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ABSTRACT

Efficient coupling of light between the dielectric waveguide and plasmonic waveg-

uide has been investigated theoretically in three dimensions. An air gap based

nanoplasmonic semi-elliptical structure of Silicon (Si) is used as a coupler which

connects these waveguides. Finite Integration Technique (FIT) has been deployed

for this investigation. Theoretical coupling efficiency of ∼ 85% at optical commu-

nication wavelength (1.55 µm) has been achieved through numerical simulations.

The dependency of coupling efficiency has been investigated by varying the curva-

ture of the semi-elliptical coupler, the air gap width between the two waveguides

and the plasmonic width of the Ag-Air-Ag waveguide, and an optimal dimension

of the proposed structure has been obtained. Different performance parameters like

coupling efficiency, reflection coefficient, Voltage Standing Wave Ratio (VSWR), and

return loss have been analyzed with the obtained optimal dimensions. Broad range

of operating frequency, tolerance to angular and air gap misalignment and excellent

agreement to a demonstrated experimental coupler has made the proposed coupler

distinctive.

ii



Chapter 1

INTRODUCTION

Plasmonics, capable of unifying electronics and photonics [1], is one of the promis-

ing sub-disciplines of Nano-photonics, which has attracted much attention in recent

years due to its incredible ability to suppress diffraction limit. This limit is a criti-

cal challenge to the manipulation of light in subwavelength scales (i.e. scales much

smaller than the wavelength of light) [2]. Consequent achievement of which is the

localized electromagnetic energy (at communication wavelength) into nanoscale re-

gions as little as just a few nanometers [3]. Plasmonics with its unprecedented ability

of light confinement and substantial light-matter interactions has already opened up

many opportunities like subwavelength imaging and superlenses [4], chemical and

biological sensing [5], plasmonic solar cells [6], plasmonic metamaterials [7], plas-

monic nanostructures with DNA [8], self-assembly [9] and so on. These interdisci-

plinary applications prospects how far plasmonics can go.

1.1 Overview of Surface Plasmon Polariton

Surface plasmon polaritons are electromagnetic excitations propagating at the inter-

face between a dielectric and a conductor, evanescently confined in the perpendic-

ular direction. These electromagnetic surface waves arise via the coupling of the

1



electromagnetic fields to oscillations of the conductors electron plasma.

The eigen modes of an interface between a dielectric and a metal are surface plas-

mon polaritons (SPPs). We refer to them as eigen modes in the sense that they are

solutions of Maxwell’s equations that can be formulated in the absence of an inci-

dent field. On a flat interface between dielectric and metal half-spaces with dielec-

tric constants d and m, respectively, SPPs are transverse magnetic (TM) plane waves

propagating along the interface. Assuming the interface is normal to z and the SPPs

propagate along the x direction, the SPP wave vector is related to the optical fre-

quency through the dispersion relation,

kx = ko

√
εdεm

εd + εm
(1.1)

Where ko is the free space wave vector. We take to be real and allow to be com-

plex, since our main interest is in stationary monochromatic SPP fields in a finite

area.

1.2 Literature Review

Plasmonic waveguides have been anticipated to be an eligible candidate for the

upcoming highly-integrated photonic circuits. Several distinct plasmonic waveg-

uides have been proposed and analyzed so far, such as metal nanoparticle plasmon

waveguides [10], integrated metal slot waveguide [11], hybrid plasmonic waveg-

uides [2, 12], stripe waveguides [13] and so on. Particularly, Metal-Dielectric-Metal

(MDM) plasmonic waveguide has the incredible ability to guide optical signals in

subwavelength scale through Surface Plasmon Polaritons (SPPs). Research work on

MDM configuration of SPP waveguides has made major advances in superlens [14],

hyperlens [15], combiners [16], splitters [17], Bragg reflectors [18] and many more.



Above all, there is a trade-off between the mode confinement and propagation

length of these MDM plasmonic waveguides. This limitation of propagation length

is due to the propagation loss of SPP in one of the major constituent material, metal.

