
 

 
 

Revisiting Traffic theories for different models in lights 

of Pre-Crash Traffic Condition 

 

 

 

 

 

 

 

 

MD. MAHMUD HOSSAIN 

 

 

 

 

 

 

 

Department of Civil & Environmental Engineering 

Islamic University of Technology 

2015 



 

 
 

 

 

Revisiting Traffic theories for different models in lights of Pre-

Crash Traffic Condition 

 

 

 

MD. MAHMUD HOSSAIN 

Student ID: 115431 

 

 

 

A THESIS SUBMITTED FOR THE DEGREE OF SCIENCE IN 

CIVIL ENGINEERING 

 

 

 

Department of Civil & Environmental Engineering 

Islamic University of Technology 

2015 



 

 
 

APPROVAL 

 

 

 

 

 

 

This is to certify that the thesis submitted by Md. Mahmud Hossain entitled as 

“Revisiting Traffic theories for different models in lights of Pre-Crash Traffic 

Condition” has been approved fulfilling the requirements for the Bachelor of Science 

Degree in Civil Engineering. 

 

 

 

 

 

 

______________________________________ 

Moinul Hossain 

 

Assistant Professor,  

Department of Civil and Environmental Engineering (CEE)  

Islamic University of Technology (IUT)  

Board Bazar, Gazipur, Bangladesh.  

 

 

 

 



 

 
 

DECLARATION 

 

 

 

 

I declare that the undergraduate research work reported in this thesis has been performed 

by me under the supervision of Assistant Professor Moinul Hossain. I have exercised 

reasonable care to ensure that the work is original and has not taken from the work of 

others. 

 

 

 

 

 

 

 

 

 

 

_______________________________ 

Md. Mahmud Hossain 

Student ID: 115431 

November, 2015 

 



 

iv 
 

ACKNOWLEDGEMENTS 

 

Writing a significant scientific thesis is hard work and it would not be possible without 

support. All praises to Allah (SWT) for giving me the opportunity to complete this report. 

I would especially like to thank my mother and father who have provided me with the 

strength and dedication needed to complete this thesis. 

It is the proud privilege to acknowledge my sincere and deepest sense of gratitude to my 

respected Supervisor Moinul Hossain, Assistant Professor of Civil and Environmental 

Engineering for his untiring efforts, inspiration, invaluable guidance and constructive 

criticisms throughout the period.  

I would like to express gratitude to all of the Departmental faculty members for their help 

and support. 

I am also thankful to my friends and well-wishers for their valuable suggestion and 

cordial assistance. 

 

 

 

 

 

 

 

 

 

 

 



 

v 
 

ABSTRACT 

 

The concept of predicting the probability of a road crash on an access controlled road is 

gaining momentum in recent years. Considerable research has been carried out to 

establish several statistical and artificial intelligence based models which can take real-

time traffic data as input to predict the short time crash probability. In general, the 

underlying methodology builds knowledge about traffic condition during the time periods 

when there is no crash taking place from the historical detector data and based on that, if 

they find the real-time traffic data to be differing significantly from the normal data, they 

classify it as crash prone. Interestingly, although these models heavily deal with the basic 

traffic flow variables, such as, speed, flow, density, and/or their descriptive statistics or 

surrogate measures to build and operate such models, very few studies have been focused 

on whether and how the fundamental relationships of traffic flow theories differ for pre-

crash and normal traffic conditions. The main purpose of this research is to revisit 

classical two-phase traffic flow theories in lights of pre-crash and normal traffic 

conditions and identify the variations in traffic conditions using pre-crash and normal 

traffic data. 

The data for the analysis was extracted from 210 detectors from March 2014 to August 

2014 on the Shibuya 3 and Shinjuku 4 routes of Tokyo Metropolitan Expressway in 

Japan. The detector data consisted of information on speed, vehicle count, occupancy and 

number of heavy vehicles aggregated for each minute for each lane of the study area. 

