

REAL-TIME LANE DETECTION AND MOTION PLANNING FOR
AUTONOMOUS VEHICLE

by

Nadim Ahmed (152419)

Sultanus Salehin (152431)

Tashfique Hasnine Choudhury (152452)

Alfa Rossi (152471)

A Dissertation Submitted to the Academic Faculty for Partial Completion of the
Requirements for the Degree of

BACHELOR OF SCIENCE IN ELECTRICAL AND ELECTRONIC
ENGINEERING

Department of Electrical and Electronic Engineering
Islamic University of Technology (IUT)

Gazipur, Bangladesh

November 2019

ii

REAL-TIME LANE DETECTION AND MOTION PLANNING FOR
AUTONOMOUS VEHICLE

 Approved by:

 Dr. Golam Sarowar
 Supervisor and Associate Professor,
 Department of Electrical and Electronic Engineering,
 Islamic University of Technology (IUT),
 Boardbazar, Gazipur-1704.

 Date:

iii

Table of Contents

List of Figures ...v-vi
List of Acronyms...vii-ix
Acknowledgment...x
Abstract ..xi
1. Introduction ...1-2

2. Literature Review ..3-7
 2.1 REVIEW OF LANE DETECTION..3
 2.2 RESEARCH OBJECTIVE AND OUTLINE...6

3. Lane Detection & Motion planning Algorithms..8-39
 3.1 CANNY EDGE DETECTION...8
 3.1.1 Gaussian Blur...11
 3.1.2 Finding Gradient..14
 3.1.3 Non Maximum Suppression..18
 3.1.4 Double Thresholding..20
 3.1.5 Hysteresis Edge Tracking...21
 3.2 HOUGH TRANSFORMATION...22
 3.2.1 Mapping of edge points...25
 3.2.2 Finding infinite lines...26
 3.2.3 Making infinite lines finite..26
 3.3 KALMAN FILTER..28
 3.3.1 Kalman Filter Derivation..28
 3.3.2 Space State derivation...29
 3.4 PID CONTROLLER...35

4. Hardware & Software Set up..40-46
 4.1 HARDWARE CONFIGURATION..40
 4.2 CONFIGURATION OF RASPBERRY PI..43
 4.2.1 Installing Raspbian...44
 4.2.2 Installing Open CV...45

5. Methodology..47-56
 5.1 DATA COLLECTION AND PREPROCESSING...47

 5.2 HOUGH LINES DETECTION...50

 5.3 CALCULATING CURRENT POSITION..52

 5.4 COMMUNICATION..55

 5.5. MOTION PLANNING...55

 5.6 STEERING..56

6. Experiments and Results………...57-60
 6.1 COMPARATIVE STUDY BETWEEN DIFFERENT METHODS...57
 6.1.1 No filter Vs Past Accumulated Average Method...57
 6.1.2 No filter Vs Kalman Filter..58

iv

 6.1.3 No filter Vs Past Accumulated Average Method & Kalman Filter...........................60

7. Conclusion and Future Work...62-63

References...64

v

List of figures

Figure 3.1 Grayscale Image……………………………………………………………………...12

Figure 3.2 An example of an image…………………………….………………………………..13

Figure 3.3 An example of a kernel……………………….………………………………………13

Figure 3.4 Smoothed Image(Blurred)……………………………………………………………14

Figure 3.5 Gradient Magnitude…………………………………………………………………..16

Figure 3.6 Angle Tracing………………………………………………………………………...17

Figure 3.7 Non Maximum Suppression……………………………………………………….....18

Figure 3.8 With interpolation………………………………………………………………..…...19

Figure 3.9 Non Maximum Suppression with Interpolation………………………………...……19

Figure 3.10 After Double Thresholding………………………………………………….………20

Figure 3.11 Edge Tracking………………………………………………………………………21

Figure 3.12 Final Output…………………………………………………………………………22

Figure 3.13 The normal parameters for a line……………………………………………………23

Figure 3.14 Accumulator…………………………………………………………..…………….24

Figure 3.15 Transformation of two points to two lines in the Hough Space………………....….25

Figure 3.16 Hough lines of infinite length…………………………………….…………………26

Figure 3.17 Hough lines of finite length………………………………………...……………….27

Figure 3.18 Block diagram Of a PID Controller………………………………...……………….35

Figure 3.19 Response of PV to step change of SP vs time, for 3 values of Kp ………………….37

Figure 3.20 Response of PV to step change of SP vs time, for 3 values of Ki .………….….......38

Figure 3.21 Response of PV to step change of SP vs time, for 3 values of Kd .…….…………...39

Figure 4.1 Raspberry Pi Model B……………………………………………………………..…40

vi

Figure 4.2 Arduino Uno rev 3…………………………………………………………………....41

Figure 4.3 Pi camera 1.3……………………………………………………………………..…..41

Figure 4.4 VNH2SP30 full-bridge motor driver…………………………………………….…...42

Figure 4.5 Total hardware setup…………………………………………………………….…...42

Figure 4.6 Raspberry Pi……………………………………………………………………….....43

Figure 5.1 Actual Frame…………………………………………………………………………48

Figure 5.2 Edge detected Frame…………………………………………………………………48

Figure 5.3 Segmented Frame……………………………………...……………………………..50

Figure 5.4 Lane and Current position Detected Frame…………………………………………..52

Figure 5.5 Past Accumulated Average method Vs Kalman filter Algorithm……………………54

Figure 6.1 Direction of motion with no filter and with past accumulated average……………...57

Figure 6.2 Direction of motion with no filter and with Kalman filter…………………………...59

Figure 6.3 No filter and with the avg. of Kalman filter and past accumulated average……..…..60

vii

List of Acronyms

OpenCV Open source Computer Vision

LDWS Lane Departure Detection System

GPS Global positioning system

ROI Region Of Interest

ADAS Advanced Driver Assistance Systems

CNN Convolutional Neural Network

NUBS Non-uniform B-spline

SCARF Status Certainty Autonomy Relatedness and Fairness

MOSFET Metal Oxide Semiconductor Field Effect Transistor

ANU Australian National University

JFC John F. Canny

MATLAB Matrix Laboratory

PPHT Progressive Probabilistic Hough Transform

LQE Linear Quadratic Estimation

MSE Mean Square Error

PID Proportional – integral – derivative

SP SetPoint

viii

PV Process Variable

CNC Computer Numerical Controller

RPM Revolution Per Minute

RAM Random Access Memory

BLE Bluetooth Low Energy

USB Universal Serial Bus

SD Secured Digital

HDMI High Definition Multimedia Interface

GPIO General Purpose Input Output

DSI Data Set Interface

NOOBS New Out of Box Software

OS Operating System

RGB Red, Green, Blue

UART Universal Asynchronous Receiver-Transmitter

ASCII American Standard Code for International Interchange

PWM Pulse Width Modulation

CPU Central Processing Unit

RANSAC Random Sample Consensus

ix

FPGA Field Programmable Gate Array

x

Acknowledgment

We have our wholehearted admiration for the support, assistance and guidance that many people

have showered us with throughout our undergraduate effort on countless occasions. We would like

to have the honor to express our heartfelt gratitude to our beloved advisor, our guidance

Dr. Golam Sarowar sir in the first place for his continuous assistance, inspiration and invaluable

suggestions from time to time. Without his support, our relentless work towards our research

would not have resulted in success. We would also like to thank the other members of our thesis

committee for their contemplative advice. We also wish to express our appreciation to our family

members for the support and love throughout our whole life. Above all, our glorification to

ALLAH subhanahu wa ta’la, THE ALMIGHTY would always fall short for giving us strength and

perseverance in the process of this accomplishment.

xi

Abstract

Our dissertation describes in-depth the algorithm intended to identify lane lines on streets and

highways in different conditions. Lane detection enhances the protection of the independent

system to some extent. The autonomous or self-sufficient vehicle is an independent device that

senses conditions and determines accordingly without any human intervention. Our emphasis was

on the use of a vehicle prototype to recognize lanes that could be used later on a standard vehicle.

To capture real-time video, PiCamera is embedded with a RaspberryPi 3.0 Model B for processing

purposes. RaspberryPi along with battery, motors are mounted in a prototype constructed using

CNC machine with sheer perfection. The real-time video captured by Picamera is sufficient

enough to evaluate the performance of the algorithms used. The algorithms that have been used

are the concepts of OpenCV, Hough transformation, canny edge detection algorithm and

elementary algebra to compute and draw the lines. Python 2.7 was used to write the code for the

relevant algorithm. The accuracy level of the algorithm used is quite astonishing. Our research

works significantly in the field of autonomous vehicles. The comprehensive approach shown here

offers a fairly precise and efficient solution for tracking lines. This can make a big difference in

the driving experience in every way possible if used properly.

1

Chapter 1

Introduction

People use their optical vision for vehicle wheeling and dealing during the driving process. The

marking of the road lane is a constant reference for the navigation of vehicles. A self-driving car,

also known as an autonomous car or a robotic car, is a vehicle that can sense and interpret the

environment and make appropriate decisions without needing human feedback or commands.

