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Abstract 

 

One of the major advantages offered by the plasmonic devices is its ability to overcome 

diffraction limit of light that emerges due to miniaturization of the devices.   

In order to serve this purpose plasmonic couplers of different shapes have been proposed. The 

proposed couplers consist of two types of waveguides; they are- Dielectric waveguide and 

MDM (Metal-Dielectric-Metal) waveguide. While designing the dielectric waveguide GaAs 

has been chosen as the key material. In MDM waveguide silver has been chosen as metal and 

air as dielectric. After designing the basic structures, different physical parameters were varied 

to optimize the performance of them. The performance of the proposed devices has been 

analyzed in terms of reflectance, admittance and transmitted energy.  

Here, the performance deviation was ascertained varying the wavelength of the applied signal. 

Alternating the dimensions of the proposed nano-plasmonic coupling device, coupling 

efficiency, reflection coefficient and absorption coefficient were computed. Finally, novel 

architectures have been achieved which provides us the maximum efficiency. 
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Chapter 1 

Introduction  

 

Electronics circuit works on the basis of transportation and storage of electron. Thanks to the 

use of scaled down transistors and electronic circuitries, the processing speed of modern 

microprocessors increased drastically. But in recent years, the annual rise in microprocessor 

clock speed has stagnated. This is due to the fact that RC delay increases with scaling down 

of electronic interconnects[1]. 

Through the implementation of optical communication systems based on optical fibers and 

photonics circuits, photonics offers a solution to this problem effectively. In comparison to 

system based on electronics, systems based on photonics such as fiber optic cable can transmit 

data much faster than electronic devices. However, they cannot be scaled down like electronic 

chips due to the diffraction limit of electromagnetic waves.  

In order to provide a solution to this problem of size-compatibility, it is wise to use the 

surface plasmon based circuits which offers the astonishing possibility to combine electronics 

and photonics at the nanoscale. Surface plasmon-based photonics or plasmonics can solve the 

problems that arise from the dimensional mismatch of photonic and electronic devices. 

Surface plasmons (SP) are electromagnetic waves that propagate along the planar interface 

between a metal and dielectric medium due to the coherent oscillations of delocalized 

electrons[2]. SPPs have the potential to transcend diffraction limit[3]. Plasmonic waveguides 

based on metal-dielectric-metal (MDM) structure have the ability to deliver nanoscale light 

containment  and direct optical modes of subwavelength i.e. surface Plasmon polaritons 

(SPPs)[4]. These characteristics of plasmonics waveguides make them the ideal linkage 

between photonic and electronic devices



 

 

1.1 Overview of Surface-Plasmon-Polariton 

Surface plasmons (SP) are electromagnetic waves that propagate along the planar interface 

between a metal and dielectric medium due to the coherent oscillations of delocalized electrons. 

Such electromagnetic surface waves are generated due to the coupling of the electromagnetic 

fields to oscillations of the conductor’s electron plasma. 

 

SPPs are propagating solutions of Maxwell’s equations at the interface between a 

dielectric and a metal, which are bound to that interface. They are the resonant interaction 

between a light wave and oscillations of the free electrons at the metal 

interface and have an evanescent tail into both the metal and the dielectric. The dispersion of 

SPPs on a smooth metal surface is given by, 

 

 

𝑘𝑥 = 𝑘𝑜√
𝜖𝑑𝜖𝑚

(𝜖𝑑+𝜖𝑚)
 ,                                                         (1.1) 

 

where, 𝑘0 =
𝜔

𝑐
  is the free-space wave vector. On a flat interface between dielectric and metal 

half-spaces with dielectric constants εd and εm, respectively, SPPs are transverse magnetic 

(TM) plane waves propagating along the interface. Assuming the interface is normal to z and 

the SPPs propagate along the x direction, the SPP wave vector 𝑘𝑥 is related to the optical 

frequency through the dispersion relation. We take ω to be real and allow 𝑘𝑥 to be complex, 

since our main interest is in stationary monochromatic SPP fields in a finite area. The details 

of SPP has been discussed in Chapter 3. 
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1.2 Background History 

Plasmonics might be a modern concept but the photon interaction with the surface charges is 

not. It has been acknowledged by Joachim Krenn from the University of Graz, Austria that 

people were formulating ideas over 100 years which still connects to the researchers to this 

day. [5] 

Moreover, the coupling of light to the surface charges has been exercised for several hundred 

years. Since science was still at a developing phase during that time, there remains a possibility 

of incorrect crediting to some cases of plasmonics. It is learnt that Maxwell, Garnett and others 

are among the pioneers to early research works during 1904. Since, there have been revival 

periods in the field every ten years or so. There were however mentionable developments in 

the 1980s and 1990s that accelerated the modern renaissance of plasmonics. By around 2001 

there had been a fivefold increase in manuscript since 1990, which improved another five 

times by the year 2011.  

In recent years, plasmonics has arguably become the most populated research field in 

optics. A principal characteristic of plasmonics is the probability of increasing 

electromagnetic field intensity locally. This allows significant optical nonlinear effects in 

metal inclusive systems, like metamaterials. Martti Kauranen and Anatoly Zayats 

demonstrated the topic of nonlinear effects in plasmonic structures and presentended an 

overview of applications and limitations4. In addition, Vasily Temnov covered the 

opportunities offered by surface plasmons in devices utilizing the amalgamation of magnetic, 

acoustic and ultrafast effects[6].  

Nanofabricated structures using SPPs show potential for modeling and regulating propagation 

of light in matter. Generally, SPPs can be used to direct light effectively in nanometer-scale 

regions, resulting in specific modification of the resonance frequency dispersion properties 

(for example, significantly reducing the wavelength of light and the rate of light pulses), as 

well as field modifications appropriate for close interactions with nonlinear materials. The 

resulting increased sensitivity of light to external parameters (e.g. an applied electrical field 

or dielectric constant of an adsorbed molecular layer) shows potential for sensing and shifting 

applications.   
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Research currentlyfocuses on the structure, manufacturing, and experimental characterizatio

n of modern communication components based on nanoscale plasmonic effects. There is 

frequent use of the excitation of SPPs in an experimental approach known as surface Plasmon 

resonance (SPR). In SPR, the maximum excitation of surface plasmons is defined as a function 

of the angle of incident, wavelength or phase by measuring the reflected power from a prism 

coupler. This technique can be used to observe nanometer changes in thickness, fluctuations 

in density, or adsorption by molecules. 

The implementation of surface plasmon based circuits, including both SPPs and localized 

plasmon resonances can be an effective way to mitigate the size limitation issue of photonic 

circuits in the operation of high-performance data processing nano devices. However, in case 

of metal-dielectric-metal configuration of plasmonic waveguide, the propagation length of SPP 

is limited due to its high propagation loss at the surface of the metal, which is significantly more 

than the losses occurring due to disorders that are related to fabrications. 