During this time 620 crashes took place. Matching the crash and the detector data, pre-

crash and normal traffic condition datasets were prepared. For pre-crash data, for each 

crash point, data for each minute for the ten minutes leading to crash were collected from 

the nearest detector, nearest upstream and nearest downstream detectors. For normal 

traffic conditions, detector data was collected through random sampling with the filter 

that ensured that none of the data belonged to any timestamp where a crash took place on 

that direction of the route within three hour before or after that time. 

Afterwards, four classical two-phase traffic flow models: Greenshields, Greenberg, 

Underwood and Bell-shaped models, were separately built for each detector location and 
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each timestamp using the pre-crash dataset. Similarly, the four relationships were 

generated using the normal traffic condition dataset. 

The results show that all four classical two-phase traffic flow models are held true for 

both normal and pre-crash traffic conditions. Downstream detectors and nearest detectors 

could explain crash data better than upstream detectors. Free flow speed and jam density 

values of classical models which are depended on model accuracy can explain the 

variations between normal and hazardous traffic condition. 
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 CHAPTER 1  

INTRODUCTION 

 

1.1 Background 

Traffic flow theories can be called the foundation of Traffic Science building the 

backbone of transportation engineering. They have various applications in transportation 

and urban planning (Velasco and Saavedra, 2008). Traffic flow theories mathematically 

represent a system in which many vehicles are interacting with each other. They, in 

microscopic level, provide understanding about the phenomena related with the 

movement of individual vehicles along a roadway and in macroscopic level explains the 

behavior of a traffic stream. These theories are essential in determining the fundamental 

characteristics of roadways such as their ability to sustain in various traffic flow level and 

for given set of capacities. 

In traffic flow theory a basic distinction is made between microscopic and macroscopic 

traffic flow models and their variables. Macroscopic model characterizes the traffic as a 

whole and considers the relationships of traffic characteristics like speed, flow, density of 

traffic stream. Microscopic traffic flow model considers each of the individual vehicles in 

road network and how they interact with each other. Traffic flow models can be used to 

establish traffic simulation based on characteristics of the flow (macroscopic) or 

individual vehicles (microscopic). 

The basic idea of traffic flow theory is based on the concept that flow of fairly heavy 

traffic appears like a stream of a fluid. A macroscopic theory of traffic can be developed 

considering traffic stream as an effectively one-dimensional compressible fluid by 

following hydrodynamic theory of fluids. The behavior of sizable aggregated vehicles is 

taken under consideration in this analogy. All traffic stream models and theories have to 

satisfy the rules of conservation of the vehicle numbers on the road. 

Researchers have been involved in developing traffic flow models since the first half of 

the last century. As discussed earlier, macroscopic traffic stream models represent how 



Chapter 1: Introduction 

2 
 

the behavior of traffic flow parameters (speed, flow, density) changes with respect to one 

another. Around 80 years ago, the first traffic flow theory was proposed by Greenshield 

(1933) observing traffic on a highway. He performed tests associated with determination 

of traffic flow, traffic density and speed using photographic measurement methods for the 

first time and the derived model established relationships between traffic flow variables 

(speed, flow, density). The model was simplistic in nature and he assumed a linear 

relationship between traffic speed and density. However, in reality, it is very hard to find 

such a relationship between speed and density which saw the emergence of more 

complex models. 

Greenberg‟s logarithmic model (1959) was established to answer the drawback of 

Greenshield‟s model which assumed a logarithmic relation between speed and density. 

This model has achieved much popularity because of its simplistic analytical derivation. 

Main drawbacks of this model is when density tends to zero the speed tends to become 

infinity. For this reason, Greenberg‟s model does not perform well in predicting speed at 

low density. To overcome the limitation of Greenberg‟s model, Underwood (1961) 

assumed an exponential relationship between speed and density. The limitation of this 

model is when speed becomes zero, density reaches infinity. Hence this cannot be used 

under high density traffic conditions. Drake et al. (1967) relate traffic flow model with 

bell-shaped curve model and proposed that speed-flow specification associated with the 

normal distribution curve. Dagnazo (1994) proposed that fundamental relation is 

triangular in the density– flow plane. Hence, since 1933, several traffic flow theories 

have evolved each with its own strength and drawbacks. 