Often known as a driverless car, a self-driving car can drive itself using multiple techniques such

as radar, GPS, computer vision, etc. to sense the surroundings [1]. The basis of a driver support

system is a vision module detecting road lane boundaries to determine the ego vehicle's position.

Several approaches have already been implemented to complete long-distance road tests. The key

reason for building smart vehicles is to improve safety conditions by full or partial driving tasks

automation [2]. In the field of driving support systems, road detection has played an important role

between various tasks, providing information on lane layout and vehicle location relative to the

lane. Nevertheless, car crashes continue to be the worldwide leading cause of death and injuries,

especially in Asian countries, where tens of thousands of lives are lost and millions are injured

annually [3]. The majority of these deaths and injuries were caused on the roads of the country.

Several experiments on the robotization of vehicles and driver support systems are carried out.

Autonomous cars ' potential advantages include lower system costs, increased security, enhanced

consumer satisfaction and vital reduction in automotive accidents. Some also believe that bringing

robots to the car would destroy more traditional wrongdoings such as insurance scams and

automotive theft in favor of autonomous vehicles[4][5]. Because of the above-mentioned

advantages, most countries have leaped forward in getting self-driving cars to the public roads. In

2014, ‘Lutz pod’, a prototype of autonomous vehicle was introduced in UK for the very first time

2

and later on in 2017,Christchurch airport in New Zealand initiated the first-ever self-driving

car[6][7][8].Despite significant benefits, the complete acceptance of self-driven vehicles poses

many unforeseen challenges. Some critics claim that widespread adoption of driverless cars would

result in a lack of driving jobs and also endanger the safety of passengers. It is known that there

may be a lag in allowing autonomous cars on the road by the disparity in people's beliefs of the

necessary government interference. To make their driving experience safer and easier, thus, it is

important to look for alternatives. Our dissertation provides one such solution: Real-time lane

detection for autonomous vehicles using RaspberryPi.

A Lane Detection algorithm for real-time detection of road lane lines is described in this study.

The whole hardware set up was done via a CNC machine, a prototype of autonomous vehicle. In

this study, the Lane Detection algorithm applies the principles of probabilistic Hough transform,

Canny edge detection and Kalman filter to locate the lane lines in the road frames and enhance the

accuracy. The algorithms were implemented in Python 3.7.4 with OpenCV.

3

Chapter 2

Literature Review

2.1 Review of Lane Detection

A vast number of researchers work with the goal of building autonomous vehicles, and many government

institutions have also initiated numerous projects around the world. Such activities produced several models

and ideas focused on slightly different strategies.

1. P. Mandlik and A.B. Deshmukh have installed a Lane Departure Detection System (LDWS) to alert

the driver when the vehicle attempts to leave its lanes. LDWS is based on the lane recognition and

tracking algorithm and uses the' Canny Edge Detection' and' Hough Transform' OpenCV

implementations to discern vehicle lane departure on a Raspberry Pi. The test was done using a toy

vehicle prototype and USB camera, Intex IT-305WC webcam. Hough transform was used and

the result collection was done via Intel Core i3 1.80 GHz processor. [9]

2. At Universitat der Bundeswehr M¨unchen researchers used road as a clothoid for lane detection.

Several camera modules were used for video capturing and better focusing.[10]

3. Clanton et al introduced a multi-sensor lane departure warning strategy that used a roadmap with a

GPS receiver to sense road surfaces.[11]

4. In [12], the researchers proposed an approach using a lidar with a monocular camera that could

track the lane in an area in real-time. The lidar and sensors directly retrieved the information from

4

the environment, and the instruments are not based on the weather conditions that are the key

advantages of these approaches.

5. As far as the work performed using vision-based techniques is concerned, the methodology in [13]

obtained the likely results on the dataset of the Caltech path. They also implemented primarily

three-lane detection strategies. This methodology often involves the configuration of the design,

but here the system's performance and productivity are abandoned.

6. Lee and Moon [14] suggested a real-time lane detection algorithm with a Region of Interest (ROI)

capable of working in a shorter time with a low level of noise and response. For lane tracking

operation, the system used the Kalman filter and a minimum square approximation of linear flow.

The machine also identifies the lane and monitors the road.

7. Song et al.[15] developed a system capable of detecting and classifying the lane using the principle

of stereo vision for Advanced Driver Assistance Systems (ADAS) core. They suggested a model

for detecting the lane using the concept of Region of Interest (ROI) and used the architecture of the

Convolutional Neural Network (CNN) to identify the right or left lane with the KITTI dataset.

However, because the difference was noisy, the device could not distinguish the lanes.

8. Yoo et al.[16] developed a lane detection technique based on the approximation of the vanishing

point. The program initially used the probabilistic voting technique to identify the lane segment

vanishing points. The actual segments of the lane are calculated by setting the disappearance

threshold as well as the line direction.

5

9. Jung et al.[17] used spatiotemporal images obtained from the video to establish a lane marking

modality. In order to detect lanes, the Hough transform is applied to the collected frames. For short-

term noises such as mislaid lanes or vehicle interference, the device is very successful.

10. A.A.M. Assidiq et al. [18] had a vision-based approach to lane detection to tackle sometimes

changing lighting and shadow conditions. To remove the lane lines, a few hyperbolas are connected

to the edges of the lane with Hough Transform. It was also reported that the proposed lane detection

system could be used as curved and straight roads on both painted as well as unpainted roads.

11. Q. Truong and B.R. Lee [19] used the key method to identify street and lane boundaries using the

vehicle's vision-based system. For the construction of road lane boundaries, a vector-lane-concept

and non-uniform B-spline (NUBS) interpolation method is used. The pictures were taken using a

monocular lens for experimental purposes. As described in the journal, the experimental results are

based on real-world road pictures.

12. The new tracking system for autonomous vehicle navigation guided by vision was developed by

Yuan et al. [20]. The likelihood between all particles with edge pictures is determined using an

algorithm for ' particle sorting, ' which then estimates the three parameters of the real road line

state. This approach is checked for reliable results in real road pictures.

13. The researcher used a linear filter piece by piece to detect lanes in reference [21], but it gives little

false alarm. In the presence of clamor, shadows, lane paint absence and various environmental

conditions, the algorithm is powerful.

14. The researcher used local gradient characteristics to detect lane in a referral [22], but this approach

produces more false alarms and poor performance.

6

15. The writer [23] used the extraction and grouping of features together with a Hough transformation,

but it does not identify a high traffic lane and confusing street textures.

16. The researcher has used the segmentation method for the lane in reference [24] but shows a high

false-positive rate. Hough Transform senses straight and curve roads and shows good quality under

different conditions of illumination.

17. In the case of a homogonally colored street, the SCARF [25] and the MOSFET [26] device used

color camera data. In the earlier method, the Bayesian classification was appraised for the

determination of the road surface, while in the latter the color segmentation was used for deciding

lane markings.

18. A single-camera design is the basis of Australian National University (ANU), [27]. To determine

the state of the vehicle the vision module uses different image filter data. A collection of hypotheses

produced by a probabilistic particle filter describes possible system states.

2.2 Research Objective and Outline

The main objective of our research work is to ease the process to an extent. Considering the present

constraints in this field as well as the merits of self-driving vehicles we had some objectives before

we kicked off our undergraduate research work. Thus the objectives are:

1. Using Computer Vision for Lane Detection: The goal was to use a technique named canny edge

detection, Hough Transform for detecting lane lines in road to figure out how real-time digital

videos can be used to achieve a broad level of understanding.

7

2. Building a Hard Real-Time system: The need to meet deadlines characterizes a real-time system.

In hard real-time systems, missing deadlines can be very risky in real-time situations, process

control is one such example. We wanted our work to be as real-time as possible.

3. Consistent output for better efficiency: In addition to keeping performance parameters

satisfactory, we worked hard on getting consistent output and used Kalman filter and Past

accumulated Average method for eliminating any delay.

4. Hardware Implementation of our research work: We built a prototype of an autonomous vehicle

using plywood which will be elaborately talked about later on, for implementing our proposed

methodology.

Chapter 1 provides an introduction to our dissertation. Chapter 2 is comprised of a Literature

review that includes the current knowledge, including substantive findings, and input on a

particular subject theoretical and methodological. Chapter 3 talks about the basics of Lane

detection and motion planning algorithms used in our research in detail which includes Canny

Edge detection, Hough transformation, segmentation, Kalman filter and PID controller. In chapter

4 our hardware and software implementation is described elaborately. The overall methodology is

exquisitely demonstrated in chapter 5. Chapter 6 exhibits the experimental results and comparison

among different methods. The conclusion of current work is found in Chapter 7. It provides

information about a future query to improve the performance of the methods proposed.