Using both dielectric and plasmonic waveguide on the same chip can resolve this issue. 

The dielectric waveguide will carry the elementary optical mode,while the plasmonic wavegui

de addresses the problem of the subwavelength scale. 

This requires the need to couple optical modes efficiently from the dielectric waveguide to the

plasmonic waveguide.The design of efficient nanoplasmonic couplers with various materials a

nd structures can therefore be a visionary step in miniaturizing integrated photonic devices. 

G. Veronis et. al [7][8] proposed a coupler with multi-section tapers. P. Ginzburg et al [9] 

reported a λ/4 coupler to couple optical modes from a 0.5m to 50nm wide plasmonic 

waveguide. D. Pile et al. [10][11] presented an adiabatic and a non-adiabatic tapered 

plasmonic coupler. R. Wahsheh et al.[12][13] reported an analysis on nano plasmonic air-slot 

coupler and its fabrication steps.  
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1.3 Thesis Objective 

The prime objective of the thesis is to design and analyze efficient nano-plasmonic couplers 

of different shapes. Here we have proposed two different structures of nano-plasmonic 

waveguide deploying GaAs and analyzed their performance parameters. In terms of results 

(transmittance, absorbance, reflectance) obtained from the simulations indicate the 

verification of the system. However, more specifically, the objectives are- 

 

 to develop a model based on the FDTD method where we can run simulations in order 

to observe different performance parameters, 

 to obtain validity of the designed nano structures by measuring the energy through 

different ports, 

 to propose an efficient structure from the obtained results and discuss the potential 

applications. 
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1.4 Thesis Organization  

The thesis has been arranged in the following way: 

 

 In Chapter 2, the basic theory of EM Wave has been described. This chapter           

introduces the fundamental knowledge and necessary mathematical formulations of 

EM Wave and Maxwell’s equation. 

 In Chapter 3, the concept and mathematical formulation of Surface Plasmon Polariton 

(SPP) has been described. 

 Since we have developed our simulation model based on Numerical Analysis Method. 

These methods are briefly described in Chapter 4. 

 In chapter 5, design and analysis of our proposed nano-plasmonic couplers are 

discussed. 
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Chapter 2 

Basics of Electromagnetics 

 

Plasmonics works as a bridge between photonics and electronics. This field basically deals 

with light which is an electromagnetic wave. Maxwell came up with a set of differential 

equations in 1873 to explain the propagation of electromagnetic waves which is considered as 

the base of electromagnetics. 

 

2.1 Maxwell’s Equation 

Maxwell’s equations are a set of differential equations, and they are the base of all the 

studies and research work done on the field of electromagnetics. 

These equations are an assembled version of Gauss’s law, Gauss’s law for magnetism, 

Faraday’s law and Ampere’s law. The integral form of  Maxwell’s equation can be 

summarized[14] as, 

∮ 𝐃. dS = ∫ 𝛒𝑣  . 𝑑𝑣
 

𝑣

 

s
,     (2.1) 

∮ 𝐁. dS = 0
 

s
,        (2.2) 

∮ 𝐄. dl =  −
∂

∂t
∫ 𝐁 . dS

 

𝑠

 

L
,    (2.3) 

∮ 𝐇. dl = ∫ (𝐉 +
∂𝐃

∂t
) . dS

 

s

 

L
.       (2.4) 

 

And the general form of time varying Maxwell’s equation in differential form can be written 

as, 

∇ × 𝐄 = −
∂𝐁

∂t
− 𝐌,                                   (2.5) 

∇ × 𝐇 = 𝐉 +
∂𝐃

∂t
 ,                                            (2.6) 

∇.𝐃 = 𝛒,                                                        

  

(2.7) 
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∇.𝐁 = 0,                                                        (2.8) 

 

where, 

E  is the electric field, in volts per meter (V/m). 

H  is the magnetic field, in amperes per meter (A/m). 

D  is the electric flux density, in coulombs per meter squared (C/m2) 

B  is the magnetic flux density, in Weber’s per meter squared (Wb/m2) 

M  is the (fictitious) magnetic current density, in volts per meter (V/m2). 

 J is the electric current density, in amperes per meter squared (A/m2). 

 𝛒  is the electric charge density, in coulombs per meter cubed (C/m3). 

In free-space, the electric and magnetic field intensities and flux densities are related in this 

way, 

𝐁 = 𝜇0𝐇 ,                                                                (2.9) 

𝐃 = 𝜀0𝐄 .                                                                 (2.10) 

 

Assuming an 𝑒𝑗𝜔𝑡  time dependence, the time derivatives in (2.5)– (2.8) can be replaced with 

jω. Maxwell’s equations in phasor form become, 

∇ × 𝐄 = −jω𝐁 − 𝐌,  (2.11) 

∇ × 𝐇 = 𝐉 + jω𝐃, (2.12) 

∇.𝐃 = 𝛒, (2.13) 

∇.𝐁 = 0. (2.14) 

 

The Fourier transform can be used to convert a solution to Maxwell’s equations for an 

arbitrary frequency ω into a solution for arbitrary time dependence.[15] 
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2.2 The Helmholtz Equation 

Helmholtz equation is named after Herman von Helmholtz, a German physician. The 

Helmholtz equation is a linear partial differential equation, 

(∇2 + K2)A = 0,   (2.15) 

 

where, 

∇2 is the Laplacian, 

k is wave number , 

and A is the amplitude of  the  wave[16].  

This equation is applied to shape Maxwell’s equation in a source-free, linear, isotropic, 

homogeneous region, Maxwell’s curl equations in phasor form are, 

∇ × 𝐄 = −jωμ𝐇,                                                        (2.16) 

∇ × 𝐇 = jωϵ𝐄,                                            (2.17) 

 

and constitute two equations for the two unknowns, E and H. As such, they can be solved 

for either E or H. Taking the curl of (2.11) and using (2.12) gives, 

∇ × ∇ × 𝐄 = −jωμ∇ × 𝐇 = ω2μϵ𝐄,                            (2.18) 

which is an equation for E. 

This result can be simplified through the use of vector identity   ∇×∇× E= ∇. (∇. E) − ∇2E, 

which is valid for the rectangular components of an arbitrary vector E, then, 

     ∇2𝐄 + ω2με𝐄 = 0,                                                  (2.19) 

because ∇ ·E = 0 in a source-free region. Equation (2.14) is the Helmholtz equation, for E. 

Similar equation for H can be derived in the same manner, 

 

 ∇2𝐇 + ω2με 𝐇 = 0.                                                  (2.20) 
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A constant  k = ω√με  is defined and called the propagation constant (which is also known 

as wave number), of the medium; its units are 1/m $. 

