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ABSTRACT 

 

Diagnostic ultrasound imaging of the breast is characterized by its non-invasive, radiation free and 

convenient nature. Such qualities distinguish it from other imaging modalities of the breast, such 

as mammography and MRI, and has made it an increasingly popular choice for researchers, 

clinicians as well as patients. Conventional ultrasound imaging of the breast is mainly qualitative 

in nature, based on analyzing morphological features, and often have a lack of functional and 

quantitative information. Thus, although conventional ultrasound has a high sensitivity to breast 

lesions, it often lacks the specificity required to classify such lesions into their benign or malignant 

counterparts. In this regard, quantitative ultrasound techniques present a viable alternative, as it 

can provide specific quantitative variables by which to assess tissue features, and thus potentially 

increase the specificity as well as classification accuracy related to the procedure. This thesis 

presents a classification approach for benign and malignant tumors of the breast, utilizing 

parameters extracted from the power spectrum of ultrasound radio-frequency echo signals. Our 

work shows a clear separation between the two types of lesions with regards to the parameters. 

Furthermore, the parameters are able to classify lesions with an accuracy of 100% using Linear 

Support Vector Mechanism, and thus has the potential to assist in the diagnostic procedure 

associated with the detection of breast cancer. 
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Chapter 1 

Introduction 

 

1.1 Introduction 

Breast cancer represents a modern-day epidemic [1], one that affects millions of women around the 

world. It represents a significant health concern both at a global level and at a national level, and 

represents a cancer with one of the highest mortality rates. Detection of breast cancer at an early 

stage is crucial towards the treatment and survival of breast cancer patients. In this respect, Medical 

Imaging and Screening modalities of breast cancer are essential for their ability to detect the cancer 

and move towards treatment.  

 

Several screening technologies are utilized by medical practitioners in the imaging process. 

Mammography represents the most commonly used screening procedure, and acts as the gold 

standard for the screening and detection of breast cancer. Magnetic Resonance Imaging (MRI) is 

utilized alongside mammography for the screening of patients who are at high risk of breast cancer. 

Ultrasound and Ultrasonography techniques have also become widely available and useful in 

adjunct to mammography in the clinical setting. Originally, ultrasonography was used primarily 

as an inexpensive procedure for differentiating between cystic breast masses from solid breast 

masses. However, supplemental screening of breast cancer with ultrasound is expanding, as 

ultrasonography has been found to yield valuable information about the nature and extent of solid 

masses and other breast lesions. Furthermore, mammography presents significant limitations in 

the screening of dense breasts, and this is where ultrasonography comes to the fore.  

 

Although ultrasound imaging procedures are mainly qualitative in nature, images formed using 

ultrasound of the breast have been found to yield significant quantitative variables and information 

by which to assess the properties of the tissue. Such quantitative information has the ability to not 

only identify lesions that may be present in the breast, but also classify the type of lesion, whether 

it is benign or malignant. Several studies have utilized the quantitative information available from 

ultrasound imaging procedures of the breast in an attempt to differentiate between benign and 

malignant tumors. This study aims to utilize parameters extracted from the power spectrum of 
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ultrasound radio-frequency echo signals in an attempt to differentiate between benign and 

malignant breast tumors. Points are chosen on the boundary of lesions, where differences are 

known to exist between benign and malignant tumors. These points serve as a reference in selecting 

three different regions-of-interest from which to extract the required parameters, one inside the 

lesion, another outside the lesion and the remaining consisting of areas both inside and outside the 

lesion. The area of the regions-of-interest are also varied, with three different sizes of each region-

of-interest considered. Finally, the power spectrum of each region-of-interest is computed, and the 

required parameters extracted to be utilized for classification. 

 

1.2 Significance of this Research 

The significance of the issue of breast cancer cannot be understated. From the perspective of 

Bangladesh, in 2018 alone, breast cancer made up 19% (12,764) of new cancer cases amongst 

females, making it the highest incident form of cancer for women, as well as the 3rd most incident 

form of cancer for both sexes [2]. Furthermore, breast cancer was responsible for 6.3% (6,846) of 

all cancer related deaths, making it the 2nd most significant cancer in terms of mortality rates for 

women, and 4th most significant for both sexes [2]. In Bangladesh, the occurrence of breast cancer 

is estimated to be about 22.5 per 100000 females of all ages, and breast cancer has the highest 

prevalence of 19.3 per 100000 compared to any other cancer for Bangladeshi women aged 15-44 

years [3]. The epidemic of breast cancer is not simply contained to specific parts of the world either. 

In 2018, there were an expected 2,088,849 new cases of breast cancer worldwide (11.6% of all 

cancer cases), as well as 626,679 deaths (6.6% of all cancer related deaths) [2]. In the United States, 

studies indicate breast cancer as the most-commonly detected cancer, as well as the second most 

lethal cancer (after lung cancer) for women [4]. One in every eight women are affected by breast 

cancer in the period spanning from birth till death [5]. There is expected to be 268,600 new cases 

of invasive breast cancer in America in 2019 alone, amongst which 41,760 deaths are expected [5]. 

 

In terms of diagnosis, mammography represents the standard screening modality for breast cancer, 

and has the ability to reduce breast cancer mortality by as much as 30% [6,7]. However, there are 

also drawbacks associated with this modality. The density of the breast is one of the main barriers 

towards diagnosis with mammography, and women with dense breast tissues are more likely to 

have cancers not visible on mammograms [8]. The sensitivity of mammography in the diagnosis of 
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breast cancer is inversely proportional to the density of the breast [9,10], with sensitivity figures as 

low as 30-48% in patients with dense breasts [10].  

 

On the other hand, breast ultrasound represents a relatively inexpensive and readily available mode 

of diagnosis which can be used for interventional procedures, and boasts a good level of tolerance 

by women as well as the distinct advantage of not using ionizing radiation [11]. It has been reported 

to diagnose cancers at an earlier stage than mammography [12], and is also useful in adjunction to 

mammography, with the ability to detect over 40% more cancers than mammography or physical 

examination alone [13,14]. The first large study utilizing modern high-resolution breast ultrasound 

was conducted by Stavros et al. [15], using standardized diagnostic criteria for lesion differentiation. 

In 625 benign and 125 malignant lesions, ultrasound differentiated between the lesion types with 

a sensitivity of 98.4% and a negative predictive value of 99.5%. Hence the potential of ultrasound 

in not only screening of cancer, but also distinction between types of cancer is evident. 

