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Abstract 

Breast cancer is the only cancer that is considered universal among women worldwide. 

Breast cancer is the most common cancer in American women, except for skin cancers. 

Currently, the average risk of a woman in the United States developing breast cancer 

sometime in her life is about 12%.  

 

Breast cancer is sometimes found after symptoms appear, but many women with breast 

cancer have no symptoms. This is why regular breast cancer screening is so 

important. There is no sure way to prevent breast cancer. 

 

Thus, early detection and treatment are crucial in minimizing breast cancer related 

deaths. Due to the inherent nature of ultrasound imaging such as uneven speckle 

patterns, no fixed threshold values, anisotropy and signal drop-out bio medical image 

processing is a challenging task. Automatic segmentation of BUS is very difficult due to 

uneven shape and imprecise boundary of breast lesions. 

 

In order to improve the problem prevalent in the existing methods, a complete 

qualitative analysis of Breast ultrasound (BUS) images for tumor detection is proposed 

in this thesis. The method involves four steps – (a) Speckle reduction using different 

filters, (b) Strain estimation by various methods, (c) 2D search for displacement and 

then application of 1.5D adaptive stretching and (d) Image segmentation for lesion 

detection. 
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1 Introduction 

 Breast Cancer Scenario: 

 

Breast cancer is the most commonly occurring cancer in women and the second 

most common cancer overall [1]. There were over 2 million new cases in 2018 [1]. 

Incidence rates vary greatly worldwide from 19.3 per 100,000 women in Eastern 

Africa to 89.7 per 100,000 women in Western Europe [2]. Belgium had the highest 

rate of breast cancer in women, followed by Luxembourg [1]. While most cases of 

breast cancer occur in women it does occur in men too, although this is rare (about 

1% of cases) [3]. Breast cancer survival rates vary greatly worldwide, ranging from 

80% or over in North America, Sweden and Japan to around 60% in middle-income 

countries and below 40% in low-income countries [4]. Breast cancer survival varies 

by stage at diagnosis. The overall 5-year relative survival rate is 99% for localized 

disease, 85% for regional disease, and 27% for distant-stage disease [5] Survival 

within each stage varies by tumor size. For example, among women with regional 

disease, the 5-year relative survival is 95% for tumors less than or equal to 2.0 cm, 

85% for tumors 2.1-5.0 cm, and 72% for tumors greater than 5.0 cm [6]. Cause of 

breast cancer is still unknown to us. That’s why early detection is very important for 

fruitful treatment. 
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  Breast Cancer detection procedure: 

 

       Tests and procedures used to diagnose breast cancer include: 

 

1.2.1 Breast exam:  

The doctor will check both of the breasts and lymph nodes in the patient’s 

armpit, feeling for any lumps or other abnormalities. 

 

1.2.2 Mammograms: 

Mammograms are low-dose x-rays that can help find breast cancer. A 

mammogram can often find or detect breast cancer early, when it’s small and 

even before a lump can be felt. This is when it’s easiest to treat. Types of 

Mammograms are given below. 

 

1.2.2.1 Screening mammograms:  

A screening mammogram is used to look for signs of breast cancer in women who 

don’t have any breast symptoms or problems. X-ray pictures of each breast are 

taken from 2 different angles. 

1.2.2.2 Diagnostic mammograms: 

Mammograms can also be used to look at a woman’s breast if she has breast 

symptoms or if a change is seen on a screening mammogram. When used in this 

way, they are called diagnostic mammograms. They may include extra views 

(images) of the breast that aren’t part of screening mammograms. Sometimes 

diagnostic mammograms are used to screen women who were treated for breast 

cancer in the past. 
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1.2.2.3 What do mammograms show? 

Mammograms can often show abnormal areas in the breast. They can’t prove 

that an abnormal area is cancer, but they can help health care providers decide 

whether more testing is needed. The 2 main types of breast changes found with a 

mammogram are calcifications and masses.  

 

1.2.3 Removing a sample of breast cells for testing (biopsy) 

A biopsy is the only definitive way to make a diagnosis of breast cancer [8]. 

During a biopsy, doctor uses a specialized needle device guided by X-ray or 

another imaging test to extract a core of tissue from the suspicious area. Often, a 

small metal marker is left at the site within patient’s breast so the area can be 

easily identified on future imaging tests. 

Biopsy samples are sent to a laboratory for analysis where experts determine 

whether the cells are cancerous. A biopsy sample is also analyzed to determine 

the type of cells involved in the breast cancer, the aggressiveness (grade) of the 

cancer, and whether the cancer cells have hormone receptors or other receptors 

that may influence your treatment options. 

 

1.2.4 Magnetic resonance imaging (MRI) 

MRI, or magnetic resonance imaging, is a technology that uses magnets and radio 

waves to produce detailed cross-sectional images of the inside of the body. MRI 

does not use X-rays, so it does not involve any radiation exposure. Breast MRI has 

a number of different uses for breast cancer, including: 
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 Screening high-risk women (women known to be at higher than average 

risk for breast cancer, either because of a strong family history or a gene 

abnormality) 

 Gathering more information about an area of suspicion found on a 

mammogram or ultrasound 

 Monitoring for recurrence after treatment 

 

 

Figure 1:1 A real MRI scanner 

Unlike a mammogram, which uses X-rays to create images of the breast, breast MRI 

uses magnets and radio waves to produce detailed 3-dimensional images of the breast 

tissue [9]. Before the test, patient may need to have a contrast solution (dye) injected 

into his arm through an intravenous line. Because the dye can affect the kidneys, doctor 

may perform kidney function tests before giving patient the contrast solution. The 

solution will help any potentially cancerous breast tissue show up more clearly. Some 

people experience temporary discomfort during the infusion of the contrast solution. 
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Cancers need to increase their blood supply in order to grow. On a breast MRI, the 

contrast tends to become more concentrated in areas of cancer growth, showing up as 

white areas on an otherwise dark background [9]. This helps the radiologist determine 

which areas could possibly be cancerous. More tests may be needed after breast MRI to 

confirm whether or not any suspicious areas are actually cancer. 

MRI screening is not recommended for women whose lifetime risk of breast cancer is 

less than 15%. Studies indicates that although MRI is underutilized among high-risk 

women, it is often used in women who are not at high risk for breast cancer [10]. 

 

Figure 1:2 Breast MRI 
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1.2.5 Ultrasound Imaging:  

Ultrasound imaging (sonography) is a diagnostic medical procedure that uses high-

frequency sound waves to produce dynamic visual images of organs, tissues or blood 

flow inside the body. The sound waves are transmitted to the area to be examined and 

the returning echoes are captured to provide the physician with a ‘live’ image of the 

area. Ultrasound does not require the use of ionizing radiation, nor the injection of 

nephrotoxic contrast agents. 