8

Chapter 3

Lane Detection and Motion Planning Algorithms

3.1 Canny Edge Detection

Edges: Defined:

Edges represent boundaries and are thus a fundamental issue in image processing. In pictures,

edges are areas with clear contrasts in color – a change of brightness from pixel to pixel. The

general purpose of edge detection is to decrease the amount of information in an image

substantially while maintaining the structural properties used for additional image processing. It

comprises a set of computational methods designed to identify points in a digital image where

illumination of the image changes drastically or has discontinuities in more formal terms. In

general it is organized to a set of curved segments called edges at which image brightness changes

sharply. Edge detection, particularly in feature detection and functional extraction, is a

fundamental tool in image processing, machine vision and computer vision [28].

There are several algorithms available, and we focus on one that John F. Canny (JFC) developed

in 1986. Canny Edge Detector is a multi-stage algorithm used to detect a large variety of image

boundaries. Its founder John F. Canny, also developed an edge detection computational theory to

explain why the technique works. Although it is quite old, it has become one of the standard

methods for edge detection and is still used in analysis. This is also known as the optimal edge

detector. [29]

9

Basis of the Canny Edge Detector:

The goal for Canny was to improve the image with many edge detectors. Canny found that the edge

detection criteria for various vision systems were fairly similar. The target of JFC was to develop an

optimal algorithm for the criteria mentioned below:

 Criterion 1: Identification :

It is necessary to maximize the possibility of detecting real edges while minimizing the risk of

incorrectly detecting non-edge points. The initial criteria must have a low error rate and useless

data should be filtered out while the useful information is retained. It means that as many edges

in the image as possible should be accurately identified and the signal-to-noise ratio should be

maximized.

 Criterion 2: Limiting :

The operator's edge point should be precisely positioned at the center of the edge which means

the edges identified should be as close to the real edges as possible. We need to keep the

difference between the main image and the produced image as small as possible.

 Criterion 3: Avoiding False edges :

The third criteria exclude multiple edge responses. A provided edge in the image should be

marked only once, and noise should not give false edges where possible.

10

In brief, the Canny edge detector first smoothes the picture to remove noise based on these

parameters. It then uses the object gradient to illustrate regions with large space derivatives. After

that the algorithm measures these regions and uses non-maximum suppression to remove those

pixels that are not at the peak [30]. To avoid streaking or to thin the edges the gradient set is now

further decreased by hysteresis. Canny used the calculus of variations to meet these requirements

– a method that identifies the function that optimizes a specific function. Canny edge detection

algorithm is one of the most strictly defined methods that provide good and reliable detection

among the edge detection methods that have been developed so far [31]. It became one of the most

common algorithms for edge detection due to its optimality to satisfy the three requirements for

edge detection and the ease of method for implementation. [32]

Canny edge detection algorithm:

The Canny edge detection algorithm can be divided into five different steps:

Step 1: Gaussian Blur

Step 2: Finding Gradients

Step 3: Non-Maximum Suppression

Step 4: Double Thresholding

Step 5: Hysteresis Edge Tracking

11

The following parts explain every step -

3.1.1. Step 1: Gaussian Blur:

This step can be subdivided into two more steps. These are-

 Grayscale Conversion

 Image Blurring using Gaussian Filter

First the image is needed to be converted to grayscale. Grayscale is a collection of black-to-white

monochromatic colors. A black-scale picture therefore only includes shades of gray and no light.

Although digital images can be stored as images of a grayscale (or black and white), still color

images contain information of a grayscale. [33]

All images taken from a camera may necessarily involve a certain amount of noise. To prevent the

noise from being confused for edges it is necessary to reduce noise. By using a Gaussian filter, the

picture is first smoothed [34]. In MATLAB the intensity values of the pixels are 8 bit and range

from 0 to 255. [35]. After RGB to graysacle converision, the image looks like this-

12

Fig. 3.1 Grayscale image [36]

The primary step to canny edge detection needs some method of filtering out noise which can be

found, then the preservation of the useful image is assured. Convolution is one of the simplest

methods for many common image-processing operators[36]. This is performed by masking over a

grayscale image starting from the top left corner through the entire image within boundaries. Each

value is multiplied with the cell value of kernel. After that, all the values are added together. [37]

13

 Fig. 3.2 An example of an image

 Fig. 3.3 An example of a kernel

Mathematically it can be expressed :

 𝑂(𝑖, 𝑗) = ∑ ∑ 𝐼(𝑖 + 𝑘 − 1, 𝑗 + 𝑙 − 1)𝐾(𝑘, 𝑙)

A Gaussian filter kernel is used for smoothing purposes. The kernel of a Gaussian filter with a

standard deviation of σ = 1.4 is shown in Equation [38]. The equation for a Gaussian filter kernel

of size (2𝑘 + 1) 𝑥 (2𝑘 + 1) is given by:

 𝐻 =

𝑒𝑥𝑝

(
(()) (())

)
; 1 ≤ 𝑖, 𝑗 ≤ (2𝑘 + 1)

An example of 5 x 5 Gaussian filter is provided here with a value of σ = 1.4. The increasing

standard deviation blurs the intensity of the noise.

14

The size of the Gaussian filter kernel will work as a variable of the performance of the detector.

As the size of the filter increases the signal to noise ratio reduces. Moreover, as the size increases

localization error for edge detection increases as well. [39]

 Fig. 3.4 Smoothed Image(Blurred)[36]

3.1.2. Step 2: Finding Gradient:

This step can be divided into two sub-steps.

 Sobel Operation & Finding Gradient angle

 Tracing the edge using the angle

15

Sobel Operation & Finding Gradient angle:

The Canny algorithm actually determines edges of the places where the grayscale intensity of the image

varies the most. Those portions can be found by observing the gradients. This is where Sobel operator

comes into action. After blurring and noise elimination, determination of gradient has to be done for

recognizing the edge strength. A 2-D spatial gradient measurement on an image can be done by using a

Sobel operator. This operator uses a pair of 3x3 convolutional matrices one of which estimates the gradient

in x-direction (columns) and the other in the y-direction (rows) [40]. Sobel 𝐺𝑥 and 𝐺𝑦 for approximating

the gradient in the x- and y-direction respectively by applying the kernels are shown below:

Edge strength can be found from gradient magnitude as a Euclidean measure by applying Pythagoras

theorem. Simplification of this outcome can be made by applying Manhattan distance.The gradient

magnitude is as follows:

= 𝑥
2

+ 𝑦
2

16

Fig. 3.5 Gradient Magnitude[36]

Tracing the edge using angle:

An image of the gradient magnitudes indicates the edges most of the time.But, the edges are quite wide and

so do not indicate the exact placement of the edges[41]. For the improvement of this situation edge direction

should be determined by the following equation:

| |

After determining edge direction it should be related to a direction that can be tracked down in an image.

So for the calculation of the angle of edge, the matrix size is proportional to the angle if a 5x5 matrix is

used.

17

If we look at ‘a’ in the middle, there are four possible directions when describing the pixels around it:

1. 0 degrees (in the horizontal direction)

2. 45 degrees (along the positive diagonal)

3. 90 degrees (in the vertical direction) or 135 degrees (along the negative diagonal)

4. 180 degrees region is just a mirror region of 0 degrees region.

So, all the edge direction calculated will automatically be round up to the closest angle.

Fig. 3.6 Angle Tracing

Now, edge direction within A & E is round off to 0 degrees (0 to 22.5 & 157.5 to 180 degrees). Edge

direction in B is round of to 45 degrees (22.5 to 67.5 degrees), Edge direction in region C is set to

18

90 degrees (67.5 to 112.5 degrees) and finally Edge direction in the region D is set to 135 degrees

(112.5 to 157.5 degrees).

3.1.3. Step 3: Non-Maximum Suppression

This is the step where we sharpen the edges which were blurred. This is achieved by keeping all

local maxima in the gradient image and canceling out everything else [42]. The algorithm can be

demonstrated in the following manner—

 When pixel q has a larger value of intensity than p and r, the pixel with the maximum value

in an edge can be found.

 If this condition is valid, then we preserve the pixel, otherwise we set the pixel to zero and

eliminate it (make it a black pixel).

 Non-maximum suppression can be achieved by interpolating the pixels for greater

accuracy:

 𝑟 = 𝛼𝑏 + (1 − 𝛼)𝑎

Fig. 3.7 Non Maximum Suppression

19

Fig. 3.8 With interpolation[36]

Fig. 3.9 Non-Maximum Suppression with Interpolation[36]

20

3.1.4. Step 4: Double Thresholding

After step 4, the remaining edge pixels are marked with strength pixel by pixel. Even though we

would find most of the edges to be true/valid, some of them might be caused by color difference

or any other noise. These two cases can be distinguished in a simple way. If we use a threshold,

the edges with a higher value than threshold will be kept and others will be eliminated. The canny

edge algorithm introduces two threshold values entitled High Threshold and Low Threshold.

Edges with the value higher than High Threshold are categorized as strong, and edges having a

value lower than Low threshold are eliminated. Edges having value in between High and Low

threshold are marked as weak. The next step will make us clear how we can find which weak edge

is an acceptable edge [43]. The image that is found after double thresholding is as follows:

Fig. 3.10 After Double Thresholding[36]

 3.1.5. Step 5: Hysteresis Edge Tracking

21

This step can be demonstrated in two parts. Edge tracking by hysteresis and the final stage is

cleaning up. Strong edges are tagged as ‘certain edges’ and can be included in the final edge image

right away. The algorithm continuously tracks both the weak and strong edges so that these edges

can recursively be iterated through the strong edges and figure out whether there are linked weak

edges rather than having to iterate through each pixel in the image.

