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Abstract 

Subsynchronous Resonance (SSR) phenomenon is an important dynamic problem in power 

system which can lead to the failure of the power system and destruction to the rotor shaft. 

When series capacitive compensators in EHV transmission line are implemented together 

with a steam turbine-generator it can cause to the SSR occurrence. Damping of these SSR 

oscillations has to be ensured in an effective manner so that the system dynamics remains 

stable under a range of operating scenario. Various types of Flexible AC Transmission 

System (FACTS) controllers particularly SVC, TCSC, GCSC, STATCOM, SSSC, UPFC, 

IPFC have been used for this purpose in the past. Pulse Width Modulated Series 

Compensator (PWMSC) is a newly FACTS device, which can modulate the impedance of a 

transmission line through the variation of the duty cycle of a train of pulses with fixed 

frequency, resulting in improvement of system performance. The thesis starts with the study 

of the nonlinear and linear model of IEEE First benchmark Model (FBM) and performs the 

small signal analysis by inserting small disturbance in mechanical power input in the 

governor. The eigen value analysis shows that the different torsional modes are becoming 

unstable for different compensation levels. The critical compensation levels have been 

identified. There are four unstable torsional modes and Mode-1 exhibits the most severe 

undamping with 68.5% compensation level.  The dynamic current injection model of 

PWMSC has been developed in the IEEE FBM and small signal analysis has been performed. 

A supplementary controller with lead block and reset block has been designed to control the 

parameters based on an eigen value based objective function. Genetic Algorithm (GA) is then 

used to solve the optimization problem. The results show that the properly tuned PWMSC 

can successfully damp out all the shaft torsional torques over a wide range of compensation 

levels. The maximum overshoots and settling times for different states are also satisfactory. 

The analysis has been performed at critical compensation levels so that all individual 

compensation levels are covered. This feature of PWMSC can be used to increase the limit of 

line power transfer in a multi-area power system in stable manner. The outcome confirms the 

effectiveness of the PWMSC in damping SSR oscillations in power system.  
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Chapter 1 

Introduction 

 

 

1.1 Background  

The discovery of electricity is one of the greatest achievements of mankind. Today life 

without electricity is almost impossible. We need electricity at every moment and in every 

walk of life. Electricity is considered the soul or the life without which the entire world 

remains dead and dormant. The development of a nation completely depends on the total 

generation and the usage of electricity. For this reason the reliable and economic operation of 

electricity is the utmost important to the modern society.    

In the modern power system the electricity is generated in a power station and supplied to the 

consumers. Generally the modern power generation plants are located hundred to thousand 

kilometers away from the load center due to the high cost of the land, limited availability of 

the resources and the social and environmental constrains. As power demand increases in 

many parts of the world, power transmission needs to be developed, as well. The building of 

more power lines may not be the best way, however, as transmission lines cost a lot of 

money, take considerable time to construct, and are subject to severe environmental 

constraints.  

The power system is much more loaded than before. The large-scale power system 

interconnection is intended to make electric energy generation and transmission more 

economical and reliable. But due to this the power system is becoming more and more 

complex and different instability problems are arising. Instability means a condition denoting 

loss of synchronism. So the stability of an interconnected power system is its ability to return 

to normal or stable operation after having been subjected to some form of disturbance. To 

obtain and to maintain stability in a power system is very important in the field of power 

system. Accurate assessment of power system stability has become increasingly important as 

power systems are stressed to meet the demand of modern market operation [1]. 

Normally the power systems are nonlinear in nature and the operating conditions can vary 

over a wide range. The increasing size of generating units, loading of the transmission lines 
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and high speed excitation systems can become the transmission power limiting factor as these 

are the main causes affecting the small signal stability. Therefore, system requires a 

controller to damp out these oscillations. The need for the power flow control in electrical 

power system is thus evident. 

With the advent of interconnection of large electric power systems, many new dynamic 

power system problems have emerged, which include the low-frequency oscillations of the 

interconnected large electric power systems, the subsynchronous torsional oscillations of 

turbines in a steam-electric power plant with capacitor-compensated transmission lines and 

many others [2].  

Series capacitive compensators have been used for many years in Extra High Voltage (EHV) 

transmission line to compensate the excessive inductance of long transmission lines, in order 

to reduce the line voltage drop, improve its voltage regulation, minimize losses by optimizing 

load distribution between parallel transmission lines, and to increase the power transfer 

capability. Series capacitors are also installed in electrical power systems to improve its 

voltage stability as well. The introduction of series capacitor in a power system has brought 

the Subsynchronous Resonance (SSR) phenomena. When series capacitive compensators in 

transmission line are implemented together with a steam turbine-generator it can cause to the 

SSR occurrence [4-6]. 

The SSR phenomenon has resulted in the destruction of two generator shafts at the same 

Mohave power station on December 9, 1970, and again on October 26, 1971[7, 8]. Since 

then, considerable effort has been expended to find solutions to cure these damaging effects. 

Preliminary studies have confirmed that the Navajo Station can also be subjected to SSR 

effects if precautionary measures are not taken to prevent them. A special IEEE Power 

Engineering Society Task Force was formed to deal with SSR problems. The task force has 

proposed a "bench mark" model for computer simulation of the phenomena. The “First Bench 

Mark Model” (FBM) is used for the computer simulation of the power system for SSR study.  

Subsynchronous resonance phenomena manifest themselves as induction generator effect and 

torsional interaction. The subsynchronous component of the generator rotor oscillation 

increases with time due to disturbance. Another phenomenon, known as hunting occurs when 

there is too much armature and/or line resistance [9]. Recent studies reveal that the SSR 

phenomenon is also present in case of renewable energy based generation system [10-11]. 
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In early days, equipments like compensating capacitor, regulating transfer, Power System 

Stabilizer (PSS) were used to bring stability in power systems. The continuing rapid 

development of high-power semiconductor technology now makes it possible to control 

electric power system by means of power electronic devices. These devices constitute an 

emerging technology called FACTS (Flexible AC transmission System). FACTS technology 

has a number of benefits, such as greater power flow control, increased secure loading of 

existing transmission circuits, damping of power system oscillations, less environmental 

impact and, potentially, less cost than most alternative techniques of transmission system 

reinforcement. For the analysis of small signal stability accurate representation of system 

dynamics along with proper FACTS controller is essential. 

Pulse Width Modulated Series Compensator (PWMSC) is the latest member in the FACTS 

family. It is possible to attain similar objectives in comparison with conventional FACTS 

devices. It has some advantages than other FACTS devices. In the PWMSC, the switches are 

forced to be turned on and off at a rate considerably higher than the fundamental frequency. 

The output wave is chopped and the width of the resulting pulse is modulated. Undesirable 

harmonics in the output waveform are shifted to the higher frequencies, and filtering 

requirements are much reduced. The sinusoidal PWMSC scheme remains one of the most 

popular because of its simplicity and effectiveness [12]. 

 

1.2 Literature Survey 

SSR is a dynamic phenomenon in the power system which has certain special characteristics. 

The definitions of subsynchronous oscillation and SSR are given by the IEEE as [13, 14]:  

“Subsynchronous oscillation is an electric power system condition where the electric network 

exchanges significant energy with a turbine-generator at one or more of the natural 

frequencies of the combined system below the synchronous frequency of the system 

following a disturbance from equilibrium. The above excludes the rigid body modes of the 

turbine-generator rotors.” 

“Subsynchronous Resonance (SSR) encompasses the oscillatory attributes of electrical and 

mechanical variables associated with turbine-generators when coupled to a series capacitor 
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compensated transmission system where the oscillatory energy interchange is lightly damped, 

undamped, or even negatively damped and growing.” 

1.2.1 SSR: Basic Phenomenon 

Consider the simple power system shown in Figure 1.1. It consists of a large turbine-

generator which is connected to an infinite bus system through a series capacitor 

compensated transmission line. The generator is driven by a multi-stage turbine, where the 

various stages of the turbine (HP, IP and LP) and the generator rotor (GEN) are coupled by 

elastic shafts. 

 

Figure 1.1: A series capacitor compensated power system. 

The natural resonance frequency for the electrical system is given by 

𝜔𝑒 =
1

√(𝐿𝑇)(𝐶)
=

𝜔0

√(𝜔0𝐿𝑇)(𝜔0𝐶)
= 𝜔0√

𝑋𝐶

𝑋𝐿𝑇

  rad/s    (1.1) 

or 

𝑓𝑒 = 𝑓0√
𝑋𝐶

𝑋𝐿𝑇

 Hz        (1.2) 

where 𝜔0  is the system synchronous frequency ( 𝜔0 = 2𝜋𝑓0 , 𝑓0 = 60 Hz) 𝑋𝐶 is the 

capacitive reactance, and 𝑋𝐿𝑇
  is the total inductive reactance of the electric system, which 

comprises the generator subtransient reactance and the transmission line inductive reactance. 
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In practice,  𝑓𝑒  is always below the synchronous frequency 𝑓0 since the compensation levels 

of transmission line are usually less than 100%. For this reason,  𝑓𝑒  is called the 

subsynchronous natural frequency of the electrical system.  

The shaft system of the turbine-generator has (N-1) natural torsional frequencies where N is 

the number of the rotating masses. These torsional frequencies are functions of the inertia of 

the different masses and the stiffness of the connected shafts. Due to the physical properties 

of the shaft materials and the mechanical design of the turbine-generator shaft system, the 

torsional natural frequencies are also subsynchronous. Thus, the basic interaction between the 

electrical and mechanical systems is due to the closeness of fe to the natural torsional 

frequencies of the turbine-generator shaft system. SSR can occur in the following three 

forms: 

1. Torsional Interaction: This is due to an interaction and exchange of energy between the 

series compensated electrical system and the turbine-generator mechanical system. This can 

lead to growing shaft torque oscillations at one of the natural torsional frequencies of the 

turbine-generator shaft system. Torsional interaction can occur when the generator is 

connected to a series compensated electrical system that has one or more natural frequencies, 

which are the synchronous frequency complements of one or more of the spring-mass natural 

frequencies. Generally, shaft torques due to torsional interaction can be expected to build up 

at a relatively slow rate such that damaging torque levels would not be reached in less than a 

minute or so. 

2. Induction Generator Effect: This is a pure electrical phenomenon which is due to the fact 

that, when subsynchronous currents flow in the armature circuit of a synchronous generator, 

the generator appears as a negative-resistance circuit at the prevailing subsynchronous 

frequencies. If the apparent resistance is greater than the inherent positive resistance of the 

circuit at one of the natural frequencies of the electrical circuit, growing subsynchronous 

voltages and currents will be expected in the system and at the generator. This could result in 

voltages and currents large enough to be damaging to the generator and power system 

equipment. In addition, if the subsynchronous currents in the generator armature are at the 

frequency corresponding to one of the turbine- generator spring-mass modes, large oscillatory 

shaft torques may result. As in the case of torsional interaction, a relatively slow oscillation 

growth rate would be expected. 
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3. Torque Amplification: this phenomenon occurs when a fault on a series compensated 

power system, and its subsequent clearing, results in a high-energy storage in the series 

capacitor banks, which then discharge their energy through a generator in the form of a 

current having a frequency that corresponds to one of the natural torsional frequencies of the 

turbine-generator mechanical system. Unlike torsional interaction and induction generator 

effect, the growth rate for torque amplification is high and oscillating shaft torques might be 

expected to reach a damaging level within 0.1 second. The ultimate hazard of SSR is a shaft 

fraction at full load and rated speed. The damage of such an occurrence cannot be accurately 

predicted, but extensive equipment damage could occur with a safety hazard to personnel. A 

more likely most-severe hazard would be crack initiation at the surface of one of the turbine-

generator shafts, indicating fatigue and requiring shaft replacement, resulting in a unit outage 

of 90 days or more. 

 

1.2.2 Flexible AC Transmission System  

From the general point of view, the FACTS principle is mainly dependent on the advanced 

technologies of power electronic techniques and algorithms into the power system, to make it 

electronically controllable. FACTS Technology is concerned with the management of active 

and reactive power to improve the performance of electrical networks. The concept of 

FACTS technology embraces a wide variety of tasks related to both networks and consumers 

problems, especially related to power quality issues. 

The availability of the modern semiconductor devices such as the Gate Turn-Off thyristor 

(GTO), and the Insulated Gate Bipolar Transistor (IGBT) [12], has led to the development of 

a new generation of power electric converters. These devices, unlike the conventional 

thyristors which have no intrinsic turn-off ability, are of the fully controlled type. The most 

common converters, which employ the self-commutating, high voltage, high current, and 

high switching frequency power electronic devices, are the Voltage Source Converters 

(VSCs).  

A number of FACTS controllers which use VSCs as their basic building block have been 

already in operation in various parts of the world. The most popular controllers are: the Static 

Compensator (STATCOM) [15-16], the Static Synchronous Series Compensator (SSSC) [17-
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18], the Unified Power Flow Controller (UPFC) [19-20], and the Voltage Source Converter 

High-Voltage Direct-Current (VSC HVDC) [21-23]. 

 

1.2.3 PWMSC  

Fixed and controlled series compensators have been used for many years in transmission 

lines for compensating line reactance in order to increase power transfer capability and 

enhance the transient stability in power networks. One advantage of the series compensators 

is the use of a control scheme that varies effective series reactance. Thereinafter, this scheme 

can provide an effective means of active and reactive power flow control in a transmission 

line. Conventional series FACTS devices proposed in literature can be classified in two major 

groups: 

1) Thyristor controlled reactance, and 

2) Synchronous controllable voltage sources. 

The first group is usually implemented with line commutated thyristors [24] while the second 

is based on force-commutated voltage source converters. However, in recent years new 

devices based on AC link converters have been proposed [25-27]. These do not require a DC 

link, and it is possible to reach similar objectives to those obtained by means of conventional 

FACTS devices. The series compensator considered in this paper is of the controlled 

reactance type which can be viewed as a PWM controlled capacitor. Such compensators have 

the advantage of being simpler in both power circuit structure and control. 

This PWM-switched capacitor for series compensation is the dual of the shunt reactor 

switched by a PWM AC controller that is presented in [28]. A static phase-shifter is based on 

four switches. 

PWM AC controller has also been discussed in literature [29]. In [25] the authors proposed 

the use of the PWM controlled capacitor to control active power on a transmission line with a 

simple structure that provides continuous control of the degree of series compensation by 

varying the duty cycle control. 

A brief comparison of this PWMSC with the TCSC in small power system with three buses is 

presented in [26] where it is shown that the PWMSC is a smoother control alternative than 

the TCSC. A comparative evaluation between PWMSC and SSSC based on detailed 
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switching models is presented in [28] showing that the DC link converter requires about 

twice as much capacitive energy storage and about 66% additional semiconductor MVA 

rating rather than the AC link for the same application. Since no practical PWMSC has been 

built and installed on a real power system so far, an estimation of composed components cost 

for these two controllers are also considered in [28]. The authors show that the cost of SSSC 

is higher than that of PWMSC for that particular application. The paper also highlight that the 

use of AC capacitors enables PWMSC to operate at higher temperatures, in contrast to DC 

capacitors used in SSSC, which are quite vulnerable to high temperatures. The three-phase 

vector switching converter is proposed to develop FACTS controllers which can control 

power flow in transmission system. Authors have introduced a new FACTS device based on 

pulse width modulated ac link UPFC named Gamma controller. In [30-31], some studies of 

the effect of the AC link compensator on power system stability are presented. The 

formulation of power flow of the AC link compensators is analyzed at steady state 

performance in [30]. In these papers, it is shown that the compensator does not provide 

enough damping for certain contingencies. Based on these preliminary studies, a better 

current injection model for the PWMSC is proposed and studied in this paper [32]. 

 

1.2.4 Related Work and Scopes of the Thesis 

Different methods are already employed by utilities for damping SSR oscillations including 

generator excitation control [3, 33], power system stabilizer [34, 35], static VAR 

compensator (SVC) [36-38] and static phase shifter [39]. In the recent years Flexible AC 

Transmission Systems (FACTS) controllers for instance Thyristor Controlled Series 

Capacitor (TCSC), Static Synchronous Series Compensator (SSSC), Unified Power Flow 

Controller (UPFC) and Gated Control Series Capacitors (GCSC) have been implemented to 

mitigate the SSR in power networks [40-43]. Among the FACTS device the TCSC is the 

most adaptable one [44] but both Thyristor Control Series Compensator (TCSC) and the 

GCSC, switches are gated at line frequencies. This results in the generations of low frequency 

line current harmonics. In addition the synchronization with the line frequency is required. 

SSR damping using a VSC based HVDC back-to-back system is performed in [45].  

The drawbacks of SSSC, TCSC and GCSC can be mitigated or eliminated by replacing the ac 

controllers that switch at the line frequency with PWM ac controllers capable of switching at 
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frequencies significantly higher than line frequency, typically above 600 Hz for high power 

switches, such as GTOs, or higher for IGBTs. In [46] the three TCRs of a three –phase TCSC 

are replaced by three PWM ac controllers, employing four force-commutated switches per 

phase, or a total of 12 for the thee-phase unit. The synchronization with the ac mains may not 

be necessary if the switching frequency is high enough. The use of force-commuted switches 

allow operation at frequencies higher than that of the ac mains, thus resulting in the 

generation of high order harmonics only, around the switching frequencies and multiples.  

Among the converter-based FACTS controllers, the PWMSC is regarded as one of the latest 

devices in the FACTS device family. It provides significant transient stability performance 

improvements over a wide range of power flow levels [47]. Its main features are a simple 

power structure, gating and control strategy [48]. One lead-lag controller has been used for 

controlling the system output. Optimization techniques can be used for obtaining the 

appropriate system parameters. Genetic Algorithm (GA) is one of the advance algorithms 

[49-52].  

From the above literature review it is concluded that SSR is a severe dynamic problem in 

power system and the application of the PWMSC to the modern power system can solve the 

SSR problem and therefore lead to a more flexible, secure and economic operation of power 

system.  

 

1.3 Thesis Objectives 

The main objective of the thesis work is to investigate the feasibility of using PWMSC in the 

IEEE FBM to damp the SSR oscillations. The procedural steps to satisfy the objective are as 

follows:  

1. Study the non-linear model of the IEEE First bench mark model (FBM) for SSR 

study. 

2. Linearize the model using Taylor series expansion and obtain the state Matrix. 

3. Develop the non-linear model of FBM with PWMSC for SSR study with associated 

control blocks and linearize the model using Taylor series expansion. 
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4. Use efficient parameter optimization algorithm for proper tuning of the controller 

gains. 

5. Performance evaluation of the proposed PWMSC with tuned lead-lag controller for 

SSR damping in IEEE FBM system.  

 

1.4 Outline of the Thesis                  

There are five chapters in this thesis. The main topics of each chapter are as follows: 

Chapter 1 represents the background of the research study, literature survey, related works 

and thesis scopes and the objectives of the thesis. The total outline of the thesis is also 

presented in this chapter. 

Chapter 2 presents a review of general power system stability, classification of stability and 

category of stability and provides current definitions of transient stability and small signal 

stability. Furthermore, the eigenvalue characteristics and participation factors are discussed 

elaborately. One of the advance optimization techniques, Genetic algorithm is also discussed. 

Chapter 3 provides the small-signal analysis of subsynchronous resonance phenomenon 

without the controller. The computer simulation results are presented to show the eigenvalue 

and state of the modes for small signal analysis. 

Chapter 4 describes the damping of subsynchronous resonance oscillations under small 

disturbances using PWMSC on system model. The computer simulation results are presented 

to show the eigenvalue and state of the modes for small signal analysis. Performance 

evaluation of the proposed PWMSC with tuned lead-lag controller for SSR damping in IEEE 

FBM system is done in this chapter for the critical compensation levels. 

Chapter 5 concludes the whole work with a brief summary and some future suggestions.  

“Appendices” part has got the list of values used in modeling, constants obtained in 

linearized model and values used for the system initial condition.  
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Chapter 2 

General Stability Analysis of SMIB System 

 

2.1 Introduction  

In this chapter, we will study how to assess the stability of a power system, how to improve 

the stability and how to protect our system from moving to unstable system for 

subsynchronous resonance (SSR) oscillations. In order to do these issues, the present chapter 

includes a review of general concepts relating to power system stability devices in order to 

contextualize this research. The classification of stability problems in power grid along with 

the methods that have been proposed for its analysis is also summarized. For the optimal 

operation of the system a lead-lag controller is used as supplementary controller and 

optimized by optimization technique. Genetic Algorithm is used as optimization technique in 

this thesis, so a short discussion on Genetic Algorithm is presented at the end of this chapter. 

 

2.2 Power System Stability  

Several definitions for stability have been found in the literature [53-55]. Anderson et al [54] 

have mentioned that “if the oscillatory response of a power system during the transient 

period following a disturbance is damped and the system settles in a finite time to a new 

steady operating condition, the system is called stable. If the system is not stable, it is 

considered to be unstable”.  

Kundur [4] has defined it as “the ability of the power system to maintain synchronism 

when subjected to a severe transient disturbance”. The resulting system response involves 

large excursions of generator rotor angles and is influenced by the non-linear power-angle 

relationship.  

Singh [53] states it as “the attribute of the system which enables it to develop restoring 

forces between the elements thereof, equal to or greater than the disturbing forces so as 

to restore a state of equilibrium between the elements”. 
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Classification of power system stability can be made based on the following considerations: 

• The physical nature of the resulting mode of instability as indicated by the main system 

variable in which instability can be observed. 

• The size of the disturbance considered which influences the method of calculation and 

prediction of stability. 

• The devices, processes, and the time span that must be taken into consideration in order to 

assess stability. 

Figure 2.1 gives the overall picture of the power system stability problem, identifying its 

categories and subcategories.  

Power 

system 

stability

Long termShort term

Long term Short term
Short term

Small disturbance 

voltage stability 

Large 

disturbance 

voltage stability

Transient 

stability

Small 

Disturbance  

angle stability 

Frequency 

stablity

Voltage 

stability

Rotor angle 

stability

 

Figure 2.1: Classification of Power System Stability. 

 

The stability problem involves the study of the electromechanical oscillations inherent in 

power systems. Under steady-state conditions, there is equilibrium between the input 

mechanical torque and the output electromagnetic torque of each generator, and the speed 

remains constant. If the system is perturbed, this equilibrium is upset, resulting in 
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acceleration or deceleration of the rotors of the machines according to the laws of motion of a 

rotating body. Instability results if the system cannot absorb the kinetic energy corresponding 

to these rotor speed differences. For any given situation, the stability of the system depends 

on whether or not the deviations in angular positions of the rotors result in sufficient restoring 

torques [56]. Loss of synchronism can occur between one machine and the rest of the system, 

or between groups of machines, with synchronism maintained within each group after 

separating from each other. 

The change in electromagnetic torque of a synchronous machine following a perturbation can 

be resolved into two components:  

• Synchronizing torque component, in phase with rotor angle deviation. 

• Damping torque component, in phase with the speed deviation. 

System stability depends on the existence of both components of torque for each of the 

synchronous machines. 

 

2.2.1 Small Signal Stability  

The small signal stability of a power system is concerned with the ability of the power system 

to maintain synchronism under small disturbances. The disturbances are considered to be 

sufficiently small that linearization of system equations is permissible for purposes of 

analysis. It depends only on the initial conditions and is of two types. Inadequate 

synchronizing torque results in non-oscillatory mode whereas insufficient damping torque 

causes rotor oscillations of increasing amplitude. The time frame of interest in small-

disturbance stability studies is on the order of 10 to 20 seconds following a disturbance. 