Ultrasound has several advantages which make it ideal in numerous situations, in 

particular, studies of the function of moving structures in real-time. It can be used to 

examine many parts of the body, such as the abdomen, heart and blood vessels, 

breasts, muscles, carotid arteries, and female reproductive system including pregnancy 

and prenatal diagnostics. Because of its non-ionizing nature, it is a good choice for 

imaging when radiation-sensitivity is a concern, such as in pediatrics or in women of 

child-bearing age. 

 

Figure 1:3 Ultrasound image of a baby 
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1.2.6 Basic Principle of B Mode Ultrasound: 
 

A B-mode image is a cross-sectional image representing tissues and organ boundaries 

within the body. It is constructed from echoes, which are generated by reflection of 

ultrasound waves at tissue boundaries, and scattering from small irregularities within 

tissues. Each echo is displayed at a point in the image, which corresponds to the relative 

position of its origin within the body cross section, resulting in a scaled map of echo-

producing features. The brightness of the image at each point is related to the strength 

or amplitude of the echo, giving rise to the term B-mode (brightness mode). Usually, the 

B-mode image bears a close resemblance to the anatomy, which might be seen by eye, 

if the body could be cut through in the same plane. Abnormal anatomical boundaries 

and alterations in the scattering behavior of tissues can be used to indicate pathology. 

 

To form a B-mode image, a source of ultrasound, the transducer, is placed in contact 

with the skin and short bursts or pulses of ultrasound are sent into the patient. These 

are directed along narrow beam-shaped paths. As the pulses travel into the tissues of 

the body, they are reflected and scattered, generating echoes, some of which travel 

back to the transducer, where they are detected. These echoes are used to form the 

image. 

 

To display each echo in a position corresponding to that of the interface or feature 

(known as a target) that caused it, the B-mode system needs two pieces of information. 

These are 

 The range (distance) of the target from the transducer and 
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 The direction of the target from the active part of the transducer, i.e. the 

position and orientation of the ultrasound beam. 

 

The 2D B-mode image is formed from a large number of B-mode lines, where each line 

in the image is produced by a pulse–echo sequence. In early B-mode systems, the 

brightness display of these echoes was generated as follows. 

 

As the transducer transmits the pulse, a display spot begins to travel down the screen 

from a point corresponding to the position of the transducer, in a direction 

corresponding to the path of the pulse (the ultrasound beam). Echoes from targets near 

the transducer return first and increase the brightness of the spot. Further echoes, from 

increasing depths, return at increasing times after transmission as the spot travels down 

the screen. Hence, the distance down the display at which each echo is displayed is 

related to its depth below the transducer. The rate at which the display spot travels 

down the screen determines the scale of the image. A rapidly moving spot produces a 

magnified image. 

 

 

Figure 1:4 Formation of a 2D B-mode image. The image is built p line by line as the beam is 
stepped along the transducer array. 
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Figure 1:5 Scan line arrangements for the most common B-mode formats 

 

 

There are many B-mode formats. These are (a) linear, (b) curvilinear, (c) trapezoidal, (d) 

sector and (e) radial. 
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An overview of the image acquisition using ultrasound is presented in Figure 1-6 and 

Figure 1-7. 

 

Figure 1:6 Basic Pulse-Echo Ultrasound System (Image Courtesy: Dr. S. Kaisar Alam, Rutgers 
University, NJ, USA) 

 

 

Figure 1:7 B-mode image formation (Image Courtesy: Dr. S. Kaisar Alam, Rutgers University, NJ, 
USA) 
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1.2.7 Challenges in Ultrasound image interpretation: 
 

Artifacts are presentations on the display which are added or omitted, or are of 

improper location, brightness, shape, and size compared with the true anatomical 

features. Some artifacts are useful in interpretation, while others may cause confusion 

and error. A good understanding of artifacts, why they arise and how to deal with them 

when they occur, is important in the practice of Ultrasound. Failure to recognize imaging 

artifacts may lead to complications, including incorrect needle placement or deposition 

of local anesthetic in the wrong location or hazardous areas. Artifacts are commonly 

observed during ultrasound-guided nerve blocks and may be related either to the 

tissues, the block needle, or both. The most common artifacts observed during US are 

either acoustic or anatomic. Acoustic artifacts are usually the result of incorrect 

assumptions during processing by the instrumentation. Anatomic artifacts are tissue 

structures which resemble the target nerve. These errors are also referred to as ‘pitfall 

errors’. 

 

1.2.8 Ultrasound imaging in Breast cancer detection: 
 

Ultrasonography (US) is currently considered the first-line examination in the detection 

and characterization of breast lesions including the evaluation of breast cancer [11]. Yet 

only few single-center cohort studies analyzing breast US in the framework of screening 

could be identified. In spite of mammography consider as the primary method for 

screening especially the noteworthy ability of micro calcifications detection. US is good 

in mass or mass- like lesion detection, especially in the dense breast population that 

proved by the study of ACRIN 6666 [11]. 

Some 35–45% of nonpalpable cancers are detected as micro calcifications in 

mammographic studies. These micro calcifications can sometimes be visualized by 
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modern ultrasound (US) equipment, but cannot be reliably identified as such without 

knowledge of mammography [12]. Palpable mass is not equal to advanced cancer and 

DCIS (Ductal carcinoma in situ) may present as a palpable mass. In pathologic nipple 

discharge, for detection of intraductal mass or hypoechoic irregularly subareolar mass, 

and differentiating between intraductal papillomas and carcinoma in situ and invasive 

cancer ultrasound, Ultrasound is a useful diagnostic tool superior to mammography and 

may be worth including in the routine evaluation. DCIS now accounts for as much as 

30% of breast cancers in the general screening population and approximately 5% of 

breast carcinomas in symptomatic women. 

Studies have demonstrated that using US images can discriminate benign and malignant 

masses with a high accuracy [7]. There is a high rate of false positives in mammography 

which causes a lot of unnecessary biopsies. In contrast, the accuracy rate of BUS 

imaging in the diagnosis of simple cysts is much higher [7]. 

Use of ultrasound can increase over all cancer detection by 17% [8] and reduce the 

number of unnecessary biopsies by 40% which can save as much as $1 billion per year in 

the United States alone. 

Breast ultrasound (BUS) imaging is better than mammography for various reasons, like 

it requires no radiation, ultrasound examination is more convenient and safer than 

mammography for patients and radiologists in daily clinical practice and it is also 

cheaper. 

That’s why, day by day Ultrasound is becoming a major tool for detecting breast cancer. 
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 Thesis Objectives 

The main aim of this thesis work is to facilitate diagnosis of breast cancer globally. The 

context of this thesis work is, “An approach to improve breast cancer detection by using 

various strain estimation methods and image segmentation on breast ultrasound (BUS) 

Images”. This includes qualitative analysis by strain estimation method like 1D 

(gradient) method, 1.5D, 2D, adaptive stretching and short-term correlation methods 

and then finally accurate breast lesion segmentation in US images. 