Fig.3.11 Edge Tracking by hysteresis[36]

22

Fig. 3.12 Final Output

At last, the remaining weak edges are iterated through and set to zero.

3.2 Hough Transformation:

Hough transform is a method for extracting features to identify simple shapes in a frame or

image such as circles, lines, etc [43]. Only a few parameters can describe a simple shape. As for

example, two parameters (slope, intercept) can represent a line, and for a circle — the center

coordinates and the radius (x, y, r). Hough transform does a good job of finding these forms in a

picture or a video frame.[44]

The purpose of the technique is to locate imperfect instances of objects within a certain category

of types by means of a voting procedure. This voting process is performed in a parameter space

from which object candidates are extracted as local maxima in a so-called accumulator space that is

directly constructed by the Hough transform computing algorithm.[45]

23

The set of all straight lines in the picture plane forms a family having not more than two

parameters. If we fix the parameters for the family, then a random straight line can be represented

only by a single point in the parameter space. For such obvious reasons normal parameterization

is preferred. As shown in Figure 1, this parameterization specifies a straight line by the angle 𝜃 of

it's perpendicular and its algebraic distance 𝜌 from the origin (0, 0) [46]. The equation associated

with this sort of line is-

𝑥𝑐𝑜𝑠𝜃 + 𝑦𝑠𝑖𝑛𝜃 = 𝜌

If 𝜃 is restricted to the interval [0, π], then we get unique normal parameters for a line. So, with

this constraint every line in the x-y plane indicates a unique point in the 𝜃-𝜌 plane.

Fig. 3.13. The normal parameters for a line.

24

When we pick a (𝜌, 𝜃), it corresponds to a line in a 2D space which has 𝜌 and 𝜃 as its

parameters. There are a location and position on this 2D space for every edge point and this

space is also termed as an accumulator.

Fig. 3.14 Accumulator

The top left cell indicates (-R, 0) and the bottom right indicates (R, π).

Algorithm:

The algorithm includes several steps. The steps are:

1. Edge detection using canny edge detector

2. Initializing Accumulator and mapping the edge points to Hough space

3. Interpretation of the accumulator to get infinite length lines

4. Conversion of finite length lines from the infinite ones

25

3.2.1. Initializing Accumulator and Mapping the edge points to Hough space:

Hough transform problem determines the number of dimensions of the accumulator corresponding

to the number of unknown parameters. So, for straight lines, there will be two dimensions (r and 𝜃).

Therefore, the content of the accumulator can be visualized. Binary edge map is taken as input by

the Hough transform and it attempts to locate edges placed as straight lines. All the edge points in

the edge map are converted to all possible lines passing through that point. Figure 3 shows this for

two such points. An edge map generally contains a lot of points, but the line detection concept

remains the same as shown in the figure for two points. Every edge point is converted to a line in

the Hough space, and the places where most Hough space lines intersect each other are taken to

be true lines in the edge map.[47]

 Fig. 3.15 Transformation of two points to two lines in the Hough Space

26

3.2.2. Interpretation of the accumulator to get infinite length lines:

Once all edge points have been transformed in the edge map, infinite lines are detected by the accumulato

r interpretation. Setting some threshold value for the accumulator is the easiest or simplest way to detect li

nes and consider all values above the threshold as a line. A simple threshold may be used but it is most

likely to detect several (almost similar) lines for each true line. To mitigate this, a suppression

neighborhood can be set, so that two lines must be significantly different before both are detected.

An example is shown in figure 4 below.[48]

 Fig. 3.16 Hough lines of infinite length

3.2.3. Conversion of finite length lines from the infinite ones:

The general Hough transformation detects lines given only by the parameters 𝜌 and θ and caries

no length information with it. So, only infinite length lines are identified. If finite lines are required,

some extra analysis must be made to identify the areas of the image that has a contribution to each

line. For doing so there are several algorithms. One such algorithm stores coordinate information

27

for all the points in the accumulator, and this information is thus used to set a limit for the lines.

But this causes the accumulator to use a lot of memory. Another algorithm is to keep searching

along the lines of infinite length in the edge image to finally get the required lines having finite

length. An example is shown in figure below.

 Fig. 3.17 Hough lines of finite length.

Besides, for faster implementation of the algorithm Progressive Probabilistic Hough Transform

(PPHT) [49] can be used. The main concept of this idea is to convert arbitrarily selected points in

the edge image into the accumulator. For a particular infinite line when a bin in the accumulator

has achieved a certain number of votes, the edge image is looked along that line to check if one or

more finite line(s) are present. Then all points or pixels on that line are erased from the edge image.

So, finite lines are returned.

28

3.3 Kalman Filter

Kalman filter [50] is a classical algorithm that has its application in array of topics such as

missile guidance, navigation, and control of vehicles, particularly aircraft, spacecraft and dynamically

positioned ships [51]. Originally developed by Rudolf E. Kálmán, it is also known as linear quadratic

estimation (LQE). This algorithm takes a series of measurements observed over time, including

statistical noise and other, often Gaussian, inaccuracies, and generates estimates of unknown

variables which appear to be more reliable than those based on a single measurement alone by

estimating a specific distribution of probabilities over variables for each time frame [52]. For many

monitoring and data forecasting activities, Kalman filter has long been considered the optimal

solution. Its use was widely recorded in the study of visual movement.

3.3.1.Kalman Filter Derivation

Using maximum probability statistics, a more robust derivation can be established. It is achieved

by refining the goal of finding the 𝑥 which maximizes the probability or likelihood of y [53]. That

is;

 max [P (y|𝑥) (3.1)

Assuming that the additive random noise is Gaussian distributed with a standard deviation of σ

gives;

P (y |𝑥) = 𝐾 exp − (
()

) (3.2)

29

where 𝐾 is a normalization constant. The maximum likelihood function of this is:

P (y |𝑥) = П 𝐾 exp − (
()

) (3.3)

 Which leads to:

𝑙𝑜𝑔P (y |𝑥) = − ∑
()

 + 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡

The driving function of the equation above is the Mean Square Error, which may be maximized

by the variation of 𝑥 . Therefore, the mean squared error function is applicable when the expected

variation of y is best modeled as a Gaussian distribution. In such a case the MSE serves to

provide the value of 𝑥 which maximizes the likelihood of the signaly .

Kalman described his filter using state-space techniques, which allows the filter to be used either

as a smoother, filter or predictor. The latter of these three, the Kalman filter's ability to predict

data, has proved to be a very useful feature. It has resulted in the application of the Kalman filter

to a wide range of tracking and navigation issues. Define the filter in terms of state-space methods

often simplifies filter implementation in the discrete domain, which is another reason for its

widespread appeal.

3.3.2. State Space Derivation

Assume that we want to know the value of a variable within a process of the form;

𝑥 = Ф𝑥 + ѡ (3.4)

30

Where 𝑥 is the state vector of the process at time𝑘, (nx1), Ф is the state transition matrix of the

process from the state at 𝑘 to the state at 𝑘 + 1 , and is assumed stationary over time, (nxm). ѡ

is the associated white noise process with known covariance, (nx1).

Observations on this variable can be modeled in the form:

𝑧 = 𝐻𝑥 + 𝑣 (3.5)

Where 𝑧 is the actual measurement of 𝑥 at time 𝑘 ,(mx1), 𝐻 is the noiseless connection between

the state vector and the measurement vector, and is assumed stationary over time, (mxn). 𝑣 is the

associated measurement error. This is again assumed to be a white noise process with known

covariance and has zero cross-correlation with the process noise, (mx1). For the minimization of

the MSE to yield the optimal filter it must be possible to correctly model the system errors using

Gaussian distributions. The covariances of the two noise models are assumed stationary over time

and are given by;

 𝑄 = 𝐸[ѡ ѡ] (3.6)

 𝑅 = 𝑒[𝑣 𝑣] (3.7)

The mean squared error is,

 € (𝑡) = 𝐸(𝑒) (3.8)

This is equivalent to;

 𝐸[𝑒 𝑒] = 𝑃 (3.9)

Where; 𝑃 is the error covariance matrix at the time, (nxn).

Equation 3.9 may be expanded to give;

31

 𝑃 = 𝐸[𝑒 𝑒] = 𝐸[(𝑥 − 𝑥)(𝑥 − 𝑥)] (3.10)

Assuming the prior estimate of 𝑥 is called 𝑥 , and was gained by knowledge of the system. It is

possible to write an update equation for the new estimate, combing the old estimate with

measurement data thus;

 𝑥 = 𝑥 + 𝐾 (𝑧 − 𝐻𝑥) (3.11)

where; 𝐾 is the Kalman gain, which will be derived shortly. The term (𝑧 − 𝐻𝑥) in eqn. (3.11)

is known as the innovation or measurement residual, 𝑖 .