Transient stability is concerned with the ability of the power system to maintain synchronism 

when subjected to a severe disturbance, such as a short circuit on a transmission line. The 

resulting system response involves large excursions of generator rotor angles and is 

influenced by the nonlinear power-angle relationship. Unlike the small signal analysis it also 

depends on severity of the disturbance along with the initial operating states. Instability 

usually occurs due to insufficient synchronizing torque. The time frame of interest in 

transient stability studies is usually 3 to 5 seconds following the disturbance which may 

extend to 10–20 seconds for very large systems with dominant inter-area swings. 
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Examples of state variables of a power system are:  

 synchronous and asynchronous machine rotor speeds  

 synchronous machine load angles  

 magnetic flux linkages 

 controller state variables  

If a disturbance causes a change in the value of one or more of these state variables, the 

system is driven from the equilibrium. If thereafter the system returns to its steady state, it is 

stable, whereas if the initial deviation from the steady state becomes ever larger, it is 

unstable. A further difference between transient stability and small signal stability is that if a 

steady state is reached after a disturbance leading to a transient phenomenon, i.e. a change in 

the system’s topology, the new steady state can be different from the initial one. In contrast, 

if a system returns to a steady state after an incremental change in a state variable, this steady 

state is identical to the initial steady state, because no change in the network’s topology has 

occurred. 

 

2.2.2 Improving Rotor Angle Stability  

According to [57] the rotor (power) angle stability of a power system can be enhanced, and 

its dynamic response improved, by correct system design and operation. For example, the 

following features help to improve stability: 

 Use of protective equipment and circuit-breakers that ensure the fastest possible fault 

clearing; 

 Use of single-pole circuit-breakers so that during single-phase faults only the faulted 

phase is cleared and the healthy phases remain intact; 

  Use of a system configuration that is suitable for the particular operating conditions 

(e.g. avoiding long, heavily loaded transmission links); 

 Ensuring an appropriate reserve in transmission capability; 

 Avoiding operation of the system at low frequency and/or voltage; 

 Avoid weakening the network by the simultaneous outage of a large number of lines 

and transformers. 
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Installation of the following devices/techniques has resulted in satisfactory improvement. 

 Power System Stabilizers (PSS) 

 Fast valving 

 Braking Resistors 

 Generator tripping 

 Flexible AC Transmission system (FACTS) controllers  

2.2.3 Characteristics of the Small Signal Stability Problems  

Small signal stability problems may be either local or global in nature. Local problems 

involve a small part of the power system, and are usually associated with rotor angle 

oscillations of a single power plant against the rest of the power system. Such oscillations are 

called local plant mode oscillations. Stability (damping) of these oscillations depends on the 

strength of the transmission system as seen by the power plant, generator excitation control 

systems and plant output [4, 58-59]. Global problems are caused by interactions among large 

groups of generators and have widespread effects. They involve oscillations of a group of 

generators in one area swinging against a group of generators in another area. Such 

oscillations are called inter-area mode oscillations. Their characteristics are very complex and 

significantly differ from those of local plant mode oscillations. Load characteristics, in 

particular, have a major effect on the stability of inter-area modes [4, 58]. The time frame of 

interest in small-disturbance stability studies is on the order of 10 to 20 seconds following a 

disturbance. 

 

2.3 Eigenvalues and Small Signal Stability 

The main goal of this section is to figure out the correspondence between the eigenvalues of 

an electrical power system and its dynamic characteristics. First the linearization of the state 

equations of the power system will be discussed. After that, the correspondence between the 

eigenvalues of the state matrix which is the crucial part of the linearized description, and the 

time domain will be pointed out. 
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2.3.1 Linearization of State Equations for SSR 

Modal Analysis  

In this thesis the focus will be on modeling of IEEE first benchmark model for SSR study, 

which can be described by a set of First-order non-linear, ordinary algebraic-differential 

equations (DEA) of the following form [4, 59-60]: 

dxi

dt
= fi(x1, x2, … , xn; z1, z2, … , zm; u1, u2, … , ur)    (2.1) 

0 = gi(x1, x2, … , xn; z1, z2, … , zm; u1, u2, … , ur)    (2.2) 

The mathematical model of a power system can be written as a set of DAE 

ẋ= f(x, z, u)          (2.3) 

y = g(x, z, u)         (2.4) 

With  

x =[

x1

x2

⋮
xn

] z =[

z1

z2

⋮
zn

] u =[

u1

u2

⋮
un

] f =[

f1
f2
⋮
fn

]  g =[

g1

g2

⋮
gn

]  

 (2.5) 

where 

f is a vector containing n first-order non-linear differential equations 

x is a vector containing n state variables 

u is a vector containing r input variables 

g is a vector containing n non-linear algebraic equations 

z is a vector containing m algebraic variables 

y is a vector containing m output variables 

By assuming that the system in equation 2.3 is time invariant, i.e. the time derivatives of the 

state variables are not explicit functions of the time; t can be excluded from equation 2.3. In 
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small signal analysis, equations 2.3 and 2.4 can be linearized by a Taylor series expansion 

around an operating point (𝑥0, 𝑧0, 𝑢0) and the resulting linearized description of the system 

can be used to investigate its response to small variations in the input or state variables, 

starting at equilibrium point [4, 61-62]. Neglecting the terms of order two and above and 

eliminating the algebraic variables z just taking into account first-order terms, the system 

state matrix is obtained from derivations given below. 

 A procedure for small perturbations is established for ith component of vector x. 

𝑥̇1 = 𝑥̇𝑖𝑜 + ∆𝑥̇𝑖 = 𝑓𝑖[(𝑥0 + ∆𝑥0), (𝑢0 + ∆𝑢0)]      (2.6) 

 = 𝑓𝑖(𝑥0, 𝑢0) +
𝜕𝑓𝑖

𝜕𝑢𝑖
∆𝑥𝑖 + ⋯+

𝜕𝑓𝑖

𝜕𝑢𝑛
∆𝑥𝑛 +

𝜕𝑓𝑖

𝜕𝑢1
∆𝑢1 + ⋯+

𝜕𝑓𝑖

𝜕𝑢𝑟
∆𝑢𝑟          (2.7) 

From equation (2.3) it follows that 

𝑥̇𝑖𝑜 = 𝑓𝑖(𝑥0, 𝑢0)       (2.8) 

and therefore (2.7) can be written as 

∆𝑥̇𝑖 =
𝜕𝑓𝑖

𝜕𝑢𝑖
∆𝑥𝑖 + ⋯+

𝜕𝑓𝑖

𝜕𝑢𝑛
∆𝑥𝑛 +

𝜕𝑓𝑖

𝜕𝑢1
∆𝑢1 + ⋯+

𝜕𝑓𝑖

𝜕𝑢𝑟
∆𝑢𝑟    (2.9) 

with  i = 1,2,…,n 

The same can be done for the j
th

 component of y, with reference to (2.4), 

 ∆𝑦̇𝑖 =
𝜕𝑔𝑗

𝜕𝑥1
∆𝑥1 + ⋯+

𝜕𝑔𝑗

𝜕𝑥𝑛
∆𝑥𝑛 +

𝜕𝑔𝑗

𝜕𝑢1
∆𝑢1 + ⋯+

𝜕𝑔𝑗

𝜕𝑢𝑟
∆𝑢𝑟    (2.10) 

with  j = 1,2,…,n  

The prefix ∆ denotes a small deviation, thus 

∆x = x – x0   ∆y = y – y0   ∆u = u – u0 

Doing this for all components of the vectors x and y gives the following linearized set of the 

state and output equations 

∆ẋ = A∆x + B∆u      (2.11) 

∆y = C∆x + D∆u      (2.12) 
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with 

𝑨 =

[
 
 
 
𝜕𝑓1

𝜕𝑥1
…

𝜕𝑓1

𝜕𝑥𝑛

⋮ ⋱ ⋮
𝜕𝑓𝑛

𝜕𝑥1
…

𝜕𝑓𝑛

𝜕𝑥𝑛]
 
 
 

     𝑩 =

[
 
 
 
𝜕𝑓1

𝜕𝑢1
…

𝜕𝑓1

𝜕𝑢𝑟

⋮ ⋱ ⋮
𝜕𝑓𝑛

𝜕𝑢1
…

𝜕𝑓𝑛

𝜕𝑢𝑟]
 
 
 
  

𝑪 =

[
 
 
 
𝜕𝑔1

𝜕𝑥1
…

𝜕𝑔1

𝜕𝑥𝑛

⋮ ⋱ ⋮
𝜕𝑔𝑚

𝜕𝑥1
…

𝜕𝑔𝑚

𝜕𝑥𝑛 ]
 
 
 

     𝑫 =

[
 
 
 
𝜕𝑔1

𝜕𝑢1
…

𝜕𝑔1

𝜕𝑢𝑟

⋮ ⋱ ⋮
𝜕𝑔𝑚

𝜕𝑢1
…

𝜕𝑔𝑚

𝜕𝑢𝑟 ]
 
 
 
  

(2.13) 

Thus, the matrices A, B, C and D contain the partial derivatives of the functions in f and g to 

the state variables x and the input variables u. Matrix A is the state matrix of the system. 

Equations ((2.11) and (2.12)) can be Laplace transformed to obtain the state equations in the 

frequency domain. Take the Laplace transform assuming zero initial conditions  

s ∆x(s) - ∆x(0) =A ∆x(s) + B ∆u(s)     (2.14) 

∆y(s) = C ∆x(s) + D ∆u(s)                (2.15) 

A solution to the state equations can be obtained by rearranging the upper equation of (2.14) 

& (2.15) as follows 

(sI – A) ∆x(0) + B ∆u(s)       (2.16) 

I is the identity matrix and the values of s which satisfy 

det (sI – A) = 0        (2.17) 

are known as the eigenvalues of matrix A. 

 

2.3.2 Eigenvalues  

Eigenvalue is a scalar associated with a given linear transformation of a vector space and 

having the property that there is some nonzero vector which when multiplied by the scalar is 

equal to the vector obtained by letting the transformation operate on the vector; especially it 

is the root of the characteristic equation of a matrix. 



19 
 

2.3.3 Properties of Eigenvalues 

In small signal stability analysis the properties of the system equations ((2.11), (2.12)) around 

operating point (x0, z0, y0), studied through an eigenvalue analysis of the state matrix A. The 

study determines the time domain response of the system to small perturbations, and 

therefore contains important information’s on the dynamic behavior of the system under 

study condition called mode, which is obtained from A matrix.  

For a system to be stable the real parts of all eigenvalues of the state matrix A has to be 

negative and must lie in the left half-plane of the complex plane. An eigenvalue with a 

negative real part ensures that oscillations will decay with time and will return to a steady 

state following a small disturbance. The opposite will occur if an eigenvalue has a positive 

real part. The amplitude of the modes will increase exponentially and the power system will 

be unstable at that operating point. 

If A is real, complex eigenvalue occur in conjugate pairs, and each pair would correspond to 

an oscillatory mode. Figure 2.2 shows the possible natural modes of a system. The 

eigenvalues of A contain essential information about the mode’s frequencies and their 

damping after a small disturbance. The real part component gives the damping and the 

imaginary component gives the frequency of oscillation. 
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Figure 2.2: Possible combination of eigenvalues pairs (left) and their trajectories (middle) 

and time responses (right). 

 

Stability behavior of the system model from Eigen value analysis is like this: 

 The Eigen values are real numbers.  

1. Eigen values both positive 

Unstable: All trajectories in the neighborhood of the fixed point will be directed outwards 

and away from the fixed point.  
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2. Eigen values both negative 

Stable: All trajectories in the neighborhood of the fixed point will be directed towards the 

fixed point.  

3. Eigen values opposite sign 

Unstable: Trajectories in the general direction of the negative eigen value's eigenvector 

will initially approach the fixed point but will diverge as they approach a region dominated 

by the positive (unstable) eigen value.  

 Eigen values are complex conjugates 

1. Real parts positive 

Unstable: All trajectories in the neighborhood of the fixed point spiral away from the 

fixed point with ever increasing radius.  

2. Real parts negative 

Stable: All trajectories in the neighborhood of the fixed point spiral into the fixed point 

with ever decreasing radius. 

2.3.4 Eigenvalues and Eigenvectors Formulation  

It can be shown that for any eigenvalue , a left and right eigenvector Ψ and Φ can be 

calculated, such that  

AΦ = Ψ         

ΨA = Φ           2.18 

Φ is a vector with n rows and Ψ is a vector with n columns. According to the upper equation 

of ((2.11), (2.12)), if no inputs are applied, the system is described by 

𝑥̇ = Ax       (2.19)  

In this equation, the states are coupled, which means that they influence each other. It is 

hence difficult to draw conclusions with respect to the system behavior. Therefore, the 

eigenvalues are put onto the diagonal of a matrix , the transposed right eigenvectors are 



22 
 

turned into the columns of a matrix Ψ, and the left eigenvectors are turned into the columns 

of a matrix Φ , after which the following transformation is applied 

x = z       (2.20) 

Substituting this into equation (2.18) gives 

𝑧̇ = Az       (2.21) 

When the individual eigenvalues in the upper equation of (2.18) are replaced by the diagonal 

matrix  and both sides of the equations are multiplied the inverse of Φ, the following is true 

A = A        


-1

 A =           (2.22) 

Using the second equation together with (2.21), it can be seen that 

𝑧̇ = Az           (2.23) 

Because the matrix  is diagonal, it represents n uncoupled algebraic equations of the form 

𝑧̇𝑖 = 𝜆𝑖𝑧𝑖         (2.24)  

An equation of this form can be easily transformed back to the time domain, yielding 

𝑧𝑖(𝑡) = 𝑧𝑖(0)𝑒𝜆𝑖𝑡         (2.25) 

Again using the transformation in equation (2.20) results in 

∆x(t) = z(t)        (2.26) 

In which z contains the n equations as given in (2.25).  

This can be written as 

∆x(t ) = ∑ 𝑖𝑧𝑖(0)𝑛
𝑖=1 𝑒𝜆𝑖𝑡       (2.27) 

It can be shown that the inverse of the matrix Φ, containing the left eigenvectors as columns, 

is the matrix Ψ, containing the transposed right eigenvectors as columns.  
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Thus, using equation (2.26) 

z(t) = x(t)     (2.28) 

and with t  0 

z(0) = x(0)     (2.29) 

The scalar product of i and Δx(0) can be replaced by Ci . With equation (2.28), this results 

in 

∆x(t ) = ∑ 𝑖𝑧𝑖(0)𝑛
𝑖=1 𝑒𝜆𝑖𝑡      (2.30) 

Thus, the time response of the ith state variable is given by 

∆𝑥𝑖(𝑡) =  𝛷𝑖1𝑐1𝑒
𝜆1𝑡 + ⋯+ 𝛷𝑖𝑛𝑐𝑛𝑒𝜆𝑛𝑡    (2.31) 

and it has been shown that the eigenvalues of the linearized system matrix determine the time 

domain response of the system to a perturbation, as was the aim of this discussion. If the 

eigenvalues are complex, in the case of real physical systems they always occur in pairs that 

are complex conjugates. Therefore, the imaginary parts cancel each other and equation (2.31) 

is real. Equation (2.31) clearly illustrates the well-known fact that the real part of an 

eigenvalue has to be negative for a system to be stable [4]. 

 

2.4 Damping Ratio and Oscillation Frequency  

For the eigenvalues 𝜆 =  𝜎 ± 𝑗𝜔  of matrix A the damping ration 𝜎 is the defined as  

𝜉𝑖 = −
𝜎

√𝜎𝑖
2+𝜔𝑖

2
                                                             (2.32) 

With 𝜉 ∈ [−1,1] 

The damping ratio 𝜉  determines the rate of decay of the amplitude of the oscillation. The 

time constant 𝜏 of the amplitude decay is 𝜏 = 1/|𝜎| [4, 62] 

The mechanical part of synchronous system is intrinsically prone to weakly damped 

oscillations; it doesn’t affect the rotor speed oscillations. Therefor the damping of rotor speed 

oscillations comes from damper winding, the controller of the machines and the rest of power 



24 
 

system. However, the lower the frequency the less damping is provided by the damper 

winding. Because power system oscillations have frequencies in the order of few Hz and 

lower and rather small amplitude, so hardly any damping is provided by damper winding. 

Small signal stability is strongly related to the damping of system oscillations, which 

discussed by several researchers [63-66]. 

The oscillation frequency 𝑓 of the 𝑖𝑡ℎ mode, in Hz, is defined as 

𝑓𝑖 =
𝜔

2𝜋
                                                                       (2.33) 

 

2.5 Participation Factors  

Participation factors are non-dimensional scalars that measure the relative contribution of 

system modes to system states, and of system states to system modes, for linear system. 

Participation factors helps us to obtain the influence of state on modes, because then we will 

know which states machines should be controlled in order to increase damping of a certain 

problem. 

The participation matrix Pf, proposed in [67-68] is defined as: 

𝛹𝑗𝑘
𝑇 𝛷𝑗𝑘 =  [𝛹1𝑗 𝛹2𝑗 … 𝛹𝑛𝑗]

[
 
 
 
 
𝛷𝑗1

𝛷𝑗2

𝛷𝑗3

𝛷𝑗4]
 
 
 
 

     (2.34) 

We may express the above vector product as a summation. 

𝛹𝑗𝑘
𝑇 𝛷𝑗𝑘 =  ∑ 𝛹𝑘𝑗𝛷𝑗𝑘

𝑛
𝑗=1         (2.35) 

After some steps we will obtain 

𝜉𝑘 =  [𝛹𝑘𝑖
𝑇 𝑥𝑗(0)][∑ 𝛹𝑘𝑗𝛷𝑗𝑘

𝑛
𝑗=1  ]𝑒𝜆𝑘𝑡      (2.36) 

Now we are in a position to make a definition of participation factor 

𝑃𝑗𝑘 =  𝛹𝑘𝑗𝛷𝑗𝑘         (2.37) 
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Substitution of eq. (2.36) in eq. (2.37) results 

𝜉𝑘 =  [𝛹𝑘𝑖
𝑇 𝑥𝑗(0)][∑ 𝑃𝑓𝑗𝑘

𝑛
𝑗=1  ]       (2.38) 

The participation factor Pfjk indicates the participation (influence) of the j
th

 state in the k
th

 

mode. The participation factor is extremely useful. Consider that through eigenvalue 

calculation and/or time-domain simulation it is learnt that mode k is a “problem mode,” i.e., it 

is marginally damped or negatively damped. Then one can identify what to do about this is 

by inspecting the participation factors for this mode. 

 

2.6 Optimization Theory  

Optimization is the act of obtaining the best result under given circumstances. The word 

‘optimum’ is taken to mean ‘maximum’ or ‘minimum’ depending on the circumstances. In 

design, construction, and maintenance of any engineering system, engineers have to take 

many technological and managerial decisions at several stages. The ultimate goal of all such 

decisions is either to minimize the effort required or to maximize the desired benefit. Since 

the effort required or the benefit desired in any practical situation can be expressed as a 

function of certain decision variables, so optimization can be defined as the process of 

finding the conditions that give the minimum or maximum value of a function, where the 

function represents the effort required or the desired benefit. 

 

2.6.1 Advanced Technique of Optimization:  

Many difficulties such as multi-modality, dimensionality and differentiability are associated 

with the optimization of large-scale problems. Traditional techniques such as steepest decent, 

linear programing and dynamic programing generally fail to solve such large-scale problems 

especially with nonlinear objective functions. Most of the traditional techniques require 

gradient information and hence it is not possible to solve non-differentiable functions with 

the help of such traditional techniques. Moreover, such techniques often fail to solve 

optimization problems that have many local optima. To overcome these problems, there is a 

need to develop more powerful optimization techniques which is called advanced technique 

of optimization. Research is still going on to find more effective optimization techniques. 
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Some of the well-known population-based advanced optimization techniques developed 

during last three decades are: Genetic Algorithms (GA) [31,69]which works on the principle 

of the Darwinian theory of the survival-of-the fittest and the theory of evolution of the living 

beings; Artificial Immune Algorithms (AIA) [70] which works on the principle of immune 

system of the human being; Particle Swarm Optimization (PSO) [71] which works on the 

principle of foraging behavior of the swarm of birds; Differential Evolution (DE) [72] which 

is similar to GA with specialized crossover and selection method; Bacteria Foraging 

Optimization (BFO) [73] which works on the principle of behavior of bacteria; Shuffled Frog 

Leaping (SFL) [74] which works on the principle of communication among the frogs, 

Artificial Bee Colony (ABC) [75] which works on the principle of foraging behavior of a 

honey bee; Biogeography-Based Optimization (BBO) [76] which works on the principle of 

immigration and emigration of the species from one place to the other; Gravitational Search 

Algorithm (GSA) [77] which works on the principle of gravitational force acting between the 

bodies and Grenade Explosion Method (GEM) [78] which works on the principle of 

explosion of grenade. These algorithms have been applied to many engineering optimization 

problems and proved effective to solve some specific kind of problems. 

 

2.6.2 Genetic Algorithm  

Among the other optimization techniques we have chosen genetic algorithm for our research. 

A genetic algorithm is a search technique used in finding true or approximate solutions to 

optimization and search problems. Genetic algorithms are categorized as global search 

heuristics. Genetic algorithms form particular class of evolutionary algorithms that use 

techniques inspired by evolutionary biology such as inheritance, mutation, selection and 

crossover (also called recombination). Genetic Algorithms are implemented as a computer 

simulation in which a population of abstract representations (called chromosomes or the 

genotype or the genome) of candidate solutions (called individuals, creatures, or prototypes) 

to an optimization problem evolves toward better solutions. Traditionally, solutions are 

represented in binary strings of 0s and 1s, but other encodings are also possible. The 

evolution usually starts from a population of randomly generated individuals. Genetic 

algorithms form on of the best ways to solve a problem for which a little is known. They are 

very general algorithms that work well in any search space. A genetic algorithm is able to 

create a high quality solution [79]. 
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2.6.3 Fitness Function  

A fitness function is a particular type of objective function that is used to summarize, as a 

single figure of merit, how close a given design solution is to achieve the set aims. In the GA 

each individual within the population is assigned a fitness value, which express how good the 

solution is at solving the problem. The fitness value probabilistically determines how 

successful the individual will be at propagating it genes (its code) to subsequent generations. 

Better solutions are assigned higher values of fitness than worse performing solutions. 

2.6.4 Selection 

The selection procedure implements the natural selection or the survival-of-the fittest 

principle and selects good individuals out of the current population for generating the next 

population according to the assigned fitness. For example: choosing two parents from the 

population for crossing. After deciding on an encoding, the next step is to decide how to 

perform selection. Darwin stated in his theory of evolution that best ones survive to create 

new offspring. Selection is a method that randomly picks chromosomes out of the population 

according to their evaluation function. The higher the fitness function, the more chance an 

individual will be selected. Four common methods for selection are: 1. Roulette Wheel 

selection, 2. Stochastic Universal sampling, 3. Normalized geometric selection and               

4. Tournament selection. After selection, crossover and mutation recombine and alter parts of 

the individuals to generate new solutions. 

