wave propagation movie. SSI is the first ultrasonic imaging 

https://en.wikipedia.org/wiki/Acoustic_radiation_force
https://en.wikipedia.org/wiki/Shear_wave
https://en.wikipedia.org/wiki/Ultrasound
https://en.wikipedia.org/wiki/MRI
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technology able to reach more than 10,000 frames per second of deep-seated organs. SSI 

provides a set of quantitative and in vivo parameters describing the tissue mechanical 

properties: Young’s modulus, viscosity, anisotropy. 

This approach demonstrated clinical benefit in breast, thyroid, liver, prostate and 

musculoskeletal imaging. SSI is used for breast examination with a number of high-resolution 

linear transducers. A large multi-center breast imaging study has demonstrated both 

reproducibility and significant improvement in the classification of breast lesions when shear 

wave elastography images are added to the interpretation of standard B-mode and Color mode 

ultrasound images. 

Figure2 4: Supersonic shear imaging   

3 Transient elastography 

Transient elastography gives a quantitative one-dimensional (i.e. a line) image of tissue 

stiffness. It functions by vibrating the skin with a motor to create a passing distortion in the 

tissue (a shear wave), and imaging the motion of that distortion as it passes deeper into the 

body using a 1D ultrasound beam. It then displays a quantitative line of tissue stiffness data 

(Young's modulus). This technique is used mainly by the Fibroscan system, which is used for 

liver assessment, for example, to diagnose cirrhosis. Because of the prominence of the 

Fibroscan brand, many clinicians simply refer to transient elastography as 'Fibroscan'. 

 

https://en.wikipedia.org/wiki/One-dimensional_space
https://en.wikipedia.org/wiki/S-wave
https://en.wikipedia.org/wiki/Young%27s_modulus
https://en.wikipedia.org/wiki/Cirrhosis#Imaging
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Magnetic resonance elastography (MRE) 

 

Magnetic resonance elastography (MRE) was introduced in the mid-1990s, and multiple 

clinical applications have been investigated. In MRE, a mechanical vibrator is used on the 

surface of the patient's body; this creates shear waves that travel into the patient's deeper tissues. 

An imaging acquisition sequence that measures the velocity of the waves is used, and this is 

used to infer the tissue's stiffness (the shear modulus). The result of an MRE scan is a 

quantitative 3-D map of the tissue stiffness, as well as a conventional 3-D MRI image. 

 

One strength of MRE is the resulting 3D elasticity map, which can cover an entire organ. 

Because MRI is not limited by air or bone, it can access some tissues ultrasound cannot, notably 

the brain. It also has the advantage of being more uniform across operators and less dependent 

on operator skill than most methods of ultrasound elastography. 

 

MR elastography has made significant advances over the past few years with acquisition times 

down to a minute or less and has been used in a variety of medical applications including 

cardiology research on living human hearts. MR elastography's short acquisition time also 

make it competitive with other elastography techniques. 

 

Vibro-acoustography (VA) 

Vibro-acoustography (VA) is a method that uses the acoustic response (acoustic emission) 

of an object to the harmonic radiation force of ultrasound for imaging and material 

characterization. The acoustic emission is generated by focusing two ultrasound beams of 

slightly different frequencies at the same spatial location and vibrating the tissue as a result of 

ultrasound radiation force exerted on the object at a frequency equal to the difference between 

the frequencies of the primary ultrasound beams. The two focused ultrasound beams of slightly 

different frequencies f1 and f2 (Δf = f1-f2 ≪ f1, f2) intersect at their joint focal point. For typical 

vibro-acoustography applications, f1 and f2 are on the order of 2–5 MHz and Δf is typically 

10–70 kHz such that there are at least two orders of magnitude in difference ensuring that Δf 

= ≪ f1, f2. The radiation force from these two beams has a component at Δf (called dynamic 

ultrasound radiation force), which vibrates the object. The acoustic response of the object to 

this force is detected by a hydrophone. The co-focus of the ultrasound beams is raster scanned 

across the object, and the resulting acoustic signal is recorded. An image of the object is formed 
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by modulating the brightness of each image pixel proportional to the amplitude of the acoustic 

signal from the excitation point of the object. 