Substitution of 3.5 into 3.11 gives;

 𝑥 = 𝑥 + 𝐾 (𝐻𝑥 + 𝑣 − 𝐻𝑥) (3.12)

Substituting 3.12 into 3.10 gives;

 𝑃 = 𝐸 [[(𝐼 − 𝐾 𝐻)(𝑥 − 𝑥) − 𝐾 𝑣][(𝐼 − 𝐾 𝐻)(𝑥 − 𝑥) − 𝐾 𝑣]] (3.13)

At this point it is noted that (𝑥 − 𝑥) is the error of the prior estimate. It is clear that this is

uncorrelated with the measurement noise and therefore the expectation may be re-written as;

 𝑃 = (𝐼 − 𝐾 𝐻)𝐸[(𝑥 − 𝑥)(𝑥 − 𝑥)](𝐼 − 𝐾 𝐻) + 𝐾 𝐸[𝑣 𝑣]𝐾 (3.14)

Substituting equations 3.7 and 3.10 into 3.13 gives;

 𝑃 = (𝐼 − 𝐾 𝐻)𝑃 (𝐼 − 𝐾 𝐻) + 𝐾 𝑅𝐾 (3.15)

Where 𝑃 is the prior estimate of 𝑃 .

32

Equation 3.15 is the error covariance update equation. The diagonal of the covariance matrix

contains the mean squared errors as shown;

 𝑃 =

𝐸[𝑒 𝑒] 𝐸[𝑒 𝑒] 𝐸[𝑒 𝑒]

𝐸[𝑒 𝑒] 𝐸[𝑒 𝑒] 𝐸[𝑒 𝑒]

𝐸[𝑒 𝑒] 𝐸[𝑒 𝑒] 𝐸[𝑒 𝑒]

 (3.16)

The sum of the diagonal elements of a matrix is the trace of a matrix. In the case of the error

covariance matrix the trace is the sum of the mean squared errors. Therefore, the mean squared

error may be minimized by minimizing the trace of 𝑃 which in turn will minimize the trace of

𝑃 .

The trace of 𝑃 is first differentiated with respect to 𝐾 and the result is set to zero in order to find

the conditions of this minimum.

Expansion of 3.15 gives;

𝑃 = 𝑃 − 𝐾 𝐻𝑃 − 𝑃 𝐻 𝐾 + 𝐾 (𝐻𝑃 𝐻 + 𝑅)𝐾 (3.17)

Note that the trace of a matrix is equal to the trace of its transpose, therefore, it may be written as;

𝑇[𝑃] = 𝑇[𝑃] − 2𝑇 [𝐾 𝐻𝑃] + 𝑇[𝐾 (𝐻𝑃 𝐻 + 𝑅)𝐾] (3.18)

where; 𝑇[𝑃] is the trace of the matrix 𝑃 .

33

Differentiating with respect to 𝐾 gives;

[]
= −2(𝐻𝑃) + 2𝐾 (𝐻𝑃 𝐻 + 𝑅) (3.19)

Setting to zero and re-arranging gives;

(𝐻𝑃) = 𝐾 (𝐻𝑃 𝐻 + 𝑅) (3.20)

Now solving for 𝐾 gives;

𝐾 = 𝑃 𝐻 (𝐻𝑃 𝐻 + 𝑅) (3.21)

Equation 3.21 is the Kalman gain equation. The innovation, 𝑖 has an associated measurement

prediction covariance. This is defined as;

𝑆 = 𝐻𝑃 𝐻 + 𝑅 (3.22)

Finally, substitution of equation 3.21 into 3.17 gives;

𝑃 = (𝐼 − 𝐾 𝐻)𝑃 (3.23)

Equation 3.23 is the update equation for the error covariance matrix with optimal gain. The three

equations 3.11, 3.21, and 3.23 develop an estimate of the variable 𝑥 . State projection is achieved

using;

𝑥 = Ф𝑥 (3.24)

To complete the recursion it is necessary to find an equation that projects the error covariance

matrix into the next time interval, 𝑘+ 1. This is achieved by first forming expressions for the prior

error:

34

 𝑒 = 𝑥 − 𝑥

 = Ф𝑒 + ѡ (3.25)

Extending equation 3.10 to time 𝑘 + 1;

𝑃 = 𝐸[𝑒 𝑒] = 𝐸[(Ф + ѡ)(Ф + ѡ)] (3.26)

Note that 𝑒 and ѡ have zero cross-correlation because of the noise ѡ actually accumulates

between 𝑘 and 𝑘 + 1 whereas the error 𝑒 is the error up until time𝑘. Therefore;

𝑃 = 𝐸[𝑒 𝑒]

 = 𝐸 Ф Ф + 𝐸[ѡ ѡ]

 = Ф𝑃 Ф + 𝑄 (3.27)

This completes the recursive filter.

35

3.4 PID Controller

A proportional – integral – derivative controller (PID controller) is a control loop device that

employs feedback that is commonly used in industrial control systems and a number of other

applications that require continuously modulated command. PID control is a well-established way

to move a device to an aim or position. A PID controller calculates an error value as the difference

between a required set point (SP) and a measured process variable (PV) on an ongoing basis and

applies a correction based on proportional, integral, and derivative terms (referred to as P, I, and

D), thus the title. In practical terms, accurate and sensitive correction is automatically applied to

the control function.

Fig. 3.18 Block Diagram of a PID controller[54]

The complete function of the control:

36

𝑢(𝑡) = 𝐾 𝑒(𝑡) + 𝐾 𝑒(𝑡)𝑑𝑡 + 𝐾
𝑑𝑒(𝑡)

𝑑𝑡

Where 𝐾 , 𝐾 , 𝐾 all non-negative, denote the coefficients for the proportional, integral, and

derivative terms respectively (sometimes denoted P, I, and D).

The use of the PID algorithm does not guarantee optimal process access or device stability. In

situations when excess delays exist: the measurement of the value of the process is delayed or the

action of control is insufficiently effective. The control unit's sensitivity to an error can be defined,

the degree to which the system exceeds a set point and the degree of any system shift.

PID CONTROLLER THEORY:

Proportional term:

The proportional term produces an output value commensurate with the real error value. By

multiplying the error with a constant proportional response can be modified. This is called

proportional gain constant.

𝑃 = 𝐾 𝑒(𝑡)

A high proportional gain leads to a significant performance change for a specific error shift. The

process can become unstable if the proportional gain is too high. A small gain in turn leads to a

small response to a large input error and to a control system that is less responsive or less sensitive.

If the proportional gain is too low, the control action in response to system disruptions may be too

small. [54]

37

Fig. 3.19 Response of PV to step change of SP vs time, for 3 values of Kp [54]

Integral term:

The integral term contribution is proportionate to the size of the error as well as the length of the

error. The integral part of a PID controller is the sum of the instantaneous error over time and the

cumulative offset, which should have previously been fixed.[55]

The integral term is given by:

38

𝐼 = 𝐾 𝑒(𝜏)𝑑 𝜏

The integral term speeds up the process moving towards the setpoint and eliminates the remaining

static error that happens with a purely proportional controller. But since the integral term reacts to

accumulated past errors, it can override the present value.

Fig. 3.20 Response of PV to step change of SP vs time, for 3 values of Ki [54]

39

Derivative term:

Through evaluating the slope of the error over time, the derivative error is determined and this

value is compounded by the derivative gain. The extent of the derivative term's contribution to the

general control action is known as derivative gain. The derivative term is given by:

𝐷 = 𝐾
𝑑𝑒(𝑡)

𝑑𝑡

Derivative steps predict system performance and thus improve system adjustment time and

stability.

Fig. 3.21 Response of PV to step change of SP vs time, for three values of Kd [54]

40

Chapter 4

Hardware & Software Setup

4.1 Hardware Configuration:

Our goal was to build a system containing a real vehicle. But due to resource constraints, we

couldn’t manage it. Hence, we had to build a prototype of a vehicle. Our vehicle contains the

following parts:

1. Plywood body: We build a plywood body of 32cmX35cmX12cm. Plywood was used for better

isolation of electrical equipment. The plywood was cut using CNC [56] cutter for better

measurement accuracy, so it was easy to waterproof the vehicle.

2. Primary Image Processing Unit: Raspberry Pi Model 3 B [57] was used as the primary image

processing unit. Raspberry Pi is cost-efficient and a vast library of computer vision is readily

available for it.

Fig 4.1 Raspberry Pi Model B

41

3. Motion Planning and Steering Unit: Arduino Uno [58] Rev3 was used as our motion planning

and steering unit.

