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Abstract

Controller Placement Problem (CPP) is a promising research interest in the field of Software

Defined Networking (SDN). SDN decouples the network layer of the traditional network

model into a control plane and data plane. The control plane consists of controllers which

provide the routing decisions for the switches. The CPP deals with placing an optimal

number of controllers in the network so that the data transfer throughput of the network is

maximum, which is NP-Hard as it deals with multiple constraints.

For years, several impressive solutions have been proposed with a goal to create an optimal

network for SDN, one of such solutions is Density Based Controller Placement (DBCP).

DBCP clusters the network based on the local density of the switches. DBCP uses hop

count to calculate the latencies between switches and minimizes the overall latency, so it

works with unweighted graphs. However, an unweighted graph is not a good representation

of a real network environment. In this paper, we propose four algorithms, where three

are inspired by SPICi, a protein-clustering algorithm of Bioinformatics and they work on

weighted graphs. Our algorithms cluster a network based on the maximum connectivity of

the nodes and uses the local search technique to improve the clustering in terms of flow-setup

latency in polynomial time complexity, and our simulation results show that our proposed

algorithms outperform the existing algorithms.

Several other solutions to the CPP have been proposed which work on various constraints–

some approaches work with a single parameter like the total delay of a network, reliability,

load balancing, etc., while some other approaches provide exhaustive solutions which optimize

multiple parameters. However, very few researches propose non-exhaustive solutions which

simultaneously optimize more than one parameter. We propose another novel controller

placement algorithm which clusters the SDNs in polynomial time complexity and name it

Degree-based Balanced Clustering (DBC).

DBC minimizes overall flow-setup latency as well as route-synchronization latency and

balances the loads of the controllers at the same time. DBC divides a network into several

clusters, places a controller in each cluster, and also selects an optimal number of controllers.

Simulation results suggest that DBC outperforms existing state-of-the-art algorithms in terms

of different latencies and also performs load balancing among the controllers.
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Chapter 1

Introduction

1.1 Overview

The traditional network model– the current framework being used, consists of seven network

layers (OSI model [1]). Another categorization is the TCP/IP protocol suite which categorizes

the network model into five layers [1]. The layers communicate with each other and perform

their specific functions to enable secure, reliable, and efficient data transfer throughout the

network. Due to their layered structure, adjusting to special requirements and adapting to

layer-specific changes is easier. Each layer only performs its functionalities and co-ordinates

with the layer above it or the layer below it. Therefore, any change in a single layer may

only cause a small change in the two layers adjacent to it, without any major adjustments

to other layers. However, as the switches become more intelligent and costly, maintaining

the network and accommodating changes in the network configuration becomes troublesome

as different types of switches have different vendors. Re-configuring the switches require a

considerable amount of time and labor, not to mention adding more switches is more costly.

The introduction of the Internet of Things (IoT) will cause an overwhelming flow of data

in the network which needs to be handled by the network without any major increase in

resources [2]. In order to accomplish this, the network will have to be conscious about the

traffic in different regions of the network and allow for intelligent traffic routing– sending

packets through less congested switches rather than the shortest path. Consequently, the

switches need to have a global view of the network, which becomes troublesome as broad-

casting more data to let other switches know the condition of the network will make it even

more congested. As a solution to all these problems, the Software-Defined Network (SDN)

came into light through a series of events which started in the 1960s [3], and is still a field

of vibrant research. The introduction of SDNs [4] aims to place a device with enhanced pro-

cessing and memory instead of distributing the resources to all the switches. This not only

allows for cost minimization, but also allows for a central entity (like a network manager)

1



to monitor the entire network and implement other technologies like network virtualization

and traffic controlling. Therefore, the job of handling the network also becomes easier along

with the increased efficiency of the network.

1.2 SDN

SDN has been a sector of intensive research for a long period of time. In recent years SDN

has received a lot of attention from researchers, academicians, businessmen and also from the

governments. The concept of a programmable network is slowly being shaped into reality.

This can be evident from the thorough history which can be found in [5, 6, 7].

In the 1960s, Paul Baran, a researcher of Rand Corporation, US, proposed to transmit

autonomous data packets [3] through the network. Later, an attempt was made to make

the packet forwarding even more intelligent by introducing policy-based routing (PBR) [8].

This marked the beginning of a new type of networking that had one goal– how to make

routing intelligent? where, “intelligent” means considering the condition of the network at a

given time. In contrast, the de facto routing methods always select the shortest paths to the

destination. In order to facilitate intelligent routing, the routing tables need to be populated

while taking into account the network variables like bandwidth, traffic, link failures etc. In the

traditional network model [1], the routing decisions are taken by the network layer which uses

various protocols to populate the routing table, some of which are– RIP (Routing Information

Protocol), OSPF (Open Shortest Path First) and BGP (Border Gateway Protocol) [9]. These

protocols use hop count as metric and select the path with the lowest number of hops and no

failures for data flows. The routing decisions are taken by the routers themselves. However,

to route intelligently, a separate entity is required which can keep track of network changes

and maintain a global perspective as the network will be flooded with broadcast messages if

the routers were to keep a global view.

The SDN architecture solves this problem by dividing the network layer into control

plane and data plane to enable a division of functionalities. The control plane takes the

routing decisions and the data plane forwards the data. The control plane consists of a single

controller [4], which leads to the formation of a single point of failure and a bottleneck due

to several requests directed at the controller, especially for larger networks. Other problems

like scalability and reliability also arose, leading to the Controller Placement Problem

(CPP), which deals with placing multiple controllers in SDN.
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1.3 Contribution

In this thesis, we work with latency minimization, traffic awareness, and load balancing,

while placing multiple controllers in SDNs. The contribution of our work can be summarized

as follows:

• We give several algorithms which work with weighted links between switches, thus al-

lowing us to create clusters based on network traffic, bandwidth, transmission rate, etc.,

which are essential in determining the condition of a network.

• Our proposed algorithms cluster SDN networks in polynomial time complexity.

• Our algorithms are both static and dynamic traffic-aware. They consider traffic before

(Static) and after (Dynamic) placing controllers while clustering.

• One of our algorithms minimize flow-setup latencies and balance load simultaneously.

1.4 Organization of Thesis

The thesis work is organized as follows. In chapter 2, we propose four algorithms, which work

on weighted representations of a network to minimize latency and also provide both static

and dynamic traffic-awareness. In chapter 3, we propose a more independent and compact

algorithm which simultaneously minimizes flow-setup latency and the maximum loads of the

controllers, considering the loads of each switch to be constant. In chapter 4, we provide a

summary of our work and also show potential possibilities for future work.

3



Chapter 2

Latency Minimization

2.1 Introduction

Software Defined Network (SDN) is the network of the new era which separates the network

layer into two planes, namely control plane and data plane. For a small network, the control

plane can consist of only one controller as is done in the well known standard OpenFlow [10].

The problem arises when the network is too large for one controller to handle and the solution

of multiple controllers is required. Multiple controllers make the network scalable and as a

result, it is easy to control a larger number of switches. Moreover, it decreases the load of each

controller and the controller-to-switch latency. Typically, controller placement is done in two

steps: Clustering– dividing the network into multiple sub-networks and Controller Selection–

placing a controller for each sub-network. The controller might be placed separately, or it

might replace a switch in the cluster.

CPP is a recent field of research [11], where many state-of-the-art algorithms have been

proposed, one of which is Density Based Controller Placement (DBCP) [12]. DBCP clusters

the network by selecting an optimum value of k (number of clusters) i.e., divides the network

into k disjoint sets of switches and selects one controller for each set. DBCP calculates the

latencies between two switches using hop count. However, hop count is not a good measure of

latency, because hop count does not reflect other contributing elements like processing delay,

queuing delay, bandwidth, transmission rate etc. when representing source to destination

path latency. Hence a composite metric that reflects the above observations is necessary for

the CPP problem of SDN. To the best of our knowledge, there is no clustering algorithm

which takes into consideration all of these parameters. In this paper, we consider weighted

links between two switches which can be set to any of the parameters like bandwidth, queuing

latency, transmission speed etc. We propose four algorithms - Random Clustering with Local

Search (RCLS), Greedy-SPICi (G-SPICi), Inverse-SPICi (I-SPICi) and Modified-SPICi (M-

SPICi). RCLS works with hop count while the other three which are variations of the
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algorithm SPICi [13], represent the network as weighted graphs. We explain in detail our

algorithms in section 2.5.