 

Vibro-acoustography images have some unique characteristics that set it apart from traditional 

ultrasound imaging. This is partly due to the nonlinear phenomenon of frequency 

conversion in this method. For example, VA images are speckle-free, which is a significant 

the advantage over conventional pulse-echo imaging. VA also has the ability to image specular 

surfaces regardless of the orientation of the transducer with respect to the surface, while B-

mode ultrasound imaging can only visualize a specular surface if the transducer is 

perpendicular to the surface. 

 

VA may be used for a variety of imaging and characterization applications, including 

medical and industrial applications. In medical imaging, VA has been tested on breast,  

prostate, and thyroid. Vibro-acoustography has been used for imaging mass lesions in excised 

human liver, arteries, bone, and microbubbles. 

 

Although VA is primarily an imaging technique, methods for quantitative estimation of 

viscoelastic parameters of tissue using inverse problem approaches have been presented. The 

authors studied several finite-element experiments and solved for the material properties using 

simulated vibro-acoustic data. Comparisons of vibro-acoustic experiments and finite-element 

inverse problem solutions have shown good agreement. 

 

 

2.3 Elastography in Breast Tumor Detection 

Breast ultrasounds are used mainly to further examine breast abnormalities detected by a 

physician during a physical exam or mammogram.  

The single most important factor affecting the accuracy of ultrasounds is breast density. In a 

study of 3,626 women with dense breasts, ultrasounds were used instead of physical exams to 

detect abnormalities. This study found that the number of breast cancer cases found by 

ultrasound was 17% higher than those found by physical exams.   

The images below show ultrasound results for a normal breast (left) and a breast containing a 

cyst (right) 
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              Figure2 5: Breast Cyst  

*Image courtesy of Brent Burbridge, MD Saskatoon Medical Imaging, Saskatoon Canada. 

 

Over 50% of women under the age of 50 and about 33% of women over 50 have dense breasts.  

Young women have breasts that are dense and full of milk glands, sometimes making 

mammograms difficult to interpret. For this reason, many physicians will recommend that 

women under the age of 30 who have a lump in their breast get an ultrasound exam before a 

mammogram.  

 

Ultrasound is also used today for women with breast implants. Since there is very little tissue 

around a silicone implant to be x-rayed, mammograms are not always useful to detect 

abnormalities. Ultrasounds are also used as an alternative imaging method for pregnant women 

because they should not be exposed to x-rays. 

 

2.4 Basic Medical Imaging Methods 

Medical imaging can be used for both diagnosis and therapeutic purposes, making it one of our 

most powerful resources available to effectively care for our patients. 

In terms of diagnosis, common imaging types include: 

• CT (Computed Tomography) 

• MRI (Magnetic Resonance Imaging) 

• Ultrasound 

• X-ray 

They each work slightly differently to create images of what’s going on inside the body, so 

let’s look at them a little closer. 

 

http://smiswi.sasktelwebhosting.com/
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2.4.1 Ultrasound Imaging 

Ultrasound is the safest form of medical imaging and has a wide range of applications. 

There are no harmful effects when using ultrasound and it’s one of the most cost-effective 

forms of medical imaging available to us, regardless of our specialty or circumstances. 

Ultrasound uses sound waves rather than ionizing radiation. High-frequency sound waves are 

transmitted from the probe to the body via the conducting gel, those waves then bounce back 

when they hit the different structures within the body and that is used to create an image for 

diagnosis. 

 

 

Figure2 6: Ultrasound Probe  

Another type of ultrasound commonly used is the ‘Doppler’ – a slightly different technique of 

using sound waves that allows the blood flow through arteries and veins to be seen. 

Due to the minimal risk of using Ultrasound, it’s the first choice for pregnancy, but as the 

applications are so wide – emergency diagnosis, cardiac, spine and internal organs – it tends to 

be one of the first ports of call for many patients. 
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2.4.2 X-Ray Imaging 

X-ray imaging – the oldest but one of the most frequently used imaging types. We all know 

and have probably had at least one X-ray over the course of our lives. 

 

Discovered back in 1895, X-rays are a form of electromagnetic radiation. 

 

X-rays work on a wavelength and frequency that we’re unable to see with the naked, human 

eye, but can penetrate through the skin to create a picture of what’s going on beneath. 