 

2.3 General Plane Wave Solutions  

Finally, the wave equation for E in free space can be written as, 

   ∇2𝐄 + k
2𝐄 =

∂2𝐄

∂x2 +
∂2𝐄

∂y2 +
∂2𝐄

∂z2
+ k

2𝐄 = 0.                               (2.21) 

 

In similar way, the wave equation for H in free space can be written as, 

   ∇2𝐇 + k
2𝐇 =

∂2𝐇

∂x2 +
∂2𝐇

∂y2 +
∂2𝐇

∂z2
+ k

2𝐇 = 0.           (2.22) 
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Chapter 3 

Surface Plasmon Polariton 

 

Surface plasmon polaritons are electrical excitations that move in the perpendicular direction 

of the interface between a dielectric and a conductor. Through the coupling of electromagnetic 

fields to oscillations of the electron plasma of the conductor, these electromagnetic surface 

waves are created. 

 

3.1 The Wave Equation 

To observe the physical properties of surface plasmon polaritons (SPPs), Maxwell’s equations 

(2.5), (2.6), (2.7), (2.8) are needed to be implemented to the flat interface between a conductor 

and a dielectric. To order to present this topic as clearly as possible, it is desirable to cast the 

equations first in a general form applicable to the guiding of electromagnetic waves, the wave 

equation. 

Without the external charge and the current densities, the curl equations (2.5, 2.6) can be 

combined to yield, 

∇ × ∇ × 𝐄 = −μo
2 ∂2𝐁

∂t2
 .                                                         (3.1) 

 

Using ∇ × ∇ × E ≡ ∇ (∇ · E) - ∇2E as well as ∇ · (εE) ≡E · ∇ε + ε∇ · E, and considering the 

lack of ∇ · D = 0, (3.1) can be rewritten as, 

∇ (−
1

ϵ
𝐄. ∇ϵ) − ∇2𝐄 = −μ

o
ϵoϵ

∂2𝐄

∂t2
 .                                       (3.2) 

 

For negligible dielectric profile variation ε = ε(r) over distances on 

the order of one optical wavelength, (3.2) Simplifies the basic formula of the theory of 

electromagnetic waves, 
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∇2𝐄 −
ϵ

c2

∂2𝐄

∂t2
= 0 .                                                             (3.3) 

 

In practice, this equation has to be solved individually in regions of constant ε and the 

solutions obtained have to be matched according to the appropriate boundary conditions. To 

cast (3.3) appropriate for the description of confined waves, we proceed in two steps. First, 

we assume in all generality a harmonic time dependence E (r, t) = E(r) 𝑒−𝑖𝜔𝑡  of the electric 

field. Inserted into (3.3), this yield, 

∇2𝐄 − ko
2ϵ𝐄 = 0 .                                                             (3.4) 

 

where, ko= 
𝜔

𝑐
  is the propagating wave vector in the vacuum. Equation (3.4) is called 

Helmholtz equation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.1: Typical geometry of the planar waveguide. The waves propagate in a cartesian coordination 

system along the x-direction. 
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For simplicity let us assume that the wave propagation is along the x-direction of the Cartesian 

coordinate system and that there is no spatial variation in the y-direction. We can therefore 

write, 

𝐄(x, y, z) = 𝐄(z)ejβz.                                                   (3.5) 

 

Where, 𝛽 = 𝐾𝑥 which is known as the propagation constant. 

Now, inserting the value of E, the wave equation will be, 

∂2𝐄(z)

∂z2 + (K0
2ε − β2)𝐄 = 0.                                               (3.6) 

 

In the same way, we can determine equation for the magnetic field H. The field E and H can 

be decomposed in cartesian co-ordinate system as, 

 

𝐄 = 𝐄x. a⃗ x + 𝐄y. a⃗ y + 𝐄z. a⃗ z,                                                      (3.7) 

𝐇 = 𝐇x. a⃗ x + 𝐇y. a⃗ y + 𝐇z. a⃗ z.                                                   (3.8) 

 

For Harmonic time dependence 
𝜕

𝜕𝑡
= −𝑗𝜔 and by solving the Ampere’s law and Faraday’s 

law, we get, 

∂𝐄𝐳

∂y
−

∂𝐄y

∂z
= jωμ0 𝐇x,                                                          (3.9) 

  ∂𝐄x

∂z
−

∂𝐄z

∂x
= jωμ0 𝐇y,                    ,                                    

(3.10) 

∂𝐄y

∂x
−

∂𝐄x

∂y
= jωμ0 𝐇z, 

(3.11) 

 ∂𝐇z

∂y
−

∂𝐇y

∂z
= jωε0 ε𝐄x,                                                        

(3.12) 

∂𝐇x

∂z
−

∂𝐇z

∂x
= jωε0 ε𝐄y, (3.13) 

∂𝐇y

∂x
−

∂𝐇x

∂y
= jωε0 ε𝐄z. (3.14) 
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As the propagation is in x-direction in the form of 𝑒𝑗𝛽𝑥  which supersedes 
𝜕

𝜕𝑥
= −𝑗𝛽. 

The homogeneity in y- direction make  
𝜕

𝜕𝑦
= 0. So, it will modify the equation as, 

−
∂𝐄y

∂z
= jωμ0 𝐇x,        (3.15) 

∂𝐄x

∂z
− jβ𝐄z = jωμ0 𝐇y, (3.16) 

  jβ𝐄y = jωμ0 𝐇z,                                                           (3.17) 

 ∂𝐇y

∂z
= jωε0 ε𝐄x,                                                        (3.18) 

∂𝐇x

∂z
− jβ𝐇z = jωε0 ε𝐄y,                                                         (3.19) 

jβ𝐇y = jωε0 ε𝐄z.                                                          (3.20) 

 

The solution of the above equation can be characterized by two sets of solution with the 

polarized characteristics which are, Transverse Electric (TE) modes and Transverse Magnetic 

(TM) modes. The equations belong to Transverse Magnetic modes are, 

 

 𝐄x = −j
1

ωε0 ε

∂𝐇y

∂z
,                                                             (3.21) 

 

𝐄z = −β
1

ωε0 ε
𝐇y.                                                             (3.22) 

 

 

Therefore, The TM polarized wave Equation will be, 

 

∂2𝐇y

∂z2 + (K0
2ε − β2)𝐇y = 0.                                             (3.23) 

 

Similarly, the TE polarized equations will be, 

  𝐇x = j
1

ωμ0 

∂𝐄y

∂z
 ,                                                                    (3.24) 

  𝐇z = β
1

ωμ0 
𝐄y. 