Therefore, the objective of this thesis work was to develop more robust, accurate and 

automatic breast lesion depiction and segmentation. This work is supposed to help 

physicians in commenting on the nature of the breast lesion. We hope that the 

outcome of this thesis will help in breast cancer treatment in future. 

 

1.4  Thesis Organization 

The thesis is organized in the following way: 

Chapter 2 (Background) presents the literature review and state-of-art situation of 

problem 

Chapter 3 Speckle and Noise Reduction using various filters 

Chapter 4 Various Strain Estimation methods from Breast Ultrasound (BUS) data 

Chapter 5 Working of adaptive stretching along with 2D strain estimation method 

Chapter 6 Breast Lesion Segmentation 

Chapter 7 Conclusion and Future scope of research: 
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2 Background 

 

 Related Work 
 

 

There have been many researches already done in this field. This field covers the vast 

area of Coded Excitation, Elasticity Imaging and Motion Estimation, Electrical 

Impedance, Image segmentation, Quantitative Ultrasound, Seed Imaging, Speckles and 

Speckle Reduction, Texture Analysis, Ultrasound Attenuation, Wavelets etc. [13],[14] 

 

There are many types of Elasticity Imaging. Among them Sonoelasticity & Strain 

estimation are main. Sonoelasticity imaging technique consists of the vibration 

amplitude pattern of the shear waves in the tissue under investigation is detected and a 

corresponding color image (similar to color Doppler display) is superimposed on the 

conventional grayscale image. A theory of sonoelasticity imaging was developed and in 

vitro results on excised human prostate were promising.[15],[16] 

 

Strain estimation is done by applying compression to the tissue and then calculate the 

difference between the pre-compression post-compression data. There are many ways 

of calculating the strain, like using correlation, adaptive stretching etc.[17],[18] 

 

Several papers have discussed automatic segmentation of known anatomic structures 

from medical images. Many of these algorithms rely on a priori shape information of the 

organ or structure of interest to segment it out, a priori shape information was used to 
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segment ventricular structures in echocardiograms.[19] The problem of segmenting 

ultrasonic breast lesions using these methods is the variance of their shape and the fact 

that often lesion margins are poorly defined. Region-based methods, e.g., fuzzy 

connectedness,[20] use some homogeneity statistics coupled with low-level image 

features like intensity, texture, histograms, and gradient to assign pixels to objects. If 

two pixels are similar in value and connected to each other in some sense, they are 

assigned to the same object. These approaches, however, do not consider any shape 

information. 

 

The problem of applying these techniques to finding ultrasonic breast lesions is that 

they cannot deal with shadowing artifacts. Posterior acoustic shadowing is a common 

artifact in ultrasound images. It appears as a dark area below the tumor. Pixels within 

this area have an intensity and texture similar to points within the tumor region and, 

consequently, will be classified as belonging to the lesion. 

 

Some researchers have proposed hybrid segmentation techniques. These approaches 

seek to exploit the local neighborhood information of region-based techniques, and the 

shape and higher-level information of boundary-based techniques. However, without 

manual intervention these hybrid techniques cannot distinguish other structures in the 

sonogram, e.g. subcutaneous fat, coopers ligaments, and glandular tissue, from the true 

lesion. [21] [22] 
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 Overview of Proposed Method: 

Overview of the proposed method can be broken into three steps. Firstly, strain 

estimation and finding out the lesion, then segmentation and lastly qualitative analysis. 

The flow chart of the proposed method is presented in Figure 2-1 

 

 

 

 

•Image segmentation

•Thresholding •Detection of Boundary Coordinates

Strain Estimation

•Short Term 
Correlation

•Gradient
•Adaptive Stretching 

Method Method

Speckle and Noise Reduction

•Wavelet Filter •Homomorphic Wavelet Filter

Ultrasound Signal

•Patient data •B mode image
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3 Speckle and Noise Reduction using various filters 

 

  Introduction: 
 

Medical images are usually corrupted by noise in its acquisition and Transmission. The 

main objective of Image denoising techniques is necessary to remove such noises while 

retaining as much as possible the important signal features [23]. 

In medical image processing, image denoising has become a very essential exercise all 

through the diagnosing process.   

Ultrasonic imaging is a widely used medical imaging procedure because it is economical, 

comparatively safe, transferable, and adaptable. Though, one of its main shortcomings 

is the poor quality of images, which are affected by speckle noise. The existence of 

speckle is unattractive since it degrades image quality and it affects the tasks of 

individual interpretation and diagnosis. Accordingly, speckle filtering is a central pre-

processing step for feature extraction, analysis, and recognition from medical imagery 

measurements [23]. 

In certain cases, for instance in Ultrasound images, the noise can restrain information 

which is valuable for the general practitioner. Consequently, medical images are very 

inconsistent, and it is crucial to operate case to case. An appropriate method for speckle 

reduction is one which enhances the signal to noise ratio while conserving the edges 

and lines in the image [24]. 
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 Application techniques: 

 Applied on the strain image directly. 

 Applied on displacement matrix and then found out strain. 

 Applied directly on RF data and then calculated strain. 

 Applied on the envelope of the RF data and found out the strain. 

 Applied on the B mode image. 

Among these five techniques the last two showed promising results.  

 

 Filters used: 

Some basic filter used initially 

• Median Filter (window size 5) 

• Ideal Filter (cutoff frequency 30) 

• Butterworth Filter (cutoff frequency 30) 

3.3.1 MEDIAN FILTER: 

The median filter is a nonlinear digital filtering technique, often used to 

remove noise from an image or signal. Such noise reduction is a typical pre-

processing step to improve the results of later processing (for example, edge 

detection on an image).  

The main idea of the median filter is to run through the signal entry by entry, 

replacing each entry with the median of neighboring entries. The pattern of 

neighbors is called the "window", which slides, entry by entry, over the entire 

signal. 
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 ( a )                                                                                      ( b ) 

Figure 3:1 Median filter on BUS: ( a ) Unfiltered image  ( b ) Filtered image 

3.3.2  IDEAL FILTER: 

 

An ideal low-pass filter completely eliminates all frequencies above the cutoff 

frequency while passing those below unchanged; its frequency response is a rectangular 

function and is a brick-wal filter.  

An ideal high-pass filter completely eliminates all frequencies below the cutoff 

frequency while passing those above unchanged; its frequency response is a rectangular 

function and is a brick-wal filter.  

                        

       ( a )                                                                                      ( b ) 

Figure 3:2 Ideal low pass filter on BUS: ( a ) Unfiltered image  ( b ) Filtered image 
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3.3.3  BUTTERWORTH FILTER: 

 

The Butterworth filter is a type of signal processing filter designed to have a frequency 

response as flat as possible in the pass band. It is also referred to as a maximally flat 

magnitude filter. 