2.6.5 Crossover  

Crossover is a genetic recombination operator that combines two parents (chromosomes) to 

form children (offspring) for the next generation. The children are different from their parents 

but which inherit apportion of their parents’ genetic materials. The main idea behind 

crossover is that the new chromosome may be better than both of parents (mates) if it takes 

best characteristics from each of the parents. Typically this operator is applied at a rate of 

60% to 80% of the population, and the crossover point and each pair is randomly selected 

[80]. Various forms of crossover operator have been developed. The simplest form, single 

point crossover, is illustrated in figure 2.3. When using one-point crossover, only one 

crossover point is chosen at random. For example let there be two parents choses a random 

position in the genetic coding, and exchange genetic information to the right of this points, 

thus creating two new offspring. 
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Figure 2.3: Single point crossover 

 

2.6.6 Mutation  

After crossover, the strings are subjected to mutation. Mutations are applying random 

changes to individual parents (chromosomes) to form children (offspring). It helps to keep 

diversity in the population by discovering new or recovering the lost genetic materials by 

searching the neighborhood solution space. Despite the fact that mutation can serve a vital 

role in a genetic algorithm, it prevents the algorithm to be trapped in a local minimum. For a 

binary encoding, this involves swapping gene 1 for gene 0 with small probability (typically at 

the rate of 0.1% to 10%) [80] of each bit in the chromosome as shown in the figure 2.4. 

 

 

Figure 2.4: Binary mutation operator 

 

2.7 Summary: 

In this chapter the stability of a power system is discussed. Some basic working principle of 

Genetic Algorithm is studied as well. The linear model of the IEEE first benchmark model 

will be studied and the dynamic model of PWMSC and the linear model pf IEEE FBM will 

be developed in the upcoming chapters. The performance of the IEEE FBM with PWMSC 

and without PWMSC will also be evaluated by the eigen value analysis and the time domain 

simulation in the next chapters.  

  

010 10 110  010 10 110 

01010  011    01010  110 

11001  110    11001  011 

          Parents    Offspring 
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Chapter 3 

Small-signal Analysis of Subsynchronous Resonance 

Phenomenon 

3.1 Introduction 

The differential and algebraic equations which describe the dynamic performance of the 

synchronous machine and the transmission network are, in general, nonlinear. For the 

purpose of stability analysis, these equations may be linearized by assuming that a 

disturbance is considered to be small. Small-signal analysis using linear techniques provides 

valuable information about the inherent dynamic characteristics of the power system and 

assists in its design. This chapter presents an analytical method useful in the study of small-

signal analysis of subsynchronous resonance (SSR), establishes a linearized model for the 

power system, and performs the analysis of the SSR using the eigenvalue technique. It is 

believed that by studying the small-signal stability of the power system, the engineer will be 

able to find countermeasures to damp all subsynchronous torsional oscillations. 

 

3.2 Small-Signal Analysis Study System  

The system used in the small-signal analysis of SSR in this thesis is the IEEE first benchmark 

model for computer simulation of subsynchronous resonance [81]. This system, shown in 

Figure 3.1, consists of a single series-capacitor compensated transmission line connecting a 

large turbine-generator to a large system. The shaft system of the turbine-generator unit 

consists of a high-pressure turbine (HP), an intermediate-pressure turbine (IP), two low 

pressure turbines (LPA & LPB), the generator rotor (GEN), and its rotating exciter (EXC). 

The system data and the initial operating conditions of the system are given in Appendix A. 

 

3.2.1 Power System Modeling 

The nonlinear differential equations of the system under study are derived by developing 

individually the mathematical models which represent the various components of the system, 

namely the synchronous machine, the turbine-generator mechanical system, the governor 
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system, the excitation system, and the transmission line. Knowing the mutual interaction 

among these models, the whole system differential equations can be formed.  

 

3.2.2 Modeling of the Synchronous Machine 

Figure 3.2 shows a schematic diagram of a conventional synchronous machine [4, 82]. The 

stator circuit consists of a three-phase winding produces a sinusoidally space distributed 

magnetomotive force. The rotor of the machine carries the field (excitation) winding which is 

excited by a dc voltage. The electrical damping due to the eddy currents in the solid rotor 

and, if present, the damper winding is represented by three equivalent damper circuits; one on 

the direct axis (d-axis) and the other two on the quadrature axis (q-axis). The performance of 

the synchronous machine can be described by the equations given below in the d-q reference 

frame [4]. In these equations, the convention adopted for the signs of the voltages and 

currents are that v is the impressed voltage at the terminals and that the direction of positive 

current i corresponds to generation. The sign of the currents in the equivalent damper 

windings is taken positive when they flow in a direction similar to that of the positive field 

current. 

Infinite Bus

XC

RL

XL

EXCGENLPBLPAIPHP

 

Figure 3.1: The IEEE first benchmark model for computer simulation of subsynchronous 

resonance. 
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Figure 3.2: Schematic diagram of a conventional synchronous machine. 

In this figure, 

a, b, c:  Stator three-phase winding 

fd:  Field (excitation) winding 

efd:  Field voltage 

1d:  d-axis damper winding 

1q:  The first q-axis damper winding 

2q:  The second q-axis damper winding 

θ(t):  Angle by which the d-axis leads the magnetic axis of phase a winding, 

electrical rad. 

With time t expressed in seconds, the angular velocity ω expressed in rad/s (ω0 = 377 rad / 

sec) and the other quantities expressed in per unit, the stator equations become: 

𝑒𝑑 =
1

𝜔0

𝑑𝛹𝑑

𝑑𝑡
−

𝜔

𝜔0
𝛹𝑞 − 𝑅𝑎𝑖𝑑 

𝑒𝑞 =
1

𝜔0

𝑑𝛹𝑞

𝑑𝑡
+

𝜔

𝜔0
𝛹𝑑 − 𝑅𝑎𝑖𝑑 
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The rotor equations: 

𝑒𝑓𝑑 =
1

𝜔0

𝑑𝛹𝑓𝑑

𝑑𝑡
+ 𝑅𝑓𝑑𝑖𝑓𝑑 

0 =
1

𝜔0

𝑑𝛹1𝑑

𝑑𝑡
+ 𝑅1𝑑𝑖1𝑑 

0 =
1

𝜔0

𝑑𝛹1𝑞

𝑑𝑡
+ 𝑅1𝑞𝑖1𝑞 

0 =
1

𝜔0

𝑑𝛹2𝑞

𝑑𝑡
+ 𝑅2𝑞𝑖2𝑞 

The stator flux linkage equations: 

𝛹𝑑 = −𝐿𝑑 𝑖𝑑 +  𝐿𝑎𝑑𝑖𝑓𝑑 + 𝐿𝑎𝑑𝑖1𝑑 

𝛹𝑞 = −𝐿𝑑 𝑖𝑑 +  𝐿𝑎𝑑𝑖𝑓𝑑 + 𝐿𝑎𝑑𝑖1𝑑 

The rotor flux linkage equations: 

𝛹𝑓𝑑 = −𝐿𝑓𝑓𝑑 𝑖𝑓𝑑 +  𝐿𝑎𝑑𝑖1𝑑 − 𝐿𝑎𝑑𝑖𝑑 

𝛹1𝑑 = −𝐿𝑎𝑑 𝑖𝑓𝑑 +  𝐿11𝑑𝑖1𝑑 − 𝐿𝑎𝑑𝑖𝑑 

𝛹1𝑞 = −𝐿11𝑞 𝑖1𝑞 +  𝐿𝑎𝑞𝑖2𝑞 − 𝐿𝑎𝑞𝑖𝑞 

𝛹2𝑞 = −𝐿𝑎𝑞 𝑖1𝑞 + 𝐿22𝑞𝑖2𝑞 − 𝐿𝑎𝑞𝑖𝑞 

The air-gap torque equation: 

𝑇𝑒 = −𝛹𝑑 𝑖𝑞 − 𝛹𝑞𝑖𝑑 

The overall differential equations which describe the transient performance of the 

synchronous machine are given by the following matrix equation: 

[
𝑑𝑋𝑠𝑦𝑛

𝑑𝑡
] = [𝐴𝑡𝑠𝑦𝑛][𝑋𝑠𝑦𝑛] + [𝐵𝑡𝑠𝑦𝑛] [

𝑉𝑡𝑑

𝑉𝑡𝑞

𝑒𝑓𝑑

]                                    (3.1) 

Where 

 [𝑋𝑠𝑦𝑛] = [𝑖𝑑  𝑖𝑞 𝑖𝑓𝑑       𝑖1𝑞     𝑖1𝑑 𝑖2𝑞 ]𝑇 
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 [𝐴𝑡𝑠𝑦𝑛] = [𝐿]−1 [𝑄𝑡] 

 [𝐵𝑡𝑠𝑦𝑛] = [𝐿]−1 [𝑅𝑡] 

[𝐿] =

[
 
 
 
 
 
 
−𝐿𝑑 0 𝐿𝑎𝑑

0 −𝐿𝑞 0

−𝐿𝑎𝑑 0 𝐿𝑓𝑓𝑑

0 𝐿𝑎𝑑 0
𝐿𝑎𝑞 0 𝐿𝑎𝑞

0 𝐿𝑎𝑑 0

0 −𝐿𝑎𝑞 0

−𝐿𝑎𝑑 0 𝐿𝑎𝑑

0 −𝐿𝑎𝑞 0

𝐿11𝑞 0 𝐿𝑎𝑞

0  𝐿11𝑑 𝐿𝑎𝑞

𝐿𝑎𝑞 0 𝐿22𝑞]
 
 
 
 
 
 

                                     (3.2) 

[𝑄𝑡] =

[
 
 
 
 
 
 
𝜔0𝑅𝑎 −𝜔𝐿𝑞 0

𝜔𝐿𝑑 𝜔0𝑅𝑎 −𝜔𝐿𝑎𝑑

      0        0 −𝜔0𝑅𝑓𝑓𝑑

𝜔𝐿𝑎𝑞      0       𝜔𝐿𝑎𝑞

0   −𝜔𝐿𝑎𝑑        0
0      0        0

0         0       0
0  0 0
0  0 0

−𝜔0𝑅1𝑞 0 0

   0 −𝜔0𝑅1𝑑 0
   𝐿𝑎𝑞 0 −𝜔0𝑅2𝑑]

 
 
 
 
 
 

        

      [𝑅𝑡] =

[
 
 
 
 
 
𝜔0 0 0
0 𝜔0 0
0 0 𝜔0

0   0    0
0   0   0
0   0   0 ]

 
 
 
 
 

              

here subscript 
T 

means matrix transpose. 

Linearized and rearranged Equation (3.1) is written as 

[
𝑑𝛥𝑋𝑠𝑦𝑛

𝑑𝑡
] = [𝐴𝑠𝑦𝑛][𝛥𝑋𝑠𝑦𝑛] + [𝐵𝑠𝑦𝑛][𝛥𝑈𝑠𝑦𝑛]                                       (3.3) 

  where  

   [𝛥𝑋𝑠𝑦𝑛] = [𝛥𝑖𝑑  𝛥𝑖𝑞 𝛥𝑖𝑓𝑑       𝛥𝑖1𝑞     𝛥𝑖1𝑑 𝛥𝑖2𝑞 ]𝑇 

             [𝛥𝑈𝑠𝑦𝑛] = [𝛥𝑉𝑡𝑑  𝛥𝑉𝑡𝑞 𝛥𝑒𝑓𝑑   𝛥𝜔]𝑇 

   [𝐴𝑠𝑦𝑛] = [𝐿]−1 [𝑄] 

   [𝐵𝑠𝑦𝑛] = [𝐿]−1 [𝑅] 

 [𝐿]: same as in equation (3.2)                                                           (3.4) 
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[𝑄] = 𝜔0

[
 
 
 
 
 
 
𝑅𝑎     −𝐿𝑞   0

𝐿𝑑       𝑅𝑎 −𝐿𝑎𝑑

 0        0 −𝑅𝑓𝑓𝑑

𝐿𝑎𝑞      0       𝐿𝑎𝑞

0   −𝐿𝑎𝑑        0
0      0        0

0         0       0
0  0 0
0  0 0

−𝑅1𝑞 0     0

0 −𝑅1𝑑     0
   𝐿𝑎𝑞 0 −𝑅2𝑑]

 
 
 
 
 
 

    

                    [𝑅] =

[
 
 
 
 
 
𝜔0 0 0
0 𝜔0 0
0 0 𝜔0

0   0    0
0   0   0
0   0   0

    

𝛹𝑞0

−𝛹𝑞0

0
0
0
0 ]

 
 
 
 
 

   

     

3.2.3 Modeling of the Transmission line 

A series capacitor-compensated transmission line [3, 83] may be represented by the RLC 

circuit shown in Figure 3.3. In the voltage phasor diagram shown in Figure 3.4, the rotor 

angle δ is the angle (in elec. Rad) by which the q-axis leads the reference voltage Vb. The 

differential equations for the circuit elements, after applying Park’s transformation [4], can be 

expressed in the d-q reference frame by the following matrix expressions. 

In
fi

n
it

e 
B

u
sXCRL XL

GEN

Vb

Vt

i

VR VL VC

 

Figure 3.3: A series capacitor-compensated transmission line. 
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Figure 3.4: Voltage phasor diagram. 

The voltage across the resistance: 

[
𝑉𝑅𝑑

𝑉𝑅𝑞
] = [

𝑅𝐿 0
0 𝑅𝐿

] [
𝑖𝑑
𝑖𝑞

]        (3.5) 

The voltage across the inductance: 

[
𝑉𝐿𝑑

𝑉𝐿𝑞
] = [

0 −
𝜔

𝜔0
𝑋𝐿

𝜔

𝜔0
𝑋𝐿 0

] [
𝑖𝑑
𝑖𝑞

] + [

𝑋𝐿

𝜔0
0

0
𝑋𝐿

𝜔0

] [

𝑑𝑖𝑑

𝑑𝑡
𝑑𝑖𝑞

𝑑𝑡

]     (3.6) 

The voltage across the inductance: 

[

𝑑𝑉𝐶𝑑

𝑑𝑡
𝑑𝑉𝐶𝑞

𝑑𝑡

] = [
𝜔0𝑋𝐶 0

0 𝜔0𝑋𝐶
] [

𝑖𝑑
𝑖𝑞

] + [
0 𝜔

−𝜔 0
] [

𝑉𝐶𝑑

𝑉𝐶𝑞
]       (3.7) 

The overall equations of the transmission line can be written as 

[
 
 
 
 
𝑑𝑉𝐶𝑑

𝑑𝑡
𝑑𝑉𝐶𝑞

𝑑𝑡

𝑉𝑡𝑑

𝑉𝑡𝑞 ]
 
 
 
 

= [𝐴𝑡𝑡] [
𝑉𝐶𝑑

𝑉𝐶𝑞
] + [𝑅𝑡1] [

𝑑𝑖𝑑

𝑑𝑡
𝑑𝑖𝑞

𝑑𝑡

] + [𝑅𝑡2] [
𝑖𝑑
𝑖𝑞

] + [𝐵𝑡𝑡][𝑉𝑏]              (3.8) 

where  

                                    [𝐴𝑡𝑡] = [

0 𝜔
−𝜔 0
 1   0
0  1

]  
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                                    [𝑅𝑡1] =

[
 
 
 
 
0 0
0 0
𝑋𝐿

𝜔0
0

0
𝑋𝐿

𝜔0]
 
 
 
 

 

                                         [𝑅𝑡2] =

[
 
 
 
 
𝜔0𝑋𝐶 0

0 𝜔0𝑋𝐶

𝑅𝐿 −
𝜔

𝜔0
𝑋𝐿

𝜔

𝜔0
𝑋𝐿     𝑅𝐿 ]

 
 
 
 

                                              

(3.9) 

                                                   [𝐵𝑡𝑡] = [

0
0

𝑠𝑖𝑛𝛿
𝑐𝑜𝑠𝛿

] 

The linearized form of Equation (3.8) is given by 

[
 
 
 
 
𝑑∆𝑉𝐶𝑑

𝑑𝑡
𝑑∆𝑉𝐶𝑞

𝑑𝑡

∆𝑉𝑡𝑑

∆𝑉𝑡𝑞 ]
 
 
 
 

= [𝐴𝑡] [
∆𝑉𝐶𝑑

∆𝑉𝐶𝑞
] + [𝑅1] [

𝑑∆𝑖𝑑

𝑑𝑡
𝑑∆𝑖𝑞

𝑑𝑡

] + [𝑅2] [
∆𝑖𝑑
∆𝑖𝑞

] + [𝐵𝑡] [
∆𝜔
∆𝛿

]               (3.10) 

where 

                                     [𝐴𝑡] = [

0 𝜔0

−𝜔0 0
 1   0
0  1

]  

                            [𝑅1] =

[
 
 
 
 
0 0
0 0
𝑋𝐿

𝜔0
0

0
𝑋𝐿

𝜔0]
 
 
 
 

 

         [𝑅2] = [

𝜔0𝑋𝐶 0
0 𝜔0𝑋𝐶

𝑅𝐿 −𝑋𝐿

𝑋𝐿     𝑅𝐿

]                                                      (3.11) 
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                           [𝐵𝑡] =

[
 
 
 
 
 

𝑉𝐶𝑞0 0

−𝑉𝐶𝑑0 0

−
𝑋𝐿

𝜔0
𝑖𝑞0 𝑉𝑏𝑞0

𝑋𝐿

𝜔0
𝑖𝑑0  𝑉𝑏𝑑0 ]

 
 
 
 
 

                                                                        

  

3.2.4 Modeling of the Turbine-Generator Mechanical System 

The turbine-generator mechanical system [3, 4], shown in Figure 3.5, consists of a high-

pressure turbine (HP), an intermediate-pressure turbine (IP), two low-pressure turbines (LPA 

& LPB), the generator rotor (GEN) and the exciter (EXC). They together constitute a linear 

six-mass-spring system. 

KIH KAI KBA KgB KEg

HP IP LPA LPB GEN EXC

THP TIP TLA TLB Te

 

Figure 3.5: Structure of a typical six-mass shaft system model. 

Assuming that M is the inertia constant in seconds, D is the damping coefficient in p.u. 

torque/p.u. speed for each rotating mass and K is a stiffness in p.u. torque/rad for each shaft 

section, the equations of the ith mass of an N-mass spring system shown in Figure 3.6 are 

given by 

𝑀𝑖

𝜔0
 
𝑑𝜔𝑖

𝑑𝑡
=  𝑇𝑖 + 𝐾𝑖−1,𝑖 (𝛿𝑖−1 − 𝛿𝑖) − 𝐾𝑖,𝑖+1 (𝛿𝑖 − 𝛿𝑖+1) −

𝐷𝑖

𝜔0
 (𝜔𝑖 − 𝜔0)              (3.12) 

𝑑𝛿𝑖

𝑑𝑡
= 𝜔𝑖 − 𝜔0                                                                                                        (3.13) 

where 

𝐾𝑖−1,𝑖|𝑖=1
= 0,                    𝐾𝑖,𝑖+1|𝑖=𝑁

= 0,              i = 1, 2,….., N                           (3.14) 
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Ki,i-1 

Ti

Mi Di

Ki,i+1

 

Figure 3.6: The i
th

 mass of an N-mass spring system. 

When Equations (3.12) to (3.14) are applied to the linear six-mass-spring system of Figure 

3.5, the shaft system equations are written as: 

𝑀𝐸

𝜔0
 
𝑑𝜔𝐸

𝑑𝑡
= 𝐾𝐸𝑔 (𝛿 − 𝛿𝐸) −

𝐷𝐸

𝜔0
 (𝜔𝐸 − 𝜔0) 

𝑑𝛿𝐸

𝑑𝑡
= 𝜔𝐸 − 𝜔0 

𝑀𝑔

𝜔0
 
𝑑𝜔

𝑑𝑡
= −𝑇𝑒 + 𝐾𝑔𝐵 (𝛿𝐵 − 𝛿) − 𝐾𝐸𝑔 (𝛿 − 𝛿𝐸) −

𝐷𝑔

𝜔0
 (𝜔 − 𝜔0) 

𝑑𝛿

𝑑𝑡
= 𝜔 − 𝜔0 

𝑀𝐵

𝜔0
 
𝑑𝜔𝐵

𝑑𝑡
=  

𝜔0

𝜔𝐵
𝑃𝐴 + 𝐾𝐵𝐴 (𝛿𝐴 − 𝛿𝐵) − 𝐾𝑔𝐵 (𝛿𝐵 − 𝛿) −

𝐷𝐵

𝜔0
 (𝜔𝐵 − 𝜔0) 

𝑑𝛿𝐵

𝑑𝑡
= 𝜔𝐵 − 𝜔0 

𝑀𝐴

𝜔0
 
𝑑𝜔𝐴

𝑑𝑡
=  

𝜔0

𝜔𝐴
𝑃𝐴 + 𝐾𝐴𝐼 (𝛿𝐼 − 𝛿𝐴) − 𝐾𝐵𝐴 (𝛿𝐴 − 𝛿𝐵) −

𝐷𝐴

𝜔0
 (𝜔𝐴 − 𝜔0) 

𝑑𝛿𝐴

𝑑𝑡
= 𝜔𝐴 − 𝜔0 

𝑀𝐼

𝜔0
 
𝑑𝜔𝐼

𝑑𝑡
=  

𝜔0

𝜔𝐼
𝑃𝐼 + 𝐾𝐼𝐻 (𝛿𝐻 − 𝛿𝐼) − 𝐾𝐴𝐼 (𝛿𝐼 − 𝛿𝐴) −

𝐷𝐼

𝜔0
 (𝜔𝐼 − 𝜔0) 

𝑑𝛿𝐼

𝑑𝑡
= 𝜔𝐼 − 𝜔0 

𝑀𝐻

𝜔0
 
𝑑𝜔𝐻

𝑑𝑡
=  

𝜔0

𝜔𝐻
𝑃𝐻 − 𝐾𝐼𝐻 (𝛿𝐻 − 𝛿𝐼) −

𝐷𝐻

𝜔0
 (𝜔𝐻 − 𝜔0) 
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𝑑𝛿𝐻

𝑑𝑡
= 𝜔𝐻 − 𝜔0 

The overall shaft equations are given by the following matrix equation 

[
𝑑𝑋𝑚𝑠

𝑑𝑡
] = [𝐴𝑡𝑚𝑠][𝑋𝑚𝑠] + [𝐵𝑡𝑚𝑠][𝑈𝑚𝑠]                                                          (3.15) 

where  

[𝑋𝑚𝑠] = [𝛿𝐸 𝛿 𝛿𝐵 𝛿𝐴 𝛿𝐼 𝛿𝐻    𝜔𝐸 𝜔 𝜔𝐵 𝜔𝐴 𝜔𝐼 𝜔𝐻]𝑇  

[𝑈𝑚𝑠] = [𝜔0 𝑃𝐻     𝑃𝐼 𝑃𝐴 𝑇𝑒]
𝑇 

[𝐴𝑡𝑚𝑠] = [
06×6 𝐼6×6

𝐴𝑠1 𝐴𝑠2
] 

[𝐴𝑠1]

= 𝜔0

[
 
 
 
 
 
 
 
 
 
 
 
 
 −

𝐾𝐸𝑔

𝑀𝐸

𝐾𝐸𝑔

𝑀𝐸
0

𝐾𝐸𝑔

𝑀𝑔
−

𝐾𝑔𝐵 + 𝐾𝐸𝑔

𝑀𝑔

𝐾𝑔𝐵

𝑀𝑔

0
𝐾𝑔𝐵

𝑀𝐵
−

𝐾𝐵𝐴 + 𝐾𝑔𝐵

𝑀𝐵

0 0 0

0 0 0

𝐾𝐵𝐴

𝑀𝐵
0 0

0 0      
𝐾𝐵𝐴

𝑀𝐴

0 0 0

0 0 0

−
𝐾𝐴𝐼 + 𝐾𝐵𝐴

𝑀𝐴
 

𝐾𝐵𝐴

𝑀𝐴
  0

𝐾𝐴𝐼

𝑀𝐼
−

𝐾𝐻𝐼 + 𝐾𝐴𝐼

𝑀𝐼

𝐾𝐻𝐼

𝑀𝐼

0
𝐾𝐻𝐼

𝑀𝐻
−

𝐾𝐻𝐼

𝑀𝐻]
 
 
 
 
 
 
 
 
 
 
 
 
 

 

[𝐴𝑠2] = 𝜔0

[
 
 
 
 
 
 
 
 
 
 −

𝐷𝐸

𝑀𝐸
0 0

0 −
𝐷𝑔

𝑀𝑔
0

0 0 −
𝐷𝐵

𝑀𝐵

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

−
𝐷𝐴

𝑀𝐴
 0 0

0 −
𝐷𝐼

𝑀𝐼
0

0 0 −
𝐷𝐻

𝑀𝐻]
 
 
 
 
 
 
 
 
 
 

                                 (3.16) 
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     [𝐵𝑡𝑚𝑠] =

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
−16×1 06×1 06×1 06×1 06×1

𝐷𝐸

𝑀𝐸
0 0 0 0    

𝐷𝑔

𝑀𝑔
0 0 0 −

𝜔0

𝑀𝑔

𝐷𝐵

𝑀𝐵
0 0

𝜔0
2

𝜔𝐵𝑀𝐵
0

𝐷𝐴

𝑀𝐴
0 0

𝜔0
2

𝜔𝐴𝑀𝐴
0

𝐷𝐼

𝑀𝐼
0

𝜔0
2

𝜔𝐼𝑀𝐼
0 0

𝐷𝐻

𝑀𝐻

𝜔0
2

𝜔𝐻𝑀𝐻
0 0 0

]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

Here, the [𝑰𝑛𝑥𝑛] is an n by n identity matrix, 0𝑚𝑥𝑛 is an m by n matrix with all elements zero, 

and -16×1 is a 6 by 1 matrix with all elements -1. 