 

Typically used for diagnosing issues with the skeletal system, X-rays can also be used to detect 

cancer through mammography and digestive issues through barium swallows and enemas. 

 

 

Figure2. 7: Setup of Ultrasound application 

X-rays are widely used as they are low cost, quick and relatively easy for the patient to endure. 

However, there are risks associated with the use of radiation for X-ray imaging. 
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Every time a patient has an X-ray they receive a dose of radiation. This can go on to cause 

radiation-induced cancer or cataracts later in life or cause a disturbance in the growth of an 

embryo or fetus in a pregnant patient. 

 

Most of these risks are mitigated by only using X-rays when strictly necessary, and correct 

shielding of the body. 

 

 

 

2.4.3 Computer Tomography (CT) 

CT or ‘CAT’ scans are a form of X-ray that creates a 3D picture for diagnosis. 

 

Computer tomography (CT) or computed axial tomography (CAT) uses X-rays to produce 

cross-sectional images of the body. The CT scanner has a large circular opening for the patient 

to lie on a motorized table. The X-ray source and a detector then rotate around the patient 

producing a narrow ‘fan-shaped’ beam of X-rays that pass through a section of the patient’s 

body to create a snapshot. 

 

Figure2. 8: CT Scan machine setup  
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These snapshots are then collated into one, or multiple images of the internal organs and issues. 

 

CT scans provide greater clarity than conventional X-rays with more detailed images of the 

internal organs, bones, soft tissue and blood vessels within the body. 

 

The benefits of using CT scans far exceed the risks which, like with X-rays, include the risk of 

cancer, harm to an unborn child or reaction to a contrast agent or dye that may be used. In many 

cases, the use of a CT scan prevents the need for exploratory surgery. 

 

It is crucial that when scanning children, the radiation dose has been lowered than that used for 

adults to prevent an unreasonable dose of radiation for the necessary imaging to be obtained. 

In many hospitals, you’ll find a pediatric CT scanner for that reason. 

 

 

2.4.3 Magnetic Resonance Imaging (MRI) 

MRI scans create diagnostic images without using harmful radiation 

 

Magnetic Resonance Imaging (MRI) uses a strong magnetic field and radio waves to generate 

images of the body that can’t be seen well using X-rays or CT scans, i.e. it enables the view 

inside a joint or ligament to be seen, rather than just the outside. 

 

Commonly used to examine internal body structures to diagnose strokes, tumors, spinal cord 

injuries, aneurysms, and brain function. 

 

Figure2. 9: MRI machine setup  
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As we know, the human body is made mostly of water, and each water molecule contains a 

hydrogen nucleus (proton) which becomes aligned in a magnetic field. An MRI scanner uses a 

strong magnetic field to align the proton ‘spins’, a radio frequency is then applied which causes 

the protons to ‘flip’ their spins before returning to their original alignment. 

 

Protons in the different body tissues return to their normal spins at different rates so the MRI 

can distinguish between various types of tissue and identify any abnormalities. How the 

molecules ‘flip’ and return to their normal spin alignment are recorded and processed into an 

image. 

 

MRI doesn’t use ionizing radiation and is increasingly being used during pregnancy with no 

side effects on the unborn child reported. However, there are risks associated with the use of 

MRI scanning and it isn’t recommended as a first stage diagnosis. 

 

As strong magnets are used, any kind of metal implant, artificial joint, etc., can cause a hazard 

– they can be moved or heated up within the magnetic field. There have been several reported 

cases where patients with pacemakers have died through the use of MRI. The loud noise from 

the scanner also necessitates the need for ear protection. 

 

One thing we do have to be aware of as medical professionals in a time of escalating medical 

costs and increasing demand is that we’re using the best resources available to meet the needs 

of our patients. That means a careful decision on the right medical imaging to be used for the 

patient and their potential diagnosis. 

 

 

2.5 Advantage of Using Ultrasound 

• No exposure to radiation: As the frequency range of the ultrasound is lower than the 

visible light and x-ray it does not have any radiation exposure. It is basically a sound 

wave frequency upper than 20,000 Hz. Frequencies used for medical diagnostic 

ultrasound scans extend to 10 MHz and beyond. As the frequency is low that means it 

is a weak signal and it has no radiation exposure problem like an x-ray. 