 Fig. 4.2 Arduino Uno rev 3

4. On-board camera: Pi Cam 1.3[59] is used for real-time video capture.

Fig. 4.3 Pi Cam 1.3

5. Wheels: 120 mm diameter wheel was used for our vehicle.

42

6. Motors: 12 volt, 300 RPM, 10 kg-cm torque motors were used.

7. Battery: 3 cell 3300 mAh LiPo cell was used.

8. Motor Driver: VNH2SP30 [60] full-bridge motor driver was used to control the motor.

Fig. 4.4 VNH2SP30 full-bridge motor driver

 Fig. 4.5 Total hardware setup

43

4.2. Configuration of Raspberry Pi:

The Raspberry Pi is a low-cost, credit-card-sized device that plugs into a computer monitor or

television, using a regular mouse and keyboard. It is a small versatile device that allows people

of all ages to explore programming and learn how to program in languages such as Scratch and

Python.[61]

 Fig. 4.6 Raspberry Pi

Technical Specification:

1. Broadcom BCM2837 64bit ARMv7 Quad Core Processor powered Single Board

Computer running at 1.2GHz

2. 1GB RAM

3. BCM43143 WiFi onboard

4. Bluetooth Low Energy (BLE) on board

5. 4 x USB 2 ports

6. CSI camera port for connecting the Raspberry Pi camera

7. Micro SD port for operating system setup and data storage

44

8. Full-size HDMI

9. 40pin extended GPIO

10. DSI display port for connecting the Raspberry Pi touch screen display

11. Upgraded switched Micro USB power source (now supports up to 2.4 Amps)

4.2.1 Installation of Raspbian:

There are also a couple of ways to download and use the Raspberry Pi operating system. Using the NOO

BS (New Out of Box Software) installer is the most user-friendly process.

Simply downloading the ISO operating system, formatting the SD card, mounting the ISO and finally boo

ting the Pi we set up the OS. It basically contains the following steps:

1. Downloading the NOOBS package

2. Extracting the downloaded package

3. Copying the contents to the SD card

4. Plugging the SD card in the Raspberry Pi and booting it

5. Choosing the OS option as Raspbian and clicking the install button

6. Once installed we hit okay and the device should reboot

Configuration of Raspberry Pi Camera Rev 1.3

To configure the camera the first task is to connect the camera ribbon to the Pi camera ribbon

port. Afterward the following steps were followed:

1. Enabling the camera module by typing ‘sudo raspi-config’ in the command window first

2. Then choose the ‘Interfacing options’ there

3. Afterward choosing the ‘Camera’

4. Pressing ‘Yes’ to enable and rebooting

45

4.2.2 Installation of OpenCV and Python on the Raspberry Pi:

To deal with image or video processing we had to come across the OpenCV library. In our case

we used OpenCV integrated in Python Scripts. The following steps show how to install OpenCV

on the Raspberry Pi and how to integrate it into Python:

1. First of all, we updated the package lists by the command and then reboot-

sudo apt-get update && sudo apt-get upgrade && sudo rpi-update

2. Then we cloned OpenCV from git-

git clone https://github.com/Itseez/opencv.git && cd OpenCV &&git checkout 3.0.0

3. We installed Python 2.7 afterward. To do so we had to type the following-

sudo apt-get install python2.7-dev

4. We also needed the package management tool pip, which installs NumPy right away:

 cd ~ && wget https://bootstrap.pypa.io/get-pip.py && sudo python get-pip.py

5. Then we simply installed NumPy-

pip install numpy

6. Now to compile OpenCV we create a build folder in which the compiled files land:

cd ~/opencv && mkdir build && cd build

cmake -D CMAKE_BUILD_TYPE=RELEASE

 -D CMAKE_INSTALL_PREFIX=/usr/local

 -D INSTALL_PYTHON_EXAMPLES=ON

 -D INSTALL_C_EXAMPLES=ON

46

 -D OPENCV_EXTRA_MODULES_PATH=~/opencv_contrib/modules

 -D BUILD_EXAMPLES=ON ..

7. Then we compiled

8. After compilation we installed OpenCV:

sudo make install && sudo ldconfig

47

Chapter 5

Methodology

5.1 Data Collection and Preprocessing

Video is captured by PiCam 1.3 at the resolution 640 x 480. The frame is resized to half of its

width and height, thus the resolution is converted to 320 x 240. The image must be converted to

one color scale in the coming stages of the presented algorithm, edge detection and Hough

transformation, also called a grayscale image. So, each frame of the video is converted to Grayscale

from RGB. Afterward, to remove the noises Gaussian filter is implemented for image blurring.

Then canny edge detector is used for edge detection.

Algorithm 5.1 Canny edge detection

cap = cv.VideoCapture(0)

while (cap.isOpened()):

 ret, frame = cap.read()

 h = frame.shape[0]

 w = frame.shape[1]

 frame = cv.resize(frame, (int(w / 2), int(h / 2)))

 frame = cv.flip(frame, -1)

 gray = cv.cvtColor(frame, cv.COLOR_RGB2GRAY)

 blur = cv.GaussianBlur(gray, (5, 5), 0)

 canny = cv.Canny(blur, 50, 150)

48

Fig. 5.1 Actual Frame

Fig. 5.2 Edge detected Frame

49

The road surface region of the bottom half of the picture is present in any photo which contains

roads (or lane lines). The region of interest (ROI) is calculated on the basis of this data. So, just to

keep the ROI masking is done on the edge detected image. The mask used eliminates the upper

half of our image in a polygon shape and just keeps the lower half which contains lane lines.

Algorithm 5.2 Masking

height = canny.shape[0]

 width = canny.shape[1]

 polygons = np.array([[(0, height), (width, height), (width, 3 / 4 * height), ((3 / 4 * width), height / 3),

 (width / 4, height / 3), (0, 3 / 4 * height)]])

 polygons = polygons.astype(int)

 mask = np.zeros_like(canny)

 cv.fillPoly(mask, polygons, 255)

 segment = cv.bitwise_and(canny, mask)

50

Fig. 5.3 Segmented Frame

5.2 Hough Lines Detection:

First of all from the hough function we obtain two coordinates (x1, y1 and x2, y2) of the line

equation. From the coordinates we find out the y-intercept and the slope by polyfit function.

The following line equation was used to find the angle values for each detected line.

𝑦 = 𝑚𝑥 + 𝑐

where m is the slope and c is the y-intercept.

m can be obtained from:

𝑚 =

m is the value of the tangent of the angle that line makes with the x-axis. Hence, m can

51

also be written as,

𝑚 = 𝑡𝑎𝑛(𝜃)

Once the value of m is found, the following equation can be used to compute the value

of angle that the line makes with the x-axis:

𝜃 = 𝑎𝑟𝑐𝑡𝑎𝑛(𝑚)

Then depending on the slope values, if the slope is between -10 to -80 the lines are categorized as

left lanes and between 10 to 80 the lines are categorized as right lanes. After categorizing all the

lines of the left part are converted to a single lane and similar thing is done for finding the right

lane as well by averaging the slope and y-intercept values.

Algorithm 5.3 Hough Transform

hough = cv.HoughLinesP(segment, 1, np.pi / 180, 10, np.array([]), minLineLength=20, maxLineGap=2)

Algorithm 5.4 Slope and y Intercept

parameters = np.polyfit((x1, x2), (y1, y2), 1)

52

Fig. 5.4 Lane and Current position Detected Frame

5.3 Calculating Current Position:

We obtained two lanes by the above procedures. So, We take the average of the x coordinates of

the farthest most end of the two lanes to calculate and obtain the current position of the vehicle.

Since the Pi Cam is mounted exactly at the center of the vehicle the desired position of the bot is

always the center of the obtained frame. So we chose the setpoint to be 160 of the x-axis and this

should be always the desired position of the vehicle. Now the current position changes with the

vehicle movement either in the right or in the left direction and thus the current position have a

significant deviation from the set point. The green dot in figure X shows the current position.

Algorithm 5.5 Current position

if len(left_avg) > 0:

 left_line = calculate_coordinates(frame, left_avg)

 _, _, left_x2, pos_y = left_line.reshape(4)

53

 else:

 left_x2=0

 if len(right_avg) > 0:

 right_line = calculate_coordinates(frame, right_avg)

 _, _, right_x2, pos_y = right_line.reshape(4)

 else:

 right_x2=320

 lines = np.array([left_line, right_line])

 pos_x = int((left_x2 + right_x2) / 2

However,there are some shortcomings in finding the current position. Depending on the weather

and light conditions, there exists some inconsistency in this process - sometimes the current

position can be determined without any complications and sometimes the current position cannot

be easily determined. To overcome this inconsistency we used two different algorithms-

1. Past Accumulated Average Method

2. Kalman Filter Algorithm

In the Past Accumulated Method we initialized an accumulator matrix of n size. The past n values

of current positions found will be stored sequentially. The first element of the accumulator will be

the value of the most recent or present frame. The next element will be the immediate past position

and so on. For our case we took 𝑛 = 8 and the elements of the matrix are averaged to obtain the

current position. This algorithm helps us to remove the failure of the system even if the system

misses any frame.

54

Another algorithm that we used was the Kalman Filter prediction algorithm. Here, we calculated

the steering direction at any time instant, T. A predefined measurement noise was given which

always remains fixed. Kalman filter uses the direction and the measurement noise and predicts the

current position for the next time instant T+1. Kalman Filter compensates the measurement noise

that might be there.