Linearizing and rearranging Equation (3.15) yields to  

[
𝑑∆𝑋𝑚𝑠

𝑑𝑡
] = [𝐴𝑚𝑠][∆𝑋𝑚𝑠] + [𝐵𝑚𝑠][∆𝑈𝑚𝑠]                                               (3.17)   

where 

[∆𝑋𝑚𝑠] = [∆𝛿𝐸 𝛿∆ ∆𝛿𝐵 ∆𝛿𝐴 ∆𝛿𝐼 ∆𝛿𝐻    ∆𝜔𝐸 ∆𝜔 ∆𝜔𝐵 ∆𝜔𝐴 ∆𝜔𝐼 ∆𝜔𝐻]𝑇 

[∆𝑈𝑚𝑠] = [∆𝑇𝑒     ∆𝑃𝐻 ∆𝑃𝐼 ∆𝑃𝐴]𝑇 

[𝐴𝑚𝑠] = [
06×6 𝐼6×6

𝐴𝑠21 𝐴𝑠22
] 

[As21] is the same with [As1] in equation (3.16) 

[𝐴𝑠22] =

[
 
 
 
 
 
 
 
 
 
 −

𝐷𝐸

𝑀𝐸
0 0

0 −
𝐷𝑔

𝑀𝑔
0

0 0 −
𝑇𝑚0𝐹𝐵+𝐷𝐵

𝑀𝐵

0 0 0

0 0 0

0 0 0

0 0 0     

0 0 0    

0 0 0    

−
𝑇𝑚0𝐹𝐴+𝐷𝐴

𝑀𝐴
 0 0

0 −
𝑇𝑚0𝐹𝐼+𝐷𝐼

𝑀𝐼
0

0 0 −
𝑇𝑚0𝐹𝐻+𝐷𝐻

𝑀𝐻 ]
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  [𝐵𝑚𝑠] =

[
 
 
 
 
 
 
 
 
 
07×1 07×1 07×1 07×1

−
1

𝑀𝑔
0 0     0      

0 0 0     
1

𝑀𝐵
    

0 0 0    
1

𝑀𝐴
  

0 0
1

𝑀𝐼
  0    

0
1

𝑀𝐻
 0    0    ]

 
 
 
 
 
 
 
 
 

                         

 

3.2.5  Governor and Turbine System 

The block diagram of the four-stage turbine and the associated electro-hydraulic governor 

[84] is shown in Figure 3.7. The corresponding data are given in Appendix A. 

 

∑ ∑
1

1 gsT

1

1 chsT

1

1 rhsT

1

1 cosT


Kg

FH FI FA FB

∑ ∑∑
  



PH PI PA PB

PA= PB

H

ref

Pm0
.

VC OPEN

.

VC CLOSE

-

 

Figure 3.7: Block diagram of the governor and the turbine. 

The corresponding state-space equation can be derived from the block diagram and is given 

by 

[
𝑑𝑋𝑔

𝑑𝑡
] = [𝐴𝑡𝑔][𝑋𝑔] + [𝐵𝑡𝑔] [

𝜔0

𝑃𝑚0

𝜔𝐻

]       (3.18) 

where   

 [𝑋𝑔] = [𝐶𝑉 𝑃𝐻 𝑃𝐼 𝑃𝐴]𝑇  
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[𝐴𝑡𝑔] =

[
 
 
 
 
 
 
 
 −

1

𝑇𝑔
0 0

𝐹𝐻

𝑇𝑐ℎ
−

1

𝑇𝑐ℎ
0

0
𝐹𝐼

𝐹𝐻𝑇𝑟ℎ
−

1

𝑇𝑟ℎ

   

        0

         0

          0

     0       0        
𝐹𝐴

𝐹𝐼𝑇𝑐𝑜
 −

1

𝑇𝑐𝑜]
 
 
 
 
 
 
 
 

 

[𝐵𝑡𝑔] =

[
 
 
 
 

𝐾𝑔

𝑇𝑔𝜔0

1

𝑇𝑔
−

𝐾𝑔

𝑇𝑔𝜔0

0 0 0
0 0 0

   

0  0    0     ]
 
 
 
 

 

The linearized form of Equation (3.18) is given by 

[
∆𝑑𝑋𝑔

𝑑𝑡
] = [𝐴𝑔][∆𝑋𝑔] + [𝐵𝑔] [

∆𝑃𝑚0

∆𝜔𝐻
]                    (3.19) 

where 

            [∆𝑋𝑔] = [∆𝐶𝑉 ∆𝑃𝐻 ∆𝑃𝐼 ∆𝑃𝐴]𝑇   

[𝐴𝑔] =

[
 
 
 
 
 
 −

1

𝑇𝑔
0 0

𝐹𝐻

𝑇𝑐ℎ
−

1

𝑇𝑐ℎ
0

0
𝐹𝐼

𝐹𝐻𝑇𝑟ℎ
−

1

𝑇𝑟ℎ

   

        0

         0

          0

     0       0        
𝐹𝐴

𝐹𝐼𝑇𝑐𝑜
 −

1

𝑇𝑐𝑜]
 
 
 
 
 
 

                    (3.20) 

                [𝐵𝑔] =

[
 
 
 
 

1

𝑇𝑔
−

𝐾𝑔

𝑇𝑔𝜔0

0 0
0 0
0      0     ]

 
 
 
 

 

 

3.2.6 Excitation System  

The block diagram representation of the excitation system used in this study [3,4] is shown in 

Figure 3.8 and the corresponding data are given in Appendix A. 
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Figure 3.8: Block diagram of the excitation system. 

Utilizing the relationship between the excitation system output voltage and the field voltage 

given by 𝐸𝑓𝑑 =  
𝐿𝑎𝑑

𝑅𝑓𝑑
 𝑒𝑓𝑑 , the state-space equation of the excitation system can be derived 

from its block diagram and is given by 

[
𝑑𝑋𝑣

𝑑𝑡
] = [𝐴𝑡𝑣][𝑋𝑣] + [𝐵𝑡𝑣] [

𝑉𝑡

𝐸𝑟𝑒𝑓
]      (3.21) 

where 

   [𝑋𝑣] = [𝑒𝑓𝑑 𝐸𝑅 𝐸𝑆𝐵]𝑇  

[𝐴𝑡𝑣] =

[
 
 
 
 −

𝐾𝐸

𝑇𝐸

1

𝑇𝐸

𝑅𝑓𝑑

𝐿𝑎𝑑
0

0 −
1

𝑇𝐴
−

𝐾𝐴

𝑇𝐴

−
𝐾𝐸𝐾𝐹

𝑇𝐸𝑇𝐹

𝐿𝑎𝑑

𝑅𝑓𝑑

𝐾𝐹

𝑇𝐹𝑇𝐸
−

1

𝑇𝐹]
 
 
 
 

          (3.22) 

 [𝐵𝑡𝑣] = [

0 0

−
𝐾𝐴

𝑇𝐴

𝐾𝐴

𝑇𝐴

0 0

]  

Linearized Equation (3.21) is written as 

[
𝑑∆𝑋𝑣

𝑑𝑡
] = [𝐴𝑣][∆𝑋𝑣] + [𝐵𝑣] [

∆𝑉𝑡

∆𝐸𝑟𝑒𝑓
]      (3.23) 

where 

 [∆𝑋𝑣] = [∆𝑒𝑓𝑑 ∆𝐸𝑅 ∆𝐸𝑆𝐵]𝑇  
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   [𝐴𝑣] =

[
 
 
 
 −

𝐾𝐸

𝑇𝐸

1

𝑇𝐸

𝑅𝑓𝑑

𝐿𝑎𝑑
0

0 −
1

𝑇𝐴
−

𝐾𝐴

𝑇𝐴

−
𝐾𝐸𝐾𝐹

𝑇𝐸𝑇𝐹

𝐿𝑎𝑑

𝑅𝑓𝑑

𝐾𝐹

𝑇𝐹𝑇𝐸
−

1

𝑇𝐹]
 
 
 
 

                  

(3.24) 

    [𝐵𝑣] = [

0 0

−
𝐾𝐴

𝑇𝐴

𝐾𝐴

𝑇𝐴

0 0

]        

  

 

3.3 Small Signal Model of a Single Machine Infinite Bus System 

The overall model of the system under study can be derived by performing the following 

mathematical manipulations for the interactions among the various components of the system 

[83]. 

The electrical parts of the system: combining Equation (3.3) and (3.10) to form the 

following equations 

[
 
 
 
 
𝑑∆𝑋𝑠𝑦𝑛

𝑑𝑡
𝑑∆𝑉𝐶𝑑

𝑑𝑡
𝑑∆𝑉𝐶𝑞

𝑑𝑡 ]
 
 
 
 

= [𝐴𝑚𝑡] [

∆𝑋𝑠𝑦𝑛

∆𝑉𝐶𝑑

∆𝑉𝐶𝑞

] + [𝐵𝑚𝑡] [
∆𝑒𝑓𝑑

∆𝜔
∆𝛿

]     (3.25) 

[
∆𝑉𝑡𝑑

∆𝑉𝑡𝑞
] = [𝐶𝑖] [

∆𝑋𝑠𝑦𝑛

∆𝑉𝐶𝑑

∆𝑉𝐶𝑞

] + [𝐷𝑖] [
∆𝑒𝑓𝑑

∆𝜔
∆𝛿

]              (3.26) 

The mechanical parts of the system: combining Equations (3.17), (3.19) and (3.23) to form 

the following equations 

[
 
 
 
 
𝑑∆𝑋𝑚𝑠

𝑑𝑡
𝑑∆𝑋𝑔

𝑑𝑡
𝑑∆𝑋𝑣

𝑑𝑡 ]
 
 
 
 

= [𝐴𝑝1] [

∆𝑋𝑚𝑠

∆𝑋𝑔

∆𝑋𝑣

] + [𝐴𝑝2] [
∆𝑇𝑒

∆𝑉𝑡
] + [𝐵𝑝] [

∆𝑃𝑚0

∆𝐸𝑟𝑒𝑓
]    (3.27) 

There are, however, two non-state variables ∆𝑇𝑒 and ∆𝑉𝑡 that must be eliminated. 
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The linearized form of the air-gap torque Equation (3.24) is given by 

∆𝑇𝑒 = [𝑇𝑒𝑑𝑞0][∆𝑋𝑠𝑦𝑛]        (3.28) 

where 

[𝑇𝑒𝑑𝑞0] = [𝑖𝑞0(𝐿𝑞 − 𝐿𝑑)    𝑖𝑑0(𝐿𝑞 − 𝐿𝑑) + 𝑖𝑓𝑑0𝐿𝑎𝑑    𝑖𝑞0𝐿𝑎𝑑    − 𝑖𝑑0𝐿𝑎𝑞    𝑖𝑞0𝐿𝑎𝑑    − 𝑖𝑑0𝐿𝑎𝑞]

 (3.29) 

The linearized terminal voltage equation 𝑉𝑡
2 = 𝑉𝑡𝑑

2 + 𝑉𝑡𝑞
2 is given by 

∆𝑉𝑡 = [
𝑉𝑡𝑑0

𝑉𝑡0

𝑉𝑡𝑞0

𝑉𝑡0
] [

∆𝑉𝑡𝑑

∆𝑉𝑡𝑞
]       (3.30) 

Combining Equations (3.26), (3.28) and (3.30) to form the following equation 

[
∆𝑇𝑒

∆𝑉𝑡
] = [𝐶𝑚𝑡] [

∆𝑋𝑠𝑦𝑛

∆𝑉𝐶𝑑

∆𝑉𝐶𝑞

] + [𝐷𝑚𝑡] [
∆𝑒𝑓𝑑

∆𝜔
∆𝛿

]     (3.31) 

 The overall system equations derived by combining Equation (3.25), (3.27) and (3.31) are 

written by  

[
𝑑∆𝑋

𝑑𝑡
] = [𝐴][∆𝑋] + [𝐵][∆𝑈]      (3.32) 

 

where 

[∆𝑋] = [∆𝛿𝐸   ∆𝛿   ∆𝛿𝐵   ∆𝛿𝐴   ∆𝛿𝐼   ∆𝛿𝐻   ∆𝜔𝐸    ∆𝜔   ∆𝜔𝐵   ∆𝜔𝐴 ∆𝜔𝐼   ∆𝜔𝐻 … 

 ∆𝐶𝑉    ∆𝑃𝐻  ∆𝑃𝐼   ∆𝑃𝐴   ∆𝑒𝑓𝑑   ∆𝐸𝑅   ∆𝐸𝑆𝐵   ∆𝑖𝑑   ∆𝑖𝑞   ∆𝑖𝑓𝑑   ∆𝑖1𝑞 … 

 ∆𝑖1𝑑   ∆𝑖2𝑞   ∆𝑉𝐶𝑑    ∆𝑉𝐶𝑞]
T 

[∆𝑈] = [∆𝑃𝑚0   ∆𝐸𝑟𝑒𝑓]
T

        

 (3.33) 

The complete electrical and mechanical model of a one-machine, infinite-bus system for SSR 

study is a 27
th

 order system. 

The detail manipulations for forming the overall system equations are shown in Appendix B. 
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3.4 Effect of Series Capacitor Compensation on SSR 

The six-mass model of the turbine-generator shaft system shown in Figure 3.5 has five 

torsional modes in addition to the rigid body mode (mode 0). Mode 0, signifies that the six 

masses oscillate in unison without a shaft twist and Mode N has the N
th

  lowest frequency and a mode 

shape with N phase reversals. The total number of modes including Mode 0 is equal to the 

number of inertial elements in the spring-mass model. The negative damping (undamping) 

due to the torsional interaction for the turbine-generator is evaluated using eigenvalue 

analysis by varying the degree of series compensation from to 0 to 100%. The percentage of 

compensation is defined as  

% 𝑐𝑜𝑚𝑝𝑒𝑛𝑠𝑎𝑡𝑖𝑜𝑛 =
𝑋𝐶

𝑋𝐿
× 100     (3.34) 

The results of this variation in compensation level are shown in Figure 3.9 and the system 

eigenvalues for the critical compensation levels are given in Table 3.1 and  
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Figure 3.9: The real part of SSR mode eigenvalues as a function of the percentage 

compensation 

The real part of the eigenvalues for the percentage compensation from 0 to 100 is plotted for 

five torsional modes in addition to the rigid body mode (mode 0) in the figure 3.9. It has been 

observed that for modes 1 to 4 each has one critical compensation level where the 

eigenvalues reach their maximum positive values. The critical points are 26.5%, 41.1%, 

54.7% and 68.4%. These critical points are taken for SSR study and the performance of 

PWMSC is evaluated at these critical points.  
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Table 3.1: Eigenvalues of SSR modes (Mode 1-5), rigid body mode (Mode 0), electrical 

mode and the other modes. 

Modes 
State 

variables 

% Compensation Level 

26.5% 41.1% 54.7 68.4 

Mode 5 𝛿𝐻, 𝜔𝐻 - 0.48 ± 298.28i - 0.48 ± 298.28i - 0.48 ± 298.28i - 0.48 ± 298.28i 

Mode 4 𝛿𝐼, 𝜔𝐼   1.56 ± 202.73i - 0.12 ± 202.77i - 0.12 ± 202.85i - 0.11 ± 202.88i 

Mode 3 𝛿𝐴, 𝜔𝐴 - 0.40 ± 160.77i  1.42 ± 160.35i - 0.44 ± 160.44i - 0.44 ± 160.53i 

Mode 2 𝛿𝐸, 𝜔𝐸 - 0.14 ± 127.07i - 0.14 ± 127.11i  0.96 ± 126.85i - 0.15 ± 126.96i 

Mode 1 𝛿𝐵, 𝜔𝐵 - 0.20 ± 99.22i - 0.18 ± 99.46i - 0.13 ± 100.13i   5.64 ± 98.58i 

Mode 0 𝛿, 𝜔 - 0.43 ± 8.45i - 0.55 ± 9.36i - 0.75 ± 10.39i - 1.07 ± 11.72i 

Elec. 𝑉𝐶𝑑, 𝑉𝐶𝑞 - 4.49 ± 202.88i - 3.86 ± 160.43i - 2.26 ± 126.79i - 5.82 ± 98.86i 

Other 

Modes 

𝑖𝑑, 𝑖𝑞 

𝑖1𝑑, 𝑖1𝑞 

𝑖2𝑞 

𝐸𝑅 

𝐶𝑉 

𝑒𝑓𝑑 

𝑃𝐻 

𝑃𝐴 

𝑃𝐼 

𝑖𝑓𝑑 

𝐸𝑆𝐵 

- 4.97 ± 551.23i 

- 96.63 ± 1.50i 

- 32.72 

- 26.67  

- 10.29  

- 5.08  

- 2.37  

- 1.68  

- 0.14  

- 0.60  

- 0.89  

- 5.07 ± 594.02i 

- 96.86 ± 1.58i 

- 32.98 

- 26.70  

- 10.27  

- 5.47  

- 2.39  

- 1.68  

- 0.14  

- 0.63  

- 0.89  

- 5.13 ± 627.38i 

- 97.07 ± 1.59i 

- 33.30  

- 26.75  

- 10.24  

- 5.92  

- 2.41  

- 1.67  

- 0.14  

- 0.65  

- 0.90  

- 5.19 ± 657.00i 

- 97.23 ± 1.54i 

- 33.76  

- 26.82  

- 10.19  

- 6.53  

- 2.43  

- 1.67  

- 0.14  

- 0.68  

- 0.91  

 

In the Table 3.1 all the eigenvalues for the four critical compensation levels are presented and 

the SSR modes (Mode 1-5), rigid body mode (Mode 0), electrical mode are identified. 

Examining Figure 3.9 and Table 3.1 yields to the following observations:  

 There are four unstable torsional modes (Modes 1, 2, 3, and 4). Each of these modes 

has its largest SSR interaction when the real part of its eigenvalue is a maximum. 
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 Mode 1 exhibits the most severe undamping with a peak at 68.4% series 

compensation. 

 Mode 5 damping is seen to have a small constant negative value over the whole range 

of series compensation. 

 The frequency of the electrical mode (capacitor) decreases with the increase of the 

compensation level, which is below the synchronous frequency and, therefore, may 

excite the torsional oscillation modes. 

 The frequency of the generator current components increases with the degree of 

capacitor compensation, but it is usually above the synchronous frequency. 

 The other eigenvalue modes listed in Table 3.1 are stable, like the generator windings, 

the excitation system, and the governor system and the turbine. 

 

3.5  Summary  

This chapter presented the investigations of the subsynchronous resonance phenomenon 

under small disturbances. These investigations are conducted on the IEEE first benchmark 

model which consists of a large turbine-generator connecting to an infinite bus system 

through a series capacitor compensated transmission line. In order to develop the linear 

system model, the nonlinear differential equations of each component of the system are 

derived and then linearized. These set of linearized equations were grouped and 

mathematically manipulated in order to obtain the overall system model in a state-space form. 

The effect of the series capacitor compensation on SSR was investigated using eigenvalue 

analysis. The results of these investigations have provided the critical compensation levels in 

the system under investigations. 
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Chapter 4 

Dynamic Modeling of PWMSC and Performance 

Evaluation for SSR Damping 

 

4.1  Introduction 

A problem of interest in power industry is the mitigation of power system oscillations. SSR 

oscillations may be excited by small or large disturbance in the power system. SSR 

oscillations resulting from small (minute) disturbances are usually small. However, they can 

build up with time to large values causing shaft failure. On the other hand, large power 

system disturbances, such as short circuits, induce large growing SSR torsional oscillations in 

the turbine-generator shaft system. These oscillations may exceed the endurance limit of the 

turbine-generator shaft and, hence, cause a shaft fatigue in a period of a few seconds. These 

oscillations are related to the dynamics of system power transfer and often exhibit poor 

damping. The electromechanical oscillations in power system can be damped out by using a 

newly developed PWM based series compensator. Such compensators have the advantage of 

being simpler in both power circuit structure and control. A digital time-domain simulation 

study case of the power system with PWMSC during a small disturbance in the governor side 

is presented in this chapter and the comparative analysis is also presented at the end of this 

chapter. 

 

4.2  PWMSC 

4.2.1  Basic Model of PWMSC 

Fixed series capacitors have been used for a long time for increasing power transfer in long 

lines and providing a higher utilization level of limited transmission systems. They are also 

most economical solutions for this purpose. However, the control of series compensation 

using thyristor switches has been introduced for fast power flow control only 15–20 years 

ago. A newly developed AC link converter based series compensation, a FACTS controller, 

is presented in [32]. The PWM controlled series compensator offers a method of variable 
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series compensation. It is known that transmission lines loading may be restricted by system 

dynamics stability. The PWMSC is a powerful new tool to help relieve these constraints. 

Furthermore, its controller can be designed to modify line reactance and provide enough 

damping to system oscillation modes. Figure 4.1 displays a realization of schematic diagram 

of the PWM series compensator which is embedded into a transmission line [85].  

The PWM controlled series compensator consists of: (a) series injection transformers (b) 

compensation capacitors and (c) PWM controlled switches Sa , Sb , Sc , Sa, Sband Sc. In 

Figure 4.1, the three switches Sa, Sb , Sc with the same switching function in a complementary 

way to those in Sa, Sband Sc switches. The switching period divides the circuit in two 

switching states. When Sa, Sb and Sc are on, the capacitors are connected to the system 

through a series injection transformer. 