• No need of injecting anything into the body: As BUS mammography is a noninvasive 

process where ultrasound wave propagates through the body tissue and reflected back 
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which gives the image of the inner organ of our body. Here no needle is needed so it is 

very easy and not painful 

• No need of cutting a sample of tumor: In case of Biopsy it is needed to cut some 

portion of the tumor to analyze it whether it is benign or malignant. But here in BUS 

technique, there is no need of doing surgery and cutting the portion of the tumor. So, 

BUS technique is easy, fearless and painless. 

• No risk of an increased chance of cancer: Sometimes while doing a biopsy the benign 

tumor can turn into a malignant tumor because of some sort of infection and other 

things. But in the case of BUS technique as there is no chance of spreading of infection 

(as it is noninvasive), no risk of an increased chance of cancer. 

• Very cheap and economical: BUS technique is very much cheap. In every hospital 

and clinic have the Ultrasound imaging facility. Moreover, nowadays in a smartphone 

it is implemented. 

• No side effect on human tissue: BUS technique has no side effect on human tissue. It 

is very easy and harmless process. 
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                        Chapter 3 

   Methodology 

We have taken 2 different approaches to select the best frames. The pre-processing parts for 

both processes are same. The algorithm that we followed is given on the next page : 

 

 

Figure3. 1: Algorithm of the method  
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According to our proposal, the steps are given below: 

(1) Extracting frames from the video 

(2) Pre-processing Frames 

(3) Applying MPD & GLCM 

(4) Creating a video with the best frames 

 

 

3.1 Extracting frames from the video: 

As the strain video is comprised of several frames, first we have to extract them. The extracted 

frames should then be stored and later be used for processing. Each frame is pre-processed and 

then their image descriptors are found. 

 

3.2 Pre-processing Frames: 

We know that ultrasound doesn’t give high quality/resolution images. The frames are noisy 

and there are a lot of speckles. The first task is to reduce the noise and smoothing the frame 

without degrading the necessary information.  

One of the most challenging tasks in ultrasound image processing is pre-processing. As the 

variety of noise cannot be pre-determined and different frames introduce a different type of 

distortion, it is very difficult to select a common way of smoothing all the frames. After 

numerous trial and error, we found that the Wiener filter is pretty good to pre-process the 

frames. the Wiener filter is a filter used to produce an estimate of a desired or target random 

process by linear time-invariant (LTI) filtering of an observed noisy process, assuming known 

stationary signal and noise spectra, and additive noise. The Wiener filter minimizes the mean 

square error between the estimated random process and the desired process.  

In this filter, we are using both the Gaussian and the Median filter. The gaussian filter is a filter 

whose impulse response is a Gaussian function (or an approximation to it). Gaussian filters 

have the properties of having no overshoot to a step function input while minimizing the rise 

and fall time.  The median filter is a nonlinear digital filtering technique, often used to remove 

noise from an image or signal. Such noise reduction is a typical pre-processing step to improve 

the results of later processing. We applied the filter 7 times on a single frame to increase the 

smoothing effect. After filtering, speckle reduces significantly and tumor visibility increases. 
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 Before Pre-processing     After Pre-processing 

Figure3. 2: US Image of Pre & Post processing image 

3.3 Applying MPD & GLCM: 

To find out the information regarding the tumor visibility thus the best frames, we have applied 

two different ways. They are –  

1- Mean pixel Difference (MPD) method 

2- Grey Level Co-occurrence matrix 

 

3.3.1 MPD method: 

From the characteristics of BUS images, we know that the tumor area has fewer pixel values 

than the surrounding tissue. Thus, the tumor looks darker than the background.  

So, if we can select a region of interest with the tumor area as the center and take the average 

of the pixel value of that are, it will be comparatively lower than the average pixel value of the 

whole frame. Now, if in any frame, the tumor is noisy, meaning there are speckles in the frame, 

the mean pixel value is higher because of the white noise pixels inside the dark tumor area 

which have higher pixel values. So, the difference between the mean pixel value of the tumor 

and that of the whole frame is lower for the noisy frame. Again, frames with high tumor 

visibility have fewer speckles in the tumor area. That means the white noise pixels are much 

less in these cases. This results in a higher difference between the mean pixel value of the tumor 

and that of the whole frame.   