 

Conventional ultrasound imaging techniques make use of B-mode images, which are qualitative 

in nature, and classification using B-mode images often rely on anatomical features of the tumor, 

such as shape, borders, echogenicity. On the other hand, Quantitative Ultrasound techniques are 

designed to provide numerical data related to tissue features, thus having the potential to improve 

the specificity associated with biomedical imaging [16,17]. Quantitative Ultrasound techniques 

include spectral-based parameterization of ultrasound signals, flow estimation through Doppler, 

tissue elastography techniques, shear wave imaging and envelope statistics [16].  

 

1.3 Objectives of this Research 

The main objectives behind conducting this study are as follows: 

 

I. To analyze features extracted from the power spectrum of the boundary of ultrasound 

radio-frequency echo signals, based on the size of the region-of-interest, and the area 

selected for analysis 

 

II. To analyze the ability of the extracted features in classifying between benign and 

malignant tumors, and hence 
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III. To analyze the potential of the upper-axial boundary of benign and malignant tumors 

in classification between tumor types. 

 

1.4 Main Contributions 

Based on the research objectives mentioned above, this thesis provides the following main 

contributions: 

 

I. Four parameters are proposed, which are extracted from the power spectrum of 

ultrasound radio-frequency echo signals, and utilized for classification purposes 

 

II. Three different regions-of-interest are proposed, from which the parameters are 

extracted, to observe the variation of parameter values, and hence classification 

accuracy with variation in position of region-of-interest 

 

III. Three different sizes of the region of interest are proposed, to study the effect of 

variation in parameter values, and hence classification, with a variation in size of 

region-of-interest. 

  

1.5 Thesis Outline 

Subject to the research objectives and targeted contributions mentioned above, this thesis is 

outlined as follows: 

 

Chapter 1 is anticipated to provide the background and motivation behind this study, including the 

significance of this research, the main contributions of this research, as well as the objectives it 

hopes to accomplish. The outline of the thesis is also presented at the end of this chapter. 

 

Chapter 2 focuses on the review of literature related to quantitative ultrasound procedures, as well 

as the theoretical and research aspects of the relevant current works. 
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Chapter 3 presents the proposed algorithm utilized for this research, an in depth look at the 

procedures and techniques applied in an attempt to extract the parameters utilized to differentiate 

between benign and malignant tumors of the breast. 

 

Chapter 4 concentrates on the simulation and classification results obtained from the study, It also 

analyses the effect of the various variables on the outcome of the study, that is, classification of 

benign and malignant tumors. 

 

Chapter 5 summarizes and concludes the work with discussion about future research scopes in this 

area. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



6 
 

Chapter 2 

Literature Review 

 

2.1 Introduction to Ultrasound Imaging 

Ultrasound imaging utilizes high frequency sound waves to characterize and image tissue. Of all 

the imaging modalities, ultrasound is by far the least expensive, as well as the most portable, and 

can acquire images at a real time frame rate with few or no safety concerns [18]. Ultrasound is 

generated and detected through the use of small hand-held transducers. 

 

The generation of images by ultrasound is based on the ‘pulse-echo’ principle [19,20,21,22]. This is 

based on deformation of piezoelectric crystals that are embedded in the transducer due to an 

electric pulse. This deformation produces a high frequency (>1,000,000 Hz) sound wave, which is 

referred to as an ultrasound wave. The ultrasound wave has the ability to propagate through tissue 

under the application of the transducer. The resulting wave is referred to as an ‘acoustic 

compression wave’, that propagates through tissue at a speed of approximately 1530 m/s. Each 

compression is proceeded by a decompression, as is the case with all sound waves, and the rate of 

these events is referred to as the ‘frequency’ of the wave. Diagnostic ultrasound imaging generally 

employs frequencies ranging between 2.5 and 10 Mhz. This is far beyond the audible capability of 

humans, and thus the resulting sound wave is termed ‘ultrasound’. 

 

The principal components of an ultrasound wave are as follows: 

 

I. Wavelength (𝜆) – the spatial distance between two compressions, or decompressions 

 

II. Frequency (f) – inversely proportional to the wavelength 

 

III. Velocity of sound (c) – which is a constant for any given medium 

 

These three wave characteristics have a relationship as follows: 

𝑐 = 𝑓𝜆 
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Hence an increase in the frequency, or in other words a decrease in the wavelength, implies lower 

penetration due to a higher amount of viscous effects, which leads to greater attenuation [22]. 

 

Figure 2.1: (a) and (b) are depictions of an ultrasound wave. The wave propagates through tissue at a 

specific wavelength, which is inversely proportional to the frequency, and a specific amplitude, which 

quantifies the amount of energy transported by the wave. 

(c) Pulse length (duration) is determined primarily by the transducer frequency, to which it is inversely 

related. Higher frequency transducers can emit pulses of shorter length. These rate at which these pulses 

are emitted are referred to as the ‘pulse repetition frequency’. Reprinted from “Physical principles of 
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ultrasound and generation of images” by Cikes M, D’hooge J and Solomon SD (2018), in Essential 

Echocardiography, 1st Edition, pp. 1- 15, Elsevier. 

 

The progression of the acoustic wave through tissue will be disrupted by changes in tissue property, 

such as tissue density. This will lead to partial reflections of the ultrasound wave, also referred to 

as ‘specular reflections’, as well as scattering of the energy of the wave, referred to as backscatter. 
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Figure 2.2: The interaction of the transmitted ultrasound wave with an acoustic interface. The interface 

causes a portion of the transmitted wave to be reflected, whilst another portion is transmitted through the 

tissue. The portion transmitted through the tissue may also be refracted, and may also later be reflected 

and return to the transducer as a ‘specular reflection’ or a ‘backscatter reflection’, thus carrying 

information through the amplitude of the signal. Reprinted from “Physical principles of ultrasound and 

generation of images” by Cikes M, D’hooge J and Solomon SD (2018), in Essential Echocardiography, 

1st Edition, pp. 1- 15, Elsevier. 

 

Specular reflections generally originate from interfaces of different types of tissue, whereas 

backscatter generally originates from within a tissue. In both cases, the reflections propagate back 

to the ultrasound transducer. This again leads to the deformation of the piezoelectric crystals 

embedded in the transducer, deforming the crystals, and thus generating an electrical signal. This 

signal is referred to as the radio-frequency (RF) signal, and is the raw, unprocessed data obtained 

from diagnostic ultrasound. The amplitude of this signal is proportional to the amount of 

deformation of the crystal, or, the amplitude of the reflected wave from the tissue under 

observation. In addition to defining the amplitude of the reflected signal, the depth of the reflecting 

structure may also be determined according to the interval between the emission and receiving of 

the pulse, as this is equivalent to the time required for the ultrasound wave to travel from the 

transducer during generation, through the tissue, and back to the transducer due to reflection. The 

data obtained from the amplitude and depth of reflection are used to form ‘scan lines’, and 

repetition of the previously mentioned procedures of image (scan line) acquisition as well as post 

processing is utilized for overall image construction. During acquisition of images, the ultrasound 

transducers emit waves in pulses consisting of a certain duration, which is referred to as the ‘pulse 

length’, and at a certain rate known as the ‘pulse repetition frequency (PRF)’. 