 

Figure 4.1: PWMSC controller (a) Transmission line; (b) Series injection transformer; 

(c) PWM switches; (d) Compensating capacitors. 

When Sa, Sband Sc are on, the series injection transformer is shorted, thereby isolating the 

capacitors from the line. When impedance is low at the primary winding, the primary behaves 

as a conductor. A little impedance is added by the transformer, but it can be neglected. In this 

structure, the bank of capacitors is connected in Y to the PWM AC converter [86, 87]. The 

compensator serves for continuous control of the degree of series compensation by varying 

the duty cycle of a single asynchronous train of fixed frequency pulses. The duty cycle (D) of 

the AC link converter is defined as the ratio of the on-period of switches Sa, Sband Sc with 

respect to the total switching period.  
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4.2.2  Operation of PWMSC 

The PWMSC is assumed to be connected between buses i and j in a transmission line as 

shown in Figure 4.2, where the PWMSC is operated like a continuously capacitive 

controllable reactance. However, for the purpose of developing a control strategy, it is useful 

to have a proper model representation for the PWMSC.  

The main switches (Sa, Sb and Sc ) of the AC link converter are controlled with the train of 

pulses with fixed frequency and variable duty cycle (D). When main switches are on, the 

capacitors are connected to transmission line. Therefore, instantaneous voltage that appears at 

the primary of the inserting transformer (VS) is given by the voltage drop across the 

transformer leakage reactance plus a voltage proportional of voltage across the bank of 

capacitors, according to the turns ratio of the transformers. Switches Sa, Sband Sc are 

controlled with the complementary signal so as to provide a freewheeling path for currents at 

the secondary of the coupling transformer when the main switches are off. During this 

operation, the secondary of the coupling transformers are short-circuited and the voltage that 

appears at the primaries (VS) is only the voltage drop across the transformer leakage 

reactance. Therefore, characteristic of the PWMSC at the primary transformer is essentially 

that of a controllable reactance. Inserting reactance can vary from slightly inductive to 

capacitive, depending on the duty cycle (D) of the PWM AC link converter. Mathematical 

expressions in the next section that describe reactance characteristics of the PWMSC and the 

injected reactance into the system are derived in the following section. 

 

Figure 4.2: Single line diagram of PWMSC. 
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4.2.3  Mathematical Analysis of PWMSC 

For analyzing the PWMSC, a single phase equivalent model, shown in Figure 4.2, is used. 

The primary series transformer is represented by a leakage reactance (XT) in series with an 

ideal transformer at transmission line. In the secondary, there is a PWM AC link converter 

and a bank of capacitors with reactance XC. The equivalent and injected impedances at 

transmission line may be calculated with state space averaging techniques as follows: 

𝑋𝑒𝑞 =  𝑋𝑖𝑗 + 𝑋𝑇 + 𝑋𝑆        (4.1) 

𝑋𝑆 =  −𝑛2(1 − 𝐷)2𝑋𝐶       (4.2) 

The n is the turns ratio of the transformer and Xij is the reactance of the transmission line. 

Equations (4.1) and (4.2) show that the effective impedance depends on the duty cycle of the 

AC link switches; hence, this duty cycle provides a means of realizing the desired 

controllable impedance, power flow at line and power oscillations control. For more 

understanding, the variation of the PWMSC based injected reactance with duty cycle of the 

AC link is shown in Figure 4.3. In this figure, it is assumed that the designed PWMSC 

provides a series capacitive reactance of 0.35 p.u. for a line with 1 p.u. reactance. The leakage 

reactance of the series transformer is taken as 0.03 p.u. on the system base. 

 

Figure 4.3: Variation of the PWMSC based injected reactance with duty cycle. 

Equations (4.1) and (4.2) and Figure 4.3 imply that the injected reactance using PWMSC can 

be varied continuously between two extreme values. 
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4.2.4  PWMSC Current Injection Model 

In order to effectively investigate the impact of series compensators on power systems 

effectively, appropriate models of these devices are very important. In this thesis, current 

injection model of PWMSC is used to study the effects of PWMSC on SSR oscillations in 

power system. 

The installation of PWMSC changes the system bus admittance matrix Ybus to an 

unsymmetrical matrix [88]. When the PWMSC is used for time domain simulations of multi-

machine power systems, the modification of Ybus is required at each stage. This method has 

the disadvantage that a constant factorized Ybus cannot be repeatedly used when the PWMSC 

variable reactance is changeable in the process of transient stability calculation. For this 

reason, a current injection model of PWMSC is developed to avoid using the modification of 

Ybus at each stage. The current injection model, which can be used for small signal stability 

and transient stability studies, is obtained by replacing the voltage across the PWMSC with 

the current source. By using equivalent injected currents at terminal buses to simulate a 

PWMSC no modification of Ybus is required at each stage. This method has the advantages of 

fast computational speed and low computer storage compared with that of modifying Ybus 

technique. Also, this model is helpful for understanding the effect and performance of the 

PWMSC on system damping enhancement [89]. 

A PWMSC connected between nodes i and j in a transmission line as shown in Figure 4.4, 

where the PWMSC is simplified like a continuously capacitive controllable reactance and its 

equivalent circuit is represented in Figure 4.5. In Figures 4.4 and 4.5, Vi i and Vj  j are 

complex voltages at nodes i and j, and 𝑉𝑆= −𝑗𝑋𝑆𝐼𝑠𝑒 represents voltage across the PWMSC . 

 

Figure 4.4: PWMSC located in a transmission line. 
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Figure 4.5: PWMSC equivalent circuit. 

Figure 4.4 implies as follows: 

𝐼𝑠𝑒 =  
𝑉𝑖− 𝑉𝑗

𝑅𝑖𝑗+𝑗(𝑋𝑖𝑗+ 𝑋𝑠)
        (4.3) 

𝐼𝑠𝑒 =  
𝑉𝑖− 𝑉𝑗

𝑅𝑖𝑗+𝑗(𝑋𝑖𝑗+ 𝑋𝑇− 𝑛2(1−𝐷)2𝑋𝑐)
      (4.4) 

The current injection model of the PWMSC is obtained by replacing the voltage across the 

PWMSC by an equivalent current source, Is, in Figure 4.6. Then: 

𝐼𝑠 =  
𝑉𝑠

𝑅𝑖𝑗+𝑗𝑋𝑖𝑗
=  −

𝑗𝑋𝑠𝐼𝑠𝑒

𝑅𝑖𝑗+𝑗𝑋𝑖𝑗
       (4.5) 

 

Figure 4.6: Replacing voltage across the PWMSC by a current source. 

Current source model of the PWMSC is shown in Figure 4.7. Current injections into nodes i 

and j are calculated as follows: 

𝐼𝑠𝑖 =  
𝑗(𝑋𝑇−𝑛2(1−𝐷)2𝑋𝑐)

𝑅𝑖𝑗+𝑗(𝑋𝑖𝑗+ 𝑋𝑇− 𝑛2(1−𝐷)2𝑋𝑐)
.

𝑉𝑖− 𝑉𝑗

𝑅𝑖𝑗+𝑗𝑋𝑖𝑗
     (4.6) 

𝐼𝑠𝑗 =  −𝐼𝑠𝑖        (4.7) 
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Figure 4.7: Current injection model for PWMSC. 

 

4.3 System under Study with PWMSC 

The single line diagram of PWMSC installed IEEE first benchmark model under 

investigation is shown in Figure 4.8. It consists of a turbine generator which is connected via 

a transformer to a large AC system through a series compensated transmission line. The 

FACTS device PWMSC is connected with the series capacitor.  

Infinite Bus

XC

RL

XL

EXCGENLPBLPAIPHP

P
W

M
S

C

 

Figure 4.8: The PWMSC installed IEEE benchmark model under study  
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In order to develop the mathematical model for the system, the differential equations of the 

turbine-generator, the turbine-generator mechanical system and the series capacitor 

compensated transmission line given in Chapter 3 are used here again.  

The PWMSC is installed in the transmission line. So the transmission line will be remodeled 

and the differential equations will be integrated with the system state matrix. 

  

4.3.1  Modeling of PWMSC Installed Transmission Line 

The PWMSC installed series capacitor-compensated transmission line may be represented by 

the RLC circuit shown in Figure 4.9. The differential equations for the circuit elements, after 

applying Park’s transformation, can be expressed in the d-q reference frame by the following 

matrix expressions.  

 

In
fi

n
it

e 
B

u
sXCRLeq XLeq

GEN

XSF

Vb

Vt

i

VReq VLeq VC VS

 

Figure 4.9: A series capacitor-compensated transmission line with PWMSC 

The voltage across the resistance: 

[
𝑉𝑅𝑑

𝑉𝑅𝑞
] = [

𝑅𝐿 0
0 𝑅𝐿

] [
𝑖𝑑
𝑖𝑞

]         (4.8) 

The voltage across the inductor: 

[
𝑉𝐿𝑑

𝑉𝐿𝑞
] = [

0 −
𝜔

𝜔0
𝑋𝐿

𝜔

𝜔0
𝑋𝐿 0

] [
𝑖𝑑
𝑖𝑞

] + [

𝑋𝐿

𝜔0
0

0
𝑋𝐿

𝜔0

] [

𝑑𝑖𝑑

𝑑𝑡
𝑑𝑖𝑞

𝑑𝑡

]      (4.9) 
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The voltage across the line capacitor: 

[

𝑑𝑉𝐶𝑑

𝑑𝑡
𝑑𝑉𝐶𝑞

𝑑𝑡

] = [
𝜔0𝑋𝐶 0

0 𝜔0𝑋𝐶
] [

𝑖𝑑
𝑖𝑞

] + [
0 𝜔

−𝜔 0
] [

𝑉𝐶𝑑

𝑉𝐶𝑞
]      (4.10) 

The voltage across the equivalent capacitor of PWMSC: 

[

𝑑𝑉𝑆𝑑

𝑑𝑡
𝑑𝑉𝑆𝑞

𝑑𝑡

] = [
𝜔0𝑋𝑆 0

0 𝜔0𝑋𝑆
] [

𝑖𝑑
𝑖𝑞

] + [
0 𝜔

−𝜔 0
] [

𝑉𝑆𝑑

𝑉𝑆𝑞
]      (4.11) 

 

The overall equations of the transmission line can be written as 

[
 
 
 
 
 
 
 
 
𝑑𝑉𝐶𝑑

𝑑𝑡
𝑑𝑉𝐶𝑞

𝑑𝑡
𝑑𝑉𝑆𝑑

𝑑𝑡
𝑑𝑉𝑆𝑞

𝑑𝑡

𝑉𝑡𝑑

𝑉𝑡𝑞 ]
 
 
 
 
 
 
 
 

= [𝐴𝑡𝑡]

[
 
 
 
𝑉𝐶𝑑

𝑉𝐶𝑞

𝑉𝑆𝑑

𝑉𝑆𝑞]
 
 
 
+ [𝑅𝑡1] [

𝑑𝑖𝑑

𝑑𝑡
𝑑𝑖𝑞

𝑑𝑡

] + [𝑅𝑡2] [
𝑖𝑑
𝑖𝑞

] + [𝐵𝑡𝑡][𝑉𝑏]  (4.12) 

where 

                      [𝐴𝑡𝑡] =

[
 
 
 
 
 

0 𝜔
−𝜔 0
0 0

0 0
0 0
0 𝜔

  0   0 
1 0
0 1

−𝜔 0     
  1 0    
  0 1   ]

 
 
 
 
 

  

                      [𝑅𝑡1] =

[
 
 
 
 
 
 

0
0
0

0
0
0

0 0
𝑋𝐿𝑒𝑞

𝜔0
0

0
𝑋𝐿𝑒𝑞

𝜔0 ]
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[𝑅𝑡2] =

[
 
 
 
 
 
 

𝜔0𝑋𝐶      0
0        𝜔0𝑋𝐶

𝜔0𝑋𝑆𝐹    0
0 𝜔0𝑋𝑆𝐹

 𝑅𝐿𝑒𝑞 −
𝜔

𝜔0
𝑋𝐿𝑒𝑞

𝜔

𝜔0
𝑋𝐿𝑒𝑞 𝑅𝐿𝑒𝑞 ]

 
 
 
 
 
 

  (4.13)    

                      [𝐵𝑡𝑡] =

[
 
 
 
 
 

0
0
0
0

𝑠𝑖𝑛𝛿
𝑐𝑜𝑠𝛿]

 
 
 
 
 

 

 

The linearized form of Equation (4.12)is given by 

[
 
 
 
 
 
 
 
 
𝑑∆𝑉𝐶𝑑

𝑑𝑡
𝑑∆𝑉𝐶𝑞

𝑑𝑡
𝑑∆𝑉𝑆𝑑

𝑑𝑡
𝑑∆𝑉𝑆𝑞

𝑑𝑡

∆𝑉𝑡𝑑

∆𝑉𝑡𝑞 ]
 
 
 
 
 
 
 
 

= [𝐴𝑡𝑃]

[
 
 
 
∆𝑉𝐶𝑑

∆𝑉𝐶𝑞

∆𝑉𝑆𝑑

∆𝑉𝑆𝑞]
 
 
 

+ [𝑅1𝑃] [

𝑑∆𝑖𝑑

𝑑𝑡
𝑑∆𝑖𝑞

𝑑𝑡

] + [𝑅2𝑃] [
∆𝑖𝑑
∆𝑖𝑞

] + [𝐵𝑡𝑃] [
∆𝜔
∆𝛿

]  (4.14) 

Where 

                                 [𝐴𝑡𝑃] =

[
 
 
 
 
 

0 𝜔0

−𝜔0 0
0 0

0 0
0 0
0 𝜔0

  0   0 
1 0
0 1

−𝜔0 0     
1 0    

  0  1   ]
 
 
 
 
 

 

                               [𝑅1𝑃] =

[
 
 
 
 
 
 

0
0
0

0
0
0

0 0
𝑋𝐿𝑒𝑞

𝜔0
0

0
𝑋𝐿𝑒𝑞

𝜔0 ]
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[𝑅2𝑃] =

[
 
 
 
 
 
 

𝜔0𝑋𝐶      0
0        𝜔0𝑋𝐶

𝜔0𝑋𝑆𝐹    0
0 𝜔0𝑋𝑆𝐹

 𝑅𝐿𝑒𝑞 −
𝜔

𝜔0
𝑋𝐿𝑒𝑞

𝜔

𝜔0
𝑋𝐿𝑒𝑞 𝑅𝐿𝑒𝑞 ]

 
 
 
 
 
 

  (4.15)   

                                      

[𝐵𝑡𝑃] =

[
 
 
 
 
 
 
 

𝑉𝐶𝑞0     0

−𝑉𝐶𝑑0  0
𝑉𝑆𝑞0      0

−𝑉𝑆𝑑0   0

−
𝑋𝐿𝑒𝑞

𝜔0
𝑖𝑞0 𝑉𝑏𝑞0

𝑋𝐿𝑒𝑞

𝜔0
𝑖𝑑0 𝑉𝑏𝑑0 ]

 
 
 
 
 
 
 

                   (4.16) 

4.3.2  Dynamic control model of PWMSC 

Figure 4.10 shows a schematic diagram of the dynamic control model of PWMSC for typical 

oscillatory stability studies. It can be noticed that following a similar modeling approach, as 

in the case of another series compensator, line reactance is assumed to be controlled through 

the duty cycle D. This model does not consider power oscillation damping controller. The 

model includes an input signal and a reference signal XSref which is the initial value of the 

series compensator. These inputs are summed to produce an error signal which is fed into a 

first-order lag block. The lag block is associated with the duty cycle control and natural 

response of the PWMSC, and is represented by a single time constant TPWMSC. The output of 

the lag block XS has windup limits associated with it. The ultimate reactance value is used to 

modify the line impedance of the series compensated branch during the calculation of the 

network solution [90, 91]. 

1

PWMSC

PWMSC

K

sT

XSmax

XSmin

XSF

+

+
input 

signal

XSref

SX

 

Figure 4.10: The dynamic control model of PWMSC. 
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 4.3.3 Supplementary Controller Design 

The idea of supplementary excitation is to apply a signal through the excitation system to 

increase the damping torque of the generator in the power system. Figure 4.11 shows the 

transfer function of a lead-lag controller whose output controls the reactance of the PWMSC. 

Various input signals can be used for the supplementary excitation design: the speed 

deviation ∆ω, the accelerating power ∆Pa, or the system frequency ∆f . As it is known that 

the generator speed contains components of all the torsional modes [92], it is selected as the 

stabilizing signal in the supplementary signal in the supplementary controller design. 

Design a Phase Lead Compensation: The phase lead compensation may be realized by 

operational amplifiers, and the simplest transfer function may be chosen in the form of 

𝐺𝐶 = (
1+𝑠𝑇1

1+𝑠𝑇2
)
𝑘

,  k = 1 or 2, T1 > T2     (4.17a) 

There is a phase angle limit that a compensation block can provide, and T2 cannot be too 

small. For a T2 chosen as 0.2s and T1 as 10T2, the phase lead provided by each compensation 

block is about 34° for s = j2π rad/s corresponding to 1 Hz. 

Design a Reset Block for 𝒖𝑬: The supplementary excitation control should be activated only 

when the low-frequency oscillation begins to develop, and it should be automatically 

terminated when the system oscillation ceases. It should not interfere with the regular 

function of excitation during steady-state operation at the system frequency. A reset block is 

therefore necessary, which may have the form of 

𝐺𝑅𝐸𝑆𝐸𝑇 =  
𝑠𝑇

1+𝑠𝑇
      (4.17b) 

Since the reset block should not have any effect on phase shift or gain at the oscillating 

frequency, it can be achieved by choosing a large T value, so that sT is much larger than 

unity. 

Figure 4.11 shows the block diagram of a supplementary excitation control with one 

compensation block and one reset block. The supplementary excitation will not have any 

effect on the steady state of the system, since in steady state 

𝑠∆𝜔 = 0       (4.17c) 
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1

sT

sT

1

2

(1 )

(1 )

CK sT

sT





1u

SX
 

Figure 4.11: Transfer function lead-lag controller 

The linearized equation of PWMSC with lead-lag controller is derived as follows 

[
 
 
 
 

𝑑∆𝑢1

𝑑𝑡
𝑑∆𝑋𝑆

𝑑𝑡
𝑑∆𝑋𝑆𝐹

𝑑𝑡 ]
 
 
 
 

= [

𝐶1

𝐶2

𝐶3

]

[
 
 
 
 
∆X𝑠𝑦𝑛

∆X𝑚𝑠

𝑑𝑢1

𝑑𝑋𝑆

𝑑𝑋𝑆𝐹 ]
 
 
 
 

       (4.17d) 

Where  

𝐶1= [−
𝐾𝑤0

𝑀𝑔
𝑖𝑞0(𝐿𝑞 − 𝐿𝑑)   −

𝐾𝑤0

𝑀𝑔
{𝑖𝑑0(𝐿𝑞 − 𝐿𝑑) + 𝑖𝑓𝑑0𝐿𝑎𝑑}   −

𝐾𝑤0

𝑀𝑔
𝑖𝑞0𝐿𝑎𝑑   

𝐾𝑤0

𝑀𝑔
𝑖𝑑0𝐿𝑎𝑞… 

  −
𝐾𝑤0

𝑀𝑔
𝑖𝑞0𝐿𝑎𝑑   

𝐾𝑤0

𝑀𝑔
𝑖𝑑0𝐿𝑎𝑞   

𝐾𝑤0

𝑀𝑔
𝐾𝑔𝐸   −

𝐾𝑤0

𝑀𝑔
(𝐾𝑔𝐵 + 𝐾𝑔𝐸)   

𝐾𝑤0

𝑀𝑔
𝐾𝑔𝐵   0   0   0   0 … 

 −
𝐾𝐷𝑔

𝑀𝑔
   0   0   0   0   −

1

𝑇𝜔
   0   0] 

𝐶2= [−
𝑇1

𝑇2

𝐾𝑤0

𝑀𝑔
𝑖𝑞0(𝐿𝑞 − 𝐿𝑑)   −

𝑇1

𝑇2

𝐾𝑤0

𝑀𝑔
{𝑖𝑑0(𝐿𝑞 − 𝐿𝑑) + 𝑖𝑓𝑑0𝐿𝑎𝑑}   −

𝑇1

𝑇2

𝐾𝑤0

𝑀𝑔
𝑖𝑞0𝐿𝑎𝑑… 

  
𝑇1

𝑇2

𝐾𝑤0

𝑀𝑔
𝑖𝑑0𝐿𝑎𝑞   −

𝑇1

𝑇2
 
𝐾𝑤0

𝑀𝑔
𝑖𝑞0𝐿𝑎𝑑   

𝑇1

𝑇2
 
𝐾𝑤0

𝑀𝑔
𝑖𝑑0𝐿𝑎𝑞   

𝑇1

𝑇2
 
𝐾𝑤0

𝑀𝑔
𝐾𝑔𝐸… 

 −
𝑇1

𝑇2

𝐾𝑤0

𝑀𝑔
(𝐾𝑔𝐵 + 𝐾𝑔𝐸)   

𝑇1

𝑇2
 
𝐾𝑤0

𝑀𝑔
𝐾𝑔𝐵   0   0   0   0   −

𝑇1

𝑇2

𝐾𝐷𝑔

𝑀𝑔
   0   0   0   0… 

 −(
1

𝑇2
−

𝑇1

𝑇2

1

𝑇𝜔
)   −

1

𝑇2
    0] 

𝐶3 =  [01×19     
𝐾𝑃𝑊𝑀𝑆𝐶

𝑇𝑃𝑊𝑀𝑆𝐶
   −

1

𝑇𝑃𝑊𝑀𝑆𝐶
] 
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4.4  Overall System Model 

The overall model of the system under study can be derived by performing the following 

mathematical manipulations for the interactions among the various components of the system 

[83]. 

The electrical parts of the system: combining Equation (3.3) and (4.14) to form the 

following equations 

[
 
 
 
 
 
 
 
𝑑∆𝑋𝑠𝑦𝑛

𝑑𝑡
𝑑∆𝑉𝐶𝑑

𝑑𝑡
𝑑∆𝑉𝐶𝑞

𝑑𝑡
𝑑∆𝑉𝑆𝑑

𝑑𝑡
𝑑∆𝑉𝑆𝑞

𝑑𝑡 ]
 
 
 
 
 
 
 

= [𝐴𝑚𝑡_𝑃𝑊𝑀𝑆𝐶]

[
 
 
 
 
∆𝑋𝑠𝑦𝑛

∆𝑉𝐶𝑑

∆𝑉𝐶𝑞

∆𝑉𝑆𝑑

∆𝑉𝑆𝑞 ]
 
 
 
 

+ [𝐵𝑚𝑡_𝑃𝑊𝑀𝑆𝐶] [
∆𝑒𝑓𝑑

∆𝜔
∆𝛿

]    

 (4.18) 

[
∆𝑉𝑡𝑑

∆𝑉𝑡𝑞
] = [𝐶𝑖_𝑃𝑊𝑀𝑆𝐶]

[
 
 
 
 
∆𝑋𝑠𝑦𝑛

∆𝑉𝐶𝑑

∆𝑉𝐶𝑞

∆𝑉𝑆𝑑

∆𝑉𝑆𝑞 ]
 
 
 
 

+ [𝐷𝑖_𝑃𝑊𝑀𝑆𝐶] [
∆𝑒𝑓𝑑

∆𝜔
∆𝛿

]              (4.19) 

The mechanical parts of the system: combining Equations (3.17), (3.19) and (3.23) to form 

the following equations 

[
 
 
 
 
𝑑∆𝑋𝑚𝑠

𝑑𝑡
𝑑∆𝑋𝑔

𝑑𝑡
𝑑∆𝑋𝑣

𝑑𝑡 ]
 
 
 
 

= [𝐴𝑝1] [

∆𝑋𝑚𝑠

∆𝑋𝑔

∆𝑋𝑣

] + [𝐴𝑝2] [
∆𝑇𝑒

∆𝑉𝑡
] + [𝐵𝑝] [

∆𝑃𝑚0

∆𝐸𝑟𝑒𝑓
]    (4.20) 

There are, however, two non-state variables ∆𝑇𝑒 and ∆𝑉𝑡 that must be eliminated. 