Apart from being the essential parts of the traffic flow theories, the basic traffic flow 

variables – speed, flow and density, are used for many activities related to traffic 

engineering. One such emerging field is road safety. Road crashes have adverse effects 

on both the health of the people and can be harmful to the economy. High amount of 

money has been needed to recover the conditions created by road accidents. Due to road 

accidents, high income countries spent around 518 billion USD per year and medium/ 

low income countries spent 65 billion USD per year (WHO, 2004). Authorities of 
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different countries have taken various steps to reduce road crashes. The classical 

approaches have divided causes of crash based on human, vehicle and road and 

environment related factors as presented with Figure 1.1.  Among these factors, human 

factors are responsible for most of the crash cases. Several studies related to road safety 

have identified different factors responsible for road crashes and minimize the impacts of 

the selected factors on road crashes. However, most of the initiatives have been geared 

towards vehicle and road and environment related factors. In recent times, some studies 

are investigating the possibility to involve traffic flow variables for predicting road 

crashes in real time. Such models are known as real-time crash prediction models. These 

models are based on the hypothesis that some combinations of speed, flow and density 

can result in traffic conditions causing discomfort to drivers leading to mistakes that may 

result in as crashes. Now-a-days, especially in the developed world, a large number of 

roads, especially access controlled roads are equipped with number of sensors cameras, 

magnetic sensors, infrared sensors, microwave sensors, laser sensors, and inductive loop 

detectors (Lawrence A. Klein, 2006). These devices are making it easier to obtain data of 

traffic flow variables in real time. 

 

Figure 1.1: Factors Contributing to Road Crashes in the USA (Treat et al., 1977) 
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1.2 Problem Statement: 

The research development in real-time crash prediction has so far been focused on 

distinguishing pre-crash data from normal traffic data through various kinds of prediction 

models. 

Likelihood of crash occurrence was developed based on real time traffic data where 

statistical relationships showed that speed variation was an important variable (Oh et al., 

2001). Golob and Recker (2001) investigated relationships of the flow of traffic, and 

weather and ambient lighting conditions with different crashes. The results proved that 

median traffic speed and temporal speed variations are strongly related to the type of 

collisions. Lee et al. (2003) developed a log-linear model to predict crash occurrence by 

establishing relationships between coefficient of variation in speed, traffic density and 

speed difference to identify crash likelihood. Abdel-Aty et al. (2005) developed real-time 

crash risk prediction models considering different speeds of traffic conditions based on 

logistic regression because mechanisms of multi-vehicle crashes were changing with 

different speed regimes. Relationships were building up between severe crash occurrence 

and the chosen variables. Separate real-time crash prediction model was developed for 

freeway and ramp (Hossain and Muromachi, 2011). The level of congestion and speed 

difference between upstream and downstream were used as the most important predictors 

of crash occurrence. Xu et al. (2012) used clustering analysis to establish connection 

between different traffic states and crash risks on freeways. Crash prediction models were 

developed using crash reports, real-time traffic and weather data (Yu and Abdel-Aty, 

2014). Random forest model was firstly performed to identify the most important 

variables associated with crash occurrence.  

However, very few studies have focused on whether and how the fundamental 

relationships of traffic flow theories differ for pre-crash and normal traffic conditions. 
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1.3 Purpose and Objectives 

The purpose of this research is to revisit traffic flow theories in lights of pre-crash and 

normal traffic conditions. The specific objectives are: 

Objective 1: Derive and compare classical two-phase traffic flow relationships for pre-

crash and normal traffic condition data. This will include deriving four classical traffic 

flow theories – Greenshields, Greenberg, Underwood and Bell-shaped models, separately 

for pre-crash and normal traffic data. 

Objective 2: Evaluate longitudinal variation of traffic flow relationships both in time and 

space scale for pre-crash traffic data, and, 

Objective 3: Discuss the variations in traffic conditions for pre-crash and normal traffic 

data, if any. 