Figure Y shows the current position point detected by two algorithms.

Fig. 5.5 Past Accumulated Average method Vs Kalman Filter Algorithm

We further modified our algorithm by combining past accumulated average method and Kalman

filter prediction. We took the current position from both method and average the combined value

to predict our current position.

55

5.4 Communication:

The current position is sent to the Arduino Uno Rev3 from the Raspberry Pi using UART

communication. The transmitting UART converts parallel data from the Raspberry Pi into serial

form and transmits it in serial to the receiving UART which is Arduino for our case. The value of

current position varies from 0 to 320. These three bytes information take a lot of resources while

sending it to the Arduino. So, this range is mapped to a lower range from 1 to 99 and thus we

managed the serial communication by restricting the data size within two bytes. The current

position information is sent only when there is a transition in the value of 1 to 99. An indicator

ASCII value is sent after transmitting the data of each frame so that the Arduino can differentiate

the data of the individual frames.

The Receiving UART i.e. Arduino Uno receives the first byte of serial data and shifts its position

by 1 decimal place and then receives the second byte and keeps on doing this till it gets the

predefined ASCII value. As soon as it finds the predefined ASCII value it breaks the loop and

shows the accumulated last value which corresponds to the current position of the vehicle.

5.5 Motion Planning:

PID algorithm was implemented on the Arduino Uno. The algorithm calculates the error by

subtracting the obtained current position value from time to time from the set point. This error

value is used to plan the motion of the vehicle using PID algorithm. The PID algorithm was tuned

by fixing integral constant, derivative constant and proportional constant by trial and error method.

56

5.6 Steering:

Depending on the PID output the drive function adds the error value of PID to the base value(100

PWM for our case) of left motor and subtracts it from the right or vice-versa depending on the

necessity. Then it caps the value to a certain value of PWM which should not be exceeded. Thus

the vehicle moves smoothly without any sharp turns or extremely high or low PWM and moves

autonomously maintaining the lanes.

57

Chapter 6

Experiments and Results:

6.1 Comparative Study Between Different Methods:

6.1.1 Steering direction without any filter against steering direction with past accumulating

average method:

We compare the desired direction of motion, gained firstly by taking the middle point of the lanes

in every frame and by taking the accumulated average of the middle points of the lanes of some

past frames and the present frame. We represent our result in the 2-D graph shown below. The Y-

axis of the graph shows the horizontal values of the direction of motion in terms of image pixel

and the X-axis shows the frame number. The results found with no filtering are depicted in blue

and with past average accumulation is depicted in orange.

Fig. 6.1 Direction of motion with no filter and with past accumulated average

D
ire

ct
io

n
of

 m
ot

io
n

Frame

58

As we can see, the past accumulated average method indeed makes the changes in the direction of

motion smoother. The averaging of the previous frames makes the system less sensitive to sudden

changes in direction that might happen due to false positives in our detection phase. So, the system

is less prone to failure now.

But it is not without any drawback as we can see a frame-lag being added when we use past

accumulating average method. This frame-lag can cause a lack of response when a sudden change

in direction is needed.

6.1.2 Steering direction without any filter against steering direction predicted by Kalman

filter:

In this section, we compare the desired direction of motion, obtained first by taking in each frame

the middle point of the lanes and then by using the Kalman filter to estimate the current position

and the desired direction of motion. In the 2-D graph shown below, we represent the outcome. The

graph's Y-axis shows the horizontal pixel values of the direction of motion and the X-axis shows

the frame number. The tests found without filtering are shown in blue and are shown in orange

with Kalman filter.

The figure is given on the next page.

59

Fig.6.2 Direction of motion with no filter and with Kalman filter

It is evident from the graph that Kalman filter prediction of steering direction doesn’t have any

frame-lag, which was visible in the case of past accumulated average method. So, Kalman filter

predicts the movement direction faster. It also makes the sudden changes in direction smoother

than the original result obtained without any filtering but not as smooth as the past average

accumulation method and is sensitive to sudden changes that can make the system unstable.

D
ire

ct
io

n
of

 m
ot

io
n

Frame

60

6.2.3 Steering direction without any filter against steering direction calculated by the average

of Kalman filter’s result and past accumulating average method’s result:

This section contains a comparison between the direction of motion desired, obtained first by

taking the middle point of the lanes in each frame and then by using the average of the Kalman

filter result and the past accumulated average result. We reflect the result in the 2-D graph shown

below. The Y-axis of the graph displays the horizontal pixel values of motion direction and the X-

axis shows the frame number. The tests found without filtering are displayed in blue and with the

average of Kalman filter prediction and past accumulated average result is shown in orange.

Fig.6.3 No filter and with the avg. of Kalman filter and past accumulated average

D
ire

ct
io

n
of

 m
ot

io
n

Frame

61

The steering position calculated by averaging the Kalman filter result and the past accumulating

average method’s result reduces the frame-lag found in the case of past accumulating average

method as well as makes the system less sensitive and the transitions a lot smoother which was

absent in the case of Kalman filtering.

From the results obtained in the previous sections it is evident that the steering direction obtained

by using the average of both the Kalman filter and past accumulating average makes the system

more desirable for usage as the frame-lag is minimal and the system is less sensitive than the

system having Kalman filter.

62

Chapter 7

Conclusion and Future Work

7.1 Conclusion

From our experience, we can testify that our modified algorithms such as Kalman Prediction and

combining the Kalman prediction and Past accumulated averaging makes steering direction

calculation much efficient. But the limited resource we used in our thesis is not enough to make a

self-driving car that can run on real roads as we didn’t have enough processing power to implement

any algorithms to avoid collisions with other cars. Our camera module gives a very narrow field

for work, therefore, a wide-angle camera with a better resolution would have helped in our case.

Still the results that we have are satisfactory as it shows the efficiency of different algorithms used

and the prototype can successfully follow road lanes in confined environmental condition.

7.2 Future work

Instead of using processing power-constrained embedded systems like Raspberry Pi, embedded

systems with much stronger CPU can be used to implement sophisticated algorithms like

RANSAC [65] and filters like Particle filter [66]. A system with our detection and movement

algorithm along with a collision avoidance algorithm [67] can be built and implemented in a real

car running in a real environment. Machine learning can be used to remove environmental and

lighting constraints, which would make our system more robust. A surveillance system can be built

63

by implementing some feedback sensors in our system. By tweaking our algorithms, cost-efficient

production and assembly systems can be built. A hospital patient monitoring system can be a good

sector to use our system. FPGA implementation of our algorithms along with some machine

learning algorithms can be a good way to make cost-effective autonomous or semi-autonomous

vehicles.

64

References
[1] Wikipedia: https://en.wikipedia.org/wiki/Self-driving_car

[2] A.M. Lutzeler, E.D. Dickmanns, ”Road recognition with MarVEye”, ¨Proceedings of the

IEEE Intelligent Vehicles Symposium 98, Stuttgart,Germany, October 1998, pp. 341-346.

[3] T.M. Jochem, D.A. Pomerleau, C.E. Thorpe,’’MANIAC: A next generation neurally based

autonomous road follower”, Proceedings of the Third International Conference on Intelligent

Autonomous Systems, Pittsburg, PA, February 1993.

[4] Benozzi, M. and A. Broggi, M. Cellario, 2002. Artificial vision in road vehicles. Proceedings

of IEEE, 90 (7): 1258-1271

[5] Broggi, B.M., 1998. GOLD: A parallel real-time stereo Vision system for generic obstacle

and lane detection, IEEE Transactions on Image Processing, 1998: 4-6.

[6] BBC News. (2014, Jul.) Uk to allow driverless cars on public roads in january.[Online].

Available: http://www.bbc.com/news/technology-28551069

[7] R. Burn-Callander. (2015, Feb.) This is the lutz pod, the UK’s first driverless car. [Online].

Available: https://www.telegraph.co.uk/finance/businessclub/technology/11403306/This-is-the-

Lutz-pod-the-UKs-first-driverless-car.html

[8] M. Hayward. (2017, Jan.) First New Zealand autonomous vehicle demonstration kicks off at

Christchurch airport. [Online]. https://www.stuff.co.nz/technology/88790124/first-new-zealand-

autonomous-vehicle-demonstration-kicks-off-at-christchurch-airport

[9] P. T. Mandlik, \A review on lane detection and tracking techniques," 2016

65

[10] A.M. Lutzeler, E.D. Dickmanns, ”Road recognition with MarVEye”, ¨Proceedings of the

IEEE Intelligent Vehicles Symposium 98, Stuttgart,Germany, October 1998, pp. 341-346

[11] J. M. Clanton, D. M. Bevly, and A. S. Hodel, "A LowCost Solution for an Integrated

Multisensor Lane Departure Warning System," in IEEE Transactions on Intelligent

Transportation Systems, vol. 10, no. 1, pp. 47-59, Mar. 2009.