The linearized form of the air-gap torque Equation (3.24) is given by 

∆𝑇𝑒 = [𝑇𝑒𝑑𝑞0][∆𝑋𝑠𝑦𝑛]        (4.21) 
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where 

[𝑇𝑒𝑑𝑞0] = [𝑖𝑞0(𝐿𝑞 − 𝐿𝑑)    𝑖𝑑0(𝐿𝑞 − 𝐿𝑑) + 𝑖𝑓𝑑0𝐿𝑎𝑑    𝑖𝑞0𝐿𝑎𝑑    − 𝑖𝑑0𝐿𝑎𝑞    𝑖𝑞0𝐿𝑎𝑑    − 𝑖𝑑0𝐿𝑎𝑞]

 (4.22) 

The linearized terminal voltage equation 𝑉𝑡
2 = 𝑉𝑡𝑑

2 + 𝑉𝑡𝑞
2 is given by 

∆𝑉𝑡 = [
𝑉𝑡𝑑0

𝑉𝑡0

𝑉𝑡𝑞0

𝑉𝑡0
] [

∆𝑉𝑡𝑑

∆𝑉𝑡𝑞
]       (4.23) 

Combining Equations (19) (21) (23) (2.26), (2.28) and (3.30) to form the following equation 

[
∆𝑇𝑒

∆𝑉𝑡
] = [𝐶𝑚𝑡_𝑃𝑊𝑀𝑆𝐶]

[
 
 
 
 
∆𝑋𝑠𝑦𝑛

∆𝑉𝐶𝑑

∆𝑉𝐶𝑞

∆𝑉𝑆𝑑

∆𝑉𝑆𝑞 ]
 
 
 
 

+ [𝐷𝑚𝑡_𝑃𝑊𝑀𝑆𝐶] [
∆𝑒𝑓𝑑

∆𝜔
∆𝛿

]    

 (4.24) 

 The overall system equations derived by combining Equation (4.18), (4.20) and (4.24) are 

written by  

[
𝑑∆𝑋

𝑑𝑡
] = [𝐴][∆𝑋] + [𝐵][∆𝑈]      (4.25) 

where 

[∆𝑋] = [∆𝛿𝐸   ∆𝛿   ∆𝛿𝐵   ∆𝛿𝐴   ∆𝛿𝐼   ∆𝛿𝐻   ∆𝜔𝐸    ∆𝜔   ∆𝜔𝐵   ∆𝜔𝐴 ∆𝜔𝐼   ∆𝜔𝐻 … 

 ∆𝐶𝑉    ∆𝑃𝐻  ∆𝑃𝐼   ∆𝑃𝐴   ∆𝑒𝑓𝑑   ∆𝐸𝑅   ∆𝐸𝑆𝐵   ∆𝑖𝑑   ∆𝑖𝑞   ∆𝑖𝑓𝑑   ∆𝑖1𝑞 … 

 ∆𝑖1𝑑   ∆𝑖2𝑞   ∆𝑉𝐶𝑑    ∆𝑉𝐶𝑞   ∆𝑉𝑆𝑑    ∆𝑉𝑆𝑞   𝑢1   ∆𝑋𝑆    ∆𝑋𝑆𝐹]
T 

 

[∆𝑈] = [∆𝑃𝑚0   ∆𝐸𝑟𝑒𝑓]
T

                            (4.26) 

The complete electrical and mechanical model of a one-machine, infinite-bus system for SSR 

study with PWMSC is a 32
nd

 order system. 

The detail manipulations for forming the overall system equations are shown in Appendix C. 
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4.5  The Controller Gains Using the Genetic Algorithm Approach 

Genetic algorithm (GA) can be applied in the tuning of the supplementary controller gains for 

optimization. It will help the optimal control performance in the PWMSC. To select the best 

compensator parameters that enhance the power system dynamic performance the most, an 

eigenvalue based objective function is considered as given below- 

J = - min (real (eigenvalues) / abs (eigenvalues))    (4.27) 

So the objective here is to maximize the minimum of the damping ratio for a certain 

parameter set. Maximizing the minimum damping ratio will help the cause of improving the 

system overall damping. The supplementary controller parameter are bounded in the 

following manner- 

10 > T1 > 0.01 

10 > T2 > 0.01 

10 > KC > 1                 

The searching method developed in this work using a GA technique for the lead-lag 

controller’s gains and time constants tuning and adjustment is described by a flowchart with 

the following steps: 

Step1: Initialization: - Start the process by randomly generating (N–1) individuals of the 

initial population, where each individual is a candidate solution of the problem. The 

numerical values that each gain may assume are constrained by low boundary and high 

boundary values, in p.u., as described in the following 

𝑙𝑜𝑤 𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦 ≤ 𝑔𝑎𝑖𝑛′𝑠 𝑣𝑎𝑙𝑢𝑒 ≤ ℎ𝑖𝑔ℎ 𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦 

The set of gains obtained by the poles placement procedure composes one of the individuals 

of the initial population.  

The set of gains of the two loop generic lead-lag controller to be obtained forms one of the 

individuals of the initial population. 
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Table 4.1: Chromosome structure  

T1 T2 KC 

 

Step 2: Evaluation: - Calculate the fitness value of each individual in the generation. The 

fitness value of individuals is given by: 

𝑔 = −𝑚𝑖𝑛 {
−𝑟𝑒𝑎𝑙(𝜆𝑖)

𝑎𝑏𝑠(𝜆𝑖)
}        (4.28) 

𝑓𝑜𝑟 𝑖 = 1,2,3,… ,𝑁,… 

Where, 𝑔 is the fitness value, λi are the eigenvalues and 𝑖 is the number of eigenvalues of the 

closed loop system. In optimization the aim is to minimize 𝑔 in order to shift all the 

eigenvalues as far to the left of the left hand side of the complex plane as possible. 

Step 3: New generation: - After the initial evaluation is concluded, the genetic operators are 

applied to obtain new individuals in the search space of the optimal solution. The search 

space of the optimal solution is consist of cross over and mutation. 

Step 4: Stopping criteria: - If one of the stopping criteria is satisfied, then stop, else go to 

Step2. Here, the stopping criteria may be the maximal number of iterations, or the fitness 

value of best smaller than a specified negative value. 

Step 5: Updating velocities and positions: - if the convergence or termination criterion is 

not satisfied, the iterative process returns to step 2. The flow chart is given below- 
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Figure 4.12: Genetic Algorithm flow chart for obtaining controller parameters 

           

4.6  Simulation of SSR under Small Disturbance in PWMSC Installed 

System 

In order to demonstrate the dynamic performance of the study system a pulse type 

disturbance is initiated in the governor side at t = 0.2 seconds and is cleared at t = 0.5. The 

simulation is performed for the four critical compensation levels as 26.5%, 41.1%, 54.7% and 

68.4%.  
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4.6.1 Damping Subsynchronous Torsional Oscillations at 26.5% 

Compensation level  

The PWMSC gain and time constants and the supplementary controller parameters obtained 

by using the genetic optimization technique are shown in the Table 4.2.   

Table 4.2: Controller parameters at 26.5% compensation level  

PWMSC  

KPWMSC = 10 TPWMSC = 10 

Supplementary controller 

T1 = 0.0938 T2 = 0.0100 

Tw = 1 KC = 1.7438 

 

Table 4.3: Eigenvalues of SMIB system with PWMSC and without PWMSC for the 26.5% 

Compensation level 

Modes 
26.5% Compensation level 

Without PWMSC With PWMSC 

Mode 5 - 0.48 ± 298.28i - 0.48 ± 298.28i 

Mode 4 1.56 ± 202.73i - 0.12 ± 202.90i 

Mode 3 - 0.40 ± 160.77i -0.44 ± 160.57i 

Mode 2 - 0.14 ± 127.07i -0.15 ± 127.00i 

Mode 1 - 0.20 ± 99.22i -0.22 ± 97.89i 

Mode 0 - 0.43 ± 8.45i -1.56 ± 13.82i 

Elec. - 4.49 ± 202.88i -2.59 ± 69.95i 

Other 

modes 

- 4.97 ± 551.23i 

- 96.63 ± 1.50i 

- 32.72 

- 26.67  

- 10.29  

- 5.08  

- 2.37  

- 1.68  

- 0.14  

- 0.60  

- 0.89  

- 9.58 ± 686.53i 

- 0.00 ± 377.00i 

- 97.39 ± 1.41i 

- 100.00  

- 34.66  

- 26.93  

- 10.11  

- 7.57  

- 2.45  

- 1.66  

- 0.14  

- 0.71  

- 0.92  

- 0.10  

- 01.00  
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Stability can also be checked by seeing the eigenvalue of the system matrix derived from the 

system model. The eigenvalues obtained from our proposed model is shown in the Table 4.3. 

It has been found that Mode 4 is unstable without PWMSC at 26.5% compensation level. 

After introducing PWMSC this Mode 4 becomes stable and at Mode 0 the stability improved. 

The time response of different state variables with and without PWMSC in the system for 

26.5% compensation level is shown in the Figure 4.13 to 4.21.  

 

Figure 4.13: Time response of the generator (GEN) angular speed variation with PWMSC 

and without PWMSC at 26.5% compensation level.  

It has been found from the Figure 4.13 that the generator (GEN) angular speed variation 

without PWMSC has the highest peak of 4.8 p.u. and the instability increases severely after 

3.7s. The response with PWMSC starts to rise after 0.3s and rises upto 2.3 p.u. and become 

completely stable after around 3s.  

 

Figure 4.14: Time response of the exciter (EXC) angular speed variation with PWMSC and 

without PWMSC at 26.5% compensation level.  
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It has been found that (Figure 4.14) the exciter (EXC) angular speed variation without 

PWMSC has the highest peak of 4.8 p.u. and the instability increases severely after 4.0s. The 

response with PWMSC starts to rise after 0.3s and rises upto 2.3 p.u. and become completely 

stable after around 3s. 

 

Figure 4.15: Time response of the low pressure stage (LPB) angular speed variation with 

PWMSC and without PWMSC at 26.5% compensation level.  

It has been found that (Figure 4.15) the low pressure stsge (LPB) angular speed variation 

without PWMSC has the highest peak of 4.8 p.u. and the instability increases severely after 

3.0s. The response with PWMSC starts to rise after 0.3s and rises upto 2.3 p.u. and become 

completely stable after around 3s. 

 

Figure 4.16: Time response of the low pressure stage (LPA) angular speed variation with 

PWMSC and without PWMSC at 26.5% compensation level.  
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increases. The PWMSC successfully damp out the oscillations after around 3s.The response 

with PWMSC starts to rise after 0.3s and rises upto 2.3 p.u.. 

 

Figure 4.17: Time response of the intermediate pressure stage (IP) angular speed variation 

with PWMSC and without PWMSC at 26.5% compensation level. 

It has been found that (Figure 4.17) the intermediate stage (IP) angular speed variation 

without PWMSC has the highest peak of 5.0 p.u. and the signal is gradually dampin but with 

a high settling time. The response with PWMSC starts to rise after 0.2s and rises upto 2 p.u. 

and become completely stable after around 2.5s. 

 

Figure 4.18: Time response of the High Pressure stage (HP) angular speed variation with 

PWMSC and without PWMSC at 26.5% compensation level. 
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3.5s. The response with PWMSC starts to rise after 0.3s and rises upto 2.1 p.u. and become 

completely stable after around 2.5s. 

 

 

Figure 4.19: Time response of the generator stator currents in the d-q reference frame of the 

system with PWMSC and without PWMSC at 26.5% compensation level. 

It has been found that (Figure 4.19) the stator current component in d-axis rises higher than 

the q-axis current. But both id and iq response become stable after using PWMSC in the 

system. 
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Figure 4.20: Time response of the series compensator capacitor voltage in the d-q reference 

frame of the system with PWMSC and without PWMSC at 26.5% compensation level. 

It has been found that (Figure 4.20) the capacitor voltage component in d-axis is more 

unstable than the q-axis. But both Vcd and Vcq response become stable after using PWMSC in 

the system. 

 

 

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
-0.04

-0.02

0

0.02

0.04

0.06

0.08

0.1

Time (Second)

V
C

d
 p

.u
.

 

 

with PWMSC

without PWMSC

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

Time (Second)

V
C

q
 p

.u
.

 

 

with PWMSC

without PWMSC



74 
 

 

Figure 4.21: Time response of the governor valve control (Cv) with PWMSC and without 

PWMSC for 26.5% compensation level. 

It has been found that (Figure 4.21) the governor valve is open from 0.2s to 0.7s and then 

oscillates with small amplitude for the system without PWMSC. But after using PWMSC the 

governor valve become stable after 0.7s. 

 

4.6.2 Damping Subsynchronous Torsional Oscillations at 41.1% 

Compensation Level 

The PWMSC gain and time constants and the supplementary controller parameters obtained 

from the genetic optimization techniques are shown in the Table 4.4.   

Table 4.4: Controller parameters at 41.1% compensation level  

PWMSC  

KPWMSC = 10 TPWMSC = 10 

Supplementary controller 

T1 = 1.8339 T2 = 0.01 

Tw = 1 K = 1 
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Table 4.5: Eigenvalues of SMIB system with PWMSC and without PWMSC for the 41.1% 

compensation level  

Modes 
41.1% Compensation level 

Without PWMSC With PWMSC 

Mode 5 - 0.48 ± 298.28i - 0.48 ± 298.28i 

Mode 4  - 0.12 ± 202.77i - 0.12 ± 202.90i 

Mode 3 1.42 ± 160.35i - 0.44 ± 160.57i 

Mode 2  - 0.14 ± 127.11i - 0.15 ± 127i 

Mode 1  - 0.18 ± 99.46i - 0.23 ± 97.91i 

Mode 0  - 0.55 ± 9.36i - 1.58 ± 13.88i 

Elec.  - 3.86 ± 160.43i - 2.54 ± 69.35i 

Other 

modes 

- 5.07 ± 594.02i 

- 96.86 ± 1.58i 

- 32.98 

- 26.70  

- 10.27  

- 5.47  

- 2.39  

- 1.68  

- 0.14  

- 0.63  

- 0.89  

- 9.58 ± 687.11i  

- 97.38 ± 1.41i 

- 0.00 ± 377.00i 

- 0.10 

- 100. 

- 1.00 

- 34.68  

- 26.93  

- 0.10.11  

- 0.07.60  

- 0.02.45  

- 0.01.66  

- 0.00.14  

- 0.00.71  

- 0.00.92  

 

It has been found that (Table 4.5) Mode 3 is unstable without PWMSC at 41.1% 

compensation level. After introducing PWMSC this Mode 3 becomes stable and at Mode 0 

the stability increased. The controller parameters for the optimal operation of PWMSC are 

obtained by genetic algorithm and shown in the Table 4.4. 

The time response of different state variables with and without PWMSC in the system for 

41.1% compensation level is shown in the Figure 4.22 to 4.30.  



76 
 

 

Figure 4.22: Time response of the generator (GEN) angular speed variation with PWMSC 

and without PWMSC at 41.1% compensation level.  

It has been found from the Figure 4.22 that the generator (GEN) angular speed variation 

without PWMSC has the highest peak of 3.9 p.u. and the instability increases severely after 

3.0s. The response with PWMSC starts to rise after 0.35s and rises upto 2.0 p.u. and become 

completely stable after around 2.7s.  

 

Figure 4.23: Time response of the exciter (EXC) angular speed variation with PWMSC and 

without PWMSC at 41.1% compensation level.  

It has been found that (Figure 4.23) the exciter (EXC) angular speed variation without 

PWMSC has the highest peak of 3.9 p.u. and the instability increases severely after 2.5s. The 

response with PWMSC starts to rise after 0.3s and rises upto 2.0 p.u. and become completely 

stable after around 2.5s. 
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Figure 4.24: Time response of the low pressure stage (LPB) angular speed variation with 

PWMSC and without PWMSC at 41.1% compensation level.  

It has been found that (Figure 4.24) the low pressure stsge (LPB) angular speed variation 

without PWMSC has the highest peak of 4.0 p.u. and the instability increases severely after 

3.0s. The response with PWMSC starts to rise after 0.25s and rises upto 2.0 p.u. and become 

completely stable after around 3s. 

 

Figure 4.25: Time response of the low pressure stage (LPA) angular speed variation with 

PWMSC and without PWMSC at 41.1% compensation level.  

It has been found that (Figure 4.25) the low pressure stsge (LPA) angular speed variation 

without PWMSC is unstable and has the highest peak of 4.0 p.u. and after 3s the instability 

increases. The PWMSC successfully damp out the oscillations after around 2.5s.The response 

with PWMSC starts to rise after 0.2s and rises upto 2.0 p.u.. 
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Figure 4.26: Time response of the intermediate pressure stage (IP) angular speed variation 

with PWMSC and without PWMSC at 41.1% compensation level. 

It has been found that (Figure 4.26) the intermediate stage (IP) angular speed variation 

without PWMSC has the highest peak of 4.0 p.u. and the signal is growing more unstable 

after 2.5s. The response with PWMSC starts to rise after 0.2s and rises upto 2 p.u. and 

become completely stable after around 2.5s. 

 

Figure 4.27: Time response of the High Pressure stage (HP) angular speed variation with 

PWMSC and without PWMSC at 41.15% compensation level. 

It has been found that (Figure 4.27) the High Pressure stage (HP) angular speed variation 

without PWMSC has the highest peak of 4.6 p.u. and the instability increases severely after 

2.5s. The response with PWMSC starts to rise after 0.3s and rises upto 2.5 p.u. and become 

completely stable after around 2.5s. 
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Figure 4.28: Time response of the generator stator currents in the d-q reference frame of the 

system with PWMSC and without PWMSC at 41.1% compensation level. 

It has been found that (Figure 4.28) the stator current component in d-axis rises higher than 

the q-axis current. But both id and iq response become stable after using PWMSC in the 

system. 
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Figure 4.29: Time response of the series compensator capacitor voltage in the d-q reference 

frame of the system with PWMSC and without PWMSC at 26.5% compensation level. 

It has been found that (Figure 4.29) the capacitor voltage component in d-axis is more 

unstable than the q-axis. But both Vcd and Vcq response become stable after using PWMSC in 

the system. 
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Figure 4.30: Time response of the governor valve control (Cv) with PWMSC and without 

PWMSC for 41.1% compensation level. 

It has been found that (Figure 4.30) the governor valve is open from 0.2s to 0.65s and then 

oscillates with small amplitude for the system without PWMSC. But after using PWMSC the 

governor valve become stable after 0.7s. 

 

4.6.3 Damping Subsynchronous Torsional Oscillations at 54.7% 

Compensation Level   

The PWMSC gain and time constants and the supplementary controller parameters obtained 

from the genetic optimization techniques are shown in the Table 4.6.   

Table 4.6: Controller parameters at 54.7% compensation level  

PWMSC  

KPWMSC = 10 TPWMSC = 10 

Supplementary controller 

T1 = 0.01 T2 = 0.01 

Tw = 1 K = 1 
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Table 4.7: Eigenvalues of SMIB system with PWMSC and without PWMSC for the 54.7% 

compensation level  

Modes 
54.7% Compensation level 

Without PWMSC With PWMSC 

Mode 5  - 0.48 ± 298.28i - 0.48 ± 298.28i 

Mode 4 - 0.12 ± 202.85i - 0.12 ± 202.91i 

Mode 3 - 0.44 ± 160.44i - 0.44 ± 160.58i 

Mode 2  0.96 ± 126.85i - 0.15 ± 127.01i 

Mode 1  - 0.13 ± 100.13i - 0.27 ± 98.25i 

Mode 0 - 0.75 ± 10.39i - 2.01 ±15.20i 

Elec.  - 2.26 ± 126.79i -1.49 ± 57.25i 

Other 

modes 

- 5.13 ± 627.38i 

- 97.07 ± 1.59i 

- 33.30  

- 26.75  

- 10.24  

- 5.92  

- 2.41  

- 1.67  

- 0.14  

- 0.65  

- 0.90  

- 9.60 ± 6.98.83i  

- 97.32 ± 1.30i 

- 0.00 ± 377.00i  

- 0.10  

- 100.00 

- 1.00  

- 35.20  

- 27.02  

- 10.03  

- 8.28  

- 2.46  

-1.66  

- 0.14  

- 0.72  

- 0.92  

 

 

The eigenvalues obtained from our proposed model is shown in the Table 4.7. It has been 

found that Mode 2 is unstable without PWMSC at 54.7% compensation level. After 

introducing PWMSC this Mode 2 becomes stable and at Mode 0 the stability increased. 

The time response of different state variables with and without PWMSC in the system for 

41.1% compensation level is shown in the Figure 4.31 to 4.39.  
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Figure 4.31: Time response of the generator (GEN) angular speed variation with PWMSC 

and without PWMSC at 54.7% compensation level.  

It has been found from the Figure 4.31 that the generator (GEN) angular speed variation 

without PWMSC has the highest peak of 3.2 p.u. and the signal damps out gradually with 

time. The response with PWMSC starts to rise after 0.30s and rises upto 1.8 p.u. and become 

completely stable after around 2.5s.  

 

Figure 4.32: Time response of the exciter (EXC) angular speed variation with PWMSC and 

without PWMSC at 54.7% compensation level.  

It has been found that (Figure 4.32) the exciter (EXC) angular speed variation without 

PWMSC has the highest peak of 3.2 p.u. and the system oscillations damp out gradually. The 

response with PWMSC starts to rise after 0.25s and rises upto 1.7 p.u. and become 

completely stable after around 2.5s. 
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Figure 4.33: Time response of the low pressure stage (LPB) angular speed variation with 

PWMSC and without PWMSC at 54.7% compensation level.  

It has been found that (Figure 4.33) the low pressure stsge (LPB) angular speed variation 

without PWMSC has the highest peak of 3.4 p.u. and the oscillations damp out gradually. But 

the system has a higher settling time. The response with PWMSC starts to rise after 0.3s and 

rises upto 1.7 p.u. and become completely stable after around 2.5s. 

 

Figure 4.34: Time response of the low pressure stage (LPA) angular speed variation with 

PWMSC and without PWMSC at 54.7% compensation level.  

It has been found that (Figure 4.34) the low pressure stsge (LPA) angular speed variation 

without PWMSC is unstable and has the highest peak of 3.2 p.u. and and the oscillations 

damp out slowly. The PWMSC successfully damp out the oscillations after around 2s.The 

response with PWMSC starts to rise after 0.2.5s and rises upto 1.8 p.u.. 
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Figure 4.35: Time response of the intermediate pressure stage (IP) angular speed variation 

with PWMSC and without PWMSC at 54.7% compensation level. 