To overcome this problem it is imperative to use both dielectric waveguide and

MDM waveguide in the same platform. Propagation loss will be compensated by

the dielectric waveguide and for dealing with subwavelength scale optoelectronic

devices, MDM waveguides will be utilized. Thus, it is indispensable to place a

coupler between the two waveguides following the essence of efficient coupling

between them. Several techniques for efficient coupling have been proposed like

nano-plasmonic coupler with multi-section tapers [19], nanoplasmonic air-slot cou-

pler [20], λ/4 coupler [21], adiabatic and non-adiabatic tapered plasmonic coupler

[22] etc.

Main focus has been given on designing the semi-elliptical coupler. An air gap

based nanoplasmonic semi-elliptical structure of Silicon (Si) is used as a coupler

which connects these waveguides. Finite Integration Technique (FIT) has been de-

ployed for this investigation. Theoretical coupling efficiency of ∼ 85% at optical

communication wavelength (1.55 µm) has been achieved through numerical simula-

tions. The dependency of coupling efficiency has been investigated by varying the

curvature of the semi-elliptical coupler, the air gap width between the two waveg-

uides and the plasmonic width of the Ag-Air-Ag waveguide, and an optimal dimen-

sion of the proposed structure has been obtained. Different performance parameters

like coupling efficiency, reflection coefficient, Voltage Standing Wave Ratio (VSWR),

and return loss have been analyzed with the obtained optimal dimensions. Broad

range of operating frequency, tolerance to angular and air gap misalignment and ex-

cellent agreement to a demonstrated experimental coupler has made the proposed

coupler distinctive.



1.3 Thesis Objective

The main objective of the thesis is to accomplish novel and optimum designs of

plasmonic nanostructures with pragmatic applications. In short the objectives can

be described as follows:

• Implementing FIT algorithm and dispersion parameters of materials in CST

Microwave Studio (CST MWS).

• Designing the Semi-elliptical coupler with uniform air-gap

• Obtaining the optimum dimensions of the coupler

• Determining the performance parameters of the coupler such as coupling effi-

ciency, reflection coefficient, Voltage Standing Wave Ratio (VSWR), and return

loss.

• Obtaining the relative permitivity of heavily doped InP (Indium Phosphide)

for different doping concentration.

• Exploring performance of different plasmonic gates



Chapter 2

SPP PROPAGATION THEORY

2.1 Introduction

Surface Plasmon Polaritons (SPP) are electromagnetic excitation that propagate in a

wave like manner along a metal-dielectric medium (the dielectric could be a vacuum

or air). It involves both charge motion in the metal (surface plasmon) and electro-

magnetic waves in the dielectric (polariton). Plasmons, which are longitudinal elec-

tron density oscillations, resemble light waves confined to the surface of a metal.

Electromagnetic wave propagation is obtained from the solution of Maxwells

equation in each medium, and the associated boundary conditions. Maxwells equa-

tions of macroscopic electromagnetism are presented below.

From Gauss’s Law for the electric field,

∇.D = ρext (2.1)

From Gauss’s Law for the magnetic field,

∇.B = 0 (2.2)
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From Faraday’s Law,

∇× E = −∂B
∂t

(2.3)

From Ampere’s Law,

∇× H = Jext +
∂B
∂t

(2.4)

Here,

E is the electric field vector in volt per meter

D is the electric flux density vector in coulombs per square meter

H is the magnetic field vector in amperes per meter

B is the magnetic flux density vector in webbers per square meter

ρext is the charge density

Jext is the current density

2.2 SPP at Single Interface

The simplest configuration for SPP propagation is at a single interface. This is be-

tween a dielectric of dielectric constant ε2 and a metal of negative dielectric constant

ε1. For the metal, the bulk plasmon frequency will be ω and the amplitude decays

perpendicular to the z-direction.



Figure 2.1: SPP propagation at the single interface



2.3 SPP at Double Interface

The two most prominent double interface configurations of SPP waveguides are

the Metal-Dielectric-Metal (MDM) and Dielectric-Metal-Dielectric (DMD). In these

cases, SPPs are formed on both interfaces. When the distance is shorted than decay

distance, it forms coupled mode of SPP. This coupled mode of propagation can be

also be sub-divided into even and odd modes, as shown in the figure 2.2.