 

The data obtained from the scan lines can be visually represented as ‘A-mode’ or ‘B-mode’ images. 

A-mode represents the most fundamental modality of imaging RF signals, where A stands for the 

‘amplitude’. In this modality, images are formed based on the amplitude of the reflected ultrasound 

signal at certain distances from the transducer. However, visualization of A-mode images are 

relatively unattractive, and A-mode images are not generally utilized as an image display option. 
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Figure 2.3: Generation and formation of ultrasound images. After an ultrasound pulse is emitted by the 

piezoelectric crystals embedded in the transducer (left), it transmits through tissue, is reflected from 

structures in the tissue, and propagates back towards the transducer. After processing of the received 

signals, they are displayed according to their amplitude and depth of reflection (right). A-mode images 

are formed using the amplitude spikes of the reflected signal. In B-mode images, the amplitude spikes are 

translated to grayscale, such that the least reflective tissues are visualized as anechoic or dark formations, 

and strong tissue reflectors are visualized as hyperechoic or bright spots. Reprinted from “Physical 

principles of ultrasound and generation of images” by Cikes M, D’hooge J and Solomon SD (2018), in 

Essential Echocardiography, 1st Edition, pp. 1- 15, Elsevier. 

 

A-mode images are further processed to form B-mode images, where the B stands for ‘brightness’. 

In B-mode images, the amplitude of the received signal is translated to grayscale. To achieve this, 

multiple points of the signal (i.e. pixels) are designated a number that represents a color on the 

grayscale, based on the local amplitude of the signal. In this way, the least reflective tissues, or 

tissues that conduct sound waves, are visualized as anechoic or dark spots, and strong tissue 

reflectors are visualized as hyperechoic or dark spots. 
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A limitation of ultrasound imaging comes from the fact that reflections from tissues farther away 

from the transducer have smaller amplitudes, due to attenuation effects. However, this effect may 

be compensated through the use of ‘attenuation correction’, which automatically amplifies signals 

propagating from deeper segments of the tissue. This process is referred to as ‘automatic time gain 

compensation (TGC)’. In addition to automatic TGC, most systems contain TGC sliders, which 

enable the TGC to be modified during image acquisition. 

 

 

Figure 2.4: Attenuation correction. Reprinted from “Physical principles of ultrasound and generation of 

images” by Cikes M, D’hooge J and Solomon SD (2018), in Essential Echocardiography, 1st Edition, pp. 

1- 15, Elsevier. 

 

Resolution of an image may be defined as the shortest distance between two objects that is required 

to distinguish them as separate. Resolution in ultrasound images consists of wo major components: 

spatial resolution and temporal resolution. Furthermore, spatial resolution can be divided into axial 

resolution and lateral resolution, depending on the position of the object relative to the image line 

[19,20,21,22]. Temporal resolution, meanwhile, may be defined as the time between two corresponding 
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measurements, or the ability of a system to distinguish two temporal events as separate 

occurrences.  

 

Axial resolution refers to the location of objects relative to the image line. The principle 

determinant of axial resolution is the pulse length. A shorter ultrasound pulse length translates to 

better axial resolution. Pulse length, meanwhile, is defined by the frequency of the transducer. A 

higher frequency transducer is able to provide shorter pulses, which yields better axial resolution. 

 

Lateral resolution refers to spatial resolution perpendicular to the ultrasound beam. The principle 

determinant of lateral resolution is the width of the beam generated by the transducer.  

 

Elevational resolution is referred to as the resolution perpendicular to the image line. It is 

somewhat similar to lateral resolution. The principle determinant of elevational resolution is the 

dimensions of the ultrasound beam in the elevational direction. 
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Figure 2.5: The components of spatial resolution. Lateral resolution refers to the spatial resolution 

perpendicular to the ultrasound beam, axial resolution refers to resolution along the 

image line, and elevation resolution refers to resolution perpendicular to the image line. Reprinted from 

“Physical principles of ultrasound and generation of images” by Cikes M, D’hooge J and Solomon SD 

(2018), in Essential Echocardiography, 1st Edition, pp. 1- 15, Elsevier. 

 

2.2 Relevant Research 

Improvements to the quality of biomedical imaging has resulted in increased sensitivity to 

potentially harmful tissue features such as cancer, and application of such imaging techniques have 

resulted in an increase in the number of tumors detected, without the distinction of whether they 

are benign or malignant. This has resulted in an ‘overdiagnosis’ problem, which may be 

accompanied by ‘overtreatment’ [23,24].  



14 
 

As discussed in the introduction, conventional ultrasound imaging procedures utilize anatomical 

features of the tumor, such as shape, borders, echogenicity from B-mode data, and is inherently 

qualitative in nature. Most breast cancers, including more than 90% of invasive ductile carcinomas 

[25], are visible in conventional ultrasound images. Recent studies have shown that a combination 

of selected features in B-mode images of ‘mammographically visible’ tumors can be effective in 

classifying breast tumors into benign and malignant cases [15,26,27,28,29]. In this case, the Breast 

Imaging Reporting and Data System (BI-RADS) developed by the American College of Radiology 

(ACR) provides a glossary of features describing the ultrasound appearance of breast tumors [25,30]. 

The BI-RADS outlines six different types of possible findings, ranging from Category 0, which 

states that the assessment is incomplete, and additional imaging evaluation is necessary to classify 

the required tumor, up to Category 5, which suggests that the tumor is highly suggestive of 

malignancy, and appropriate measures should be taken. 

 

In spite of the advantages offered by BI-RADS, the classification system depends upon qualitative 

features of the tumor, which may be subjective, and successful application using BI-RADS 

characteristics is dependent to a large degree upon the skills and knowledge of the clinician. QUS 

techniques seek to make the breast tumor evaluation process quantitative, reproducible and 

relatively operator dependent. Quantitative ultrasound techniques have received significant 

attention in recent years, and a comprehensive list of methods are available. We analyze three 

different aspects of QUS that have been able to distinguish between benign and malignant breast 

tumors with a high level of accuracy:  

 

I. Classification using physical properties of tissue,  

 

II. Classification using parameters developed from the spectrum of ultrasound echoes, and  

 

III. Classification using statistical analysis of the envelope of backscattered ultrasound.  

 

Analysis of physical properties of tissue, which includes backscatter co-efficient (BSC) and 

attenuation co-efficient, was first proposed by D’Astous and Foster [31]. In a later study, Nam et al. 