 

                           

         ( a )                                                                                      ( b )  

Figure 3:3 Butterworth filter on BUS: ( a ) Unfiltered image  ( b ) Filtered image 

 

The above mentioned filters did not work well in reducing noise because these filters 

need a specific cut-off frequency for operation, but in our case of Ultrasound imaging 

the specific frequency range of noise is unknown. In this case filters having inherent 

characteristics of choosing threshold cut off frequencies automatically are of great 

interest. 
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 WAVELET FILTER: 

 

A wavelet is a wave-like oscillation with an amplitude that begins at zero, increases, and 

then decreases back to zero. It can typically be visualized as a "brief oscillation" like one 

recorded by a seismograph or heart monitor. Generally, wavelets are intentionally 

crafted to have specific properties that make them useful for signal processing. 

The main advantage of wavelet basis is that they despite having irregular shape are able 

to perfectly reconstruct functions with linear and higher order polynomial shapes, such 

as, rectangle, triangle, 2nd order polynomials, etc. Note that Fourier basis fail to do so, 

as in case of famous example of rectangle function at the edges. As a result, wavelets 

are able to denoise the particular signals far better than conventional filters that are 

based on Fourier transform design and that do not follow the algebraic rules obeyed by 

the wavelets. Wavelet transform can be used to set automatic threshold values. In the 

past few years, researchers in applied mathematics and signal processing have 

developed powerful wavelet methods for the multiscale representation and analysis of 

signals [25]-[27]. 

One widespread method exploited for speckle reduction is wavelet shrinkage. When 

multiplicative contamination is concerned; multiscale methods engage a preprocessing 

step consisting of a logarithmic transform to separate the noise from the original image. 

Then different wavelet shrinkage approaches are employed. The well-known technique 

of wavelet shrinkage Universal threshold (Visu shrink) that over-smooth images [28], 

[29]. This threshold was later improved by minimizing Stein’s unbiased risk estimator 

[30]. 
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3.4.1 Wavelet properties: 

 Scaling 

Scaling refers to the process of shrinking or stretching the signal in time. 

Scaling is inversely proportional to frequency. 

 Shifting  

Shifting a wavelet means delaying or advancing the onset of the wavelet along the 

length of the signal. 

 

3.4.2 Working principle of wavelet filter:  

 

This filter preserves both the high and low frequency components. Wavelet filter uses 

both low pass and high pass filters at different levels, which leads to different level 

decomposition. On each level the signal is subsampled by 2, as Nyquist theorem states 

that original signal can be retrieved from the intermediate signal only if the sampling 

frequency is not less than twice the frequency of the original signal. After the next level 

decomposition, the output extracted are the following four parameters:  

 

1) Approximate Image of the original matrix  

2) Vertical detail  

3) Horizontal detail  

4) Diagonal detail  
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Then the three detailed parameters are compared with zero, and if their values are 

close to zero it neglects all the detailed values. As a result, the approximate matrix can 

be considered as the output of filter containing both high and low frequency 

components, where the unwanted noise gets diminished. 

 

 

 

 

 

 

 

3.4.3 Results: 
 

             

      ( a )                                                                                      ( b )        

Figure 3:4 Wavelet filter on BUS, Case 1: ( a ) Unfiltered image  ( b ) Filtered image 
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         ( a )                                                                                      ( b )  

Figure 3:5  Wavelet filter on BUS, Case 2: ( a ) Unfiltered image  ( b ) Filtered image 

 

                

         ( a )                                                                                      ( b )  

Figure 3:6  Wavelet filter on BUS, Case 3: ( a ) Unfiltered image  ( b ) Filtered image 
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         ( a )                                                                                      ( b )  

Figure 3:7 Wavelet filter on BUS, Case 4: ( a ) Unfiltered image  ( b ) Filtered image 

The results suggest that after filtering the difference between the inside and outside of 

the lesion increases. The boundary of the lesions are easily visible and helps in image 

segmentation and post processing techniques.  

 

 HOMOMORPHIC WAVELET FILTERING: 

 

Homomorphic filtering is a generalized technique for signal and image processing, 

involving a nonlinear mapping to a different domain in which linear filter techniques are 

applied, followed by mapping back to the original domain. 

Homomorphic wavelet filter is a logarithmic filter used to remove multiplicative noise 

components. 

 Used to remove shading effect from an image due to uneven illumination. 

 The noise in a signal is most of the times present in an additive manner 

 But it can also be present in a multiplied manner.  

 F(x,y) = i(x,y) r(x,y) 
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 To get rid of these we can take the signal in logarithm and then pass it through 

wavelet filter. 

 

 

3.5.1 Results: 

 

 

                                             ( a )                                                                       ( b ) 

Figure 3:8  Homomorphic Wavelet filter on BUS : ( a ) Unfiltered image  ( b ) Filtered image 

 

 

The results for homomorphic wavelet filter were not as expected, the boundary of the 

lesion becomes imprecise.  

So, as we sum it up we can conclude that, wavelet filter performs the best in our BUS 

data set. 
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4 Various Strain Estimation methods from Breast Ultrasound data 

 

 1D Shear elastography probe [31] 

 

The 1D transient elastography probe was first developed at the Institut Langevin in 1995 

by Catheline et al. [32]. It consists of generating a transient impulse (little shock) on the 

medium and recording the shear wave that propagates within the medium by using an 

ultrasound transducer (Fig: 4.1). 

 

 

Figure 4:1 transient elastography probe 

The vibrator gives a low frequency pulse (adjustable from 10 Hz to 500 Hz) in the 

medium, creating, among others, a shear wave. The ultrasound transducer, which is 

placed on the vibrator, thus allows following, by axial intercorrelation of the ultrasound 

speckle and more than one thousand times per second, the propagation of the shear 

wave depending on the depth over time. We can then deduce the speed of the shear 

wave and thus the Young's modulus of the medium. 

 

https://www.sciencedirect.com/topics/medicine-and-dentistry/fibroscan
https://www.sciencedirect.com/science/article/pii/S2211568413000302#bib0080
https://www.sciencedirect.com/science/article/pii/S2211568413000302#fig0030
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First, the front face of the transducer acting as a piston gives a slight mechanical impulse 

on the surface of medium, which generates a spherical compression wave as well as a 

spherical shear wave [33]. The displacement generated, which is a function of depth and 

of time, is thus estimated by correlations of retro-diffused echoes (via ultrasound 

speckle) recorded at a framerate higher than one thousand time per second with a 

mono-dimensional ultrasound transducer (5 MHz) (fig: 4.2).  

 

 

Figure 4:2 Output from the probe 

 

Comparison between the (a) numerical simulation of the time/depth profile and the (b) 

Time/depth profile in a muscle in vivo. The extraction of the slope allows to work back 

to the speed of the shear wave and thus the Young's modulus of the medium. 