The rest of this chapter is organized as follows: We represent the background and related

works along with some other notable works of SDN and CPP in Section 2.2. Section 2.3

represents CPP as a graph theory problem. Section 2.4 explains the existing SDN clustering

algorithm DBCP and the protein-clustering algorithm SPICi. We explain our proposed

algorithms in Section 2.5. Simulation results and Performance Evaluation are presented in

Section 2.6. We present a summary of this chapter in Section 2.7.

2.2 Background and Related Works

In SDN, the decisions are taken by a controller which keeps track of the changing traffic of

the network and uses this knowledge to intelligently route traffic. The controller tells the

switches where to send a new packet (e.g., OpenFlow [10, 2]). In this architecture, all the

switches ask the controller for routing decisions, which creates a problem for single controller-

based SDNs. When the network is not small, a bottle-neck is formed– the network becomes

more congested in the course of time and eventually collapses. Thus multiple controllers

become a necessity.

The single-controller architecture has already been implemented extensively: the con-

troller OpenDayLight (ODL) [14] has been deployed several times in various companies like

Orange, China Mobile, AT&T, TeliaSonera, T-Mobile, Comcast, KT Corporation, Telefon-

ica, China Telecom, Globe Telecom, Deutsche Telekom [7]. However, the problems that are

faced in the case of single controllers are scalability [15, 16] and reliability when the networks

are large. Consequently, multiple controllers were proposed, and the foundation was laid by

R. Sherwood et. al.[17] in 2009. Thereafter, multiple controllers have been used in several

applications [18, 19, 20] and a lot of research have been directed towards it [21, 11]. The

questions that arise due to multiple controllers are: How many controllers?, Where to place

them? and Which switch is assigned to which controller? [22, 23]. These questions together

is called the Controller Placement Problem (CPP) and is an emerging paradigm and a field

of vibrant research in the domain of SDN.

CPP is primarily of two types[11]: (1) Capacitated Controller Placement Prob-

lem (CCPP) and (2) Un-capacitated Controller Placement Problem (UCPP) (Fig.

2.1). CCPP considers the capacity of the controllers and load of the switches when assigning

switches to each controller. It may consider the load of the switches to be fixed or variable.

CCPP is of four types: Static Traffic-aware CCPP: Considers the network traffic and capac-

ity when placing controllers. Dynamic Traffic-aware CCPP: Changes clustering even after

placing controllers, based on changing traffic. Fault-aware CCPP: Places controllers based
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Figure 2.1: Classification of the Controller Placement Problem (CPP)

on reliability and resilience, i.e., to maximize fault-tolerance. Network Partitioning Based

CCPP: Partitions the network based on capacity and may include parameters like scalability,

manageability, privacy, and deployment. UCPP considers that the controllers have infinite

capacity and only strives to maximize or minimize certain parameters of the network, sepa-

rately or collectively, with the minimum number of controllers. UCPP is of three types, all

of which are the uncapacitated versions of their capacitated counterparts (except Dynamic

Traffic-aware CCPP).

In the current decade, many solutions have been proposed to solve this NP-Hard problem

of controller placement [24, 21, 11]. Heller et. al. [24] propose a solution of CPP by selecting

k controllers to minimize the average and maximum latency of the network. Sallahi et. al.

[25] provide a mathematical model which simultaneously determines the controller numbers,

locations and included switches while satisfying some constraints. The cost of installing

a controller is an example of such a constraint. Yao et. al. [26] introduce capacitated

controller placement, where they consider the load or capacity of a controller and the load

of the switches, and also ensure that the capacity of a controller is not exceeded. Ozsoy et.

al. [27] propose an advanced version of the k-center algorithm using links between switches

which is also a work on capacitated controller placement. In [28], Yao et. al. uses flow

algorithm to implement a dynamic solution which can work comfortably with changing data

flows due to traffic or other reasons. Zhang et. al. [29] propose a solution which improves the
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resilience of a split architecture network. They improve the reliability of the network using

the Min-cut algorithm [30] to find the fault tolerant and vulnerable parts of the network.

Lange et. al [31] propose a solution named Pareto-based Optimal COntroller placement

(POCO), which provides operators with Pareto optimal placements with respect to different

performance metrics. POCO performs an exhaustive evaluation of all possible placements

by default, which is feasible for small networks. For large networks POCO uses heuristics

which makes it faster but less accurate. Liao et. al. [12] propose a faster algorithm named

Density Based Controller Placement (DBCP). DBCP uses a threshold hop count to calculate

the density of each switch in the network and places k controllers based on the density.

DBCP outperforms the above-mentioned algorithms that work on UCPP, however, it uses

hop counts to calculate the distances. If the goal is to create a programmable network that

changes the flow path of data depending on network conditions (traffic, bandwidth etc.),

then these parameters need to be considered and handled by the algorithm. Our proposed

algorithms are based on SPICi (spicy, Speed and Performance In Clustering) [13], a fast

clustering algorithm for biological networks, which divides a collection of proteins based on

how closely they are related in terms of similarities [32]. The clusters that are formed contain

closely connected proteins. SPICi clusters the network based on confidence values between

two proteins and creates clusters that have maximum confidence values between them.

2.3 Problem Formulation

Networks distributed throughout the world are of different types and topologies. These

networks can be represented as a bi-directional graph G = (S, L) consisting of nodes and

edges. Here the set of nodes S represent the switches and the set of edges L represent the

links between the switches. The edges can be either weighted or unweighted based on the

requirements. Our objective is to cluster the graph G into multiple sub-networks Si such

that each sub-network is a disjoint set of switches {s1, s2, ...}.
Let us assume that the network will be clustered into k partitions. The sub-networks can

be presented as,

G← {S1, S2, ...., Sk} (2.1)

where, G is the entire network and S1, S2, ..., Sk are k sub-networks.

2.4 Existing Algorithms

In this paper, we focus on two existing clustering algorithms. One of them is Density Based

Controller Placement (DBCP) and the other is SPICi. DBCP [12] is a recently proposed
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algorithm for clustering Software Defined Networks (SDN). SPICi [13] is a well known protein-

clustering algorithm for biological networks. These algorithms are described in the following

sections.

2.4.1 Density Based Controller Placement (DBCP)

This algorithm is named Density Based Controller Placement (DBCP) because it uses local

density to calculate all other parameters of the algorithm and then clusters the algorithm

using those parameters. The pseudo-code for clustering using DBCP is given in algorithm 1.

DBCP uses the following equation to calculate the local density of each of the nodes in

the network,

ρi =
∑
j

χ(dij − dc) (2.2)

where local density ρi of a node i is the count of all the nodes which are at most dc distance

away from i. The threshold dc is a distance used to set a limit to the cluster diameter and

consequently to find an approximate to the optimal value of k where k is the number of

controllers. Here dij gives the minimum distance between nodes i and j. The value of χ(x)

is 1 only for dij < dc, i.e., when x < 0 and is 0 otherwise. Thus ρi is the number of nodes

that can be reached from node i by traversing at most distance dc.

The minimum distance of a node i to a higher density node is represented by,

δi =

maxj:j∈S(dji), if switch i has the highest ρi

minj:j∈S,ρj>ρi(dji), otherwise
(2.3)

where, δi is the minimum distance to a higher density node and S is the set of all switches

in the network. If i is the node with highest density, δi is the distance of the farthest node

from i. Consequently, an average of the minimum distances to higher density nodes, δi, is

calculated for all nodes i, and denoted as δ. The value of k, the number of controllers is

initialized at 0, and incremented whenever the value of δi of any node i is greater than δ.

The switches with higher values of δi are selected as cluster heads of new clusters and the

other switches are assigned to the nearest node with higher local density (ρi).

A cluster head of a network is a node from where the cluster formation initiates and a

controller is a node which acts as the control plane. Each sub-network has its own controller

which sends routing information to their respective data planes, and the data plane of every

sub-network consists of its switches. DBCP uses the summation of three metrics to determine

the controller for a cluster. These three metrics are πavglatency, πmaxlatency, and πinter controller.

For a sub-network Si, the average latency for a switch v is calculated as follows:

πavglatency(v)v:v∈Si
=

1

|Si|
∑
s∈Si

d(v, s) (2.4)
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Algorithm 1 Density Based Controller Placement (DBCP)

1: procedure DBCP(S,L)

2: Initialize k := 0

3: for s in S:

4: ρs :=
∑

j∈S χ(dsj − dc)
5: end for

6: for s in S:

7: δs := mini:i∈S,pi>ps(dis)

8: end for

9: δ := 1
|S|
∑

s∈S δs

10: for s in S:

11: if δs > δ then

12: k := k + 1

13: s← new cluster

14: else

15: s← cluster of nearest higher density

16: end for

This is the average of the distances of the node v from all other nodes in the cluster Si,

where, s is any other node of Si. For the worst case scenario, the second metric is defined.