[32] attempted to differentiate between tumor types using the attenuation co-efficient and BSC 
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parameters, and reported attenuation co-efficients that were 20% higher for carcinoma than for 

fibroadenoma. They also found that most carcinomas exhibited lower values for frequency-

average BSC than fibroadenomas, and that fibroadenomas had greater variability in Effective 

Scatterer Diameter (ESD) [32].  

 

One of the first to utilize the spectrum of ultrasound echoes was Lizzi et al. [33, 34], who developed 

parameters from the spectrum of ultrasound echoes, which includes the spectral slope, spectral 

intercept and midband fit, and demonstrated the correlation of these parameters with tissue 

microstructure [33]. In a later study, Alam et al. [35] proposed a set of quantitative descriptors aimed 

at identifying cancerous breast lesions, which utilized acoustic features extracted from the 

parameters proposed by Lizzi et al., as well as morphometric properties related to the shape of the 

lesion. They reported a receiver-operating-characteristics (ROC) area of 0.947±0.045 for the 130 

“biopsy-proven patients” that they considered for the study. Spectral features were also utilized by 

Kabir et al. [36], who attempted to classify benign and malignant breast tumors through features 

extracted from B-mode images after applying Contourlet Transform. The extracted features from 

their study yielded accuracies of 95% with Artificial Neural Network (ANN), 92.5% with K-

Nearest Neighbors (KNN) and 90% with Support Vector Machine (SVM) classification 

approaches. It is not only in the avenue of breast cancer classification where spectral characteristics 

have yielded a high degree of success, but also for other forms of cancer, such as prostate cancer. 

Layek et al. [37] attempted to classify sonoelastography images of prostate cancer using Fourier and 

Wavelet based transformations. Their work yielded maximum classification rates of 97%, 94% 

and 96% were obtained using Stationary Wavelet Transform (SWT), Fast Fourier Transform (FFT) 

and Discrete Wavelet Transform (DWT) respectively 

 

Statistical analysis of the envelope of backscattered ultrasound involves modelling the envelope 

using well known statistical distributions. Two such statistical distributions that have become 

significant for breast cancer are the Nakagami distribution and the homodyned K distribution. The 

Nakagami distribution presents a simple, generalized model, and was proposed as a model for 

ultrasonic backscatter by Shankar [38], and was later used for classification of breast masses by 

Shankar et al. [39], achieving ROC areas of 0.85±0.06 and 0.838±0.065 for the two parameters 

respectively. The homodyned K model for ultrasound echoes was initially proposed by Dutt and 
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Greenleaf [40], and later modified by Hruska [41], and Hruska and Oelze [42]. The homodyned K 

parameter along with BI-RADS classifiers was later applied by Trop et al. [43], who demonstrated 

their ability to reduce the number of biopsies performed on breast cancer patients by 25%, whilst 

maintaining 100% sensitivity. 

 

The success of parameters extracted from the spectrum of ultrasound echoes in their ability to 

classify benign and malignant lesions of the breast is evident, suggesting that spectral 

characteristics and features of benign and malignant tumors have a high potential and ability to 

distinguish between these types of tumors. This thesis thus utilizes spectral characteristics of 

ultrasound RF echoes, more specifically the power spectrum of RF echoes, in an attempt to 

distinguish between tumor types.   
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Chapter 3 

Methodology 

3.1 Introduction 

This study utilizes four parameters extracted from the power spectrum of ultrasound radio-

frequency (RF) echo signals: The peak power, the frequency corresponding to the peak power, 

termed the peak frequency, half-power bandwidth, and the area under the power spectrum curve 

within the half-power bandwidth, termed the half power energy. The procedure begins with 

selection of RF data of patients with tumors that can be clearly distinguished. The boundary of 

each lesion was traced by knowledgeable non-clinicians. Based on this trace of the tumor, points 

are manually demarcated on the tumor boundary, and these points are used as a reference to define 

the regions-of-interest (ROI) that will be analyzed in this study.  

 

This study analyses three different ROI for each point demarcated on the boundary, one outside 

the lesion, one inside the lesion and the last consisting of areas both inside and outside the lesion, 

to study the effect of variation in classification accuracy based on the position of the ROI analysed. 

This study also analyses ROI of three varying sizes, to determine the effect of ROI size on 

parameter values, and hence classification capability. Next, the power spectrum of each ROI is 

obtained, and the parameters extracted, which are used for classification between tumor types 

through Linear Support Vector Mechanism (SVM). Figure 3.1 depicts a flowchart of the algorithm 

followed in this study. 
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Figure 3.1: Algorithm Flowchart 
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3.2 Data Acquisition 

The data-set utilized for this study is from ATL’s PMA study (IRB approved) undertaken in 1994 

[35]. The data-set consists of RF data and analysis results for 135 patients, from which biopsy 

classified 100 to have benign masses, and 35 to have malignant masses. The data was acquired at 

three clinical sites (Thomas Jefferson University, University of Cincinnati and Yale University). 

The masses were imaged using a Philips Ultrasound (Bothell, WA) UM-9 HDI scanner with an 

L10-5 (7.5 MHz) linear-array transducer. RF echo-signal data was digitally acquired by interfacing 

a Spectrasonics Inc. (King of Prussia, PA) acquisition module with the scanner. The L10-5 

transducer was used at a default power level and a single transmit focal length, selected by the 

operator. The RF data were sampled at 20 MHz with an effective dynamic range of 14 bits. 

   

From the data-set, 17 benign and 11 malignant cases were selected for this study. The selection 

criteria were the visibility of the lesion boundary, and whether it could be distinguished clearly 

from the surrounding tissue. Visibility of the lesion boundary is crucial for this study as we 

manually demarcate points on the tumor boundary. Figure 3.2 depicts two cases where the lesion 

is clearly visible (CV) and not-clearly visible (NCV), for both benign and malignant lesions. Here 

CV represents the presence of features such as distinct visibility of the lesion boundary compared 

to the background, proper contrast and reduced noise levels, which leads to proper identification 

and demarcation of the lesion boundary points. On the other hand, NCV images lack the 

aforementioned features.  
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(a) 

 

 

(b) 

Figure 3.2: (a) CV Benign (left), NCV Benign (right) 

(b) CV Malignant (left), NCV Malignant (right) 

 

3.3 Manual Selection of Boundary Points and Definition of the Three Types of ROI  

For our analysis, the regions-of-interest (ROI) will be centered about points manually selected on 

the upper-axial boundary of each malignant or benign tumor. The points thus selected are termed 

‘boundary points.’ The upper-axial boundary is considered because it is present at a lower depth 

than the lower-axial boundary, making it less susceptible to attenuation and diffraction effects. 