 

Finally, by measuring the phase for each depth, we extract the phase speed of the shear 

wave at the central frequency, leading to an estimation of Young's modulus by 

considering the medium to be homogeneous and non-viscous. This approach, which was 

initially designed for quality control in the food industry, was then applied to the 

medical field [34] and developed for the measurement of other mechanical parameters, 

such as anisotropy, viscosity or elastic non-linearity [35], [36], [37]. 

https://www.sciencedirect.com/science/article/pii/S2211568413000302#bib0085
https://www.sciencedirect.com/science/article/pii/S2211568413000302#fig0035
https://www.sciencedirect.com/topics/medicine-and-dentistry/in-vivo
https://www.sciencedirect.com/science/article/pii/S2211568413000302#bib0090
https://www.sciencedirect.com/science/article/pii/S2211568413000302#bib0095
https://www.sciencedirect.com/science/article/pii/S2211568413000302#bib0100
https://www.sciencedirect.com/science/article/pii/S2211568413000302#bib0105
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 1D strain estimation (gradient) method:  

 

When an elastic medium, such as tissue, is 

compressed by a constant uniaxial stress, all 

points in the medium experience a resulting 

level of longitudinal strain whose principal 

components are along the axis of 

compression. If one or more of the tissue 

elements has a different stiffness parameter 

than the others, the level of strain in that 

element will generally be higher or lower; a 

harder tissue element will generally experience    

less strain than a softer one. The longitudinal axial strain is estimated in one dimension 

from the analysis of ultrasonic signals obtained from standard medical ultrasound 

diagnostic equipment. This is accomplished by acquiring a set of digitized radio-

frequency (RF) echo lines from the tissue which is being recorded as “.eye” file and is 

then post processed using 1D strain estimator algorithm. There would be two 

corresponding pre and post compression data matrix. 

 

The local longitudinal strain is estimated as: 

𝑒11.𝑙𝑜𝑐𝑎𝑙 =
(𝑡1𝑏 −  𝑡1𝑎) − (𝑡2𝑏 − 𝑡2𝑎)

𝑡1𝑏 −  𝑡1𝑎

 

 

Figure 4:3 Pre & Post Compressed 
window 
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Where t1a is the arrival time of the pre-compression echo from the proximal window, 

t1b is the arrival time of the pre-compression echo from the distal window, t2a is the 

arrival time of the post-compression echo from the proximal window and t2b is the 

arrival time of the post compression echo from the distal window [38]. 

Flowchart for 1D strain estimation: 

 

 

Initially, the pre-compression echo signals were segmented into overlapping 1D 

windows. Using the above equation, correlation of the axial shift elements are being 

calculated using the pre and post compression data matrix. A segment from pre-

compression ith column was correlated with the corresponding segments of (in)th to 

(i+n)th post-compression column. 

Segmentation of tissue signal 
columns

Finding correlation thus axial shift 
of the segments 

Then finding the lateral shift of 
post-compression signal segment

Finding strain from displacement 
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Figure 4:4 Overlapping Windows 

For each post compression column, the maximum correlation was calculated, yielding 

2n+1 maximum correlation value. Then, we calculated which of these 2n+1 correlation 

value is the highest; in other words, which axial segment of the post compression data 

had the highest correlation with the pre-compression data segment. If the pre-

compression data segment (ith) had the highest correlation with the (i+k)th post 

compression data line segment, it meant that tissue deformed in such a way that the 

corresponding post-compression segment had shifted +k columns. Then the axial strain 

is simply the estimated using axial tissue strains based on the assumption of tissue 

incompressibility. 
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Results obtained using 1D strain estimator: 

 

Figure 4:5 Output from Gradient method 

 1.5D strain estimator: 

 

This strain estimator method is a modified version of the basic 1D strain estimator 

algorithm where the correlation is done both axially and laterally. The gradient (1D) 

operation introduces significant amount of noise into the strain estimates, especially for 

small correlation window sizes and/or large overlap between the successive correlation 

windows. 

However, to increase resolution, using a small correlation window size is desirable; 

moreover, to track rapid changes in elasticity, large window overlap may be used. 

Because no gradient (1D) operation is associated with this new estimator, it does not 

suffer from the noise amplification associated with gradient methods. Among the 
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techniques based on the estimation of tissue strain, elastography is based on estimating 

the tissue strain using a correlation algorithm. 

Whereas another elasticity imaging technique is based on estimating such strain using 

the phase information. In elastography, the local tissue displacements are estimated 

from the time delays between gated pre- and post-compression echo signals, whose 

axial gradient is then computed to estimate the local strain. [39] which leads to the 

detection of the shape of the lesion. 

 

Below is the flowchart for 1.5D Strain estimation method: 

 

 

 

 

 

Segmentation of tissue signal columns

Finding correlation thus axial shift of 
the segments 

Then finding the lateral shift of post-
compression signal segment

Pre-compression signals were compared with 
laterally shifted post-compression signal 
elements

Finding strain from displacement 
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Here is an illustration of the lateral shifting of compressed breast tissue: 

    

Figure 4:6 Lateral shifting windows 

When pressure is applied, different part of tissues deforms differently. This happens 

more when high pressure or stress is applied. As a result, different tissue part may move 

laterally in different directions and the segments of the pre-compression signal won’t 

correspond to post compression signal in the exact position. 

 

Figure 4:7 axially shifted 1.5D window elements 
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In the above image, the lateral correlation among pre and post compression elements is 

shown. In the time domain, the lags (displacements) between the segments of pre- and 

corresponding segments of post compression signal was determined. First difference 

between two consecutive displacements gives strain. 

 

The displacement map is computed by sliding the pre and post-compression windows 

and computing the displacement for each pre-compression window. 

 

Strain= ( i , j )th displacement – ( i+1 , j )th displacement 

where, i=row and j=column 

 

The strain map is computed using the above equation. 

 

Moreover, because of the compression of the tissue, the post compression signal is not 

an exact delayed replica of the recompression signal, resulting in decorrelation that 

increases with increasing strain. Moreover, in an elastically inhomogeneous tissue, the 

strains will vary and, thus, the stretching factor will have to be varied at different 

windows. This is why a global uniform stretching of the entire post compression RF line 

is not ideal for imaging real tissue.  

 

The elastic properties of soft tissues depend on their molecular building blocks, and on 

the microscopic and macroscopic structural organization of these blocks [29]. The 

standard medical practice of soft tissue palpation is based on qualitative assessment of 

the low frequency stiffness of tissue. Pathological changes are generally correlated with 

changes in tissue stiffness as well. Many cancers, such as scirrhous carcinoma of the 

breast, appear as extremely hard nodules [40]. [41] 
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Results obtained using 1.5D strain estimator:

 

      Figure 4:8 Output from 1.5D 

 Short term correlation method: 

 

In this method, the signal columns of tissue samples are further segmented into smaller 

windows and then correlation is done among those windows. In these cases, the output 

would be more precise as the speckles in each segment would be reduced. 

 

One static approach or quasi-static to elasticity displacement imaging at the is body to 

apply a surface creating deformation within the tissue. Induced internal displacements 

and corresponding strains must then be estimated. 