Figure 2.2: SPP propagation at double interface



Chapter 3

SEMI-ELLIPTICAL COUPLER

3.1 Introduction

Plasmonic waveguides have been anticipated to be an eligible candidate for the

upcoming highly-integrated photonic circuits. Several distinct plasmonic waveg-

uides have been proposed and analyzed so far, such as metal nanoparticle plasmon

waveguides [10], integrated metal slot waveguide [11], hybrid plasmonic waveg-

uides [2, 12], stripe waveguides [13] and so on. Particularly, Metal-Dielectric-Metal

(MDM) plasmonic waveguide has the incredible ability to guide optical signals in

subwavelength scale through Surface Plasmon Polaritons (SPPs). Research work on

MDM configuration of SPP waveguides has made major advances in superlens [14],

hyperlens [15], combiners [16], splitters [17], Bragg reflectors [18] and many more.

Above all, there is a trade-off between the mode confinement and propagation

length of these MDM plasmonic waveguides. This limitation of propagation length

is due to the propagation loss of SPP in one of the major constituent material, metal.

To overcome this problem it is imperative to use both dielectric waveguide and

MDM waveguide in the same platform. Propagation loss will be compensated by

the dielectric waveguide and for dealing with subwavelength scale optoelectronic

devices, MDM waveguides will be utilized. Thus, it is indispensable to place a

coupler between the two waveguides following the essence of efficient coupling

between them. Several techniques for efficient coupling have been proposed like

nano-plasmonic coupler with multi-section tapers [19], nanoplasmonic air-slot cou-
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pler [20], λ/4 coupler [21], adiabatic and non-adiabatic tapered plasmonic coupler

[22] etc.

In this paper, a novel design of an air gap based three-dimensional nanoplas-

monic semi-elliptical coupler has been proposed along with the analysis of several

performance parameters such as coupling efficiency, reflectance, absorbance, reflec-

tion coefficient, return loss and VSWR. Employing finite integration technique (FIT),

a coupling efficiency of ∼ 85% has been achieved in the telecommunication wave-

length (1.55 µm). The proposed coupler has been designed following the simulation

of the experimentally investigated air-slot coupler of Rami A. Wahsheh et al. [23].

We have found excellent agreement between our reproduced coupler and the exper-

imental coupler of Rami A. Wahsheh et al. [23]. Afterwards modifications are done

accordingly to get our proposed efficient air gap nanoplasmonic semi-elliptical cou-

pler.

To the best of our knowledge, this is for the first time, an air gap nanoplasmonic

semi-elliptical coupler is proposed with three-dimensional analysis. Broad range of

operating frequency, higher efficiency, and three-dimensional analysis are the key

advantages that our proposed coupler is going to provide. Tolerance to angular and

air gap misalignment has made our coupler distinctive, giving much flexibility to

the fabrication process.

3.2 Air Gap Based Semi-Elliptical Coupler Design

An air gap based semi-elliptical coupler in three-dimension has been considered for

coupling the dielectric waveguide with a metal-dielectric-metal (MDM) plasmonic

waveguide. The MDM plasmonic waveguide is formed after sandwiching air (insu-

lator) in between two silver (metal) plates. The geometry designated with the labels

of the proposed structure is shown in fig. 3.1.



Input 
Power

Figure 3.1: Three dimensional view of the proposed air gap based Semi-Elliptical
Nanoplasmonic Coupler



The height of the coupler is taken to be 300 nm making it compatible with the

width of the dielectric waveguide. The width of the dielectric waveguide is choosen

to be 300nm as per the analysis made by G. Veronis et al. [19]. The width of the air

gap between the metals of the plasmonic waveguide is represented by wp, whereas

the width of the air gap between the two waveguides is represented by d, as shown

in fig. 3.1. The semi-elliptical coupling structure has a semi-minor axis and a semi-

major axis, lengths of which are defined by the parameters a and b. The relationship

between these two parameters can be obtained from the general expression of an

ellipse, denoted by the following equation.

x2

a2 +
y2

b2 = 1 (3.1)

Where, semi-minor axis length, a, is less then semi-major axis length, b. Length

of b is kept fixed at 300 nm for all different simulations. Our main point of interest

among all different parameters are the semi-minor axis length (a), width of the air

gap between the two waveguides (d) and width of the air gap between the metals

of the plasmonic waveguide (wp). By observing the variation of coupling efficiency

with all of these parameters, the optimal dimensions of the coupling structure is

obtained. Silicon is used in the coupling structure to couple light into the MDM sub-

wavelength plasmonic waveguide from the dielectric waveguide.