Points on the tumor boundary are of interest due to the morphological differences that are present 

between the boundaries of benign and malignant lesions [44].  As mentioned previously, traces of 
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each lesion were utilized for clear identification of the boundary, and correct placement of the 

points. The traces were created by knowledgeable non-clinicians, and the tumor-tracing program 

was written in Visual Basic TM (Microsoft Corporation, Redmond, WA). The boundary selection 

procedure is displayed in Figure 3.3. In an ideal semi-automated/automated procedure, the entire 

upper-axial boundary may be selected. For the time being, we will empirically consider 10 points 

on the upper axial boundary to observe the effect. 

 

 

 

(a) 

 

(b) 

Figure 3.3: (a) Animated representation of the manual selection of points on tumor boundary 

(b) Practical selection of the boundary points 

 

This study considers three overlapping ROI, which are situated axially along the A-lines for each 

point selected on the lesion boundary. The overlapping nature of the ROI will allow for analysis 

of the changes in frequency domain parameters along the entire region of the upper boundary. 
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These ROI consist of a region above the boundary point, termed the upper region, a region below 

the boundary point, termed the lower region and a region consisting of areas both below and above 

the boundary point, termed the central region. Three different ROI were considered as they have 

the potential to provide greater avenues of distinction between benign and malignant masses, due 

to the different characteristics that may be present for both tumor types in each of the three regions. 

 

 

 

Figure 3.4: Representation of ROI at tumor boundary 

 

The upper region will begin at the selected boundary point, and continue upwards for a specific 

number of samples in the RF image, thus containing area just outside the lesion boundary. The 

lower region will begin at the selected boundary point and continue downwards for the same 

number of samples, thus containing area inside the lesion boundary. The central region will be an 

overlap of upper and lower regions, with the selected boundary point present at the center. Figure 

3.4 depicts these 3 ROI as they are present on the tumor boundary, whilst Figure 3.5 provides an 

in-depth look at the three ROI present at each boundary point. 
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Figure 3.5: ROI at each boundary point 

 

3.4 Defining the Size of Each ROI by Selecting ‘N’ Number of Sample Points 

Each ROI consists of a certain number of points along the A-lines of the patient RF data that we 

analyze, and we define this as the number of samples. The number of samples considered for 

analysis within each ROI again presents another avenue of discussion. As some of the tumors are 

located very close to the surface, choosing a large number of samples could mean inclusion of 

features such as blood vessels or skin into the upper region, which is undesirable for analysis 

purposes. Furthermore, a smaller number of samples may create a region that is too small to be 

adequately analyzed, and hence provide parameter values that are ineligible for classification 

purposes. 

 

To overcome the uncertainty associated with choosing the appropriate number of samples in each 

ROI, we have chosen to analyze 3 different number of samples in this study: 30 samples, 50 

samples and 70 samples. On the one hand, an ROI consisting of 30 samples should provide an 

adequate area to analyze and obtain suitable parameter values. On the other hand, an ROI 

consisting of 70 samples wouldn’t include blood vessels or skin, and is thus again suitable for 

classification purposes. An ROI consisting of 50 samples provides an intermediate between the 

other two samples sizes, and the three varying sizes will allow for the analysis of classification 

accuracy against number of samples. 
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3.5 Feature Extraction 

All processing software were written in MATLABTM (The Mathworks, Inc., Natick, MA). The 

first step involved obtaining the frequency response of the RF data for each tumor. Next, the power 

spectrum was obtained from the magnitude response, according to the formula for normalized 

power: 

 

𝑃𝑜𝑤𝑒𝑟 =
(𝑀𝑎𝑔𝑛𝑖𝑡𝑢𝑑𝑒)2

𝐿𝑒𝑛𝑔𝑡ℎ
 

 

The parameters used for analysis were extracted from the power spectrum of each RF data. A 

description of the parameters is provided below: 

i. Peak power: maximum value of power present in the power spectrum of each RF data. 

ii. Peak frequency: the frequency corresponding to the peak power. 

iii. Half-power bandwidth: interval between frequencies in the power spectrum where the 

power has dropped to 3dB value, or a factor of 1/√2 of the peak value. 

iv. Half-power energy: The area under the power spectrum curve within the Half-power 

Bandwidth. 

A visual representation of each parameter in a power spectrum curve is provided in Figure 3.6. 
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Figure 3.6: Peak power, peak frequency, half-power bandwidth and half-power energy in a power 

spectrum curve 

 

3.6 Classification 

We utilize Linear SVM algorithm for classification. Each patient data consisted of 10 points, 

with each point used to define 3 ROI’s. Furthermore, ROI’s of three varying sizes are considered. 

For a certain number of sample points, i.e. 30 samples, 50 samples or 70 samples, the parameters 

obtained at the 10 selected points were averaged to acquire a single value for each of the upper, 

lower and central regions respectively. Hence, for a certain number of samples, each tumor yielded 

3 unique values for each of the 4 parameters, one for the upper region, one for the lower region 

and one for the central region, and these values were used to classify the tumors. This process of 

obtaining parameter values for Linear SVM classification is described by the flowchart in Figure 

3.7. 
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Figure 3.7: Process of obtaining values for classification using Linear SVM 

 

 

3.7 Conclusion 

After the required parameters were extracted from each ROI, and the average values for each ROI 

were obtained, classification was performed using these average values. The classification 

procedure was conducted in two phases, where multiple combinations were tried, and a successive 

elimination based on highest classification accuracy of these combinations yielded the two best 

parameters, and the region from which these two parameters were attained. 
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Chapter 4 

Results and Discussion 

 

4.1 Introduction 

Data was analyzed for a total of 28 patients, amongst which there were 11 cancerous, and 17 non-

cancerous tumor types. Classification was performed for three different sizes of ROI, i.e. 30 

samples, 50 samples and 70 samples, individually, all taken axially along the corresponding A-

lines.  

 

4.2 Classification Procedure 

The classification process for each ROI size consisted of two phases: 

 

I. Phase 1: Phase one consisted of two steps: 

 

(i) Step 1: Classification was done using individual parameter values from all three 

regions, i.e. for each individual parameter, e.g. peak frequency, classification was 

carried out using the value of peak frequency in the lower region, the upper region 

and the middle region. After this was done for all 4 parameters, the two parameters 

providing the highest classification accuracy were selected for the next phase. 