(3.25) 
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And the corresponding TE wave equation will be, 

 
∂2𝐄y

∂z2 + (K0
2ε − β2)𝐄y = 0.                                              (3.26) 

 

3.2 SPP at Single Interface  

The simplest configuration of SPP propagation is at single interface, that is in between 

dielectric, having the positive dielectric constant 𝜀2 and metal, having the negative dielectric 

constant 𝜀1. For metal the bulk plasmon frequency will be𝜔𝑝 and the amplitude decays 

perpendicular to the z− direction. 

For the TM solutions in two spaces: dielectric and metal will be,  

for z > 0, 

 𝐇z(z) = A2e
jβxe−k2z ,                                                           (3.27) 

 𝐄x(z) = jA2
1

ωε0 ε2
k2e

jβxe−k2z ,                                           (3.28) 

 𝐄z(z) = −A1
β

ωε0 ε2
ejβxe−k2z .                                               (3.29) 

 

and for z < 0, 

 

  𝐇y(z) = A1e
jβxek1z ,                                                              

(3.30) 

  𝐄x(z) = −jA1
1

ωε0 ε1
k1e

jβxek1z ,                                                  (3.31) 

  𝐄x(z) = −A1
β

ωε0 ε1
ejβxe−k1z .                                                      (3.32) 

 

 

The continuity of  𝐇y and εi𝐄𝐳 at the metal dielectric interface gives A1 = A2 and 

                                                            
k2

 k1
= −

ε2

ε1
 .                                                      (3.33) 

The surface wave exists at the interface of metal dielectric with their real dielectric 

permittivity’s opposite sign. We can therefore write, 

         k1
2ε = β2 − k0

2ε1,                                                               (3.34) 

 

   k2
2ε = β2 − k0

2ε2 .                                                                (3.35) 
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The dispersion relation of SPPs propagation can be found as, 

 

β = k0√
ε1ε2

ε1+ε2
 .                                                                   (3.36) 

 

The TE surface modes can be expressed as, 

 𝐄y(z) = A2e
jβxe−k2z ,                                                               (3.37) 

 𝐇x(z) = −jA2
β

ωμ0 
k2e

jβxe−k2z ,                                                 (3.38) 

  𝐇z(z) = −A2
β

ωμ0 
k2e

jβxe−k2z .                                                  (3.39) 

and for z > 0, 

 

𝐄y(z) = A1e
jβxe−k1z,                                                             (3.40) 

𝐇x(z) = jA1
β

ωε0 ε1
k1e

jβxek1z,                                                     (3.41) 

𝐇z(z) = A1
β

ωε0 ε1
k2e

jβxek1z.                                                       (3.42) 

 

Ey and Hx continuity requires for z < 0, 

A1(k1+ k2) = 0.                                                             (3.43) 

 

The surface needs that the real part of k1 and k2 should be more than zero for confinement. 

This will be satisfied if A1 = A2 = 0. Thus, no surface polarization modes for TE. SPP is only 

available for polarization in Transverse Magnetic  mode[2]. 

 

 

Fig. 3.2: SPP at the Single interface. 
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3.3 SPP at Double Interface 

Two mostly used double interface configurations of SPP waveguides are: Dielectric-Metal-

Dielectric (DMD), Metal-Dielectric-Metal (MDM). In these cases, SPPs are formed on both 

interfaces. When the distance is shorter than decay distance, it forms coupled mode of SPP. 

This coupled mode of propagation can also be sub-divided into even and odd modes, as shown 

in the Fig 3.3. 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.3: SPP at the double interface. 
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Chapter 4 

Overview of Numerical Analysis Methods 

In order to design and analyze the proposed coupler, different approaches have been adopted. 

Initially FDTD (Finite Difference Time Domain) method was used in MATLAB. Later, the 

working tool was shifted to CST Studio Suite® where the calculations are done using FIT 

(Finite Integration Technique). 

 

4.1 Finite Difference Time Domain (FDTD) 

Finite-difference time-domain is a numerical analysis method used for modeling 

computational electrodynamics. The algorithm used in FDTD simulations is close to Yee 

algorithm. The original proposal was focused for homogeneous, isotropic and lossless media 

based on discretizing the volume into cells in Cartesian coordinates. The Yee algorithm 

intends to solve both the electric and magnetic fields based on the coupled Maxwell’s curl 

equations instead of solving for either the electric field or the magnetic field alone with a wave 

equation.   

The method starts with two of the Maxwell’s equations,  

𝐃
∂𝐇

∂t
= −

1

μ
∇ × 𝐄,                                                           (4.1) 

 

                             𝐃
∂𝐄

∂t
=

1

ε
∇ × 𝐇.                                                              (4.2) 

 

The electric and magnetic fields are three dimensional vectors. Each equation can be 

converted into three coupled scalar first order differential equations. The derivatives are both 

in space and time. The curl operations of equations (4.1) and equation (4.2) yields the 

following six equations in Cartesian coordinates, 

 

∂𝐄z

∂y
−

∂𝐄y

∂z
= μ

∂𝐇x

∂t
,                                                        (4.3) 

∂𝐄x

∂z
−

∂𝐄z

∂x
= μ

∂𝐇z

∂t
,                                                        

  

(4.4) 
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∂𝐄y

∂x
−

∂𝐄x

∂y
= μ

∂𝐇z

∂t
,                                                        (4.5) 

∂𝐇z

∂y
−

∂𝐇y

∂z
= ε

∂𝐄x

∂t
 ,                                                        (4.6) 

∂𝐇x

∂z
−

∂𝐇z

∂x
= ε

∂𝐄y

∂t
,                                                        

(4.7) 

∂𝐇y

∂x
−

∂𝐇x

∂y
= ε

∂𝐄z

∂t
.                                                       

(4.8) 

 

Then the scalar differential equations are transformed into difference equations. To achieve 

that, discretization is needed for both space and time. Yee visualized the field components 

being arranged within a unit cell for space discretization. Those unit cell edges store electric 

field components, while magnetic field components are stored in centers. The field 

components are arranged in such a way where H components are surrounded by four E 

components and vice versa, which leads to a spatially coupled system of field circulations 

corresponding to the law of Faraday and Ampere. The Fig 4.1 shows the Yee’s spatial grid. 