3.3 Simulations

3.3.1 Simulation Methods

For investigating the properties of the proposed coupler, Finite Integration Tech-

nique (FIT) [24] has been used. FIT is a spatially discretized scheme for solving

electromagnetic field problems numerically in both frequency and time domain. Vi-



tal topological properties of different continuous equations like conservation of en-

ergy and charge are preserved in FIT, which is important for our case. FIT is the

basis for different simulation tools as it covers almost full range of optical appli-

cations and electromagnetics. Three-dimensional electromagnetic (EM) simulation

software, CST MICROWAVE STUDIO® (CST MWS) is used as the simulation tool.

Time domain solver has been used in our simulation. CST MWS in time domain

provides the scope of using experimental data directly in the case of frequency de-

pendent dielectric constant of metals (such as silver, gold etc.) [25].

All the boundaries of the proposed structure in the simulation domain are kept

open to get the advantages of perfectly matched layer (PML) [26] as well as to pre-

vent back reflections after attenuating fields within the boundary regions. Funda-

mental mode has been excited at the input terminal to investigate different perfor-

mance parameters like coupling efficiency, transmission and reflection coefficients,

absorbance, VSWR, and return loss. Using different ports, power has been measured

at the waveguides acting as the input and output. The received power is measured

from just after the interface of the MDM and plasmonic waveguide. As a precaution

to avoid the contributions of radiative modes in the measured power, a small dis-

tance has been considered while placing the ports besides the interface.



3.3.2 Experimental Validation
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Figure 3.2: (a) Three dimensional view of Plasmonic Air-Slot Coupler [23] and (b)
Comparison of the experimental [23] and simulation results (without 110nm shift)
of the Plasmonic Air-Slot Coupler



To validate our simulation, the air-slot coupler proposed by Rami A. Wahsheh et

al. [23] has been re-simulated. The two-dimensional finite-difference-time-domain

(FDTD) method has been used in their design and analysis. Due to the long run time

and large memory requirements for 3D simulations, Rami A. Wahsheh et al. [23]

performed 2D FDTD simulation and compared their result with the results obtained

through the analysis of a 3D experimental structure. Using FIT, we have successfully

simulated the experimental structure of Rami A. Wahsheh, which shows excellent

agreement with experimental data, particularly within the wavelength range (1500

to 1620 nm). The dielectric material and metal that they have used are silicon and

gold respectively. The geometry of the experimental structure that has been simu-

lated is shown in fig. 3.2(a).

The coupling efficiency has been analyzed by normalizing the output power with

respect to the input power. Variation of normalized power with wavelength has been

demonstrated in fig. 3.2(b). Experimental spectrum of the fabricated plasmonic cou-

pler is analogous to that of simulation of Rami A. Wahsheh et al. [23] when shifted to

110 nm due to lithography and etching bias. Here, we did not consider the 110 nm

shift in our simulation. The percentage of error at different wavelengths has been

tabulated in Table 3.1.



Table 3.1: Percentage of error of simulated data and experimental data between
wavelengths 1500 nm to 1620 nm

Wavelength Experimental Data [23] Simulated Data Error (%)

1500 0.224 0.255 13.839

1528 0.288 0.340 18.056

1545 0.381 0.448 17.585

1550 0.406 0.476 17.241

1567 0.545 0.557 2.202

1576 0.598 0.599 0.167

1581 0.620 0.623 0.484

1592 0.638 0.657 2.978

1597 0.687 0.672 2.183

1610 0.708 0.711 0.424

1618 0.718 0.719 0.139

1620 0.720 0.721 0.139

Average Error 6.286



3.4 Results and Discussion

3.4.1 Obtaining Optimal Dimensions

With the view to obtaining the optimal Semi-minor axis length (a) of the semi-elliptical

structure, we varied a from 0 nm (vertical line) to 150 nm (semi-circle) with 10 nm

step size, to get the plot of all different coupling efficiencies against wavelength

within the wavelength range of 800 nm to 2200 nm. These are depicted in fig. 3.3(a).