 

(ii) Step 2: Classification was done using all four parameter values in a specific region, 

i.e., for each region, e.g. the lower region, the values of all four parameters in that 

region were utilized for classification. Following this, the two regions providing the 

highest classification accuracy were selected for the next phase. 

 

II. Phase 2: Phase two of the classification procedure took place as follows: 

 

(i) Classification was conducted using the values of the two highest performing 

parameters from all three regions 
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(ii) Classification was conducted using the values of the two highest performing 

parameters from one of the highest performing regions 

 

(iii) Classification was conducted using the values of the two highest performing 

parameters from the other selected region 

 

This process is outlined in the flowchart in Figure 4.1. 

 

 

Figure 4.1: Classification procedure 
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4.3 Results for ROI Size of 30 Samples 

Phase 1, Step 1: Classification using individual parameter values 

Peak power: The peak power from all three regions provided a classification accuracy of 85.7%. 

 

 

(a) 

 

(b) 

Figure 4.2: (a) Scatter Plot and (b) Confusion Matrix for classification using peak power values from all 

three regions (30 samples) 
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Peak Frequency: The peak frequency from all three regions provided a classification accuracy of 

57.1%. 

 

 

(a) 

(b) 

Figure 4.3: (a) Scatter Plot and (b) Confusion Matrix for classification using peak frequency values from 

all three regions (30 samples) 
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Half-power bandwidth: The half-power bandwidth from all three regions provided a 

classification accuracy of 75.0%. 

 

 

(a) 

 

(b) 

Figure 4.4: (a) Scatter Plot and (b) Confusion Matrix for classification using half-power bandwidth 

values from all three regions (30 samples) 
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Half-power energy: The half-power energy from all three regions provided a classification 

accuracy of 82.1%. 

 

 

(a) 

 

(b) 

Figure 4.5: (a) Scatter Plot and (b) Confusion Matrix for classification using half-power energy values 

from all three regions (30 samples) 

 



33 
 

Phase 1, Step 2: Classification using all parameter values in each ROI 

Classification using all values in Lower Region: The parameter values in the lower region 

provided a classification accuracy of 75%. 

 

 

(a) 

 

(b) 

Figure 4.6: (a) Scatter Plot and (b) Confusion Matrix for classification using all parameter values in 

lower region (30 samples) 
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Classification using all values in Central Region: The parameter values in the lower region 

provided a classification accuracy of 89.3%. 

 

 

(a) 

 

(b) 

Figure 4.7: (a) Scatter Plot and (b) Confusion Matrix for classification using all parameter values in 

central region (30 samples) 
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Classification using all values in Upper Region: The parameter values in the lower region 

provided a classification accuracy of 85.7%. 

 

 

(a) 

 

(b) 

Figure 4.8: (a) Scatter Plot and (b) Confusion Matrix for classification using all parameter values in 

upper region (30 samples) 
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Parameters Percentage of Accuracy 

Peak Power 85.7% 

Peak Frequency 57.1% 

Half-power Bandwidth 75% 

Half-power Energy 82.1% 

 

(a) 

Regions Percentage of Accuracy 

Upper Region 85.7% 

Central Region 89.3% 

Lower Region 75% 

 

 

(b) 

Table 4.1: Phase one classification accuracies (30 samples) 

 

Hence, for 30 samples, the two parameters providing the highest classification accuracy are: 

(i) Peak power 

(ii) Half-power energy 

 

The two ROI providing the highest classification accuracy are: 

(i) Upper region 

(ii) Central region 
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Phase 2: Classification using highest performing parameters and regions 

Classification using peak power and half-power energy values from all three regions: This 

process yielded an accuracy of 85.7%. 

 

 

(a) 

 

(b) 

Figure 4.9: (a) Scatter Plot and (b) Confusion Matrix for classification using all peak power and half-

power energy values in all three regions (30 samples) 
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Classification using peak power and half-power energy values from central region: This 

process yielded an accuracy of 85.7%. 

 

 

(a) 

 

(b) 

Figure 4.10: (a) Scatter Plot and (b) Confusion Matrix for classification using all peak power and half-

power energy values in central region (30 samples) 
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Classification using peak power and half-power energy values from upper region: This 

process yielded an accuracy of 92.9%. 

 

 

(a) 

 

(b) 

Figure 4.11: (a) Scatter Plot and (b) Confusion Matrix for classification using all peak power and half-

power energy values in upper region (30 samples) 
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4.4 Results for ROI Size of 50 Samples 

Phase 1, Step 1: Classification using individual parameter values 

Peak power: The peak power from all three regions provided a classification accuracy of 92.9%. 

 

 

(a) 

 

(b) 

Figure 4.12: (a) Scatter Plot and (b) Confusion Matrix for classification using peak power values from all 

three regions (50 samples) 
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Peak Frequency: The peak frequency from all three regions provided a classification accuracy of 

67.9%. 

 

 

(a) 

 (b) 

Figure 4.13: (a) Scatter Plot and (b) Confusion Matrix for classification using peak frequency values 

from all three regions (50 samples) 

 



42 
 

Half-power bandwidth: The half-power bandwidth from all three regions provided a 

classification accuracy of 78.6%. 

 

 

(a) 

 

(b) 

Figure 4.14: (a) Scatter Plot and (b) Confusion Matrix for classification using half-power bandwidth 

values from all three regions (50 samples) 
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Half-power energy: The half-power energy from all three regions provided a classification 

accuracy of 85.7%. 

 

 

(a) 

 

(b) 

Figure 4.15: (a) Scatter Plot and (b) Confusion Matrix for classification using half-power energy values 

from all three regions (50 samples) 
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Phase 1, Step 2: Classification using all parameter values in each ROI 

Classification using all values in Lower Region: The parameter values in the lower region 

provided a classification accuracy of 78.6%. 

 

 

(a) 

 

(b) 

Figure 4.16: (a) Scatter Plot and (b) Confusion Matrix for classification using all parameter values in 

lower region (50 samples) 
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Classification using all values in Central Region: The parameter values in the lower region 

provided a classification accuracy of 85.7%. 

 

 

(a) 

 

(b) 

Figure 4.17: (a) Scatter Plot and (b) Confusion Matrix for classification using all parameter values in 

central region (50 samples) 
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Classification using all values in Upper Region: The parameter values in the lower region 

provided a classification accuracy of 89.3%. 