 

Considering a two-dimensional TM (Transverse Magnetic) polarized field case,   

 

 ∂𝐄x

∂t
=

1

ε

∂𝐇z

∂y
 ,                                                           (4.9) 

∂𝐄y

∂t
=

1

ε

∂𝐇z

∂x
 ,                                                            

(4.10) 

 ∂𝐇z

∂t
=

1

μ
(
∂𝐄x

∂y
−

∂𝐄y

∂x
).                                                

(4.11) 

 

 

Central difference approximation is applied in each of the equations (4.9), (4.10) and (4.11) 

which finally conclude in a spatial scalar difference equations in (4.12), (4.13) and (4.14), 

 

𝜕𝑬𝑥

𝜕𝑡
=

1

𝜀

𝑯𝑧(𝑖,𝑗)−𝑯𝑧(𝑖,𝑗−1)

∆𝑦
 ,                                     (4.12) 

 
𝜕𝑬𝑦

𝜕𝑡
=

1

𝜀

𝑯𝑧(𝑖,𝑗)−𝑯𝑧(𝑖−1,𝑗)

∆𝑥
 ,                                     (4.13) 
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𝜕𝑯𝑧

𝜕𝑡
=

1

𝜇
(
𝑬𝑥(𝑖,𝑗+1)−𝑬𝑥(𝑖,𝑗)

∆𝑦
−

𝑬𝑦(𝑖+1,𝑗)−𝑬𝑦(𝑖−1,𝑗)

∆𝑥
).  (4.14) 

 

 
Fig. 4.1: Yee’s spatial grid[17]. 

 

To consider the time derivatives, the time axis is to be considered as shown in 

the figures. The Electric and Magnetic field are mapped half a step apart along the time axis. 

Again, applying the central difference approximation the equations (4.12), (4.13) and (4.14) 

become, 

𝑬𝑥
𝑛+1(𝑖+

1

2
,𝑗)−𝑬𝑥

𝑛(𝑖+
1

2
,𝑗)

∆𝑡
=

1

𝜀

𝑯𝑧

𝑛+
1
2(𝑖+

1

2
,𝑗)−𝑯𝑧

𝑛+
1
2(𝑖+

1

2
,𝑗−

1

2
)

∆𝑦
 ,                  (4.15) 

 

𝑬𝑦
𝑛+1(𝑖,𝑗+

1

2
)−𝑬𝑦

𝑛(𝑖,𝑗+
1

2
)

∆𝑡
= −

1

𝜀

𝑯𝑧

𝑛+
1
2(𝑖+

1

2
,𝑗+

1

2
)−𝑯𝑧

𝑛+
1
2(𝑖−

1

2
,𝑗+

1

2
)

∆𝑦
,         (4.16) 

 

𝑯𝑧

𝑛+
1
2(𝑖+

1

2
,𝑗+

1

2
)−𝑯𝑧

𝑛−
1
2(𝑖+

1

2
,𝑗+

1

2
)

∆𝑡
= −

1

𝜇
(

𝑬𝑥
𝑛+1(𝑖+

1

2
,𝑗+1)−𝑬𝑥

𝑛(𝑖+
1

2
,𝑗)

∆𝑦
−

𝑬𝑦
𝑛(𝑖+1,𝑗+

1

2
)−𝑬𝑦

𝑛(𝑖,𝑗+
1

2
)

∆𝑥
).  (4.17) 
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Simplifying the Yee’s grid in 2D plane, 

 

 

Fig. 4.2: Yee’s grid in two dimensional plane[17]. 

 

Further simplification of Yee’s grid for one dimension gives us, 

 

Fig. 4.3: Yee’s grid in one dimension. 

 

 

Each field component depends on the field of previous time step itself and the 

surrounding component in Yee’s algorithm. For accurate results, the Yee grid must be 
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numerically stable. In an unstable algorithm the computed magnitude of electric and 

magnetic field components will gradually increases, making the system unstable. The 

EM field’s propagation should not be faster than the allowed limit imposed by the phase 

velocity within the material to insure numerical stability. This is done by limiting time 

step ∆t using the Courant-Friedrich-Lewy criterion for the general Yee FDTD grid as 

follows, 

 ∆𝑡 ≤   { 
1

𝑣𝑝√
1

(∆𝑥)2
+

1

(∆𝑦)2
+

1

(∆𝑧)2
 
 },                                                (4.18) 

where, ∆x, ∆y and ∆z indicates the spatial Cartesian grid increments. 

 

4.2 Perfectly Matched Layer (PML) 

In the FDTD model, a space that is infinitely extending theoretically is converted into a finite 

computational cell as there are limitations on computer resources. It is said that the boundary 

is preferably absorbent without any nonphysical reflection back to the concerned area. A 

number of boundary conditions have been proposed to implement this , namely the perfectly 

matched layer of Berenger[18]. 

It is an engineered absorbing layer for wave equations which is commonly used in 

numerical methods to append computational regions to simulate open boundary problems. 

The main feature that distinguishes PML from an ordinary absorbing material is that waves 

incident on PML from non-PML medium do not reflect at the interface. This property allows 

PML to strongly absorb outgoing waves from interior of a computational region without 

reflecting back into the interior. 

 

4.3 Finite Integration Technique (FIT) 

Initial works were based on FDTD (Finite Difference Time Domain). AS we progressed 

working with FDTD was getting a bit complex. So, working tool was shifted from MATLAB 

to CST, and CST is a three-dimensional Electromagnetic analysis software which works on 

the basis of FIT (Finite Integration Technique).   
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FIT is a numerical technique to solve different electromagnetic wave equations. It was first 

introduced by T. Weiland in 1977[17]. Discretization method of FIT is similar to the one of 

FDTD method for homogenous media. Only difference is that, FIT works with the integral 

form of Maxwell’s equations. A set of staggered grids are made from the equations and the 

calculations are then performed on them. The most common drawback of FIT is the usage of 

Yee’s Cartesian meshes, they become inflexible when non orthogonal and complex structures 

are taken into consideration. 

Here, one dimensional grid is first made then three one dimensional grids available for three 

different axes are combined together for further calculations. Maxwell’s equations can be 

discretized in this way into a three-dimensional staggered grid in Cartesian coordinate. Let, a 

staggered grid on one –dimension having interval is [0, L], where 0 = 𝑥0 < 𝑥1, … . . , 𝑥𝑚  = L is 

a finite sequence of n grid points. 

This one –dimensional grid can also be described as- 𝑥𝑖 = 𝑖 ∗
𝐿

𝑛
, 𝑖 = 0, …., n. Here, the grid 

has mesh size, h= 
𝐿

𝑛 
 .And the corresponding staggered grid can be described in similar fashion- 

𝑠𝑖 = (𝑖 − 0.5) ∗
𝐿

𝑛
, 𝑖 =1,…, n. Like the grid shown in Fig 4.4. 

 

Fig. 4.4: Uniform grid 𝑥𝑖 and 𝑠𝑖 corresponding staggered grid in one dimension. 