 

If we take the mean pixel difference as a key feature to distinguish between the frames, we can 

easily sort out the frames according to their visibility. Frames with a higher difference have 

better visibility and frames with a lower difference have lower visibility. 
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According to the described method, we manually select a region of interest in a frame. A vague 

idea about the location of the tumor can be obtained by going through the strain video once. 

On the basis of that, the tumor region can be selected. This region remains constant for all the 

frames. Then the mean pixel value of the selected region and the whole frame is calculated. 

The mathematical mean of the pixel values within both the whole frame and the selected tumor 

region can be found using the following equation:  

 

𝑃𝑖𝑥𝑒𝑙𝑎𝑣𝑒𝑟𝑎𝑔𝑒 =
∑ 𝑖𝑡ℎ 𝑝𝑖𝑥𝑒𝑙 𝑣𝑎𝑙𝑢𝑒 𝑁

𝑖=1

𝑁
 

 

Where N = Number of pixels within the area 

 

Then, we find out the difference between these. In this way, the mean pixel differences of all 

the frames are calculated and stored. Finally, we sort the frames according to MPD values. 

 

Due to human error, it might happen that the tumor doesn’t stay at the same point while taking 

the ultrasonography. It might move in a certain direction. In order to overcome this 

shortcoming, after selecting the inner tumor region, we move the selected area towards up, 

down, right, left, upper right, upper left, down right, down left and the minimum pixel average 

is taken as the tumor region mean pixel value, because of tumor region having relatively lower 

pixel values. 

 

 

3.3.2 GLCM:  

The other way to find the required frames is to calculate the Grey Level Co-occurrence Matrix 

(GLCM) properties for each frame as the image descriptor. GLCM is a texture character profile 

and this profile mention to touch i.e. smooth, silky, rough and so on. Among all of the features 

of GLCM, the property of ‘contrast’ was used.  In short form, it is called a CON. ’Sum of 

Square Variance’ is another name of Contrast. It defers the calculation of the intensity contrast 

linking pixel and its neighbor over the whole image. At constant image contrast value is 0. In 

contrast measure, weight increases exponentially (0,1,4,9) as persists from the diagonal. 
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∑ 𝑝(𝑖, 𝑗)|𝑖 − 𝑗|2
𝑖,𝑗        

Contrast is the difference in luminance or color that makes an object (or its representation in 

an image or display) distinguishable. In visual perception of the real world, contrast is 

determined by the difference in the color and brightness of the object and other objects within 

the same field of view [17]. GLCM.Contrast returns a measure of the intensity contrast between 

a pixel and its neighbor over the whole image. It is low if the tumor is visible and is uniform. 

If there is noise, making the tumor not visible, there is no uniformly distributed tumor region 

and the GLCM. Contrast value is relatively high. So, if the tumor is more visible in any frame, 

in other words, distinguishable from the surrounding tissue, it will have lower GLCM.Contrast 

value than the not visible ones.  

Following this process, we calculate the GLCM. Contrast property for each of the frames and 

sort them in ascending order. The corresponding frames are sorted at the same time and the 

required frames are found. 

 

3.4 Creating a video with the best frames: 

 We merge a required number of frames to form two videos where the tumor is most visible. 

10 best frames from both MPD and GLCM.Contrast methods are taken to form the videos. The 

doctor/radiologist may use these two videos to identify the tumor easily. There is no need of 

going through all the frames manually and sorting them out. 
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Chapter 4 

                     Result and Calculation 

 

4.1 Calculations: 

We’ve applied the process on 9 videos. Their error calculation is given in the table below:  
 

VIDEO 

INPUT 

BEST FRAMES No. 