 

 

(a) 

 

(b) 

Figure 4.18: (a) Scatter Plot and (b) Confusion Matrix for classification using all parameter values in 

upper region (50 samples) 
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Parameters Percentage of Accuracy 

Peak Power 92.9% 

Peak Frequency 67.9% 

Half-power Bandwidth 78.6% 

Half-power Energy 85.7% 

 

(a) 

Regions Percentage of Accuracy 

Upper Region 89.3% 

Central Region 85.7% 

Lower Region 78.6% 

 

 

(b) 

Table 4.2: Phase one classification accuracies (50 samples) 

 

Hence, for 30 samples, the two parameters providing the highest classification accuracy are: 

(iii) Peak power 

(iv) Half-power energy 

 

The two ROI providing the highest classification accuracy are: 

(iii) Upper region 

(iv) Central region 
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Phase 2: Classification using highest performing parameters and regions 

Classification using peak power and half-power energy values from all three regions: This 

process yielded an accuracy of 96.4%. 

 

 

(a) 

 

(b) 

Figure 4.19: (a) Scatter Plot and (b) Confusion Matrix for classification using all peak power and half-

power energy values in all three regions (50 samples) 
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Classification using peak power and half-power energy values from central region: This 

process yielded an accuracy of 96.4%. 

 

 

(a) 

 

(b) 

Figure 4.20: (a) Scatter Plot and (b) Confusion Matrix for classification using all peak power and half-

power energy values in central region (50 samples) 
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Classification using peak power and half-power energy values from upper region: This 

process yielded an accuracy of 92.9%. 

 

 

(a) 

 

(b) 

Figure 4.21: (a) Scatter Plot and (b) Confusion Matrix for classification using all peak power and half-

power energy values in upper region (50 samples) 
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4.5 Results for ROI Size of 70 Samples 

Phase 1, Step 1: Classification using individual parameter values 

Peak power: The peak power from all three regions provided a classification accuracy of 92.9%. 

 

 

(a) 

 

(b) 

Figure 4.22: (a) Scatter Plot and (b) Confusion Matrix for classification using peak power values from all 

three regions (70 samples) 
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Peak Frequency: The peak frequency from all three regions provided a classification accuracy of 

64.3%. 

 

 

(a) 

 (b) 

Figure 4.23: (a) Scatter Plot and (b) Confusion Matrix for classification using peak frequency values 

from all three regions (70 samples) 
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Half-power bandwidth: The half-power bandwidth from all three regions provided a 

classification accuracy of 67.9%. 

 

 

(a) 

 

(b) 

Figure 4.24: (a) Scatter Plot and (b) Confusion Matrix for classification using half-power bandwidth 

values from all three regions (70 samples) 
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Half-power energy: The half-power energy from all three regions provided a classification 

accuracy of 96.4%. 

 

 

(a) 

 

(b) 

Figure 4.25: (a) Scatter Plot and (b) Confusion Matrix for classification using half-power energy values 

from all three regions (70 samples) 
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Phase 1, Step 2: Classification using all parameter values in each ROI 

Classification using all values in Lower Region: The parameter values in the lower region 

provided a classification accuracy of 71.4%. 

 

 

(a) 

 

(b) 

Figure 4.26: (a) Scatter Plot and (b) Confusion Matrix for classification using all parameter values in 

lower region (70 samples) 
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Classification using all values in Central Region: The parameter values in the lower region 

provided a classification accuracy of 85.7%. 

 

 

(a) 

 

(b) 

Figure 4.27: (a) Scatter Plot and (b) Confusion Matrix for classification using all parameter values in 

central region (70 samples) 
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Classification using all values in Upper Region: The parameter values in the lower region 

provided a classification accuracy of 82.1%. 

 

 

(a) 

 

(b) 

Figure 4.28: (a) Scatter Plot and (b) Confusion Matrix for classification using all parameter values in 

upper region (70 samples) 
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Parameters Percentage of Accuracy 

Peak Power 92.9% 

Peak Frequency 64.3% 

Half-power Bandwidth 67.9% 

Half-power Energy 96.4% 

 

(a) 

Regions Percentage of Accuracy 

Upper Region 82.1% 

Central Region 85.7% 

Lower Region 71.4% 

 

 

(b) 

Table 4.3: Phase one classification accuracies (70 samples) 

 

Hence, for 30 samples, the two parameters providing the highest classification accuracy are: 

(v) Peak power 

(vi) Half-power energy 

 

The two ROI providing the highest classification accuracy are: 

(v) Upper region 

(vi) Central region 
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Phase 2: Classification using highest performing parameters and regions 

Classification using peak power and half-power energy values from all three regions: This 

process yielded an accuracy of 85.7%. 

 

 

(a) 

 

(b) 

Figure 4.29: (a) Scatter Plot and (b) Confusion Matrix for classification using all peak power and half-

power energy values in all three regions (70 samples) 
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Classification using peak power and half-power energy values from central region: This 

process yielded an accuracy of 85.7%. 

 

 

(a) 

 

(b) 

Figure 4.30: (a) Scatter Plot and (b) Confusion Matrix for classification using all peak power and half-

power energy values in central region (70 samples) 
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Classification using peak power and half-power energy values from upper region: This 

process yielded an accuracy of 100%. 

 

 

(a) 

 

(b) 

Figure 4.31: (a) Scatter Plot and (b) Confusion Matrix for classification using all peak power and half-

power energy values in upper region (70 samples) 
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The results obtained from the classification procedure are summarized in Table 4.4. 

 

Number of Samples Highest Performing 

Parameter 

Highest Performing 

Region(s) 

Highest Classification 

Accuracy 

30 Peak Power, 

Half-power Energy 

 

 Upper Region 

 

92.9% 

50 Peak Power, 

Half-power Energy 

 

Central and All Three 

Regions 

 

96.4%, 96.4% 

70 Peak Power, 

Half-power Energy 

 

Upper Region 

 

100% 

 

Table 4.4: Summary of Results 

 

4.6 Discussion 

We began our classification approach using four spectral parameters, peak power, peak frequency, 

half-power bandwidth and half-power energy. After multiple steps of analysis and classification, 

two highest performing parameters, peak power and half-power energy, were attained, which 

provided the highest classification accuracy. Our research also showed that the classification 

accuracy varies for different ROI sizes (based on the varying number of samples taken axially 

along the A-line) and also for different regions of study. Our findings show that the highest 

classification accuracy can be obtained in most cases when the analysis is performed by taking the 

two highest performing parameters from the region axially above the tumor boundary, which we 

defined as the upper region. 

 

Our study utilized a linear classification approach (Linear SVM) due to the fairly clear separation 

of values visually observed between benign and malignant tumors, particularly using the peak 

power and half-power energy values, as indicated by the scatter plots for these parameters. Non-

linear classification approaches such as neural networks or non-linear support vector mechanisms 

may produce different results, as in this case the parameters that did not show a clear separation 

between cancers and non-cancers, i.e. the peak frequency and half-power bandwidth, might come 

into play.  
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For all three different sizes of ROI considered, the parameters of peak power and half-power 

energy consistently produced high levels of accuracy in classifying between benign and malignant 

lesions. Thus, these parameters clearly possess a noticeable difference in value between benign 

and malignant cases, which allows for distinguishing between the two tumor types.  