Coupling efficiency at 1.55 µm has been plotted against a in fig. 3.3(b).

Analyzing fig. 3.3(b), we observe that at a semi-minor axis length, a = 100 nm the

coupling efficiency is maximum (∼ 83%) at the optical communication wavelength

(1.55 µm). After that, optimized air gap between the two waveguides (i.e. d) has

been determined by varying d from 0 nm (neglecting air gap) to 50 nm with 5 nm

step size and observing the corresponding coupling efficiency. The optimum value

of d is obtained from coupling efficiency vs air gap between the two waveguides as

observed in fig. 3.4(a).

From fig. 3.4(a), it is seen that only air gap of width 5 nm in between the two

waveguides provide maximum coupling efficiency of ∼ 83%. Thus the optimum

value of d is 5 nm. To get the optimum width of the air gap between the metals of

the plasmonic waveguide (i.e. wp), wp was varied from 0 nm to 150 nm with 10 nm

step size and the corresponding coupling efficiency has been recorded. From the plot

of coupling efficiency vs width of the air gap between the metals of the plasmonic

waveguide (i.e. wp) depicted in fig. 3.4(b), we get 50 nm as the optimum value of

wp.
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Figure 3.3: (a) Coupling efficiency vs wavelength and (b) Coupling efficiency vs
semi-minor axis length to find optimal value of a at optical communication wave-
length (1.55 µm))
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Figure 3.4: (a) Coupling efficiency vs air gap between the two waveguides, d and
(b) Coupling efficiency vs width of the air gap between the metals of plasmonic
waveguide, wp at optical communication wavelength (1.55 µm)



Table 3.2: Summary of dimensions of the optimized nanoplasmonic coupler

Dimension Value

Semi-minor axis length, a 110 nm

Air gap width, d 5 nm

Width of the plasmonic waveguide, wp 50 nm

3.4.2 Performance of the Optimized Coupler

Using the optimal dimensions demonstrated in table 3.2, the proposed nanoplas-

monic semi-elliptical coupler has been simulated to obtain different performance

parameters such as normalized power, coupling efficiency, reflection coefficient, re-

turn loss, and VSWR for a wavelength range of 800 nm to 2000 nm.

Fig. 3.5(a) shows the Electric field distribution at the communication wavelength

(1.55 µm). Colorimetric change with respect to the electric field and x, y, and z di-

rections are shown on the inset. It also gives visual perception of how efficient the

proposed coupler is in terms of coupling. Fig. 3.5(b) shows the variation of nor-

malized transmitted power, reflected power and absorbed power with the wave-

length. At 1.55 µm, we have found normalized reflectance (∼ 0.056) and absorbance

(∼ 0.095) to be very small. On the other hand, the obtained normalized transmit-

tance (∼ 0.849) is found to be much large. Also, it is observed that the sum of these

three quantities is ∼ 1.
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Figure 3.5: (a) Electric field profile (Ey) of the proposed air gap based semi-elliptical
nanoplasmonic coupler at optical communication wavelength (1.55 µm) and (b) Nor-
malized transmitted power, reflected power, and absorbed power vs wavelength of
optimized proposed coupler
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Figure 3.6: (a) Coupling efficiency vs wavelength analysis of the optimized coupler
and (b) Reflection coefficient vs wavelength of optimized proposed coupler
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Figure 3.7: (a) Return loss vs wavelength of the optimized coupler and (b) VSWR
(Voltage Standing Wave Ratio) vs wavelength of optimized proposed coupler



Fig. 3.6(a) shows the coupling efficiency variation with the change of wavelength

from 600 nm to 2200 nm. The coupling efficiency at the optical communication

wavelength (1.55 µm) for the proposed coupler has been found to be ∼ 85%. It is

also observed that the coupling efficiency is considerably large for a broad range of

wavelengths. It is above 80% from 1010 nm to 1810 nm. Fig. 3.6(b) shows the reflec-

tion coefficient variation with the change of wavelength. A reflection coefficient of

∼ 0.23 is found at 1.55 µm.