This metric is denoted by πmaxlatency.

πmaxlatency(v)v:v∈Si
= max

s∈Si

d(v, s) (2.5)

Here, πmaxlatency(v) is the maximum of the distances of the node v from all other nodes s

in the cluster Si.

The inter-controller latency must be reduced as much as possible when selecting con-

trollers. However, the controller-to-controller distance cannot be determined when the con-

trollers are yet to be selected. Thus the third metric is used which calculates the distances

from all other nodes that are not in the same cluster. It is an approximate calculation of the

inter-controller distances and is denoted by πinter controller.

πinter controller(v)v:v∈Si
=

1

|S − Si|
∑

s∈(S−Si)

d(v, s) (2.6)

πinter controller for a node v is the average of the distances between v and all the nodes of

other clusters.

The final metric πlatency(v) can be calculated using the previously mentioned three metrics

(equations 2.4, 2.5 and 2.6) as follows,

πlatency(v) = πavglatency(v) + πmaxlatency(v) + πinter controller(v)

=
1

|Si|
∑
s∈Si

d(v, s) + max
s∈Si

d(v, s) +
1

|S − Si|
∑

s∈{S−Si}

d(v, s)
(2.7)
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Here πlatency(v) is the sum of all the three values of πavglatency(v), πmaxlatency(v) and πinter controller(v)

for a switch v. Then in each cluster, the switch with the minimum value of πlatency is taken

as the controller of that cluster.

There are two steps of DBCP. The first step, which is, finding the value of k, requires

calculating the distances between all possible pair of nodes. Although in [12] this has not

been mentioned, to the best of our knowledge this can be done with complexity O(V (V +E))

using Dijkstra’s algorithm to calculate all possible pair distances between nodes, where V

is the number of nodes and E is the number of edges. As this distance is only calculated

once so it can be considered as pre-calculated and does not need to be included in complexity

analysis. Then calculating the value of ρi or local density for all nodes i has complexity O(V 2)

in the worst case when all other nodes are reachable by dc number of hops. Calculating the

value of δi for all nodes has the same complexity. Increasing and assigning controllers has a

complexity of O(V ). If complexity is denoted by η then the complexities can be written as

follows:

ηdbcp = ηρ + ηδ + ηk

= O(V 2) +O(V 2) +O(V )

= O(V 2)

(2.8)

2.4.2 Speed and Performance In Clustering (SPICi)

SPICi (’spicy’, Speed and Performance In Clustering) clusters a connected undirected net-

work G = (V,E) with edges that have values of the continuous range (0, 1). It is named so

because it is an extremely fast algorithm for clustering biological networks. The values of

the edges are called confidence values, denoted by wu,v for adjacent nodes u and v, and they

represent similarities between two proteins [32]. The proteins are represented as nodes of the

graph.

SPICi clusters a network using three variables. They are the weighted degree of a node,

the density for a set of nodes and the support for a node with respect to a set of nodes. The

weighted degree of a node u denoted by dw(u)u∈V can be presented as:

dw(u)u∈V =
∑

v:v∈V,(u,v)∈E

wu,v (2.9)

Here dw(u)u∈V is the sum of all the confidence values of the edges that connect u with any

other adjacent node v of the graph G = (V,E). It is to be noted that only those nodes are

considered which are still unclustered. The density of a set of nodes denoted by density(S),

can be presented as:

density(S) =

∑
(u,v)∈E wu,v

|S| ∗ (|S| − 1)/2
(2.10)
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In other words, density(S) is the sum of the confidence values of the edges that connect

every node u with every other node v of the set of nodes S, divided by the number of total

possible nodes that is |S| ∗ (|S| − 1)/2 where |S| is the number of nodes present in the set of

nodes S. The support of a node u with respect to a set of nodes S can be presented as:

support(u, S) =
∑
v∈S

wu,v (2.11)

For a network, support(u, S) is the sum of the confidence values of the edges that connect a

node u with the nodes that are adjacent to it and are present in the set of nodes S. Using

Algorithm 2 : Speed and Performance In Clustering (SPICi)

1: procedure Search

2: Initialize DegreeQ := V

3: While DegreeQ is not empty

4: Extract u from DegreeQ with the largest weighted degree

5: if u has adjacent vertices in DegreeQ then

6: 1. Find from us adjacent vertices the second seed protein v (see text)

7: 2. S := Expand(u, v)

8: else

9: S := {u}

10: V := V − S
11: Delete all vertices in S from DegreeQ

12: For each vertex t in DegreeQ that is adjacent to a vertex in S, decrement its weighted degree by

support(t, S)

13: procedure Expand(u,v)

14: Initialize the cluster S := {u, v}
15: Initialize CandidateQ to contain vertices neighboring u or v

16: While CandidateQ is not empty

17: Extract from CandidateQ with the highest support(t, S)

18: if support(t, S) ≥ Ts ∗ |S| ∗ density(S) and density(S + t) > Td then

19: S.add(t)

20: Increase the support for vertices connected to t in CandidateQ

21: For all unclustered vertices adjacent to t, insert them into CandidateQ if not already present

22: else

23: break from loop

24: return S

these parameters, SPICi clusters a network as given in the algorithm 2. The first seed is the

node with the maximum weighted degree. After the selection of the first seed, the adjacent

nodes are divided into five bins depending on the confidence value of the connecting edge.

The bins are of ranges (0 : 0.2 : 0.4 : 0.6 : 0.8 : 1), that is, they are at regular intervals of

0.2 in the already given range (0, 1). Then starting from the maximum bin (0.8 : 1), the
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node with the maximum weighted degree, dw is taken as the second seed. SPICi uses two

thresholds. These thresholds are: Ts which determines whether a node is to be included in

the cluster based on the cluster size and the connectivity of the node to the cluster and: Td

which includes a node to the cluster, based on the density increased when the node is added.

The algorithm gives better results when these thresholds have a value of 0.5 [13]. As SPICi is

a clustering algorithm that works on biological networks it does not select any controller for

any cluster. It only selects first seed and second seed and includes the nodes in each cluster.

Therefore there is no Controller Selection step for SPICi.

SPICi can be divided into three phases or functions. The first function selects the first

seed from a sorted queue which has a time complexity of O(V log2(V + E)) in the worst

case when all nodes are connected to all other nodes. The second function or second seed

selection process requires O(V ) time complexity as all the weighted degrees are calculated

in the first seed selection phase. The expand function calculates the support value for each

node in the CandidateQ which is a sorted queue or priority queue. Therefore this phase

requires a complexity of O(V log2(V + E)). Let the complexity of the algorithm be denoted

by ηSPICi. Then the complexities can be calculated in the following manner.

ηSPICi = ηf seed + ηs seed + ηexpand

= V log2(V + E) +O(V ) + V log2(V + E)

= V log2(V + E)

(2.12)

2.5 Proposed Algorithms

We propose four algorithms to address CPP for both unweighted and weighted network.

One of our proposed algorithms work on unweighted graphs and we name it Random Clus-

tering with Local Search (RCLS). The remaining three are for weighted graphs and we name

them Greedy-SPICi (G-SPICi), Inverse SPICi (I-SPICi) and Modified-SPICi (M-SPICi). We

describe our proposed algorithm in the following subsections.

2.5.1 Random Clustering with Local Search (RCLS)

This algorithm is only for networks that have hop count as the distance metric, where all

the edge weights of the graph are set to one. Therefore it has the same working conditions

as DBCP. We choose k random cluster heads where the value of k is fixed. We assign every

other node to the cluster of the nearest cluster head. We optimize the network further using

local search. We perform the local search technique by including one randomly selected

node in a randomly selected cluster in each iteration until the latency of the network cannot

be decreased anymore (algorithm 3). The latency of the network mlatency, in this case, is

calculated using the metric defined for evaluating DBCP (equation 2.17).
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Algorithm 3 : Random Clustering with Local Search (RCLS)

1: procedure RCLS(k, iteration)

2: Randomly select k cluster heads from the graph

3: Include all switches to nearest cluster heads

4: Calculate mlatency (equation 2.17)

5: while iterations > 0 do

6: Local Search(latency)

7: iterations := iterations− 1

8: procedure Local Search(latency)

9: while improvement do

10: a := any node from the graph

11: A := cluster of a

12: B = any cluster from the cluster set

13: if already checked for the pair(a,B) then

14: continue.