 

Now, a set of corner points can be defined as,  

Ω𝑐 ≔ {𝑥0, 𝑥1, …… , 𝑥𝑚}.                                                  (4.19) 

And corresponding staggered grid points can be defined as, 
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s𝑖 ≔
1

2
(𝑥𝑖 + 𝑥𝑖+1)     for i= 0,…..m-1.                                     (4.20) 

Which indicates an increment in space of  
ℎ

2
 .Eventually forming a staggered grid 

corresponding Ω𝑐  , 

Ω𝑠 ≔ {𝑠0, 𝑠1, …… , 𝑠𝑚−1}.                                               (4.21) 

For defining a staggered grid in three-dimension, rectangular domain is considered, 

Ω = [0, 𝐿𝑥] × [0, 𝐿𝑦] × [0, 𝐿𝑧].                                       (4.22) 

Furthermore, it is assumed that [0, 𝐿𝑥], [0, 𝐿𝑦], [0, 𝐿𝑧] one-dimensional intervals are 

discretized by one-dimensional grids, 

Ω𝑐
𝑥 = { 𝑥0, 𝑥1, … . , 𝑥𝑚},                                               (4.23) 

Ω𝑐
𝑦

= { 𝑦0, 𝑦1, … . , 𝑦𝑚},                                               (4.24) 

Ω𝑐
𝑧 = { 𝑧0, 𝑧1, … . , 𝑧𝑚}.                                                (4.24) 

Which are set of grid points in x,y and z direction. This leads to 8 possible types of grids in 

Ω ,such as, 

Ω𝑡𝑥 ,𝑡𝑦,𝑡𝑧 = Ω𝑡𝑥
𝑥 × Ω𝑡𝑦

𝑦
× Ω𝑡𝑧

𝑧 .                                      (4.25) 

Where = (𝑡𝑥 , 𝑡𝑦, 𝑡𝑧) = {𝑐, 𝑠}3 and c denotes corner points and s denotes staggered points. 

Using these grids all the calculations in FIT are done[19]. 

 

4.4 CST 

Analysis and design of the couplers were done in CST Studio Suite ®. It is an extremely 

user-friendly software, largely used to model, test and customize devices and structures for 

electromagnetic (EM) applications; such as- analysis of antennas, filters, couplers, planar 

and multi-layer structures and SI and EMC effects.  It offers the flexibility to use Time 

Domain solver and the Frequency Domain solver, beside the flagship module. The analysis 

technique used here is FIT (Finite Integration Technique)[20]. 
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Chapter 5 

Designing of Efficient Nano-plasmonic Couplers 

 

Coupling is the process which allows the transfer of energy from one medium (i.e. optical 

fiber, metallic wire) to another. Transferring electrical energy from one portion of the circuit 

to the next portion is also known as coupling. Coupling between two waveguides in nano scale 

in plasmonic circuits is known as nano-plasmonic coupling.  

Surface plasmons (SP) are electromagnetic waves that propagate along the planar interface 

between a metal and dielectric medium due to the coherent oscillations of delocalized 

electrons. SPs occur at the interface between a metal and a dielectric material. These waves 

are locked close to the surface due to the interaction with the electrons which are located at 

the surface of a metallic material. The resonant interplay between the EM field of light and 

electron-charged vibrations near the metal surface gives rise to SP and also contributes to the 

unique characteristics. As generation of SPs require abundance of free electrons, plasmonic 

waveguides are made of metals[21]. 

The penetration of SPs into metal is approximated by skin depth. It can be roughly 10 nm- 

which is less than the wavelength of light in free space by two orders of magnitude. This 

characteristic of SPs creates the possibility to localize light in metallic structures which are of 

subwavelength dimensions. It can play a pivotal role in the construction of scaled down 

optoelectronic circuits and overcome the size limitation problem of photonic circuits. 

Furthermore, Interbrand transition of electrons causes loss of energy in metals at the optical 

range. Even the best of conductors is blighted by these losses. It causes degradation of 

performance of plasmonic devices. Metal-dielectric-metal composition of plasmonic 

waveguide can achieve high confinement. But it increases propagation loss due to the larger 

area available for the field to overlap with the metallic layers. In order to minimize the 

propagation loss, the dielectric waveguide as well as the plasmonic waveguide are integrated 

on a single chip. The dielectric waveguide receives optical signal from the source and couples 

the signal to the metal-dielectric-metal (MDM) waveguide. This initiates the necessity of 
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effective coupling of optical signals from dielectric waveguide to plasmonic waveguide. 

Therefore, it is imperative to design efficient nano-plasmonic coupling structures with 

different materials for the miniaturization of photonic devices[22]. 

 

5.1 Choice of Materials 

The most prominent losses in plasmonic waveguides occur due to inter band transition. The 

valence band electrons of dielectric materials ingest energy from incident photons and jump 

from valence band to conduction band. This in turn creates inter band transition losses[23]. 

To lessen these losses materials with greater bandgap are preferred. In our nano-plasmonic 

couplers GaAs is chosen as dielectric waveguide. GaAs is a type III / V semiconductor with 

high electron mobility and a high condensed electron velocity relative to silicon. The bandgap 

of GaAs is1.441eV which is ideal for minimizing inter band transition losses. Furthermore, 

GaAs based modules are not thermally sensitive due to their large band gap. Silver is chosen 

as metal in MDM (Metal Dielectric Metal) waveguide due to its dispersive properties. Some 

of the favorable Dielectrics that could be chosen based on their bandgap are given below- 

GaAs, Cu2O[22], SiO2, AlAs, Al2O3, GLS, Si[24]. 

 

5.2 Analysis Methodology 

Finite integration technique (FIT) has been deployed to explore the output characteristics of 

the hypothetical coupler. This method was proposed by Thomas Weiland[25]. FIT discretizes 

the integral form of Maxwell’s equations and converts those equations to a set of grids. Thus, 

making them appropriate for computer simulation. EM field problems can be solved 

numerically in time and frequency domain using FIT. CST MICROWAVE STUDIO® (CST 

MWS), a 3D electromagnetic (EM) simulation software, has been employed as the simulation 

tool. This software can solve EM field problems in both frequency and time domain. Time 

domain solver was used in our simulations. Perfectly matched layer (PML) was applied at 

every boundary of simulation domain. Hexahedral mesh property has been implemented in 

the simulation settings. 

Input port has been placed on dielectric waveguide and output port has been placed on the 

MDM waveguide. To determine the performance specifications, fundamental mode has been 
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excited at the input port and power was measured both on input and output port. Coupling 

efficiency is defined as the ratio of the power incident at MDM waveguide and the power 

incident on the dielectric waveguide. To avoid radiative effect while computing power, the 

output port was taken 10 nm away from the waveguide junction[26]. 

 

5.3 Designing Structures 

5.3.1 Rectangular Structure 

A three-dimensional dielectric rectangular waveguide coupled with a plasmonic waveguide 

of MDM (metal-dielectric-metal) was selected. Fig. 5.1 displays the schematic of the proposed 

plasmonic coupler. The width of the dielectric material (Gallium Arsenide) has been kept 500 

nm. The height considered as parameter ‘c’ is kept 300 nm. 