[12] Q. Li, L. Chen, M. Li, S. Shaw and A. Nüchter, "A Sensor-Fusion Drivable-Region and

Lane-Detection System for Autonomous Vehicle Navigation in Challenging Road Scenarios," in

IEEE Transactions on Vehicular Technology, vol. 63, no. 2, pp. 540-555, Feb.2014.

[13] M. Aly, "Real-time detection of lane markers in urban streets," in Proc. IEEE Intelligent

Vehicles Symposium, Eindhoven, pp. 7-12, 2008.

[14] C. Lee and J. H. Moon, "Robust Lane Detection and Tracking for Real-Time Applications,"

in IEEE Transactions on Intelligent Transportation Systems, vol. no.99, pp.1-6, Feb. 2018

[15] W. Song, Y. Yang, M. Fu, Y. Li and M. Wang, "Lane Detection and Classification for

Forward Collision Warning System Based on Stereo Vision," in IEEE Sensors Journal, vol. 18,

no. 12, pp. 5151-5163, Jun.2018

[16] J. H. Yoo, S. Lee, S. Park and D. H. Kim, "A Robust Lane Detection Method Based on

Vanishing Point Estimation Using the Relevance of Line Segments," in IEEE Transactions on

Intelligent Transportation Systems, vol.18, no. 12, pp. 3254-3266, Dec. 2017.

[17] S. Jung, J. Youn, and S. Sull, "Efficient Lane Detection Based on Spatiotemporal Images,"

in IEEE Transactions on Intelligent Transportation Systems, vol. 17, no. 1, pp. 289-295, Jan.

2016.

66

[18] A. Assidiq, O. O. Khalifa, R. Islam, and S. Khan, \Real time lane detection for autonomous

vehicles," 2008 International Conference on Computer and Communication Engineering, pp.

82{88, 2008.

[19] Q.-B. Truong and B. R. Lee, \New lane detection algorithm for autonomous vehicles using

computer vision," 2008 International Conference on Control, Automation and Systems, pp.

1208{1213, 2008.

[20] Y. Shu and Z. Tan, \Vision based lane detection in autonomous vehicle," Fifth World

Congress on Intelligent Control and Automation (IEEE Cat. No.04EX788), vol. 6, pp.

5258{5260 Vol.6, 2004.

[21] C. Mu and X. Ma, “Lane detection based on object segmentation and piecewise fit-ting,”

TELKOMNIKA Indonesian J. Elect. Eng., vol. 12, no. 5, pp. 3491-3500, May 2014.

[22] A. Parajuli, M. Celenk, and H. Riley, “Robust lane detection in shadows and low

illumination condition using local gradient features,” open J. Appl. Sci. , vol. 3, no. 1B, pp.68-

74,Mar. 2013

[23] Y.Li, A.Iqbal, and N.R.Gans, “Multiple lane boundary detection using a combina-tion of

low-level image features.”In Intelligent Transportation Systems (ITSC), 2014 IEEE 17th

International Conference on, pp. 1682-1687, IEEE, 2014.

[24] V.S.Bottazzi, P.V.Borges, B.Stantic, “Adaptive regions of interest based on HSV

histograms for lane marks detection”. In Robot Intelligence Technology and Applications 2, pp.

677-687, Springer International Publishing, 2014

67

[25] J.D. Crisman, C.E. Thorpe, ”UNSCARF, a color vision system for the detection of

unstructured roads”, Proceedings of the IEEE International Conference on Robotics and

Automation, Sacramento, CA, April 1991,pp. 4962501

[26] L. Michael Beuvais, C. Kreucher, ”Building world model for mobile platforms using

heterogeneous sensors fusion and temporal analysis”, Proceedings of the IEEE International

Conference on Intelligent Transportation Systems 97, Boston, MA, November 1997, p. 101.

[27] Nicholas Apostoloff and Alexander Zelinsky, ”Vision In and Out of Vehicles: Integrated

Driver and Road Scene Monitoring”, Proceedings of the International Symposium of

Experimental Robotics (ISER2002), Italy, 2002.

[28] Wikipedia: https://en.wikipedia.org/wiki/Edge_detection

[29] Wikipedia: https://en.wikipedia.org/wiki/Canny_edge_detector

[30] Canny, J., A Computational Approach to Edge Detection, IEEE Transactions on Pattern

Analysis and Machine Intelligence, 8(6):679–698, 1986.

[31] Green, B. (2002, January 1). Canny Edge Detection Tutorial. Retrieved December 3, 2014;

[32] Mallat S, Zhong S. Characterization of Signals from Multi scale Edges [J]. IEEE Trans on

PAMI, 1992, 14 (7):710-732.

[33] Otsu N. A threshold selection method from gray-level histograms. IEEE Trans Systems,

Man and Cybernetics, 9(1):62-66, 1979.

[34] Gebäck1, T. & Koumoutsakos, P. "Edge detection in microscopy images using curvelets"

BMC Bioinformatics, 10: 75, 2009.

[35] Moeslund, T. (2009, March 23). Canny Edge Detection. Retrieved December 3, 2014

68

[36] Canny Edge Detection- CSE IIT, Delhi.

[37] John Canny. A computational approach to edge detection. Pattern Analysis and Machine

Intelligence, IEEE Transactions on, PAMI-8(6):679–698, Nov. 1986.

[38] Sergei Azernikov. Sweeping solids on manifolds. In Symposium on Solid and Physical

Modeling, pages 249–255, 2008.

[39] F. Mai, Y. Hung, H. Zhong, and W. Sze. A hierarchical approach for fast and robust ellipse

extraction. Pattern Recognition, 41(8):2512–2524, August 2008.

[40] R. Boyle and R. Thomas Computer Vision: A First Course, Blackwell Scientific

Publications, 1988, p 52.

[41] Gaussian filtering http://robotics.eecs.berkeley.edu/~mayi/imgproc/gademo.html

[42] Justin Canny article: http://justin-liang.com/tutorials/canny/

[43] https://en.wikipedia.org/wiki/Hough_transform#Implementation

[44] https://www.learnopencv.com/hough-transform-with-opencv-c-python/

[45] John Canny. A computational approach to edge detection. Pattern Analysis and Machine

Intelligence, IEEE Transactions on, PAMI-8(6):679–698, Nov. 1986.

[46] Richard O. Duda and Peter E. Hart. Use of the Hough transformation to detect lines and

Curves in pictures. Commun. ACM, 15(1):11–15, January 1972.

[47] http://web.ipac.caltech.edu/staff/fmasci/home/astro_refs/HoughTrans_lines_09.pdf

69

[48] https://stackoverflow.com/questions/42660184/opencv-detect-flawed-

rectangle?noredirect=1&lq=1

[49] C. Galambos, J. Kittler, and J. Matas. Progressive probabilistic Hough transform for line

detection. Computer Vision and Pattern Recognition, IEEE Computer Society Conference on,

1:1554, 1999.

[50] Kalman, R. E. (1960). "A new approach to linear filtering and prediction

problems". Transactions of the ASME – Journal of Basic Engineering. Series D. 82 (1): 35–

45. doi:10.1115/1.3662552.

[51] Paul Zarchan; Howard Musoff (2000).” Fundamentals of Kalman Filtering: A Practical

Approach”. American Institute of Aeronautics and Astronautics, Incorporated. ISBN 978-1-

56347-455-2.

[52] Wikipedia.Kalman Filter. [Online]. Available: https://en.wikipedia.org/wiki/Kalman_filter

[53] T. Lacey, "Tutorial: The Kalman Filter", Computer Vision,

http://www.cc.gatech.edu/classes/cs7322-98-spring/PS/kf1.pdf

[54] Wikipedia: https://en.wikipedia.org/wiki/PID_controller

[55] https://www.omega.co.uk/prodinfo/pid-controllers.html

[56] CNC. [Online].Available: https://en.wikipedia.org/wiki/CNC_router

[57] Raspberry Pi ModelB. [Online]. Available

 https://www.raspberrypi.org/products/raspberry-pi-3-model-b/

[58] Arduino Uno. [Online]. Available: https://en.wikipedia.org/wiki/Arduino_Uno

70

[59] Pi Camera. [Online]. Available: https://uk.pi-supply.com/products/raspberry-pi-camera-

board-v1-3-5mp-1080p

[60].Motor Driver. [Online]. Available: https://www.sparkfun.com/products/10182

[61] Raspberry Pi Model B. [Online]. Available: https://thepihut.com/products/raspberry-pi-3-

model-b?variant=1138129768

[62] Raspberry Pi. [Online]. Available: https://pythonprogramming.net/introduction-raspberry-

pi-tutorials/

[63] Camera Module. [Online]. Available: https://pythonprogramming.net/camera-module-

raspberry-pi-tutorials/

[64] Installing OpenCV. [Online]. Available: https://tutorials-raspberrypi.com/installing-

opencv-on-the-raspberry-pi/

[65] Wikipedia .[Online]. Available: https://en.wikipedia.org/wiki/Random_sample_consensus

[66] Wikipedia. [Online]. Available: https://en.wikipedia.org/wiki/Particle_filter

[67] IEEE explore.[Online]. Available:

https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=7451174