15: A.remove(a)

16: B.add(a)

17: set new controller heads

18: if new mlatency < mlatency then

19: mlatency := new mlatency

20: break

21: else

22: B.remove(a)

23: A.add(a)
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Initially, RCLS selects k controllers randomly and evaluates the current selection. In the

following iterations, a randomly selected node a is inserted into a randomly selected cluster

B. After insertion, the controllers are selected using the controller selection method of DBCP.

After evaluation, if there is no improvement in terms of mlatency, the new configurations is

rolled back. The process carries on until the maximum number of iteration is reached or

until the value of mlatency cannot be minimized any further. All the distances used in this

algorithm are hop counts, which is the same as that of DBCP. However, this algorithm can

also be applied to un-weighted graphs. In that case, the hop counts will be replaced by integer

values which can represent network parameters like bandwidth, traffic, delay etc. and the

value of mlatency can be updated accordingly. The worst case time complexity is calculated

as follows.

RCLS randomly selects k nodes as cluster heads, provided that k is given. This step has

a complexity of k. Each node needs to be included in a cluster which requires a complexity

of k × n if n is the total number of nodes. For the local search process, the algorithm

randomly selects a cluster and randomly selects a node and puts the node in the cluster to

check mlatency. The calculation of mlatency has the complexity of n3. In the worst case when

a better solution does not exist, the algorithm calculates mlatency for all possible pairs. This

has a complexity of k × n.

ηRCLS = ηcluster + ηlocal search

= O(k × n) +O(k × n× n3)

= O(k × n4)

(2.13)

2.5.2 Greedy-SPICi

Greedy-SPICi (G-SPICi) is a variation of SPICi, which does not divide the nodes connected

to the first seed into bins as done in SPICi. Instead, after selecting the first seed, G-SPICi

starts clustering the network indifferently, starting with the nodes adjacent to the first seed.

The nodes are sorted based on their support value (equation 2.11) with respect to the entire

network. Then the nodes are inserted into the cluster greedily based on the insertion condition

(line 17 of algorithm 4). Therefore, we name the algorithm Greedy-SPICi (Algorithm 4).

G-SPICi starts with a node having the maximum weighted degree and then forms a cluster

including it’s neighboring nodes using an EXPAND function call (line 6). In the EXPAND

(line 12) function, the nodes adjacent to the first seed are sorted based on a support value

with respect to the present cluster being formed. For example, when the EXPAND function

is called, the present cluster consists of only the first seed u (line 13). G-SPICi initializes a

priority queue called DegreeQ that holds the degree of each node using equation 2.9. From

DegreeQ the node with the highest weighted degree is extracted and the cluster is expanded
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Algorithm 4 : Greedy-SPICi

1: procedure Search(V,E)

2: Initialize DegreeQ = V

3: While DegreeQ 6= empty

4: Extract u from DegreeQ with largest dw(u)

5: if there is v ∈ DegreeQ such that (v, u) ∈ E then

6: S := Expand(v)

7: else

8: S := {u}

9: V := V − S
10: DegreeQ := DegreeQ− S
11: For all t ∈ DegreeQ, do dw(t) := dw(t)− support(t, S)

12: procedure Expand(v)

13: Initialize cluster S := {u}
14: Initialize CandidateQ := S such that s ∈ S and (s, u) ∈ E
15: While CandidateQ 6= empty

16: Extract t from CandidateQ with highest support(t, S)

17: if support(t, S) ≥ Ts ∗ |S| ∗ density(S) and density(S + t) > Td then

18: S.add(t)

19: CanditateQ.add(s) for all (s, t) ∈ E
20: CandidateQ.remove(t)

21: else

22: break

23: return S
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using EXPAND function. The nodes present in the formed cluster is then removed from

DegreeQ and the support values of the rest of the nodes are updated accordingly. This

process continues until there are no more nodes left in DegreeQ. The EXPAND function

starts with forming the cluster S from first seed u. The nodes adjacent to the present cluster

are the candidates of being included in the cluster they form the candidate list. A priority

queue CandidateQ is formed from the support values of the members of the candidate list.

Each member of the candidate list is then included in the cluster based on a conditional

statement (line 17). If the node is included in the cluster then the node is removed from

CandidateQ and its adjacent nodes are inserted into CandidateQ except the ones that are

already there, and the support values of the nodes in CandidateQ are updated accordingly.

The controller selection process of G-SPICi is similar to DBCP except that it uses edge

weights (positive integers) to calculate the three metrics πavglatency, πmaxlatency and πinter controller,

mentioned in section 2.4.1, instead of hop counts. As a result, the controllers are selected in

such a way that the controller-to-switch and controller-to-controller latencies are minimized.

G-SPICi has the same complexities as SPICi, only the second seed selection is omitted

and local search is added. If n is the total number of nodes and m is the total number of

edges. Then the complexity of G-SPICi can be denoted by ηG−SPICi where,

ηG−SPICi = ηf seed + ηexpand + ηlocal search

= 2nlog2(n+m) +O(k × n4)

= O(k × n4)

(2.14)

2.5.3 Inverse-SPICi

Inverse-SPICi (I-SPICi) is another variation of SPICi, which converts the edge weights of

the network in such a way that the highest edge weight becomes the lowest edge weight

and vice versa. It also omits the second seed selection process, like G-SPICi. SPICi forms

clusters such that the connection among the nodes of the clusters are maximized where the

edge weights are the similarity values. However, our goal is to minimize latency where the

edge weights represent the latencies. This is why we invert the edge weights and name this

algorithm Inverse-SPICi. If the weight of an edge is w and the maximum edge weight of the

network is wmax, then the weight is inverted as follows:

winverted = wmax − w + 1

Here winverted is the final edge weight. We subtract edge weight w from maximum edge

weight wmax, and add 1 so that the maximum edge weight is not inverted to 0. The controller

selection process is that of G-SPICi.

I-SPICi has the same complexities as G-SPICi, only the costs are inverted which requires

a complexity of m. The total number of nodes is n and m is the total number of edges. The
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complexity of I-SPICi is denoted by ηI−SPICi where,

ηI−SPICi = ηinvert + ηG−SPICi

= O(m) +O(k × n4)

= O(k × n4 +m)

(2.15)

2.5.4 Modified-SPICi

Modified-SPICi or M-SPICi is similar to the original SPICi. It includes some more steps,

like pre-processing and post-processing and thus is named Modified-SPICi. Pre-processing

of M-SPICi is calculating the degree of incidence of the nodes. The degree of incidence of

a node is the number of edges adjacent to the node. The post-processing step of M-SPICi

assigns the isolated nodes to nearest clusters.

Initially, the degree of incidence (both outgoing and ingoing) of all the nodes are calculated.

Then all of the nodes are divided into five partitions based on their degree of incidence from

highest to lowest. The nodes in the first partition have the highest degree of incidence and

consequently have the highest probability of becoming first seeds. We name this partition

as ‘head’ partition. All of the edge costs w are changed to 1/w. This causes the edge

values which are positive integers, to be inverted and mapped to the continuous range of

SPICi (0, 1). After selecting the first (u) and second seeds (v), M-SPICi starts expanding

the current cluster which is the set of nodes S = {u, v}. The rest of the unclustered nodes

are kept in a priority queue, CandidateQ, based on their support values with respect to S.

If a node does not meet the condition (line 26 of algorithm 5) for including in the cluster it is

clear that the rest of the nodes in CandidateQ will follow. However, these nodes are not yet

discarded– for each node remaining, another check is performed. If the degree of a node is in

the head partition then it is discarded as it has the potential to be cluster head. Otherwise,

the node is included in the cluster, and all the nodes are clustered in this way. The isolated

nodes are included in the clusters of the nearest cluster heads. Then the controllers are

selected as done in G-SPICi.

The number of clusters is k, and the number of nodes and edges are n and m respectively.

M-SPICi has an edge weight inversion step of complexity O(m). Another pre-processing

which calculates the degree of all nodes and sorts them, has a complexity of O(m+nlog2(n)).