The air gap presents between GaAs and MDM waveguide, defined as ‘b’ is kept 10 nm 

initially. As the choice of material, silver as metal and air as dielectric were chosen. The total 

width of the MDM waveguide is 340 nm having air medium between silver, whose width is 

specified as ‘a’ and the value is chosen to be 90 nm. To find the appropriate value of ‘a’ for 

which the coupling efficiency is optimum, computational simulations have been deployed. In 

similar fashion ‘b’ and ‘c’ are also found. 

 

 

Fig. 5.1: Three-dimensional view of proposed air gap based rectangular GaAs  

nano-plasmonic coupler. 
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5.3.2 Semi-Elliptical Structure 

Here the width of the plasmonic waveguide is defined by the parameter ‘𝜔𝑎’. The height of 

the structure is defined by the parameter ‘h’. As we are dealing with a semi elliptical 

structure, two other parameters are considered which are semi major axis and semi minor 

axis. We can express an ellipse using the following equation, 

 

x2

p2
+

y2

q2
= 1,                                                      (5.1) 

 

here, p = semi-minor axis,  

q = semi-major axis and q > p. 

The width of the dielectric waveguide is defined by𝜔𝑔where, 𝜔𝑔 = 2q. 

 

 

Fig. 5.2: Three-dimensional view of proposed Semi elliptical coupling structure. 

 

In the simulations, the width of the dielectric waveguide, width of the plasmonic 

waveguide, semi-minor axis and the height of the coupling structure have been 

subsequently varied. Simulations were carried out at wavelengths ranging from 1000 nm 

to 2000 nm. 
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5.4 Optimization of structures 

5.4.1 Rectangular Structure  

After the design of the coupler has been completed, main focus was given to performance 

parameters. Initially performance parameters for initial structure was checked by putting two 

ports at two certain places of the coupler. Port-1 was placed at the left most side, at the upper 

portion of GaAs layer, a Gaussian pulse was sent via port-1 and another port, port-2 was 

placed 35 nm away from the GaAs layer. Port-2 received the transferred signal through the 

proposed coupler. CST prepared all the performance parameters for different wavelengths 

using FIT (Finite Integration Technique). 

 

Fig. 5.3: Proposed rectangular coupler with the ports. 

 

In order to find the optimum dimension of our chosen parameters, ‘a’, ‘b’ and ‘c’ are varied 

keeping the width of the GaAs unchanged at w = 500 nm. Primarily, considering ‘b’= 10 nm 

and ‘c’= 300 nm, the transmittance efficiency for the proposed coupler was calculated varying 

‘a’ in the range 40 nm < a<130 nm. The results have been demonstrated in the Fig. 5.4 and 

Fig 5.5.  
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Fig. 5.4: Transmittance vs variation of ‘a’, when ‘b’=10 nm and ‘c’=300 nm. 

 

 

Fig. 5.5: Transmittance vs wavelengths for variation of ‘a’. 
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It can be observed that the transmittance is comparatively low at ‘a’= 40 nm and the measured 

value increases with the increment of ‘a’. After sufficient amounts of simulations, optimum 

transmittance (at communication wavelength of 1550 nm) was found at ‘a’= 105 nm. 

 

Next, keeping the value of ‘a’ fixed at 105 nm, ‘b’ was varied in the range 0 nm <b < 20 nm. 

The transmittance of the coupler was recorded in similar fashion like the previous case and 

the optimum value of ‘b’ for better transmission was found to be 11 nm. The results can be 

observed in Fig. 5.6 and Fig. 5.7. 

 

 

 

Fig.5.6: Transmittance vs variation of ‘b’, when ‘a’=105 nm and ‘c’ = 300 nm. 
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Fig. 5.7: Transmittance vs wavelengths for variation of ‘b’. 

 

Once the optimum dimensions of ‘a’ and ‘has been found, the value of ‘c’ has been varied 

next, from 50 nm ascending to 500 nm. In this case, the best value for transmittance has been 

calculated at ‘c’= 300 nm represented by Fig. 5.8 and Fig. 5.9. 

 

 

Fig. 5.8: Transmittance vs variation of ‘c’, when ‘a’=105 nm and ‘b’=11 nm. 
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Fig. 5.9: Transmittance vs wavelengths for variation of ‘c’. 

The optimum dimensions were therefore finalized as air gap between silver, ‘a’= 105 nm, air 

gap between GaAs and silver, ‘b’= 11 nm and the height of the coupler, ‘c’= 300 nm. 

 

5.4.2 Semi-Elliptical Structure 

Port-1 was placed at the left most side of the proposed structure. Port two was placed 95 nm 

away from port-1. A Gaussian pulse was sent via port-1. Port-2 received the transmitted signal 

through the dielectric coupler. CST calculated all the performance parameters for different 

wavelengths applying finite integration technique (FIT). 

 

Fig. 5.10: Proposed semi-elliptical coupler with ports. 
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Taking the height of the structure has 300 nm and the width of the plasmonic waveguide as 

40 nm, we have varied the width of the dielectric waveguide, ‘𝜔𝑔’, from 280nm to 420 nm. 

During this process the length of semi-minor axis was kept fixed at 50 nm. The coupling 

efficiencies at the optical communication wavelength of 1550 nm, found at the 

aforementioned dimensions are shown in Fig 5.11. Coupling efficiencies, at the wavelengths 

ranging from 1000 nm to 2000 nm due to the variation of ‘𝜔𝑔’, has been depicted in Fig 5.12. 

 
Fig. 5.11: Coupling Efficiency vs width of dielectric waveguide, ‘𝜔𝑔’. 

 

Fig. 5.12: Coupling Efficiency vs Wavelength for different ‘𝜔𝑔’. 
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From Fig 5.10 it is evident that ‘𝜔𝑔’ = 390 nm yields the highest coupling efficiency. We have 

continued further optimization of the structure by taking ‘𝜔𝑔’ as 390 nm. Keeping ‘𝜔𝑔’ at 390 

nm, we have varied the width of the plasmonic waveguide from 20 nm to 100 nm. The 

resulting coupling efficiencies (at 1550 nm) due to this variation have been presented in Fig 

5.13. From this figure we can observe that at ‘𝜔𝑎’ = 70 nm, coupling efficiency reaches the 

highest value. Coupling efficiencies at the above-mentioned wavelength range due to the 

change of ‘𝜔𝑎’ has been shown in Fig 5.14. 

 

 

 

Fig. 5.13: Coupling Efficiency vs width of plasmonic waveguide ‘𝜔𝑎’ (here, ‘𝜔𝑔’ = 390 nm). 
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Fig. 5.14: Coupling Efficiency vs Wavelength for different ‘𝜔𝑎’. 