 

Correlation-based speckle tracking methods are commonly used in ultrasonic elasticity 

imaging to estimate tissue displacement. If the strain is estimated from the 

displacement derivative, any displacement noise will be amplified. Therefore, 
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displacement measurements need to have small error. Induced strain in tissue 

compounds the problem, however, because it reduces signal coherence leading to 

increased error in displacements estimated using correlation. [42]  

 

The results demonstrate that high resolution, high SNR strain estimates can be 

computed using small correlation kernels (on the order of the autocorrelation width of 

the ultrasound signal) and correlation filtering. The results of these studies, detailed 

here, will show that a short correlation kernel along with filtering of the correlation 

functions produces a high strain SNR with high spatial resolution. 

 

A solution to this problem is short term correlation elastography method. In this 

method, smaller windows are taken within the correlation windows in the pre and post 

correlation windows.  

The effect of the windowing 

function can be reduced if T 

becomes smaller. In the same 

way that reducing the strain 

causes the window term to 

approach a delta function, 

reducing T also produces a near 

delta function. 

Figure 4:9 Short term correlation (without variable windows) 
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Obviously, T cannot be reduced to zero because the cross-correlation function will 

broaden due to other terms. As noted earlier, the variance of the time-delay estimate is 

reduced if the width of the cross-correlation coefficient function is kept as small as 

possible. As T decreases, the combined effects of the window and distortion terms 

reduce to a delta function. Consequently, the expected value of the cross-correlation 

function reduces to a shifted and scaled version of the autocorrelation function 

 

As the window is reduced below the autocorrelation width of the ultrasound pulse, 

however, the normalization terms fluctuate wildly. These fluctuations can increase the 

variance in the estimated time delay greatly, and even produce peak hopping errors (see 

below). 

 

Thus, for a given pulse, p(t), there should be an optimum window length T such that the 

time delay variance is minimized. To explore the effect of window length on time-delay 

estimates, a simple 1-D deformation simulation was developed. 

 

In the limit of large electronic SNRs, the variance in the time-delay estimate is inversely 

proportional to the second moment of the signal cross spectrum (i.e. the Fourier 

transform of the cross-correlation function).  

 

This means, as the correlation peak broadens, the second derivative at the peak 

decreases in magnitude, and the variance in the estimated time delay increases. To 

minimize the width of the correlation function near its peak value, and thus minimize 

time-delay error, the effects of strain must be reduced. One way to do this is to time 

compand, or temporally stretch, the deformed signal prior to Correlation. 
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Below is the flowchart for Short term correlation: 

 

     

Segmentation of tissue signal 
columns

Further segmentation of signal columns 
into smaller sub windows

Finding correlation thus axial shift of the sub 
windows 

Calculating the mean/median among the corresponding 
sub windows

Finding displacement between pre and corresponding accurate 
post compression signal 

Finding strain from displacement 
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 Steps for Short term correlation algorithm: 

 

1. Initially, the pre and post-compression signals were segmented into overlapping 

primary larger windows.                                       

2. Then again, the pre and post compression window are subdivided into smaller 

sub windows. Then the corresponding sub windows from pre and post 

compression windows are correlated.         

          Figure 4:10 Correlation matrix 

3. After correlation, we get a 2D array 

of correlation matrix (Fig: 4.10) 

4. Then we take the mean/median of 

corresponding positions of that 

matrix. 

5. Then find out the maximum 

correlation from that single row of 

correlation matrix. 

6. Finding the corresponding lag for 

which max correlation occurs. 

7. Placing the corresponding 

maximum lag data in each element 

of the matrix.  

9. Then we plot a diagram based on the displacement 

matrix. (Fig: 4.11) 

10. Strain is calculated from the difference between two 

consecutive displacements. 
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11. The strain map is computed by sliding the pre and post compression windows 

and computing the displacement for each pre-compression window. Below is the 

equation for strain map: 

 

Strain= ( i , j )th displacement – ( i+1 , j )th displacement 

where, i=row and j=column 

 

         

Figure 4:11 Displacement matrix 

 

The tradeoffs between window size and variance, the resolution also must be 

considered. The smaller window gives increased spatial resolution and reduced 

variance. One of the main advantages of this technique over strain compensation by 

time companding is its simplicity. Because it is very simple, real-time implementation in 

hardware has been explored. 

 

Temporal stretching, however, is a computationally intensive algorithm because 

companding compensation must be searched and the time scaled signal recomputed for 
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every value of Q tried [43]. These computations are in addition to correlation 

calculations. The performance of the short-term correlation estimator may be improved 

using estimates of the strain to compand the correlation function prior to filtering, as in 

the deskewed short-time correlator by Betz [42]. 

 

However, companding adds additional complexity and, from explorations using 1-D 

simulations, the improvement is slight, even when the strain is constant and known 

exactly. Additionally, if nonoverlapping windows are used, as by Betz [42], the resolution 

of the estimate will be reduced. The displacement and strain estimator presented here 

is not intended to be the final step in producing an elasticity image. The algorithm is 

designed to produce estimates suitable for elasticity reconstruction. The resulting 

Young's modulus image removes many of the strain artifacts caused by boundary 

conditions. 

 

In general, the complete strain tensor is required for elasticity reconstruction, so 2-D 

tracking provides the necessary lateral displacements in addition to maximizing the 

correlation. Lateral estimates can be improved greatly prior to reconstruction using 

incompressibility processing [44],[45]. 

 

Additionally, multiple displacement arid strain estimates can be accumulated to larger 

average strains, improving the strain SNR. This also will allow multiple displacement 

estimates computed at different average strain values to be combined so low arid high 

strain regions in the image can be processed at different average strains to optimize 

strain SNR throughout the image [44]. 

 

Another modified version of short-term correlation was also experimented with, where 

there would be smaller windows within smaller windows of axially shifting windows. 
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This sort of looping algorithm is said to improve the image resolution and include all the 

windows and give a better lesion segment.  But due complexity of code, it doesn’t 

perform well. 

 

 

Figure 4:12 Short term correlation with variable windows 
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 Steps for Modified Short term correlation: 

 

1. Now the Smaller pre-compression sub window was taken 192 and the post-

compression sub window were taken 128. 

2. Then the corresponding sub windows from pre and post compression windows 

are correlated. 

Rest Steps 3 – 12 as like before. 

 

The short-term correlation algorithm was experimentally tested using: 

 Mean (Constant overlap = 10px, Variable windows = 48px, 64px, 80px) 

 Median (Constant overlap = 10px, Variable windows = 48px, 64px, 80px) 

 

Results of Short-term correlation 

Figure 4:13  Mean results 

 



45 
 

Figure 4:14 Median results 

 

  

Conclusion to short term correlation: 

1. Taking mean of the correlation among the sub windows gives better result than 

taking median. 

2. In both the case of mean and median, taking smaller sub windows produces 

better results. 