The post-processing step for assigning isolated nodes is O(n× k) and the local search has a

complexity of O(k × n4). Therefore the total complexity is:

ηM−SPICi = ηSPICi + ηprocessings + ηlocal search

= nlog2(n+m) +O(m) +O(n× k) +O(m+ nlog2(n)) +O(k × n4)

= O(m+ nlog2(n+m) + k × n4)

(2.16)
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Algorithm 5 : Modified-SPICi

1: procedure Search(V,E)

2: Initialize DegreeQ := V

3: Perform pre-processing

4: while doDegreeQ 6= empty

5: Extract u from DegreeQ with largest dw(u)

6: if there is v ∈ DegreeQ such that (v, u) ∈ E then

7: v := SecondSeed(u)

8: S := Expand(u, v)

9: else

10: S := {u}

11: DegreeQ := DegreeQ− S
12: For all t ∈ DegreeQ, do dw(t) = dw(t)− support(t, S)

13: Perform post-processing

14: procedure SecondSeed(u)

15: bin = adjacent nodes of u

16: Divide bin into five equal parts based on connected edge weight (0 to 1)

17: for max(bin) to min(bin) do

18: if bin 6= empty then

19: find max(dw(v)) for v ∈ bin
20: return v

21: procedure Expand(u,v)

22: Initialize cluster S := {u, v}
23: Initialize CandidateQ := S such that s ∈ S and (s, u), (s, v) ∈ E
24: While CandidateQ 6= empty

25: Extract t from CandidateQ with the highest support(t, S)

26: if support(t, S) ≥ Ts ∗ |S| ∗ density(S) and density(S + t) > Td then

27: S.add(t)

28: CanditateQ.add(s) for all (s, t) ∈ E
29: CandidateQ.remove(t)

30: else

31: break

32: return S
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Table 2.1: Randomized Networks used as Input

Scenario Nodes Edges Edge/Node

1 40 52 1.3

2 50 68 1.36

3 60 77 1.2833

4 70 87 1.2429

5 80 108 1.35

6 90 120 1.3333

7 100 131 1.31

2.5.5 Scenario Specific Explanation

In figure 2.2 we present one of the graphical representations of a network that we considered

for our experimentation. It is an actual network that expands throughout different states of

USA as well as Canada, and are used for research purposes. We assign random weights to

the links between the switches and then apply our proposed algorithms. For example, M-

SPICi clusters the network into 9 sub-networks. The clusters are marked in figure 2.3 in nine

different colors, each representing a different cluster. The controllers of the sub-networks are

the nodes marked as 2, 28, 21, 6, 27, 8, 12, 16 and 24. Therefore, each cluster has a single

controller and no two clusters can have any common node.

2.6 Performance Evaluation

2.6.1 Simulation Environment

We perform all our experiments using C++ (High-level language). We use seven randomly

generated networks with different numbers of switches starting from 40 to 100, at regular

intervals of 10. The edge to node ratio is kept from 1.1 to 1.4 to keep the networks con-

siderably sparse (similar to current worldwide networks). The seven scenarios are shown in

the table 2.1. The graphs do not contain any self-loops or multi-edges but may have cycles.

We have simulated a number of scenarios but for convenience, we present seven scenarios in

table 2.1.

2.6.2 Performance Metric

In Software Defined Network, each time a new packet arrives, the switch asks the controller

for routing decisions. The controller decides the path of the packet and sends the routing

information to all the switches in the path. If the switches are of different clusters then the

information is sent to all of the controllers of those clusters. In [12], J. Liao et. al. use this
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Figure 2.2: The Internet2 OS3E Network with 34 nodes and 42 edges expanding over Canada and USA used mainly for

research purposes

Figure 2.3: The result of clustering by M-SPICi
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process to define a latency for a network denoted by mlatency.

mlatency =
1

|S|(|S| − 1)

∑
si,sj∈S,i6=j

{d(si, vi) + max
sm∈Pathi,j

(d(vi, vm) + d(vm, sm))} (2.17)

Here, |S| is the number of switches in the network, si and sj are any two switches in

that network and vi is the controllers of the switch si. The term Pathi,j means the series of

connected nodes that are in between nodes si and sj. sm is any node in the Pathi,j and vm is

the controller of node sm. Thus the latency for a pair of switches is the sum of the distances

between si and the corresponding controller vi, d(vi, vm), and the maximum of the sum of the

distances between vi and vm and between vm and sm, max(d(vi, vm) + d(vm, sm)). In theory,

this is the maximum distance that a packet needs to traverse to set up a new route from

node si to sj. There are a total of |S|(|S|− 1) possible pairs of nodes possible. Therefore the

average of the previously defined latency for all possible pairs is the latency of the network.

2.6.3 Result Comparison

We propose algorithms for both weighted and un-weighted networks. We compare our first

proposed algorithm RCLS with DBCP as both work with unweighted graphs. We also

compare DBCP with a local search version of DBCP to verify that there is further room

for improvement. For weighted networks where the edge values are randomly assigned, we

evaluate and compare the algorithms G-SPICi, I-SPICi, and M-SPICi with the well-known

algorithm DBCP. As DBCP is designed for unweighted graphs, we implement a weighted

version of DBCP and compare our proposed algorithm with that. In the simulation graphs,

weighted implementation of DBCP is presented as W-DBCP. Therefore result comparisons

are divided into un-weighted and weighted comparison. The networks are the same for both

cases except for un-weighted graphs, the edge weights are set to one. The networks used for

experimenting are given in Table 2.1.

Result Comparison for Un-weighted Graph

We propose RCLS for un-weighted graphs. In Fig. 2.4 we compare our proposed algorithm

RCLS with existing algorithm DBCP. Simulation results suggest that RCLS outperforms

DBCP in terms of mlatency for the same value of k. Furthermore, we applied the local search

technique on DBCP. In Fig. 2.4 we represented it as DBCP+LOCAL. RCLS also outperforms

DBCP+LOCAL in terms of mlatency.

We observe from Fig. 2.4 that only for the first scenario (Table 2.1) where the number of

nodes is 40, RCLS gives greater latency than DBCP and DBCP+LOCAL. This is because

RCLS performs better for large-scale networks and for the first scenario the number of nodes
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Figure 2.4: Comparison of DBCP, DBCP with local search and RCLS on un-weighted networks using mlatency as the

performance metric.

is only 40. RCLS, DBCP, and DBCP+LOCAL give almost equal latencies for scenario

2 and 6 where the network is denser (they have a higher edge/node ratio). In all other

scenarios, RCLS outperforms both DBCP and DBCP+LOCAL as RCLS works better for

sparser networks.

Result Comparison for Weighted Graph

We propose three algorithms for weighted graphs which are G-SPICi, I-SPICi, and M-SPICi.

RCLS can also be implemented on weighted graph. We compare our proposed algorithms

with weighted-DBCP. In Fig. 2.5 we represent weighted-DBCP as WDBCP, which considers

edge weights instead of hop count.

In Fig. 2.5 we can see that WDBCP gives better results than our proposed algorithms in

terms of mlatency, but from the Fig. 2.6, we can see that WDBCP gives a very high number of

clusters than that of our proposed algorithms. This is acceptable when the cost of installing

a controller is trivial, but in reality, it is not feasible to accommodate the installment cost of

so many controllers. Therefore, we compare our proposed algorithms with WDBCP in terms

of k ×mlatency in Fig. 2.8 for different scenarios, to take into consideration k, the number of

controllers. If we consider the cost of each controller as constant c, then the cost of controller

installment for a network is k×c. So the cost-latency product of a network is c×k×mlatency.

The variables k and mlatency vary from scenario to scenario. However, we assume the cost of
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Figure 2.5: Comparison of WDBCP, G-SPICi, I-SPICi, and M-SPICi on weighted graphs using mlatency as performance

metric, where WDBCP is the implementation of DBCP using edge weights.

Figure 2.6: Comparison of the number of controllers k, for algorithms WDBCP, G-SPICi, I-SPICi, and M-SPICi.
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installing a controller to be constant. There the cost-latency product can be simplified and

represented as k×mlatency. From Fig. 2.8 we can see that, I-SPICi and G-SPICi give better

results for all of the scenarios of table 2.1, and our proposed algorithms outperform DBCP in

terms of cost-latency product. For scenario 3 when the number of nodes is 60, I-SPICi and

G-SPICi give the same result. For scenarios 1 and 4, where nodes are 40 and 70 respectively,

G-SPICi outperforms other algorithms. For other scenarios, I-SPICi outperforms all other

algorithms.

2.6.4 Analysis on the number of controllers k

The number of clusters or the value of k is different for each algorithm. One of the three

problems of CPP is - How many controllers?. The value of mlatency decreases with the

increment of k. Therefore the best simulation result is obtained when k = |S|, where |S| is

the number of switches in the network. When all the switches are controllers, the latency

of the network is minimum. However, this is not feasible as the cost of installing so many

controllers is much more than required.