 

 

 

Afterwards we have varied the length of semi-minor axis from 30 nm to 120 nm keeping ‘𝜔𝑔’ 

= 390 nm and ‘𝜔𝑎’ = 70 nm. The variation of coupling efficiencies (at 1550 nm) due the 

variation of the semi-minor axis has been plotted in Fig 5.15. From this graph, it is observed 

that coupling efficiency (1550 nm) doesn’t vary much due to the variation of ‘p’. In Fig 5.16, 

the coupling efficiencies at the same wavelength range due to the modification of ‘p’ have 

been demonstrated. 
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Fig. 5.15: Coupling Efficiency vs semi-minor axis length, ‘p’ (here, ‘𝜔𝑔’ = 390 nm, ‘𝜔𝑎’ = 70 nm). 

 

 

Fig. 5.16: Coupling Efficiency vs Wavelength for different ‘p’. 
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Finally, taking ‘p’ = 60 nm, we have varied the height of the structure, ‘h’, from 140 nm to 

300 nm. From Fig 5.17 we can observe that the coupling efficiency (at 1550 nm) reaches its 

peak (63.169%) at ‘h’ = 210 nm. In Fig. 5.18, we can observe the coupling efficiencies from 

1000 nm to 2000 nm wavelength range because of the variation of ‘h’. 

 

Fig. 5.17: Coupling Efficiency vs height of the structure, ‘h’ (here, ‘𝜔𝑔’ = 390 nm, ‘𝜔𝑎’ = 70 nm, ‘p’ 

= 60 nm). 

 

 

Fig. 5.18: Coupling Efficiency vs Wavelength for different ‘h’. 
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  5.5 Performance characteristics of the optimized structures 

5.5.1 Rectangular Structure 

The proposed coupler yields coupling efficiency of 77.83% when ‘a’= 105 nm, ‘b’= 11 nm 

and ‘c’= 300 nm. This optimum coupling efficiency has been achieved after quite a few 

numbers of simulations. All the performance parameters have been measured at such 

configuration. Transmittance, absorbance and reflectance have been detected at different 

wavelengths and the results are in Fig. 5.19, Fig 5.20, Fig 5.21. Different performance 

specifications at the optical communication wavelength (1550 nm) have been inspected and 

are tabulated in Table 5.1. The values of transmitted power, reflected power and absorbed 

power are calculated and presented in Table 5.1, whose sum is found to be equal to 1, which 

is expected. 

 

 

 

Fig. 5.19: Transmittance vs Wavelength. 
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Fig. 5.20: Reflectance vs Wavelength. 

 

 

Fig. 5.21: Absorbance vs Wavelength. 
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Electrical field distribution of the coupler is observed at optical communication wavelength 

(1550 nm) which is shown in Fig. 5.22 and Fig 5.23. The color map suggests that the field 

strength is much lower in the metal region than in the dielectric region. Higher loss component 

in metal contributes to the aforesaid phenomenon. 

 

 

Fig. 5.22: Electric field distribution(3D). 

 

 

 

 

 
Fig. 5.23: Electrical field distribution (Cross sectional view of the coupler) 

Cross section taken 40 nm away from GaAs Layer. 
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Table 5.1: Values of different performance parameters at optical communication wavelength 
(1550 nm) 

 

Sl. No. Parameters Values 

1 Transmittance 0.77839 

2 Reflectance 0.00362 

3 Absorbance 0.21799 

 

 

5.5.2 Semi-Elliptical structure 

 

The proposed coupler yields coupling efficiency of 63% when ‘𝜔𝑔’ = 390 nm, ‘𝜔𝑎’ = 70 nm, 

‘p’ = 60 nm and ‘h’ = 210 nm. Using the optimum dimensions for the proposed plasmonic 

coupler, simulations have been carried out to obtain various performance parameters such as 

coupling efficiency, reflectance and absorbance for a wavelength range of 1000nm to 2000 

nm and depicted in Fig 5.23, Fig 5.24 & Fig 5.25. 

 

 
Fig. 5.24: Coupling Efficiency vs Wavelength. 
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Fig. 5.25: Normalized Reflectance vs Wavelength. 

 

 
Fig. 5.26: Normalized Absorbance vs Wavelength. 
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Fig 5.26 shows the electric field distribution at the optical communication wavelength 

of 1550 nm. Field profile across the cross-sectional plane of the metal-dielectric-metal 

waveguide has been depicted on Fig 5.27. It is evident from Fig 5.26 that the electric 

field distribution is almost zero in the metallic region of the coupler. 

 

Fig. 5.27: Electric field distribution at 1550 nm. 

 

 

(a)                                       (b) 

Fig. 5.28: Cross-sectional view of electric field distribution at(a) 40 nm and (b) 120 nm away from 

the interface of dielectric and plasmonic waveguide. 
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Different performance specifications at the optical communication wavelength (1550 nm) 

have been inspected and are tabulated in Table 5.2. 

 

 

 
Table 5.2: Values of different performance parameters at optical communication wavelength (1550 

nm) 
 

Sl. No. Parameters Values 

1 Coupling Efficiency 63.169% 

2 Reflectance 0.018 

3 Absorbance 0.345 
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Chapter 6 

Conclusion and Future Works 

 

6.1 Conclusion 

Plasmonic devices have progressed rapidly in recent years from isolated, passive structures to 

integrated active devices that could include an all-optical, nanophotonic networking 

application. The implementation of plasmonic nanostructures and extensive analysis of 

transmission properties have been theoretically demonstrated in this book. The accomplished 

work can be summarized as: 

 Design and simulation of an efficient nano-plasmonic coupler by varying the 

dimension of certain parameters.  

 Examining the change in performance characteristics of the coupler such as 

transmission efficiency, for different dimensional changes.  

 Selection of an optimum structure for the proposed coupler which provides the 

most efficient result.  

Throughout recent years, plasmonics has become an area of interest. Plasmonics are supposed 

to be the main nanotechnology integrating electronic and photonic elements on the same 

surface, in addition to creating modern photonics systems that are significantly smaller than 

the wavelength of the propagating light. 
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6.2 Future Works 

The area of plasmonics provides multiple resources for study. These include plasmonic chips 

which serve as ultra-low-loss optical interconnections, super lenses that allow unparalleled 

optical imaging, and new sources of light with unprecedented quality   deep-subwavelength 

nanolithography, plasmonic circuits and components that can direct light inside ultra-compact 

optically practical devices.  

Following are the clearer view of what schemes lie ahead for upcoming days:  

 Achieving a more appropriate architecture of the proposed model.  

 Investigating the possibility of deploying new materials in order to achieve higher 

efficiencies.  

 Effective monitoring of plasmonic stimuli by implementing piezoelectric modulation, 

all-optical and electro-optic and gain mechanisms to plasmonic structures.  

Further work needs to be carried out in this particular field in order to satisfy the commitments 

made by plamonics. We also desire to have valuable contribution in this promising field by 

working on the modification of our proposed coupler.  
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