It has been found that (Figure 4.35) the intermediate stage (IP) angular speed variation 

without PWMSC has the highest peak of 3.2 p.u. and the signal is gradually damping with a 

higher settling time. The response with PWMSC starts to rise after 0.2s and rises upto 3.2 p.u. 

and become completely stable after around 2.5s.  

 

Figure 4.36: Time response of the High Pressure stage (HP) angular speed variation with 

PWMSC and without PWMSC at 54.7% compensation level. 

It has been found that (Figure 4.36) the High Pressure stage (HP) angular speed variation 

without PWMSC has the highest peak of 3.6 p.u. and the oscillations damps out slowly with 

higher settling time.. The response with PWMSC starts to rise after 0.25s and rises upto 2.0 

p.u. and become completely stable after around 2.0s. 
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Figure 4.37: Time response of the generator stator currents in the d-q reference frame of the 

system with PWMSC and without PWMSC at 54.7% compensation level. 

It has been found that (Figure 4.37) the stator current component in d-axis rises higher than 

the q-axis current. But both id and iq response become stable after using PWMSC in the 

system. 
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Figure 4.38: Time response of the series compensator capacitor voltage in the d-q reference 

frame of the system with PWMSC and without PWMSC at 54.7% compensation level. 

It has been found that (Figure 4.38) the capacitor voltage component in d-axis is more 

unstable than the q-axis. But both Vcd and Vcq response become stable after using PWMSC in 

the system. 

 

 

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
-0.05

0

0.05

0.1

0.15

0.2

Time (Second)

V
C

d
 p

.u
.

 

 

with PWMSC

without PWMSC

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

Time (Second)

V
C

q
 p

.u
.

 

 

with PWMSC

without PWMSC



88 
 

 

Figure 4.39: Time response of the governor valve control (Cv) with PWMSC and without 

PWMSC for 54.7% compensation level. 

It has been found that (Figure 4.39) the governor valve is open from 0.2s to 0.6s and then 

oscillates with small amplitude for the system without PWMSC. But after using PWMSC the 

governor valve become stable after 0.7s. 

 

4.6.4 Damping Subsynchronous Torsional Oscillations at 68.4% 

Compensation Level   

The PWMSC gain and time constants and the supplementary controller parameters obtained 

from the genetic optimization techniques are shown in the Table 4.8.   

Table 4.8: Controller parameters at 68.4% compensation level  

PWMSC  

KPWMSC = 10 TPWMSC = 10 

Supplementary controller 

T1 = 0.01 T2 = 0.6056 

Tw = 1 K  
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Table 4.9: Eigenvalues of SMIB system with PWMSC and without PWMSC for the 68.4% 

compensation level  

Modes 
68.4% Compensation level 

Without PWMSC With PWMSC 

Mode 5  - 0.48 ± 298.28i - 0.48 ± 298.28i 

Mode 4 - 0.11 ± 202.88i - 0.12 ± 202.90i 

Mode 3 - 0.44 ± 160.53i - 0.44 ± 160.56i 

Mode 2 - 0.15 ± 126.96i - 0.14 ± 127.00i 

Mode 1 5.64 ± 98.58i - 0.18 ± 97.67i 

Mode 0 - 1.07 ± 11.72i - 1.45 ± 13.42i 

Elec. - 5.82 ± 98.86i - 2.94 ± 74.60i 

Other 

modes 

- 5.19 ± 657.00i 

- 97.23 ± 1.54i 

- 33.76  

- 26.82  

- 10.19  

- 6.53  

- 2.43  

- 1.67  

- 0.14  

- 0.68  

- 0.91  

- 9.57 ± 682.08i 

- 0.00 ± 377.00i 

- 97.39 ± 1.44i  

- 0.10  

- 1.65  

- 1.00  

- 34.50  

- 26.91  

- 10.13  

- 7.37  

- 2.45  

- 0.14  

- 1.67  

- 0.70  

- 0.91  

 

The eigenvalues obtained from our proposed model is shown in the Table 4.9. It has been 

found that Mode 1 is unstable without PWMSC at 68.4% compensation level. After 

introducing PWMSC this Mode 1 becomes stable and at Mode 0 the stability does not 

improve much but the eigenvalue of electrical mode moves towards the positive plane. 

The time response of different state variables with and without PWMSC in the system for 

68.4% compensation level is shown in the Figure 4.40 to 4.50.  
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(a) Without PWMSC 

 

(b) With PWMSC 

Figure 4.40: Time response of the generator (GEN) angular speed variation (a) without 

PWMSC and (b) with PWMSC at 68.4% compensation level.  

It has been found from the Figure 4.40 that the generator (GEN) angular speed variation 

without PWMSC starts to grow after 4.25s and the instability increases severely. The 

response with PWMSC starts to rise after 0.25s and rises upto 2.2 p.u. and become 

completely stable after around 3.5s.  
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(a) Without PWMSC 

 

(b) With PWMSC 

Figure 4.41: Time response of the exciter (EXC) angular speed variation (a) without 

PWMSC and (b) with PWMSC at 68.4% compensation level.  

It has been found that (Figure 4.41) the exciter (EXC) angular speed variation without 

PWMSC starts to grow severely after 4.0s. The response with PWMSC starts to rise after 

0.25s and rises upto 2.2 p.u. and become completely stable after around 3.25s.  
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(a) Without PWMSC 

 

(b) With PWMSC 

Figure 4.42: Time response of the low pressure stage (LPB) angular speed variation (a) 

without PWMSC and (b) with PWMSC at 68.4% compensation level.  

It has been found that (Figure 4.42) the low pressure stage (LPB) angular speed variation 

without PWMSC starts growing severely after 3.5s. The response with PWMSC starts to rise 

after 0.3s and rises upto 2.3 p.u. and become completely stable after around 3.5s. 
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(a) Without PWMSC 

 

(a) With PWMSC 

Figure 4.43: Time response of the low pressure stage (LPA) angular speed variation (a) 

without PWMSC and (b) with PWMSC at 68.4% compensation level.  

It has been found that (Figure 4.43) the low pressure stsge (LPA) angular speed variation 

without PWMSC is unstable and instability grows severely after 4.2s. The PWMSC 

successfully damp out the oscillations after around 3.5s.The response with PWMSC starts to 

rise after 0.2s and rises upto 2.15 p.u.. 
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(a) Without PWMSC 

 

(a) With PWMSC 

Figure 4.44: Time response of the intermediate pressure stage (IP) angular speed variation 

(a) without PWMSC and (b) with PWMSC at 68.4% compensation level. 

It has been found that (Figure 4.44) the intermediate stage (IP) angular speed variation 

without PWMSC is unstable and instability increases severely after 4s. The response with 

PWMSC starts to rise after 0.2s and rises upto 2.15 p.u. and become completely stable after 

around 3.5s. 
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(a) Without PWMSC 

 

(b) With PWMSC 

Figure 4.45: Time response of the High Pressure stage (HP) angular speed variation (a) 

without PWMSC and (b) with PWMSC at 68.4% compensation level. 

It has been found that (Figure 4.45) the High Pressure stage (HP) angular speed variation 

without PWMSC is unstable and instability increases severely after 4s. The response with 

PWMSC starts to rise after 0.2s and rises upto 2.5 p.u. and become completely stable after 

around 3.5s. 
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(a) Without PWMSC 

 

(b) With PWMSC 

Figure 4.46: Time response of the generator stator currents in the d-axis of the reference 

frame at 68.4% compensation level (a) without PWMSC and (b) with PWMSC. 

It has been found that (Figure 4.46) the stator current component variation in d-axis is 

unstable for the system without PWMSC. The instability increases severely after 4s. The 

response with PWMSC starts to rise after 0.2s and rises upto 0.9 p.u. and become completely 

stable after around 3.5s. 

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
-3

-2

-1

0

1

2

3
x 10

8

Time (Second)

i d
 p

.u
.

 

 

without PWMSC

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
-0.2

0

0.2

0.4

0.6

0.8

1

Time (Second)

i d
 p

.u
.

 

 

with PWMSC



97 
 

 

(a) Without PWMSC

 

(b) With PWMSC 

Figure 4.47: Time response of the generator stator currents in the q-axis of the reference 

frame at 68.4% compensation level (a) without PWMSC and (b) with PWMSC. 

It has been found that (Figure 4.47) the stator current component variation in q-axis is 

unstable for the system without PWMSC. The instability increases severely after 4s. The 

response with PWMSC starts to rise after 0.2s and rises upto 0.4 p.u. and become completely 

stable after around 4s. 
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(a) Without PWMSC 

 

(b) With PWMSC 

Figure 4.48: Time response of the series compensator capacitor voltage in the d-axis of the 

reference frame at 68.4% compensation level (a) without PWMSC and (b) with PWMSC. 

It has been found that (Figure 4.48) the capacitor voltage component variation in d-axis is 

unstable for the system without PWMSC. The instability increases severely after 4s. The 

response with PWMSC starts to rise after 0.2s and rises upto 0.23 p.u. and become 

completely stable after around 4s. 
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(a) Without PWMSC 

 

(b) With PWMSC 

Figure 4.49: Time response of the series compensator capacitor voltage in the q-axis of the 

reference frame at 68.4% compensation level (a) without PWMSC and (b) with PWMSC. 

It has been found that (Figure 4.49) the capacitor voltage component variation in q-axis is 

unstable for the system without PWMSC. The instability increases severely after 4s. The 

response with PWMSC starts to fall after 0.2s and goes upto 0.4 p.u. and become completely 

stable after around 3s. 
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(a) Without PWMSC 

 

(b) With PWMSC 

Figure 4.50: Time response of the governor valve control (Cv) (a) without PWMSC and (b) 

with PWMSC for 68.4% compensation level. 

It has been found that (Figure 4.50) the governor valve response is completely unstable and 

after 4s its instability grows severely. But after using PWMSC the governor valve become 

stable after 1.0s. 
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Table 4.10: Percentage overshoot and settling time of different states of SMIB system with 

PWMSC at different compensation levels  

States 

Compensation levels 

26.5% 41.1% 54.7% 68.4% 

Max. 

overshoot 

(p.u.) 

Settling 

Time 

(sec.) 

Max. 

overshoot

(p.u.) 

Settling 

Time 

(sec.) 

Max. 

overshoot

(p.u.) 

Settling 

Time 

(sec.) 

Max. 

overshoot

(p.u.) 

Settling 

Time 

(sec.) 

∆𝜔 2.3 3.0 2.0 3.5 1.8 2.5 2.2 3.5 

∆𝜔𝐸  2.3 3.0 2.0 2.5 1.7 2.5 2.2 3.25 

∆𝜔𝐵 2.3 3.0 2.0 3.0 1.7 2.5 2.3 3.5 

∆ω𝐴 2.3 3.0 2.0 2.0 1.8 2.0 2.15 3.5 

∆ω𝐼 2.0 2.5 2.0 2.0 3.2 2.5 2.15 3.5 

∆ω𝐻 2.1 2.5 2.5 2.5 2.0 2.0 2.5 3.5 

∆i𝑑 0.8 2.4 0.8 2.5 0.8 2.5 0.09 3.5 

∆i𝑞 0.35 3.5 0.48 3.5 0.46 2.5 0.4 4.0 

∆𝑉𝐶𝑑 0.07 3.5 0.14 3.0 0.18 2.5 0.23 4.0 

∆𝑉𝐶𝑞 -0.15 3.0 -0.24 3.0 -0.3 2.0 -0.4 3.0 

∆𝐶𝑣 0.09 1.4 0.09 1.0 0.09 1.0 0.09 1.0 

 

From the Table 4.10 it is observed that the highest Max. Overshoot is 3.2 p.u. for the IP rotor 

speed variation at 54.7% compensation level and the maximum settling time is 4s for ∆i𝑞 and 

∆𝑉𝐶𝑑 at 68.4% compensation level. This result showed that the PWMSC has successfully 

mitigated SSR oscillations from the power system. 

4.7 Summary 

In this chapter a dynamic model of PWMSC with supplementary controller is designed for 

mitigation of SSR oscillations in a series capacitor compensated power system. For the 

proper tuning of the controller genetic algorithm is used. The dynamic performance of the 

system under a small disturbance in the governor side is examined for four critical 

compensation levels. The results of such a case study have shown the effectiveness of 

PWMSC in damping all SSR torsional modes.   
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Chapter 5 

Summary and Conclusions 

5.1 Summary 

The dynamic behavior of a SMIB system installed with PWMSC in the transmission line has 

been investigated in this thesis. Nonlinear dynamic model for the power system with 

PWMSC is derived and a linearized model is obtained from that. The PWMSC connected 

with SMIB is modeled by thirty-two state equations. 

Introducing a series capacitor in a transmission system implies the existence of natural 

oscillations in the electrical system having frequencies below the power frequency. Since the 

natural oscillations of the shaft system of most turbine-generators are also of frequencies 

below the system frequency, the possibility of the electromechanical Subsynchronous 

Resonance (SSR) exists if the frequencies of the electrical and mechanical oscillations are 

complements of the power frequency. SSR results in violent torsional oscillations within the 

turbine-generator shafts which can destroy them (in worst case) in only a few seconds. 

FACTS controllers are being used to overcome the power system dynamic problems. The 

potential benefits of these FACTS controllers are now widely recognized by the power 

system engineers and the transmission and distribution communities. PWMSC is one of the 

latest FACTS devices which has a simple power structure, gating and control strategy. 

Details study on stability, FACTS devices, eigenvalue analysis for the small signal stability 

problem, optimization techniques for the tuning of supplementary controller, the controller 

structure and its parameters are documented in Chapter 2. 

The dynamic behavior of SMIB system with PWMSC and without PWMSC has been 

investigated in this thesis for analyzing the SSR effect in the power system. A linearized 

mathematical model is developed for investigating the SSR phenomenon under small 

disturbances. For this purpose, the IEEE first benchmark model which consists of a large 

turbine-generator connected to a large system through a series-capacitor compensated 

transmission line is used. This model represents clearly the various features of the SSR 

phenomenon. The shaft system of the turbine-generator represents a linear six-mass-spring 

system. The detailed dynamic models of the individual system components are also presented 
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 in Chapter 3. The procedure used to derive the complete linearized model from the IEEE 

first benchmark model is also explained in this chapter. The studies conducted in the rest of 

the chapter are intended to investigate the effect of the compensation levels of the 

transmission line on SSR oscillations. The results of these investigations have provided the 

critical compensation levels in the system under study. 

In Chapter 4, the dynamic model of PWMSC with supplementary controller has been 

introduced in the IEEE first benchmark model for mitigation of SSR oscillations in a power 

system. Nonlinear dynamic model for the power system with PWMSC is derived and a 

linearized model is obtained from that. The PWMSC connected with SMIB is modeled by 

thirty two state equations. A small pulse type disturbance is introduced in the governor side to 

create SSR oscillations and PWMSC is tried to mitigate the SSR phenomenon. The 

supplementary controllers are presented in this thesis to improve the damping of the power 

system oscillations. For the proper tuning of the controller genetic algorithm is used as an 

efficient optimization algorithm. The time-domain analysis technique is used for transient 

torque analysis. MATLAB computer programs have been developed to simulate the dynamic 

performance of the system with PWMSC and without PWMSC. Eigenvalues are also found 

to check the stability. The results for eigenvalue analysis and response plots were found 

same. 

 

5.2      Contribution 

Subsynchronous Resonance (SSR) phenomenon is a power system dynamic problem which 

can lead a system towards severe instability and cause destruction to the generator shaft. In 

this thesis SSR phenomenon in the power system have been properly analyzed in the IEEE 

first benchmark model and located four critical compensation levels where the system 

experiences most instability in different modes. FACTS devices are being used in the recent 

years to manage the instability issue and bring a system capacity to its maximum thermal 

limit. The latest among FACTS, PWMSC is used in this thesis to mitigate SSR oscillations. A 

supplementary controller is also used along with the PWMSC. Genetic algorithm is used for 

the proper tuning of the controller so we can achieve the optimized results. A dynamic model 

of IEEE FBM with PWMSC has been developed and then linearized with Taylor series 

expansion. A pulse type disturbance has been created in the governor side of the system. 
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From the time domain simulation and the eigenvalue analysis it has been found clearly that 

all the SSR oscillations have been completely mitigated after experiencing a small 

disturbance in the system.  

 

5.3      Conclusion  

Pulse Width Modulated Series Compensator (PWMSC) has been shown in this thesis as an 

effective solution of SSR oscillation problem in the power system. Study is made with IEEE 

first benchmark model. Subsynchronous Resonance (SSR) is analyzed in the study system for 

a small disturbance in the governor side. A dynamic model PWMSC is developed with a 

supplementary controller to mitigate the SSR oscillations in different modes. Genetic 

algorithm has been used as an optimization tool which makes the PWMSC operation more 

reliable. The results obtained from the eigenvalue analysis and time domain simulation 

proves that PWMSC is an effective choice for system SSR damping.  

 

5.4      Recommendations for Future Work 

In the following, some recommendations are given for future research in the area. 

 In this thesis genetic algorithm has been applied as an optimization technique. Other 

optimization techniques can be applied and comparing each other most suitable 

technique can be selected. 

 The research has been done here for a model containing a single machine. So, the 

effect of PWMSC on multi-machine system stability needs investigation for SSR 

oscillations. The locations of the PWMSC devices in a multi-machine system require 

careful study. 
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Appendices 

Appendix A 

System Data 

Table A.1 Generator data (in per unit). 

Ra = 1e-7 Rfd = 0.0013 R1d = 0.0297 

R1q = 0.0124  R2q = 0.0182 

Xad = 1.66  Xaq = 1.58 

Xd = 1.79 Xq = 1.71 Xffd = 1.7335 

X11d = 1.66 X11q = 1.6319 X22q = 1.9029 

 

Table A.2 Transmission line data (in per unit). 

Series capacitor compensated transmission line  

RL = 0.02  XL = 0.7 

Series capacitor compensated transmission line with PWMSC 

Req = 0.04  XLeq = 0.7 

The capacitor compensation is XC / XL 

 

Table A.3 Governor and turbine system data. 

Kg = 25   

Tg = 0.1 sec.  Tch = 0.40 sec. 

Trh =7.0 sec.  Tco =0.60 sec. 

FA = 0.22  FB = 0.22 

FI = 0.26  FH = 0.26 

Cvopen = 4.0 p.u./sec  Cvclose = 4.0 p.u./sec 
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Table A.4 Excitation system data. 

KA = 2  KE = 1.0 

KF = 0.03   

TA = 0.04 sec.  TE = 0.01 sec 

TF = 1.0 sec.   

VRmax = 4.75 p.u.  VRmin = -4.75 p.u. 

 

Table A.5 Mechanical system data. 

Mass Shaft Inertia M 

(seconds) 

Damping D 

(p.u./p.u. speed) 

Spring constant K 

(p.u./rad) 

EXC  0.0684 0.017  

 GEN-EXC   2.822 

GEN  1.736 0.099  

 LPB-GEN   70.858 

LPB  1.768 0.100  

 LPA-LPB   52.038 

LPA  1.716 0.100  

 IP-LPA   34.929 

IP  0.311 0.025  

 HP-IP   19.303 

HP  0.1856 0.008  

 

Table A.6 Initial operating conditions. 

Generator real power Pe = 0.09 p.u. 

Generator terminal voltage |𝑉𝑡| = 1.02 p.u. 

System power factor  pf  = 0.9 (lag) 
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Appendix B 

Small Signal Model of the Complete System for the IEEE First Benchmark 

Model 

In order to form the overall system equations, the equations derived in Chapter 3 for the 

individual system components are rewritten here again. 

 

 6th order state equation of synchronous machine (Equation 3.3). 

[
𝑑𝛥𝑋𝑠𝑦𝑛

𝑑𝑡
] = [𝐴𝑠𝑦𝑛][𝛥𝑋𝑠𝑦𝑛] + [𝐵𝑠𝑦𝑛][𝛥𝑈𝑠𝑦𝑛]                                              (B.1) 

  where  

   [𝛥𝑋𝑠𝑦𝑛] = [𝛥𝑖𝑑  𝛥𝑖𝑞 𝛥𝑖𝑓𝑑       𝛥𝑖1𝑞     𝛥𝑖1𝑑 𝛥𝑖2𝑞 ]𝑇 

             [𝛥𝑈𝑠𝑦𝑛] = [𝛥𝑉𝑡𝑑  𝛥𝑉𝑡𝑞 𝛥𝑒𝑓𝑑   𝛥𝜔]𝑇 

 

 State equation of transmission line (Equation 3.10) 

[
 
 
 
 
𝑑∆𝑉𝐶𝑑

𝑑𝑡
𝑑∆𝑉𝐶𝑞

𝑑𝑡

∆𝑉𝑡𝑑

∆𝑉𝑡𝑞 ]
 
 
 
 

= [𝐴𝑡] [
∆𝑉𝐶𝑑

∆𝑉𝐶𝑞
] + [𝑅1] [

𝑑∆𝑖𝑑

𝑑𝑡
𝑑∆𝑖𝑞

𝑑𝑡

] + [𝑅2] [
∆𝑖𝑑
∆𝑖𝑞

] + [𝐵𝑡] [
∆𝜔
∆𝛿

]               (B.2) 

 

 12
th

 order state equation of mechanical system (Equation 3.17) 

 [
𝑑∆𝑋𝑚𝑠

𝑑𝑡
] = [𝐴𝑚𝑠][∆𝑋𝑚𝑠] + [𝐵𝑚𝑠][∆𝑈𝑚𝑠]                                                  (B.3)   

where 

[∆𝑋𝑚𝑠] = [∆𝛿𝐸 𝛿∆ ∆𝛿𝐵 ∆𝛿𝐴 ∆𝛿𝐼 ∆𝛿𝐻    ∆𝜔𝐸 ∆𝜔 ∆𝜔𝐵 ∆𝜔𝐴 ∆𝜔𝐼 ∆𝜔𝐻]𝑇 

[∆𝑈𝑚𝑠] = [∆𝑇𝑒     ∆𝑃𝐻 ∆𝑃𝐼 ∆𝑃𝐴]𝑇 
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 4
th

 order state equation of governor and turbine system (Equation 3.19) 

 [
∆𝑑𝑋𝑔

𝑑𝑡
] = [𝐴𝑔][∆𝑋𝑔] + [𝐵𝑔] [

∆𝑃𝑚0

∆𝜔𝐻
]                           (B.4) 

where 

               [∆𝑋𝑔] = [∆𝐶𝑉 ∆𝑃𝐻 ∆𝑃𝐼 ∆𝑃𝐴]𝑇 

 

 3
rd 

order state equation of excitation system (Equation 3.23) 

 [
𝑑∆𝑋𝑣

𝑑𝑡
] = [𝐴𝑣][∆𝑋𝑣] + [𝐵𝑣] [

∆𝑉𝑡

∆𝐸𝑟𝑒𝑓
]      (B.5) 

where 

 [∆𝑋𝑣] = [∆𝑒𝑓𝑑 ∆𝐸𝑅 ∆𝐸𝑆𝐵]𝑇  

 

 Equation of Air-gap (Equation 3.28) 

  ∆𝑇𝑒 = [𝑇𝑒𝑑𝑞0][∆𝑋𝑠𝑦𝑛]       (B.6) 

where 

[𝑇𝑒𝑑𝑞0] = [𝑖𝑞0(𝐿𝑞 − 𝐿𝑑)    𝑖𝑑0(𝐿𝑞 − 𝐿𝑑) + 𝑖𝑓𝑑0𝐿𝑎𝑑    𝑖𝑞0𝐿𝑎𝑑    − 𝑖𝑑0𝐿𝑎𝑞    𝑖𝑞0𝐿𝑎𝑑    − 𝑖𝑑0𝐿𝑎𝑞] 

 

 

 Equation of terminal voltage (Equation 3.30) 

 ∆𝑉𝑡 = [
𝑉𝑡𝑑0

𝑉𝑡0

𝑉𝑡𝑞0

𝑉𝑡0
] [

∆𝑉𝑡𝑑

∆𝑉𝑡𝑞
]       (B.7) 
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Electrical part of the system: Combining Equations (B.1) and (B.2) to form the following 

equations 

[
 
 
 
 
𝑑∆𝑋𝑠𝑦𝑛

𝑑𝑡
𝑑∆𝑉𝐶𝑑

𝑑𝑡
𝑑∆𝑉𝐶𝑞

𝑑𝑡 ]
 
 
 
 

= [𝐴𝑚𝑡] [

∆𝑋𝑠𝑦𝑛

∆𝑉𝐶𝑑

∆𝑉𝐶𝑞

] + [𝐵𝑚𝑡] [
∆𝑒𝑓𝑑

∆𝜔
∆𝛿

]     (B.8) 

[
∆𝑉𝑡𝑑

∆𝑉𝑡𝑞
] = [𝐶𝑖] [

∆𝑋𝑠𝑦𝑛

∆𝑉𝐶𝑑

∆𝑉𝐶𝑞

] + [𝐷𝑖] [
∆𝑒𝑓𝑑

∆𝜔
∆𝛿

]     (B.9) 

where 

[𝐴𝑚𝑡] = [𝐴𝑚𝑡𝐶𝑖(1: 8, : )] 

[𝐵𝑚𝑡] = [𝐵𝑚𝑡𝐷𝑖(1: 8, : )] 

[𝐶𝑖] = [𝐴𝑚𝑡𝐶𝑖(9: 10, : )] 

[𝐷𝑖] = [𝐵𝑚𝑡𝐷𝑖(9: 10, : )]     (B.10) 

[𝐴𝑚𝑡𝐶𝑖] = [
𝐼6×6 06×2 −𝐵𝑠𝑦𝑛(: ,1: 2)

−𝑅1 04×4 𝐼4×4

−1

] [
𝐴𝑠𝑦𝑛 06×2

𝑅2 04×4 𝐴𝑡
] 

[𝐵𝑚𝑡𝐷𝑖] = [
𝐼6×6 06×2 −𝐵𝑠𝑦𝑛(: ,1: 2)

−𝑅1 04×4 𝐼4×4

−1

] [
𝐴𝑠𝑦𝑛 06×2

04×1 𝐵𝑡
] 

 

Here, AmtCi(1:8, :) means all columns and 1 to 8 rows of AmtCi, Bsyn(:, 1:2) means all rows 

and 1 to 2 columns of Bsyn, Inxn is an n by n identity matrix, and 0mxn is an m by n matrix with 

all elements zero. 