In Fig. 2.7 we have presented the results of RCLS on weighted graphs of different number

of switches. For each network graph, the value of k is increased from 1 to |S|, where S is

the total numbers of switches in the network. As discussed, the value of mlatency decreases

with increasing k. We have to select a k so that the latency of the network and the cost of

installing the controllers is minimized. We have to select k such that increasing the value of k

does negligible improvement compared to previous increments of k. We need to determine a

threshold of improvement, although this might be different in different scenarios and depends

on the need of the network operator. Therefore our proposed algorithm RCLS will cluster

the network optimally based on the value of k given by the network operator.

2.6.5 Complexity Comparison

We calculated the complexities of all the existing algorithms and proposed algorithms for

clustering Software Defined Networks (SDN) in their respective sections (section 2.4 and

3.3). We compare these algorithms in terms of complexity. The existing algorithm is DBCP

and the proposed algorithms are RCLS, G-SPICi, I-SPICi and M-SPICi.

We can observe from table 2.2 that DBCP is faster than our proposed algorithms. How-

ever, this slight increase in complexity is negligible compared to the improvement of clustering

in terms of latency (mlatency) and cost-latency product (k×mlatency) and the advantages that

it can offer.
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Figure 2.7: Comparison of network latency mlatency for different numbers of clusters (k) for RCLS on weighted graphs of each

scenario.

Figure 2.8: Comparison of DBCP, G-SPICi, M-SPICi, I-SPICi, and RCLS on weighted networks using cost-latency product

(k ×mlatency) as the performance metric.
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Table 2.2: The complexity of different algorithms

Algorithm Complexity

DBCP O(V 2)

DBCP + LOCAL O(k × n4)

RCLS O(k × n4)

G-SPICi O(k × n4)

I-SPICi O(k × n4 +m)

M-SPICi O(m+ nlog2(n+m)× n4)

2.6.6 Traffic-Awareness

Traffic awareness is of two types– Static traffic awareness and Dynamic traffic awareness.

Static traffic awareness is attained when a network considers traffic while clustering a net-

work before placing controllers. However, dynamic traffic awareness can cluster a network

even after placing controllers based on the changing traffic. Our algorithms perform a con-

troller selection process to minimize the distance (or latency) of the overall network (using

equation 3.4). More importantly at every step of the local search, the total latency of the

network, mlatency is improved by changing the controller placement and assigning the switches

depending on the edge-weights which represent traffic. Thus, our algorithms are static traffic

aware. After placing the controllers, the switches can be reassigned using the local search

technique we used. The controller selection steps only need to be omitted from local search

techniques of our proposed algorithms (line 17 of algorithm 3). In this case, controller se-

lection is not done in each step of the local search technique, and only the switches are

reassigned. Therefore, our algorithms are also Dynamic traffic-aware.

2.7 Summary

In this chapter, we presented the problem of controller placement and a solution to the

weighted variant of this problem to minimize network latency and improve network through-

put. We also compared our algorithms with the recent algorithm DBCP in terms of latency

and improve both dynamic and traffic awareness in polynomial time complexity.
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Chapter 3

Latency Minimization with Load

Balancing

3.1 Introduction

3.1.1 Controller Placement Problem (CPP)

Software Defined Networks (SDNs) decouple the traditional protocol stack into control plane

and data plane. The control plane consists of controllers which take the routing decisions

and relay this information to the data plane. The data plane is the collection of switches

which forward the data according to the routing decisions provided by the control plane.

The initial design of SDN included a single controller in the control plane [4]. However, even

for moderate-sized networks, a bottleneck is created due to heavy traffic concentrated at

the controller. Furthermore, problems like scalability and reliability surface as network size

increases [15, 16]. In order to deal with these problems, many researches propose multiple

controllers [18, 19, 20], which results in the emergence of the controller placement prob-

lem (CPP). The CPP deals with placing a minimal number of controllers in the SDNs, with

an aim to address the above mentioned problems.

3.1.2 Related Works

A solution to the CPP is to select an optimal number of controllers, to place them in the best

possible locations, and to assign them switches in an optimal way [22, 23]. In addition, there

are multiple constraints that need to be satisfied– minimizing the latency among switches

and controllers, maximizing reliability and resilience, and minimizing deployment cost as well

as energy consumption, which results in an NP-Hard problem. Despite the complications,

in recent years, several solutions have been proposed to address the CPP [21, 11, 33, 7, 2],

where some of them deal with optimizing a particular constraint like latency or reliability,
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while some others introduce a compound metric to address two or more constraints.

Heller et. al [24] calculate the average and worst case latencies to place controllers and

mention that multiple controllers is more significant in ensuring fault-tolerance than to min-

imize latency. Yao et. al. [28] propose dynamic scheduling strategies based on changing

flows to manage controllers aiming to balance their loads. Hu et. al. [34] propose multiple

algorithms for reliability-aware controller placement. Zhang et. al. [29] use a min-cut based

graph partitioning algorithm to maximize resilience of SDNs and compare the algorithm with

greedy approaches. In [31], Lange et. al. propose POCO (Pareto-based Optimal COntroller

placement), which represents the CPP as a combinatorial optimization problem. POCO ex-

haustively iterates all possible combinations as viable solutions to optimize multiple metrics

and uses heuristics-based PSA (Pareto Simulated Annealing) to improve the computational

complexity at the cost of accuracy. Sallahi et. al. [25] propose a mathematical model for

optimal controller placement considering the cost of installing controllers, load of the con-

trollers and path set up latency. Exhaustive solutions like [31, 25] can give optimal solutions,

however, their computational complexities are very high.

3.1.3 Contributions and Organization

Liao et. al. [12] propose two faster algorithms Density Based Controller Placement (DBCP)

and Capacitated-DBCP (CDBCP) where, DBCP minimizes overall latency based on the local

density of the nodes and CDBCP balances the load of the controllers. However, they work

separately on the given network to perform controller placement and to balance the load of

the controllers. To the best of our knowledge, no other methods minimize overall latency and

perform load balancing simultaneously, while clustering SDNs in polynomial time complexity.

In this paper, we place minimum (optimal) number of controllers in a SDN to minimize the

followings:

1. Flow setup latency: When a switch receives a packet for which no path exists, the

flow-setup procedure is initiated. The latency introduced by this procedure is the max-

imum delay required to set the path (and also to inform the intermediate switches) for

the flow.

2. Route synchronization latency: When there is a change in the network, routes are

changed and all the controllers have to be updated (in sync) about the changes. This

latency deals with controller-to-controller latency.

3. Load of a controller: The volume of control traffic and processing that the switches

impose on the controllers.

This requires placing the controllers in a way that minimizes both the average controller-

to-switch and average controller-to-controller latencies and limits the load of the controllers.
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In this paper, we propose and develop an algorithm named Degree-based Balanced Clustering

(DBC), to achieve the above with a careful selection of controllers. Simulation results suggest

that our proposed algorithm DBC outperforms the state-of-the-art algorithms in terms of

overall latency and load balancing. We also observe that, the above criteria can be achieved

if we can divide the SDN into k balanced clusters.

The rest of the paper is organized as follows– our problem formulation along with some

assumptions are provided in Chapter 3.2, a detailed description of our proposed mechanism is

given in Chapter 3.3, simulation results and performance evaluation are presented in Chapter

3.4 and we conclude in Chapter 4.

3.2 System Model and Assumptions

We consider the network as a bi-directional graph G = (S, L), where, the set of nodes

S represent the switches and the set of edges L represent the links between the switches.

The edges can be either weighted or unweighted based on the requirements. We cluster

the graph G into multiple sub-networks such that, each sub-network is a disjoint set of

switches. There cannot be any common switch between two sub-networks and all of the

switches of the network must fall into a sub-network, where each sub-network will have one

and only one controller. Accordingly, if we assume that the network is partitioned into k

sub-networks, then there will be k controllers and each sub-network will be a disjoint set of

switches containing a single controller. For simplicity we make the following four assumptions:

1. The transmission delay of each control packet is identical and negligible.

2. The propagation delay, queuing delay and processing delay of each switch is identical.

3. The load imposed by each switch is fixed.

4. The controller can only replace a switch, and cannot be placed in any other locations.

Under these assumptions, our objective is to minimize the flow-setup latency, the inter-

controller distances and the controller-to-switch distances in each sub-network, all of which

are measured in hop counts. We also aim to balance the load of each controller, which is the

number of switches assigned to each controller.