3. Using variable window sizes, we get better results in identifying the lesion. 
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5 Adaptive stretching along with 2D strain estimation method 

 

 Adaptive Stretching 

 

In elastography, in addition to the electronic noise, a principal source of estimation error 

is the decorrelation of the echo signal as a result of tissue compression [46]. Temporal 

stretching of post compression signals previously was shown to reduce the 

decorrelation noise. In this technique, a novel estimator is introduced that uses the 

stretch factor itself as an estimator of the strain. It uses an iterative algorithm that 

adaptively maximizes the correlation between the pre- and post-compression echo 

signals by appropriately stretching the latter. 

Conventional elastography [47] is a gradient based method, where the strain is 

estimated from the first difference of the time delays between two successive signal 

segments. 

The gradient operation introduces significant amount of noise into the strain estimates, 

especially for small correlation window sizes and/or large overlap between the 

successive correlation windows. 

However, to increase resolution, using a small correlation window size is desirable; 

moreover, to track rapid changes in elasticity, large window overlap may be used. In this 

article, we propose a novel estimator based on temporal stretching [48], [49] of the post 

compression echo signals. 

 

 



47 
 

 2D Strain estimation 

 

Clinical US scanners typically provide only 2-D images, only a few 2-D techniques have 

been reported to date. Most of them  model  2-D  local displacement  as  a  translation  

in  both  axial and  lateral  (perpendicular  to  the  US  beam’s  propagation  axis  in the  

image  plane)  directions,  and  then  compute  strain  estimates as  the  displacement  

gradient.  The simplest approach is the 2-D speckle tracking [50]. 

 

 

After the physician applies a certain pressure with the transducer while sending the 

Ultrasound signal the muscles are displaced both in lateral and axial direction.  By 

applying the 2D search method we try to find out how much the post compression data 

are shifted from the pre-compression data as a consequence of the muscle or tissue 

displacement. 

 

On a different note, we can consider 2D Strain estimation method as a technique which 

combines both 1D and 1.5D in its operation. 
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 METHOD OF APPLICATION: 

 

 

 

 

 

 

 

2D search on the pre and post 
compression data

Displacement matrix

Alignment of pre and post 
compression data

Application of 1.5D adaptive 
stretching 
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 Explanation of operation:  

 

In 2D search, both the lateral and axial shift of the post compression signal is taken into 

consideration together. Here, two-dimensional window of pre and post compression 

data are taken and correlation is performed throughout the pre-compression window 

until the maximum correlation is found.  

 

The post compression window is taken such that it is larger in size laterally and smaller 

in size axially compared to the pre-compression window. It is chosen in this specific 

manner because after the application of strain body muscle and tissues deform in 

similar pattern. 

 

This gives the information about how much the post compression data shifted from the 

pre-compression one. From this the post and pre-compression data can be aligned using 

the displacement matrix. 1.5D adaptive stretching is applied on the new aligned data 

and then strain estimation is performed.  

 

This leads to the strain estimation of a post compression data with its corresponding 

pre-compression data, which if not aligned using 2D displacement matrix would not be 

possible. 
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Axial displacement                                                                      Pre-compression data 

a     

     

                              

     

     

     

 

Lateral displacement                                                                  Post-compression data 

b     

     

     

     

     

     

 

 

 

For the first window of the pre-compression data, the post compression data is shifted 

“a” rows axially and “b” columns laterally so that now 1.5D adaptive stretching takes 

place between aligned pre and post data. 

     

     

     

     

     

     

     

     

     

     

Shifted window (“a” units axially, 

“b” units laterally) 
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 RESULTS: 

 

                                                                                 (a) 

 

                                                                             (b) 
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                                                                           ( c ) 

Figure 5:1 processed data at different applied: (a) at 1% strain                                                                                  
(b) at 2% strain   (c) at 4% strain 

 

 

The result suggests that as percentage of applied strain increases the number of clearly 

visible lesions decreases. Usually the strain applied by physicians are not more than 2% 

so the results above 2% are not of major concern here. 
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                                                                               (a) 

                  

 

                                                                                 (b) 
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                                                                         (c) 

Figure 5:2 Processed data at different post window size at 2% strain: (a) row size-8, column size-
12 (b) row size-16, column size-24 (c) row size-32, column size-40 

 

The results above show the effect of post window size on the detection of lesion. It is 

observed that as post window size increased the visibility of lesions increased. 
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6 Breast Lesion Segmentation 

 

 Ultrasound Image Segmentation: 

 

ULTRASOUND (US) image segmentation is strongly influenced by the quality of data. 

There are characteristic artefacts which make the segmentation task complicated such 

as attenuation, speckle, shadows, and signal dropout; due to the orientation 

dependence of acquisition that can result in missing boundaries. Automatically 

detecting tumors and extracting lesion boundaries in ultrasound images is difficult due 

to their specular nature and the variance in shape and appearance of sonographic 

lesions. Past work on automated ultrasonic breast lesion segmentation has not 

addressed important issues such as shadowing artifacts or dealing with similar tumor 

like structures in the sonogram. Further complications arise as the contrast between 

areas of interest is often low. However, there have been recent advances in transducer 

design, spatial/temporal resolution, digital systems, portability, etc., that mean that the 

quality of information from an ultrasound device has significantly improved 

[51],[60],[61]. This has led to increased use of ultrasound in not only its traditional area 

of application, diagnosis (and CAD), but also emerging areas such as image-guided 

interventions and therapy. Thus, there is currently a re-emergence of interest in 

understanding how to do one of the oldest image processing tasks, image segmentation, 

applied to ultrasound data.  

In our study, we focused on detecting masses which could either be benign cysts or 

malignant tumors. Toward this end, we concentrated on three different sonographic 

features in order to help us distinguish the masses from glandular and fatty tissue and 

posterior acoustic shadowing.[62],[63] We used the spatial distribution of the various 

anatomic structures within the breast, echogenicity of the lesion, and its internal echo 
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pattern, as our three discriminating sonographic features. With the ultrasound 

transducer placed on the ROI, the lesion appears roughly in the middle of the image. 

The skin appears as a bright linear echo near the top of the image. Subcutaneous fat 

typically appears just below the skin region. Coopers ligaments appear as septum-like or 

tent-like structures that arise from the surface of the breast parenchyma. The glandular 

region is separated from the subcutaneous fat by the superficial fascia. The ribs appear 

in the lower most part of the image and are associated with dense posterior acoustic 

shadowing [52]. Internal echo pattern refers to the texture or arrangement of echoes 

within a focal sonographic lesion. A nonhomogeneous arrangement with few echoes, or 

even more, is suspicious for malignancy. A homogeneous internal echo pattern is more 

characteristic of subcutaneous fat. The echogenicity of a focal lesion is assessed in 

relation to the echo characteristics of adjacent tissues. The various grades of 

echogenicity are stated in reference to known structures, i.e., fat and glandular tissue. If 

a focal lesion appears less echogenic than fat, it is described as “almost anechoic.” Such 

a lesion would appear darker than the surrounding fatty tissue. A “hypoechoic” focal 

lesion is less echogenic than glandular structures but more echogenic than fat (i.e., it 

appears darker than the glandular tissue but lighter than the fatty tissue). “Isoechoic” 

closely approximates the echogenicity of the glandular structures, while “hyperechoic” 

is used when the focal lesions appear brighter than the surrounding glandula tissue. 