Combining Equations (B.6), (B.7), and (B.9) to form the following equation 

[
∆𝑇𝑒

∆𝑉𝑡
] = [𝐶𝑚𝑡] [

∆𝑋𝑠𝑦𝑛

∆𝑉𝐶𝑑

∆𝑉𝐶𝑞

] + [𝐷𝑚𝑡] [
∆𝑒𝑓𝑑

∆𝜔
∆𝛿

]       (B.11) 

where 
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[𝐶𝑚𝑡] = [

𝑇𝑒𝑑𝑞0 0 0

[
𝑉𝑡𝑑0

𝑉𝑡0

𝑉𝑡𝑞0

𝑉𝑡0
] [𝐶𝑖]

] 

[𝐷𝑚𝑡] = [
0 0 0

[
𝑉𝑡𝑑0

𝑉𝑡0

𝑉𝑡𝑞0

𝑉𝑡0
] [𝐷𝑖]]        (B.12) 

 

Shaft and excitation system: Combining Equations (B.3), (B.4), and (B.5) to form the 

following equations 

[
 
 
 
 
𝑑∆𝑋𝑚𝑠

𝑑𝑡
𝑑∆𝑋𝑔

𝑑𝑡
𝑑∆𝑋𝑣

𝑑𝑡 ]
 
 
 
 

= [𝐴𝑝1] [

∆𝑋𝑚𝑠

∆𝑋𝑔

∆𝑋𝑣

] + [𝐴𝑝2] [
∆𝑇𝑒

∆𝑉𝑡
] + [𝐵𝑝] [

∆𝑃𝑚0

∆𝐸𝑟𝑒𝑓
]    (B.13) 

where 

[𝐴𝑝1] = [

𝐴𝑚𝑠 012×1 𝐵𝑚𝑠(: ,2: 4) 012×3

04×11 𝐵𝑔(: ,2) 𝐴𝑔 04×3

03×16 𝐴𝑣

] 

[𝐴𝑝2] = [

𝐵𝑚𝑠(: ,1) 012×1

04×2

03×1 𝐵𝑣(: ,1)
]               (B.14) 

          [𝐴𝑝2] = [

𝐵𝑚𝑠(: ,1) 012×1

04×2

03×1 𝐵𝑣(: ,1)
]    

[𝐵𝑝] = [

012×2

𝐵𝑔(: ,1) 04×1

03×1 𝐵𝑣(: ,2)
] 

Combining Equations (B.11) and (B.13) to form the following equations 

[
 
 
 
 
𝑑∆𝑋𝑚𝑠

𝑑𝑡
𝑑∆𝑋𝑔

𝑑𝑡
𝑑∆𝑋𝑣

𝑑𝑡 ]
 
 
 
 

= [𝐴𝑝1] [

∆𝑋𝑚𝑠

∆𝑋𝑔

∆𝑋𝑣

] + [𝐴𝑝2𝐶𝑚𝑡] [

∆𝑋𝑠𝑦𝑛

∆𝑉𝐶𝑑

∆𝑉𝐶𝑞

] + [𝐴𝑝2𝐷𝑚𝑡] [
∆𝑒𝑓𝑑

∆𝜔
∆𝛿

] + [𝐵𝑝] [
∆𝑃𝑚0

∆𝐸𝑟𝑒𝑓
] 

(B.15) 
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where 

 [𝐴𝑝2𝐶𝑚𝑡] = [𝐴𝑝2][𝐶𝑚𝑡]       

[𝐴𝑝2𝐷𝑚𝑡] = [𝐴𝑝2][𝐷𝑚𝑡]      (B.16) 

 

Entire system state equation: Combining Equations (B.8) and (B.15) to form the 27
th

 order 

state equation of the complete system 

[
𝑑∆𝑋

𝑑𝑡
] = [𝐴][∆𝑋] + [𝐵][∆𝑈]     (B.17) 

where 

[∆𝑋] = [∆𝛿𝐸   ∆𝛿   ∆𝛿𝐵   ∆𝛿𝐴   ∆𝛿𝐼   ∆𝛿𝐻   ∆𝜔𝐸    ∆𝜔   ∆𝜔𝐵   ∆𝜔𝐴 ∆𝜔𝐼   ∆𝜔𝐻 … 

 ∆𝐶𝑉    ∆𝑃𝐻  ∆𝑃𝐼   ∆𝑃𝐴   ∆𝑒𝑓𝑑   ∆𝐸𝑅   ∆𝐸𝑆𝐵   ∆𝑖𝑑   ∆𝑖𝑞   ∆𝑖𝑓𝑑   ∆𝑖1𝑞 … 

 ∆𝑖1𝑑   ∆𝑖2𝑞   ∆𝑉𝐶𝑑    ∆𝑉𝐶𝑞]
T 

[∆𝑈] = [∆𝑃𝑚0   ∆𝐸𝑟𝑒𝑓]
T
 

[A] = [ App1(:,1) App1(:,2) + App2(:,3)  App1(:,3:7) App1(:,8) + App2(:,2)…     

App1(:,9:16) App1(:,17) + App2(:,1) App1(:,18,27)]  

[𝐵] = [
𝐵𝑝

08×2
]               (B.18) 

[𝐴𝑝𝑝1] = [
𝐴𝑝1 𝐴𝑝2𝐶𝑚𝑡
08×9 𝐴𝑚𝑡

] 

[𝐴𝑝𝑝2] = [
𝐴𝑝2𝐷𝑚𝑡

𝐵𝑚𝑡
] 
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Appendix C 

Dynamic Model of the Complete System with PWMSC Installed in IEEE 

First Benchmark Model 

In order to form the overall system equations, the equations derived in Chapter 3 and Chapter 

4 for the individual system components are rewritten here again. 

 

 6th order state equation of synchronous machine (Equation 3.3). 

[
𝑑𝛥𝑋𝑠𝑦𝑛

𝑑𝑡
] = [𝐴𝑠𝑦𝑛][𝛥𝑋𝑠𝑦𝑛] + [𝐵𝑠𝑦𝑛][𝛥𝑈𝑠𝑦𝑛]                                              (C.1) 

  where  

   [𝛥𝑋𝑠𝑦𝑛] = [𝛥𝑖𝑑  𝛥𝑖𝑞 𝛥𝑖𝑓𝑑       𝛥𝑖1𝑞     𝛥𝑖1𝑑 𝛥𝑖2𝑞 ]𝑇 

             [𝛥𝑈𝑠𝑦𝑛] = [𝛥𝑉𝑡𝑑  𝛥𝑉𝑡𝑞 𝛥𝑒𝑓𝑑   𝛥𝜔]𝑇 

 

 State equation of transmission line with PWMSC (Equation 4.14) 

[
 
 
 
 
 
 
 
 
𝑑∆𝑉𝐶𝑑

𝑑𝑡
𝑑∆𝑉𝐶𝑞

𝑑𝑡
𝑑∆𝑉𝑆𝑑

𝑑𝑡
𝑑∆𝑉𝑆𝑞

𝑑𝑡

∆𝑉𝑡𝑑

∆𝑉𝑡𝑞 ]
 
 
 
 
 
 
 
 

= [𝐴𝑡]

[
 
 
 
∆𝑉𝐶𝑑

∆𝑉𝐶𝑞

∆𝑉𝑆𝑑

∆𝑉𝑆𝑞]
 
 
 
+ [𝑅1] [

𝑑∆𝑖𝑑

𝑑𝑡
𝑑∆𝑖𝑞

𝑑𝑡

] + [𝑅2] [
∆𝑖𝑑
∆𝑖𝑞

] + [𝐵𝑡] [
∆𝜔
∆𝛿

]               (C.2) 

 

 12
th

 order state equation of mechanical system (Equation 3.17) 

 [
𝑑∆𝑋𝑚𝑠

𝑑𝑡
] = [𝐴𝑚𝑠][∆𝑋𝑚𝑠] + [𝐵𝑚𝑠][∆𝑈𝑚𝑠]                                                  (C.3)   

where 

[∆𝑋𝑚𝑠] = [∆𝛿𝐸 𝛿∆ ∆𝛿𝐵 ∆𝛿𝐴 ∆𝛿𝐼 ∆𝛿𝐻    ∆𝜔𝐸 ∆𝜔 ∆𝜔𝐵 ∆𝜔𝐴 ∆𝜔𝐼 ∆𝜔𝐻]𝑇 

[∆𝑈𝑚𝑠] = [∆𝑇𝑒     ∆𝑃𝐻 ∆𝑃𝐼 ∆𝑃𝐴]𝑇 
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 4
th

 order state equation of governor and turbine system (Equation 3.19) 

 [
∆𝑑𝑋𝑔

𝑑𝑡
] = [𝐴𝑔][∆𝑋𝑔] + [𝐵𝑔] [

∆𝑃𝑚0

∆𝜔𝐻
]                           (C.4) 

where 

               [∆𝑋𝑔] = [∆𝐶𝑉 ∆𝑃𝐻 ∆𝑃𝐼 ∆𝑃𝐴]𝑇 

 

 3
rd 

order state equation of excitation system (Equation 3.23) 

 [
𝑑∆𝑋𝑣

𝑑𝑡
] = [𝐴𝑣][∆𝑋𝑣] + [𝐵𝑣] [

∆𝑉𝑡

∆𝐸𝑟𝑒𝑓
]      (C.5) 

where 

 [∆𝑋𝑣] = [∆𝑒𝑓𝑑 ∆𝐸𝑅 ∆𝐸𝑆𝐵]𝑇  

 

 Equation of Air-gap (Equation 3.28) 

  ∆𝑇𝑒 = [𝑇𝑒𝑑𝑞0][∆𝑋𝑠𝑦𝑛]       (C.6) 

where 

[𝑇𝑒𝑑𝑞0] = [𝑖𝑞0(𝐿𝑞 − 𝐿𝑑)    𝑖𝑑0(𝐿𝑞 − 𝐿𝑑) + 𝑖𝑓𝑑0𝐿𝑎𝑑    𝑖𝑞0𝐿𝑎𝑑    − 𝑖𝑑0𝐿𝑎𝑞    𝑖𝑞0𝐿𝑎𝑑    − 𝑖𝑑0𝐿𝑎𝑞] 

 

 

 Equation of terminal voltage (Equation 3.30) 

 ∆𝑉𝑡 = [
𝑉𝑡𝑑0

𝑉𝑡0

𝑉𝑡𝑞0

𝑉𝑡0
] [

∆𝑉𝑡𝑑

∆𝑉𝑡𝑞
]       (C.7) 
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Electrical part of the system: Combining Equations (C.1) and (C.2) to form the following 

equations 

[
 
 
 
 
 
 
 
 
𝑑∆𝑉𝐶𝑑

𝑑𝑡
𝑑∆𝑉𝐶𝑞

𝑑𝑡
𝑑∆𝑉𝑆𝑑

𝑑𝑡
𝑑∆𝑉𝑆𝑞

𝑑𝑡

∆𝑉𝑡𝑑

∆𝑉𝑡𝑞 ]
 
 
 
 
 
 
 
 

= [𝐴𝑚𝑡_𝑃𝑊𝑀𝑆𝐶]

[
 
 
 
∆𝑉𝐶𝑑

∆𝑉𝐶𝑞

∆𝑉𝑆𝑑

∆𝑉𝑆𝑞]
 
 
 
+ [𝐵𝑚𝑡_𝑃𝑊𝑀𝑆𝐶] [

∆𝑒𝑓𝑑

∆𝜔
∆𝛿

]   (C.8) 

[
∆𝑉𝑡𝑑

∆𝑉𝑡𝑞
] = [𝐶𝑖_𝑃𝑊𝑀𝑆𝐶]

[
 
 
 
∆𝑉𝐶𝑑

∆𝑉𝐶𝑞

∆𝑉𝑆𝑑

∆𝑉𝑆𝑞]
 
 
 
+ [𝐷𝑖_𝑃𝑊𝑀𝑆𝐶] [

∆𝑒𝑓𝑑

∆𝜔
∆𝛿

]    (C.9) 

where 

[𝐴𝑚𝑡_𝑃𝑊𝑀𝑆𝐶] = [𝐴𝑚𝑡𝐶𝑖_𝑃𝑊𝑀𝑆𝐶(1: 10, : )] 

[𝐵𝑚𝑡_𝑃𝑊𝑀𝑆𝐶] = [𝐵𝑚𝑡𝐷𝑖_𝑃𝑊𝑀𝑆𝐶(1: 10, : )] 

[𝐶𝑖_𝑃𝑊𝑀𝑆𝐶] = [𝐴𝑚𝑡𝐶𝑖_𝑃𝑊𝑀𝑆𝐶(11: 12, : )] 

[𝐷𝑖_𝑃𝑊𝑀𝑆𝐶] = [𝐵𝑚𝑡𝐷𝑖_𝑃𝑊𝑀𝑆𝐶(11: 12, : )]        (C.10) 

[𝐴𝑚𝑡𝐶𝑖_𝑃𝑊𝑀𝑆𝐶] = [
𝐼6×6 06×4 −𝐵𝑠𝑦𝑛(: ,1: 2)

−𝑅1 06×4 𝐼6×6

−1

] [
𝐴𝑠𝑦𝑛 06×4

𝑅2 04×4 𝐴𝑡
] 

[𝐵𝑚𝑡𝐷𝑖_𝑃𝑊𝑀𝑆𝐶] = [
𝐼6×6 06×4 −𝐵𝑠𝑦𝑛(: ,1: 2)

−𝑅1 06×4 𝐼6×6

−1

] [
𝐴𝑠𝑦𝑛 06×2

06×1 𝐵𝑡
] 

 

Here, AmtCi_ 𝑃𝑊𝑀𝑆𝐶(1:10, :) means all columns and 1 to 10 rows of AmtCi_ 𝑃𝑊𝑀𝑆𝐶, 

Bsyn(:, 1:2) means all rows and 1 to 2 columns of Bsyn, Inxn is an n by n identity matrix, and 

0mxn is an m by n matrix with all elements zero. 

Combining Equations (C.6), (C.7), and (C.9) to form the following equation 



124 
 

[
∆𝑇𝑒

∆𝑉𝑡
] = [𝐶𝑚𝑡_𝑃𝑊𝑀𝑆𝐶] [

∆𝑋𝑠𝑦𝑛

∆𝑉𝐶𝑑

∆𝑉𝐶𝑞

] + [𝐷𝑚𝑡_𝑃𝑊𝑀𝑆𝐶] [
∆𝑒𝑓𝑑

∆𝜔
∆𝛿

]      

 (C.11) 

where 

[𝐶𝑚𝑡_𝑃𝑊𝑀𝑆𝐶] = [

𝑇𝑒𝑑𝑞0 0 0 0 0

[
𝑉𝑡𝑑0

𝑉𝑡0

𝑉𝑡𝑞0

𝑉𝑡0
] [𝐶𝑖_𝑃𝑊𝑀𝑆𝐶]

] 

[𝐷𝑚𝑡_𝑃𝑊𝑀𝑆𝐶] = [
0 0 0

[
𝑉𝑡𝑑0

𝑉𝑡0

𝑉𝑡𝑞0

𝑉𝑡0
] [𝐷𝑖_𝑃𝑊𝑀𝑆𝐶]]        (C.12) 

 

Shaft and excitation system: Combining Equations (C.3), (C.4), and (C.5) to form the 

following equations 

[
 
 
 
 
𝑑∆𝑋𝑚𝑠

𝑑𝑡
𝑑∆𝑋𝑔

𝑑𝑡
𝑑∆𝑋𝑣

𝑑𝑡 ]
 
 
 
 

= [𝐴𝑝1] [

∆𝑋𝑚𝑠

∆𝑋𝑔

∆𝑋𝑣

] + [𝐴𝑝2] [
∆𝑇𝑒

∆𝑉𝑡
] + [𝐵𝑝] [

∆𝑃𝑚0

∆𝐸𝑟𝑒𝑓
]    (B.13) 

where 

[𝐴𝑝1] = [

𝐴𝑚𝑠 012×1 𝐵𝑚𝑠(: ,2: 4) 012×3

04×11 𝐵𝑔(: ,2) 𝐴𝑔 04×3

03×16 𝐴𝑣

] 

[𝐴𝑝2] = [

𝐵𝑚𝑠(: ,1) 012×1

04×2

03×1 𝐵𝑣(: ,1)
]               (B.14) 

          [𝐴𝑝2] = [

𝐵𝑚𝑠(: ,1) 012×1

04×2

03×1 𝐵𝑣(: ,1)
]    

[𝐵𝑝] = [

012×2

𝐵𝑔(: ,1) 04×1

03×1 𝐵𝑣(: ,2)
] 

Combining Equations (C.11) and (C.13) to form the following equations 
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[
 
 
 
 
𝑑∆𝑋𝑚𝑠

𝑑𝑡
𝑑∆𝑋𝑔

𝑑𝑡
𝑑∆𝑋𝑣

𝑑𝑡 ]
 
 
 
 

=

[𝐴𝑝1] [

∆𝑋𝑚𝑠

∆𝑋𝑔

∆𝑋𝑣

] + [𝐴𝑝2𝐶𝑚𝑡_𝑃𝑊𝑀𝑆𝐶]

[
 
 
 
 
∆𝑋𝑠𝑦𝑛

∆𝑉𝐶𝑑

∆𝑉𝐶𝑞

∆𝑉𝑆𝑑

∆𝑉𝑆𝑞 ]
 
 
 
 

+ [𝐴𝑝2𝐷𝑚𝑡_𝑃𝑊𝑀𝑆𝐶] [
∆𝑒𝑓𝑑

∆𝜔
∆𝛿

] + [𝐵𝑝] [
∆𝑃𝑚0

∆𝐸𝑟𝑒𝑓
]    

(C.15) 

where 

 [𝐴𝑝2𝐶𝑚𝑡_𝑃𝑊𝑀𝑆𝐶] = [𝐴𝑝2][𝐶𝑚𝑡_𝑃𝑊𝑀𝑆𝐶]       

[𝐴𝑝2𝐷𝑚𝑡_𝑃𝑊𝑀𝑆𝐶] = [𝐴𝑝2][𝐷𝑚𝑡_𝑃𝑊𝑀𝑆𝐶]      (C.16) 

Entire system state equation: Combining Equations (C.8) and (C.15) to form the 32
nd

 order 

state equation of the complete system 

[
𝑑∆𝑋

𝑑𝑡
] = [𝐴][∆𝑋] + [𝐵][∆𝑈]     (C.17) 

where 

[∆𝑋] = [∆𝛿𝐸   ∆𝛿   ∆𝛿𝐵   ∆𝛿𝐴   ∆𝛿𝐼   ∆𝛿𝐻   ∆𝜔𝐸    ∆𝜔   ∆𝜔𝐵   ∆𝜔𝐴 ∆𝜔𝐼   ∆𝜔𝐻 … 

 ∆𝐶𝑉    ∆𝑃𝐻  ∆𝑃𝐼   ∆𝑃𝐴   ∆𝑒𝑓𝑑   ∆𝐸𝑅   ∆𝐸𝑆𝐵   ∆𝑖𝑑   ∆𝑖𝑞   ∆𝑖𝑓𝑑   ∆𝑖1𝑞 … 

 ∆𝑖1𝑑   ∆𝑖2𝑞   ∆𝑉𝐶𝑑    ∆𝑉𝐶𝑞   ∆𝑉𝑆𝑑    ∆𝑉𝑆𝑞   𝑢1   ∆𝑋𝑆    ∆𝑋𝑆𝐹]
T 

 [∆𝑈] = [∆𝑃𝑚0   ∆𝐸𝑟𝑒𝑓]
T
 

[T] = [ App1(:,1) App1(:,2) + App2(:,3)  App1(:,3:7) App1(:,8) + App2(:,2)…     

App1(:,9:16) App1(:,17) + App2(:,1) App1(:,18,29)]  

[𝐴] = [
𝑇 029×3

𝐶1 03×11 𝐶2 03×4 𝐶3
] 

[𝐵𝑝] = [

012×2

𝐵𝑔(: ,1) 04×1

03×1 𝐵𝑣(: ,2)
] 
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[𝐵] = [
𝐵𝑝

013×2
]              (C.18) 

[𝐴𝑝𝑝1] = [
𝐴𝑝1 𝐴𝑝2𝐶𝑚𝑡_𝑃𝑊𝑀𝑆𝐶

010×19 𝐴𝑚𝑡_𝑃𝑊𝑀𝑆𝐶
] 

[𝐴𝑝𝑝2] = [
𝐴𝑝2𝐷𝑚𝑡_𝑃𝑊𝑀𝑆𝐶

𝐵𝑚𝑡_𝑃𝑊𝑀𝑆𝐶
] 

 

 