Fig. 3.7(a) shows the return loss variation with the change of wavelength. At

1.55 µm the value of the return loss is found to be 12.51 dB which is more than the

minimum acceptable value of the return loss (tyically 10 dB). The obtained return

loss indicates lower impedance mismatch at the optical communication wavelength.

Fig. 3.7(b) shows the VSWR variation with the change of wavelength. At 1.55 µm, the

value of the VSWR is found to be ∼ 1.621 which is acceptable as it is less than 2.00.

Since, smaller the value of VSWR, the more power is delivered (minimum value of

VSWR is 1.0).



Table 3.3: Summary of different performance parameters of the optimized nanoplas-
monic coupler at 1.55 µm

Performance Parameter Value

Transmittance 0.8488

Reflectance 0.0561

Absorbance 0.0951

Reflection Coefficient Magnitude 0.237

Return Loss 12.51 dB

VSWR 1.624



3.4.3 Tolerance to Angular and Air Gap Misalignment

Tolerance to angular and air gap misalignment are two very attractive features of

our proposed coupler which can give flexibility to the fabrication process. It has

been observed by varying the angular alignment from 0° to ±5° and it is found to

give coupling efficiency above 77% and the values are summarized in table 3.4. Fig.

3.8 shows the schematic when angular misalignment is considered, α represents the

angle to which the misalignment has been considered.

Air

Silver

Silver

Air

Air

𝜶

Figure 3.8: Angular misalignment (top view) between the axis of two couplers de-
fined by the parameter α

Angular Alignment Value

0° (no misalignment) 84.88%

+5° 78.20%

−5° 77.00%

Table 3.4: Tolerance limit of angular misalignment and value of coupling efficiency
at 1.55 µm



Tolerance to air gap misalignment between the two waveguides (d) is depicted

in fig. 3.9. We have considered the situation when the air gap between the two

waveguides, d, is not uniform (i.e. d1 6= d2). Three cases are analyzed; when there

is no misalignment (i.e. d1 = d2), when there is a horizontal shift in d1 by 10 nm

(i.e. d1 > d2), and when there is a vertical shift in d2 by 10 nm (i.e. d1 < d2). The

corresponding tolerance limit is demonstrated in table 3.5.
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Figure 3.9: Top view of the air gap misalignment between the axis of two couplers
defined by d1 and d2

Air Gap Alignment Value

d1 = d2 84.88%

d1 > d2 76.50%

d1 < d2 71.20%

Table 3.5: Tolerance limit of air gap misalignment and value of coupling efficiency at
1.55 µm



3.4.4 Comparison of result

Table 3.6: Coupling effiency of different couplers

Coupler Type Coupling
Efficiency

Si based rectangular coupler [19] 56%

CuO based rectangular coupler [27] 56%

AlAs based rectangular coupler [28] 60%

Alumina (Al2O3) based rectangular coupler [28] 50%

GLS based rectangular coupler [29] 67%

Si based Semi-Elliptical Coupler with Air Gap 85%



Chapter 4

CONCLUSION

As a promising sub-discipline of nano-photonics, plasmonics has attracted much

attention in recent years. Photonic devices with considerably smaller dimensions

compared to the wavelength of propagating light is the magnificent outcome of plas-

monics. One of the subsequent requirement is an efficient coupler between dielectric

and MDM waveguide. With the view to fulfilling this requirement, in this paper we

propose a novel design of nanoplasmonic coupling structure along with the analysis

of different performance parameters like coupling efficiency, reflection coefficient,

VSWR and return loss. Optimum dimensions of the coupler are achieved after vari-

ation of the air gap of Ag-Air-Ag waveguide, curvature of semi-elliptical structure,

width of air gap in between two waveguides. Optimized Coupler which is pro-

posed provides a coupling efficiency of ∼ 85%. Distinctive features of the proposed

coupler are broad range of operating frequency, tolerance to angular and air gap

misalignment giving flexibility to fabrication process. It is expected that the pro-

posed structure along with the analysis will open up new dimensions in the efficient

plasmonic coupler design.
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