Hence, both cysts and malignant lesion appear darker than glandular tissue or fat which 

are usually either isoechoic or hyperechoic. Subcutaneous fat, on the other hand, is 

usually hypoechoic. 
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 Work Flowchart: 
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There are several steps of image segmentation technique. 

 Gray level thresholding 

 Automatic ROI generation 

 Edge detection 

 

 Gray level thresholding: 
 

We used a basic thresholding technique to create the segmented binary image. The 

pixels having gray level intensity greater than threshold value are in the foreground 

region. The pixels having gray level intensity less than threshold value are in the 

background region. 

To select the thresholding value, we iteratively select thresholds based on the histogram 

and breast lesion’s spatial characteristics. No training or empirical based threshold value 

is needed. The advantage of this iterative method is that it can be used for a US image 

without any requirement for image resource consistence or human interaction to tune a 

reasonable threshold value. Only the information of current US image is needed to 

determine the proper threshold.  

We first calculate all the local minimums of the image histogram. A good threshold 

which can properly separate the lesion from the background should be one of these 

local minimums. Starting from the smallest to biggest, we evaluate every local minimum 

until we find the proper one. The iteration is described below: 1. Let t equal to the 

current local minimum of the histogram. Binarize and reverse the de-speckled image 

using threshold t (lesion becomes white and background is black) to get Ib. If the ratio of 

the number of foreground points and the number of background point is less than 0.1, 

let t equal to next local minimum. Continue until the ratio is no less than 0.1. 2. Perform 



59 
 

dilation and erosion on Ib to remove noise. 3. Find all the connected components in Ib. 

If none of the connected components has intersection with the image center region (a 

window about 1/2 size of the whole image and centered at the image center), let t equal 

to the next local minimum. Continue until there is a connected component has 

intersection with the center window.  After applying the above 3 steps, a proper 

threshold t is chosen to binarize the image into background and foreground. Because 

the iterative threshold chosen process starts from the smallest local minimum and 

increases gradually based on the possible lesion to image ratio, it can avoid the 

problems that foreground is too large (lesion is connected with other tissues) or too 

small (lesion is not included into the foreground).   

 

 Automatic ROI generation 

 

Since BUS images contain many different structures (tissues, fat, muscles, etc.) and the 

lesion area is usually a small part of the entire image, finding the region-of interest (ROI) 

is quite helpful for improving the speed and accuracy of segmentation. There are two 

typical ROI definitions: some papers defined ROI as an initial contour of the lesion (Liu et 

al. 2009; Madabhushi and Metaxas 2003)[53],[54], while others defined ROI as a 

rectangle region containing both lesion and some background information (Joo et al. 

2004; Yap et al. 2008).[55],[56] In this article, we use the second definition and develop 

an automatic ROI generation method consisting of two parts: automatic seed point 

selection and region growing. Region growing is chosen because of its simplicity and fast 

speed. The accuracy of region growing method is not high enough for BUS images. 

However, the aim of ROI generation is only roughly locating the lesion rather than 

finding the accurate boundary. Therefore, region growing fits the purpose very well. 
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  Edge Detection: 

 

Delete the boundary – connected regions. After binarization, we find all the connected 

components. Each connected component represents a possible lesion region. Besides 

the real lesion, there are some regions connected with the boundary and they always 

have big areas. If a boundary region does not intersect with the center window (a 

window about 1/2 size of the entire image and located at the image center), this region 

is deleted from the lesion candidate list. 

 

Now the left regions are either not connected with the boundary or having intersection 

with the image center window. We use the following score formula to  

Rank each left regions. The one with the highest score is considered as the lesion region.   

 𝑆𝑛 =
√𝑎𝑟𝑒𝑎

𝑑𝑖𝑠(𝐶𝑛 ,𝐶0)∗𝑣𝑎𝑟(𝐶𝑛)
 ;                               n = 1, …, k   

Where k is the number of regions, Area is the number of pixels in the region, Cn is the 

center of the region, C0 is the center of the image, and var(Cn) is the variance of a small 

circular region centered at Cn. In the implementation, we slightly moved the image 

center C0 to the upper part of the image (around row/4) based on our observation that 

a lesion frequently appears in the upper part of an image and shadow frequently 

appears in the lower part of an image. [57],[58] 
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 Results: 

In the first case we can see the boundary 

Is well detected. The boundary is complex 

in size. From this we can say that it is  

malignant or cancerous.[59] This decision can 

with more surety by doing quantitative  

analysis.   

 

For the second case the boundary is  

also well detected. The region is  

uniform and regular in size. We can 

predict that it is benign or non-cancerous 

lesion.                                                                                     

 

 

The third case is similar to the second 

case. It’s boundary is also well &  

regular in size which hints that it is  

probably non-cancerous. 

 

 

 

 

Figure 6:1 Case 1 

Figure 6:2 Case 2 

Figure 6:3 Case 3 
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In the fourth case, it could detect only  

one lesion region where we can see  

that there are two lesions. Decisions  

about the lesion can’t be taken from  

this segmented image. 

 

The algorithm detected the boundary 

coordinates completely wrong this  

time. The reason behind this is  

probably there is no well defined  

lesion in this image.  

 

 

In case six, the lesion area also consists  

some white parts inside the boundary 

which is completely wrong. So there 

is scope for further improvement in this 

algorithm. 

 

 

 

 

Figure: 6.6 

Figure: 6.4 Case 4 

Figure: 6.5 Case 5 

Figure: 6.6 Case 6 

 

Figure 6:4 Case 4 

Figure 6:5 Case 5 

Figure 6:6 Case 6 
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7 Conclusion and Future scope of research: 

Diagnosis of breast cancer has been widely improved since the development of high-

resolution ultrasound equipment. In the past, ultrasound was only considered useful for 

the diagnosis of cysts. Meanwhile, it improves the differential diagnosis of benign and 

malignant lesions, local preoperative staging and guided interventional diagnosis. 

We proposed a method to improve breast cancer detection by using various strain 

estimation methods and Image segmentation on ultrasound Images which would 

produce a well processed breast lesion. From the shape and orientation of the lesion 

physician can comment on the nature of the tumor. Which would lead to further 

treatment that could be started accordingly. 

 

There are significant improvements possible in our method. So some of our future work 

will include the followings: 

 

 The proposed wavelet filter can decompose only up to 2 level, in future we will 

try to increase the level of decomposition for fine scale analysis. 

 The proposed 2D search method works well only for strain less than 2%, in future 

we will try to make it work well with increased applied strain.  

 The adaptive stretching method used was in time domain, in future we would like 

to apply it in frequency domain. 

 The proposed segmentation technique does not identify imprecise and multiple 

lesions in a BUS image, we would like to develop our algorithm in such a way that 

lesions other than the significant ones could be identified as well in near future.  
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