3.3 Proposed Mechanism

We propose a solution to the CPP referred to as degree-based balanced clustering (DBC)

for SDN. The proposed mechanism divides the networks into k-clusters, assigns a controller

to each cluster, and finally, finds the minimum value of k for the network which obtains the

minimum latency. In the sequel, we explain the mechanism in detail.
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3.3.1 Cluster Formation

The cluster formation mechanism divides the network into k clusters (sub-networks), when

k is given. It finds the k cluster heads first and then, assigns each of the nodes to exactly

one sub-network. The clustering mechanism deals with two goals–

• Equal load on the controllers, which requires equal number of nodes in each cluster. We

assume that the switches have equal load.

• Minimum intra-cluster distances between the nodes and cluster heads, which requires

direct (or shortest path) connectivity of the nodes and the cluster heads.

The first goal demands more clusters in the denser part of the network, whereas, the

second goal demands the nodes with maximum direct connections with the switches to be

the cluster heads. Accordingly, a cluster head should have the highest connectivity among all

the switches of its cluster so that maximum number of nodes can be reached with minimum

delay. Both the two goals can be achieved if the clustering is done based on degree of the

node.

A degree based solution to the second goal suggests selecting k nodes with highest degrees

as the cluster heads of the network. This solution ensures minimization of intra-cluster

delay when the highest degree nodes are uniformly distributed (well separated). However, in

typical networks, the higher degree nodes are situated in the same locality of the network.

Consequently, the dense regions of the network are dominated by most of the cluster heads,

and the clusters formed are not balanced in terms of load (first goal). Therefore, the cluster

heads need to be a certain distance apart from each other, which we define as the minimum

inter cluster head distance, Td. The threshold, Td, simultaneously maintains a fixed cluster

head separation and balances the load of the network.

The cluster head separation dictates the number of switches in a cluster, which should be

roughly |S|/k for a balanced cluster. Initially, for Td = 1 hop count, the nodes in the cluster

are the cluster head itself and one-hop neighbors of the cluster head. Consequently, in an

average case scenario, the total number of nodes is 1 +AvgDeg, where AvgDeg denotes the

average node degree of the network. According to graph theory, each link simultaneously

increments the degree of two switches by one, which implies that, the summation of the node

degrees of a network is 2× |L| and the average node degree is 2×|L|
|S| .

We denote the total number of nodes in the periphery of the cluster as boundary. Initially,

boundary = AvgDeg, as the cluster consists of a cluster head at the center and its one-hop

neighbors on the border which is equivalent to AvgDeg nodes on average. Each boundary

node is again connected to approximately AvgDeg number of nodes including the cluster

head itself. Therefore, omitting the cluster head, for every increment of the value of Td, the
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number of nodes in the cluster increases following the given formula,

boundary = boundary × (AvgDeg − 1) (3.1)

When the total number of nodes in the cluster exceeds |S|/k nodes, we terminate the in-

crement process. The value of Td thus obtained is the threshold distance or cluster separation

of a balanced cluster.

In DBC, we sort the nodes according to descending value of node degree (line 1 of algorithm

6) and select the node with highest degree as first cluster head. We select a cluster head

from the remaining nodes, only if it is at least Td distance away from the selected cluster

heads, otherwise we omit it, and move on to the next node in the sorted list. The region of

the selected node may be sparser than other parts of the network. In order to take this into

account, we multiply the threshold Td with a degree ratio (line 13 of algorithm 6), which is

the maximum degree of the network divided by the degree of the selected node. The degree

ratio ranges the Td value according to the density of the node, if the degree of the node is

less, the density is lower. Accordingly, the ratio has a higher value ( Maximum Degree
degree of selected node

> 1)

and increases the cluster separation threshold to include more nodes than in a denser region.

However, if k cluster heads cannot be selected in this way, we select the remaining cluster

heads only based on degree and ignore their distance from other cluster heads. Consequently,

all the remaining nodes are assigned to the cluster of the nearest cluster head and k clusters

are formed.

3.3.2 Controller Selection

After completion of the clustering process we initiate a controller selection process. The total

delay of a network depends on both controller-to-controller latency and controller-to-switch

latency. The controller-to-switch latency of a network improves when the switches are in close

proximity of the controller and the controller-to-controller latency depends on the latencies of

the paths between controllers. Although the cluster head has high intra cluster connectivity,

inter cluster distance also needs to be taken into account. Considering both intra cluster and

inter cluster distances (which refers to controller-to-controller latency), the cluster may or

may not be the controller. Accordingly, we define τ(s) to be the controller selection function

of switch s, which comprises its intra-cluster distance φ(s) and inter-cluster distance σ(s)

values. The intra-cluster distance can be calculated as the average distance from the switch

s of cluster Si to the other nodes of Si [12],

φ(s) =
1

|Si| − 1

∑
u∈Si

dis(s, u) (3.2)

here, u represents any other switch in the same cluster Si, as switch s and |Si| is the

total number of switches in Si. The component φ(s) corresponds to the controller-to-switch
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latency and dis(s, u) is the shortest path distance of s from u.

The inter-cluster distance, which is the other component of total latency τ corresponds to

the controller-to-controller latency. However, we cannot calculate inter-controller distances

before the controller selection process as there are no controllers to begin with. Hence, we

calculate σ(s) for a switch s of cluster Si, as the average distance of s from all other nodes

of the network that are not in Si [12],

σ(s) =
1

|S − Si|
∑

v∈(S−Si)

dis(s, v) (3.3)

here, v denotes the switches that belong to network S but does not belong to sub-network

Si. The set of all nodes except sub-network Si, is denoted by S − Si.
The controller selection function τ(s) can be defined as the direct summation of the compo-

nent latencies φ(s) and σ(s). Although, this assigns equal weight to the inter-cluster latency

and intra-cluster latency, the inter-cluster latency dominates overall latency as controller-

to-controller distance is usually greater than controller-to-switch distance. We introduce a

weight variable α to control this dominance and give the user the freedom to emphasize on

any component as per requirement,

τ(s) = α× φ(s) + (1− α)× σ(s) (3.4)

In our experiments, we set the values of α as 0.5. As a result, both components contribute

equally in the controller selection process. The pseudocode of our proposed method is given

below (algorithm 6). The algorithm takes the network switches, S, links, L, and number

of clusters, k, as input, and returns k optimal network clusters C1, C2, ..., Ck and the set of

Controllers for the clusters.

3.3.3 Optimum k Selection

We evaluate the performance of each clustering using its average flow setup latency and

denote this evaluation function by Ω(S) for a network S. When a data packet arrives at a

switch si, for which no entry exists in its flow table, the switch forwards the packet encapsu-

lated in a query message to its controller ci. The controller decides the path for the packet

and notifies the other switches of the path about the new flow rule, through their controllers.

The switches on the path from si to destination sd, may have different controllers. Conse-

quently, the generated control packet containing the new route, needs to be forwarded to the

controllers, which in turn will instruct the concerned switches to update their flow tables.

Since the process is parallel, the path setup latency is dominated by the maximum of the

sum of the distances from the corresponding controller of the source ci, to controller cj of any

intermediate node sj, and from cj to sj. Therefore, the evaluation function can be calculated
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Algorithm 6 : Degree-based Balanced Clustering (DBC)

1: procedure DBC

2: input: k, S, L

3: Sort S in descending order of degree

4: Initialize AvgDeg := 2×|L|
|S| and boundary := AvgDeg

5: Initialize limit := 1 +AvgDeg

6: Initialize threshold distance Td := 0

7: Initialize clusterHeads := ∅
8: while limit < (|S|/k) do

9: boundary = boundary × (AvgDeg − 1)

10: limit := limit+ boundary; Td := Td + 1

11: for each switch s in S do

12: adjTd = Td × max degree
degree of s

13: if clusterHeads = ∅ then
14: clusterHeads.add(s)

15: else if clusterHeads.size = k then break

16: else if dis(s, clusterHeads) < adjTd then

17: continue

18: else

19: clusterHeads.add(s)

20: if clusterHeads.size < k then

21: Select remaining clusterHeads with max degree

22: Initialize clusters C1, C2, ..., Ck as ∅
23: Initialize Controllers := ∅
24: for each cluster Ci do

25: Ci := clusterHeads[i]

26: Ci := Ci ∪ {nearest nodes of Ci}

27: for each cluster Ci do

28: for all s ∈ Ci do

29: Calculate φ(s) and σ(s)

30: τ(s) := α× φ(s) + (1− α)× σ(s)

31: Controllers.add(node with min(τ(s)))

32: output: Controllers

33: output: C1, C2, ..., Ck
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as the average setup latency of all possible switch pairs [12],

Ω(S) =
2

|S| × |S − 1|
∑

si,sd∈S

{dis(si, ci)+

max
sj∈pathi,d

(dis(ci, cj) + dis(cj, sj))}
(3.5)

here, pathi,d is the shortest path from source si to destination sd. We use this function as

the performance evaluation metric in section 3.4.