(MANUAL) 

MPD GLCM 

(CONTRAST) 

ACCURACY OF 

MPD 

(PERCENTAGE) 

ACCURACY OF 

GLCM 

(PERCENTAGE) 

         1 43, 213, 248, 266, 156, 

84, 100, 105, 271, 45 

43, 213, 248, 266, 

145, 84, 100, 112, 

271, 45 

43, 213, 248, 266, 145, 

90, 100, 117, 271, 55 

        80%         70% 

         2 146, 124, 115, 120, 

122, 202, 205, 75, 165, 212 

146, 124, 115, 

120, 129, 202, 245, 

75, 165, 220 

155, 124, 85, 120, 131, 

202, 205, 75, 165, 221 

        70%         60% 

         3 228, 174, 171, 175, 

235, 92, 122, 165, 168, 172 

228, 174, 171, 

175, 235, 92, 122, 

165, 200, 179 

228, 174, 171, 183, 

235, 55, 130, 165, 168, 

181 

        80%         60% 

         4 26, 269, 309, 312, 271, 

77, 223, 228, 155, 161 

26, 269, 309, 312, 

271, 85, 223, 228, 

155, 161 

26, 285, 309, 322, 271, 

77, 223, 228, 175, 161 

        90%         70% 

         5 79, 211, 102, 106, 108, 

226, 56, 128,245, 250 

79, 211, 117, 106, 

108, 288, 56, 

128,245, 265 

79, 236, 102, 106, 117, 

226, 68, 128,245, 268 

        70%         60% 

 
 

Table 4.1: error calculation of 9 videos 
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Now the results of the videos are given serially: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

( a1 ) 

 

 

( b1 ) 
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( b9 ) 

Figure4. 1: (a)Results from MPD (Mean Pixel Difference) 

    (b)Result from GLCM 
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Chapter 5 

4 Discussion 

 

 

5.1 Demerits of Ultrasound 

In spite of possessing a lot of good sides of Ultrasound; it also has some bad sides as well. 

Those are: [49] 

• Ultrasound results may identify a potential area of concern that is not malignant. 

These false-positive results could lead to more procedures, including biopsies, that are 

not necessary 8.  Preliminary data from a trial being conducted showed that there was 

a higher rate of false-positive results with ultrasounds than with mammography 

(2.4%-12.9% for ultrasound and 0.7%-6% for mammography).  

• Although ultrasound is often used in an attempt to prevent an invasive measure for 

diagnosis, sometimes it is unable to determine whether or not a mass is malignant, and 

a biopsy will be recommended.  

• Many cancers cannot be detected via an ultrasound.  

• Calcifications that are visible on mammograms are not visible on ultrasound scans, 

thereby preventing early diagnosis of the portion of breast cancers that begin with 

calcifications.  

• Ultrasounds are not available everywhere, and not all insurance plans cover them.8 

• An ultrasound requires a highly experienced and skilled operator to detect a malignant 

lump, as well as good equipment. If the cancerous tissue is not detected at the time of 

the scan, it will not be caught as early as possible.  The ACR-accredited facilities 

database is a good way to determine the expertise of a facility in ultrasound imaging.  

 

Due to this, it is one of the toughest signals to deal with in terms of image processing. That’s 

why a lot of the images are seen very bad in shape. However, we are trying to proceed in 

future in a more efficient way to deal with it. 

 

 

 

 

 

 

 

 

 

 

https://www.cancerquest.org/index.php/patients/detection-and-diagnosis/ultrasound?fbclid=IwAR3sAb9_0uScu2nJACb89bW_i_UePuncOHoiT0KKbvVGABVB1tBCcuHXzbY#footnote8_jul37px
https://www.cancerquest.org/index.php/patients/detection-and-diagnosis/ultrasound?fbclid=IwAR3sAb9_0uScu2nJACb89bW_i_UePuncOHoiT0KKbvVGABVB1tBCcuHXzbY#footnote8_jul37px
http://www.acraccreditation.org/accredited-facility-search
http://www.acraccreditation.org/accredited-facility-search
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5.2 Future Work 

 The method that we’ve established is semi-automatic one. So, our next main priority is to 

make it fully automatic one. For that, we are going to implement the segmentation concept so 

that the system can automatically distinguish the segment of the tumor and the background. 

Then depending on the number of noises in the tumor section, it will sort the best frames. 

Then it will take the system one step ahead. 

 

Then we are planning to make the system a decision making one which will be acquainted 

with a lot of the parameters of cancer. Then it will be trained by a lot of malignant and benign 

tumors data. So, after that, it will be able to differentiate a malignant tumor from a benign 

tumor. 

 

 

So, this two furthermore approach will make a complete cancer detection software, which 

was our main target. 
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