 

In our analysis, the parameters of peak frequency and half-power bandwidth were not useful in 

discriminating between benign and malignant lesions. There may be several reasons for this. The 

use of linear classification approach may be one, and as discussed above, non-linear approaches 

may yield different results. Another consideration may be the manual selection of points on the 

lesion boundary, as the points chosen on the tumor boundary did not follow any specific pattern, 

and were chosen more or less randomly. This may produce discrepancies in parameter values, and 

a systematic method of choosing the boundary points may produce different results 

 

In terms of the area of the ROI, increasing the area of the ROI was observed to produce higher 

classification accuracies. An ROI size of 30 samples produced the lowest overall classification 

accuracy, although it still produced a high overall classification accuracy of 92.9%. An ROI size 

of 50 samples produced a classification accuracy between that obtained for 30 samples and 70 

samples, of 96.4%. Meanwhile, an ROI size of 70 samples produced the highest overall 

classification accuracy of 100% for the data set utilized. Using areas of ROI above 70 samples 

might produce similarly high accuracies, although increasing the size too much would likely cause 

the accuracy levels to drop, as it might mean inclusion of regions consisting of blood vessels and 

skin into the ROI, which may hamper results. Hence, there may be a theoretical limit for the 

number of samples which are able to produce high classification accuracies, which may be the 

target of future research in this domain. 

 

Furthermore, values of the parameter from the upper region produced the best results in terms of 

classification accuracy for ROI areas of 30 samples as well as 70 samples, whereas for an ROI 

area of 50 samples, the central region produced the highest classification accuracy. In all three 

cases, the lower region produced the lowest classification accuracy, pointing to the fact that power 

spectrum values obtained from the area inside the tumor are not effective in distinguishing between 

and classifying benign and malignant breast lesions. Hence, for classification of benign and 
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malignant tumors using the four spectral parameters, the lower region or the region inside the 

lesion can be avoided while using linear classification module like SVM. In case of ROI having 

50 samples, the central region contained 25 samples above the boundary of the lesion, which was 

sufficient to provide highest classification accuracy using peak power and half-power energy 

values, as compared to upper and lower region. However, as the upper region was found to provide 

the highest classification accuracy for both an ROI consisting of 30 samples and an ROI consisting 

of 70 samples, it appeared more optimal to use upper region as the preferable region while 

classifying using peak power and half-power energy.  

  

Moreover, as 100% classification accuracy was obtained using peak power and half-power energy 

from the upper region with an ROI of 70 sample size, it can be concluded that our approach of 

classifying breast tumors using RF data will be optimum when an ROI of 70 samples will be used, 

when the sample points are taken axially along the A-line, from the pre-defined upper region and 

the spectral parameters are peak power and half-power energy. However, the result may vary for 

different data set or other approaches for classification.    
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Chapter 5 

Conclusion 

5.1 Introduction 

The effectiveness of ultrasound instruments and processes in distinguishing between cancerous 

and non-cancerous breast tumors has increased significantly, and has even moved to a point where 

many radiologists recommend periodic follow-ups based on breast ultrasound findings, without 

performing biopsy. This thesis focused on a classification procedure based on spectral features 

extracted from different regions in the RF data of the patient, with an ultimate goal to determine 

whether such an approach might play a role in increasing the specificity associated with diagnostic 

ultrasound procedures of the breast, and thus reduce the misdiagnoses or unnecessary biopsies 

associated with breast cancer. The results obtained from this study suggest that such an approach 

may classify benign and malignant breast lesions with a very high level of accuracy, and thus may 

be able to play a role in the diagnostic procedure associated with breast cancer. 

 

Our research findings indicate that for classification between benign and malignant breast tumors 

using parameters extracted from the power spectrum of ultrasound RF echoes, the peak power and 

half-power energy values obtained are able to distinguish between the tumor types with the highest 

degree of accuracy, when the values were taken from the region above the boundary of the tumor, 

and the ROI consisted of 70 samples axially along the A-line. In this case, the selected parameters 

were able to provide 100% accuracy using the Linear SVM classification procedure, for the 

selected patient data that we analysed from the dataset used for this research. 

 

5.2 Future Scopes of Research 

There are several avenues of research that may be undertaken in the future following this study. 

We have divided such scopes into short-term, and long-term research prospects. 

 

For research in the near future, a non-linear classification approach such as neural networks may 

be utilized to observe the differences that may take place regarding classification accuracy using 

individual parameter values from all three regions, as well as all parameter values in individual 

regions. This may produce different results than those obtained in this study, as a non-linear 
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classification approach may increase the accuracy of classification using the parameters of peak 

frequency and half-power bandwidth, which provided poor accuracy when a linear classification 

approach was used. Furthermore, as our findings indicate that a higher number of samples in the 

ROI considered increased the classification accuracy, another scope of future research might be to 

continue increasing the number of samples in each ROI, to observe if the classification accuracy 

increases, decreases or remains constant, thus deducing whether 70 samples provides the optimal 

size of ROI for classification of this nature. Yet another research scope in the near-future would 

be to follow the procedure outlined in this thesis using some different parameters from the power 

spectrum, to observe whether other parameters such as peak power and half-power energy, which 

provide the highest classification accuracy between breast tumor types, exist. 

 

For research in the distant future, an obvious consideration would be to automate the process of 

selecting the area for analysis, instead of constructing the ROI based on manual selection of 

boundary points. In an ideal case, the entire upper boundary would be selected automatically, 

making the process of defining the ROI independent of user interaction. In this case, the visibility 

of the tumor would not be an issue, and both CV and NCV tumors would be able to be classified 

using the parameters, as the upper boundary would be automatically selected using appropriate 

segmentation functions. An automated procedure where the entire upper axial boundary is utilized 

for classification would be the optimal approach for a study of this type, and the parameter values 

thus obtained would be regarded as the standard. For further establishing this area of research, the 

procedures outlined in this thesis could be applied to other breast tumor patient datasets, to observe 

whether similar results are obtained, or if there are any major differences.  

 

5.3 Conclusion 

Demonstrating high percentages of classification accuracy, our algorithm presents a promising 

aspect of classifying benign and malignant tumors using a quantitative approach based on 

parameters extracted from the power spectrum. Potential diagnostic advantages could be clearly 

observed. Improvements and modifications might come into play for varying dataset which 

remains a scope for future research.  
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