We increment k and apply DBC repeatedly until the improvement in terms of Ω(S) is

negligible. We define the improvement ratio or termination criteria ξ as follows,

γ =
(Ωold k(S)− Ωnew k)/Ωold k

new k − old k
(3.6)

here, old k is the previous value of k and new k is the incremented value. In our simulations

we notice a sharp drop in the value of γ after a certain number of increments.

3.4 Performance Evaluation

3.4.1 Simulation Environment

We developed a simulation environment using C++ (High-level language) which takes the

number of nodes and connections between each node as input and clusters the network. We

use randomly generated networks with different numbers of switches starting from 40 to 100,

at regular intervals of 10. There are 10 different datasets for each interval, giving a total

of 70 different networks. The link to switch ratio is from 1.3 to 1.45 to keep the networks

considerably sparse (similar to current worldwide networks). The simulation environment

and selected 70 networks are same for both our algorithm and DBCP. The networks do not

contain any self-loops or multiple links between two switches but may have cycles. The

average number of edges of the scenarios are 54, 66.7, 81.4, 99.3, 111.2, 125.5 and 138.9

respectively.

3.4.2 Performance Metrics

We use various performance metrics to study and evaluate different characteristics of SDNs

like inter-controller latency, controller-to-switch latency, and overall network switch to switch

latency. We calculate the average inter-controller latency as follows,

ηinterController =
1

k × (k − 1)

∑
1≤i,j≤k,i6=j

dis(ci, cj) (3.7)

where, ci and cj are controllers of the SDN. We evaluate the controller-to-switch latency
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using the following equation,

ηcontrollerSwitch =
1

k

k∑
i=1

[
1

|Si − 1|
∑
u∈Si

dis(ci, u)

]
(3.8)

here, Si is the ith sub-network, ci is the controller and u, the switch of Si. Both ηcontrollerSwitch

and ηinterController consider the shortest distance from the controller to any other controller or

switch. However, for setup of a new route, the switch sends a packet to the controller, which

decides the new route and relays the information to other concerned controllers and switches.

We calculate this latency using the equation 3.5 which has been discussed in section 3.3.3.

We also evaluate the load of each controller, considering that all switches have the same

load. For an ideal clustering of an SDN, the number of nodes per cluster should be |S|/k.

However, the actual clustering may vary from the ideal case, which can be considered as the

deviation. Accordingly, the least deviation from the ideal case is the most balanced in terms

of load. The deviation can be denoted by,

ηloadDeviation =
1

k

k
max
i=1

(||Si| − |S|/k|) (3.9)

where, |Si| is the number of nodes in the ith sub-network and |S| is the total number of

nodes in the network.

3.4.3 Simulation Results

We validate our proposed method through extensive simulations. We compare our proposed

algorithm with DBCP [12] in terms of flow-setup latency, average inter-controller latency,

average controller-to-switch latency and load balancing. To compare flow-setup latency, we

use the value of k provided by DBCP to cluster the network and place the controllers. We

plot the flow setup latencies as the average of the 10 instances in Fig. 3.1. We calculate the

setup latency of each instance using equation 3.5 of section 3.3.3.

Fig. 3.1 shows that DBC outperforms DBCP, however, for smaller networks the difference

in performance is less (when number of switches is 40). In all other cases, the difference in

performance is noticeable. We can observe that, for both the algorithms, the latency values

(Ω) increase with the number of switches in the network. However, when the number of

nodes is 90, the latency for both of the algorithms decrease slightly due to inconsistency of

underlying topology.

In Fig. 3.2, we plot the flow-setup latency with respect to controller number k for networks

containing 60, 70, and 80 switches. We observe that the latency value, Ω, decreases at

a greater rate for smaller number of controllers than for higher values of k. We use this

property to define an optimum k selection function (equation 3.6), using which we terminate

the process when the improvement ratio, γ, is negligible (meaning negligible improvement).
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Figure 3.1: Comparison of flow-setup latency between DBC and DBCP using the value of k provided by DBCP

Figure 3.2: Flow-setup latency with respect to increasing cluster numbers (k) for networks containing 60, 70, and 80 nodes
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Figure 3.3: Comparison between DBC and DBCP in terms of flow-latency, Ω

We notice a sharp drop in improvement rate at higher values of k where γ > 0.05, so we

set the terminating threshold at 0.05. Accordingly, we plot the flow-setup latencies for the

new values of k in Fig. 3.3, where, we observe that our algorithm is more consistent than

previously selected k values which were selected by DBCP. The flow-setup latencies have also

improved, and the number of controllers have decreased (Fig. 3.4). In all the scenarios, DBC

outperforms DBCP in terms of both flow-setup latency and minimum number of controllers.

We control the contribution of inter-controller latency and intra-cluster latency using a

weight variable α (equation 3.4) which ranges from 0.0 to 1.0. When the value of α is

increased, the intra-cluster latencies (equation 3.8) increase and the inter-controller latencies

(equation 3.7) decrease as presented in Fig. 3.5. When the value of α is set to 0.5, inter-

controller latencies are given priority by default, as the inter-controller distances are greater

than intra-cluster distances. Our proposed algorithm outperforms DBCP in terms of inter-

controller latency, however, DBCP gives better controller-to-switch latencies. We prioritize

controller-to-controller latencies as control packets are essential in setting up new paths and

conveying broken link information.

In Fig. 3.6, we compare the average, maximum and minimum loads of the controllers

for each scenario. We assume that each switch imposes the same load on a controller.

Accordingly, the number of switches per cluster corresponds to the load of each controller.

We observe that the deviation from the ideal load per controller in a balanced SDN (|S|/k),

which can be calculated using equation 3.9, is higher for DBCP. Our proposed algorithm
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Figure 3.4: Number of controllers (k) given by DBCP and DBC for different scenarios

Figure 3.5: Average controller-switch and controller-controller latency with respect to increasing weight variable, α
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Figure 3.6: Comparison between DBCP and DBC in terms of average load per controller.

outperforms by forming clusters which are more balanced in terms of load per controller.

3.5 Summary

In this chapter, we showed that latency minimization and load balancing can be done si-

multaneously and proposed a new algorithm DBC which outperforms the existing algorithm

DBCP in terms of flow-setup latency. DBC has polynomial time complexity and can adapt

to accommodate the underlying network topology to create balanced clusters.
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Chapter 4

Conclusion

4.1 Research Summary

In this paper, we address the Controller Placement Problem (CPP) of SDN. We have in-

vestigated one renowned algorithm DBCP [12] that addresses the same research problem.

However, DBCP is for unweighted graphs where it uses hop count as the distance met-

ric. Our proposed algorithm RCLS outperforms DBCP in terms of latency for unweighted

graphs. However, an unweighted graph is not a good representation of a real network. Being

inspired by another famous protein clustering algorithm SPICi [13] we propose 3 algorithms

for weighted graphs. We validate our proposed algorithms through extensive simulations.

The simulation results suggest that our proposed algorithms outperform the weighted vari-

ant of the existing DBCP algorithm in terms of cost and latency. One major contribution of

our proposed algorithms is traffic awareness and also they have polynomial time complexity.

We also propose a novel clustering algorithm named Degree-based Balanced Clustering

(DBC). Our proposed algorithm, DBC outperforms DBCP in terms of different latencies and

balances the load of the controllers. We have shown that our algorithm has many advantages

over other algorithms. DBC minimizes flow-setup latency and route synchronization latency

through minimization of controller-to-switch and controller-to-controller distances. DBC

creates balanced clusters with similar number of nodes and has polynomial time complexity.

4.2 Future Work

DBC can be extended to work on weighted networks which consider ongoing traffic of links

and different delays like queuing delay in a congested network to intelligently select flow

routes. The hop count can be replaced with average edge weights and the inter cluster

separation updated accordingly. Future work can also include variable loads of switches and

balance the cluster so that minimum load is imposed on each controller.
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