 

1.4 Scope 

The main scope of this study is to investigate two phase traffic flow theories using 

macroscopic traffic flow data for different models with different traffic conditions (Pre-

Crash and Normal). Identifying the pattern of change occurrence during pre-crash traffic 

flow condition from normal traffic flow condition is also an important scope in this study. 

 

1.5 Limitations 

This Study has several limitations. Only speed-density relationship has been used for 

performing analyzes. Any variables are not considered that are related to weather though 

human factors are sometimes depended on certain weather condition. Statistical 

Analyses, through hypothesis testing are not performed evaluating the significance of 

differences between normal and hazardous traffic conditions. Random sampling has been 

performed only one time for establishing normal traffic dataset.
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CHAPTER 2 

LITERATURE REVIEW 

 

2.0 General 

This chapter provides a self-contained summary of all the major concepts and 

developments needed to be known for understanding the state of the art of this thesis 

topic. 

 

2.1 Road crash and its causes 

A Road crash is the most unwanted thing to happen to a road user, though they happen 

quite often. According to WHO (World Health Organization), road crashes are 9th major 

cause of death globally. Crash occurrence is not only the waste of valuable time but also 

increasing many consequence activities such as repair, maintenance and road clearance. 

Road crash prediction is quite difficult because causes of road crashes are related with 

various factors like road conditions, driver‟s behavior as human factors, environment 

conditions, rules and regulations on roads for road safety. Many researchers have 

suggested that crashes can occur even if the vehicle, environment or weather and road 

geometry are favorable to safe driving. This happens due to sudden formation of 

hazardous traffic condition causing driving uncertain behavior and discomfort. Human 

factors such as over speeding, drunken driving, distractions to driver are directly or 

indirectly responsible for road crashes compared to road, environment and vehicle related 

factors (Sabey et al., 1975). A similar study by Treat et al. (1977) on US data discovered 

that road/environment and vehicle related factors are very much less responsible 

compared to human factors for road crashes (Figure 1.1). To understand crash 

phenomena, addressing human factors are the most important task. But Human factors 

like different types of human errors related with road crashes are hard to measure because 

these factors can‟t be captured through experimental setup due to associated risk. 
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2.2 Crash phenomena and its determinants 

Studies to find out relationships between crashes and traffic flow can be classified into 

two types: (a) aggregate studies, which is based on number of crashes or crash rates for a 

certain time periods (typically months or years) and for specific roads or networks and 

statistical distributions of parameters or variables are used to understand of traffic flow 

for similar time and roads or networks (b) disaggregate studies based on details of each of 

the crashes and parameters or variables of traffic flow are used to represent traffic flow 

for each of the crash time and place (Golob et al., 2004). In this work they established 

relationship between different types of crashes and real-time traffic flow using 30-second 

interval volume and occupancy data. Among two types of studies, it is found that 

Aggregated traffic flow variables (speed, flow, density) can be considered as a surrogate 

measure of human factors (Hossain and Muromachi, 2013). Macroscopic studies use 

crash data in terms of Vehicle Miles of Travel (VMT) which is mostly related with long 

time periods. Relationships between human factor variables (speed, flow, density) and 

traffic flow theory are important for understanding crash phenomena. Traffic flow theory 

is depended on the relationships between speed, flow, occupancy and space mean speed 

(Lighthill and Whitham, 1955; Richards, 1956). For thinking more deeply the 

relationships between speeds, flow, and density in different models are important. 

 

2.3 Classical traffic flow theories 

Around 80 years ago, traffic flow relationships had been developed. Different traffic 

models generate different relationships considering different sort of conditions. Every 

traffic model has some limitation and different models have been established to minimize 

the limitations. It has been found that different models represent different traffic flow 

condition under some considerations. Different models have been developed to establish 

relationships of variables like speed-flow-density. Display of the appropriate models can 

provide the traffic manages the traffic flow characters of different roads which can help 

them to do more research on the traveler‟s travel behaviors, traffic ramp control, and 

congestion analysis. Besides availability of different models in describing traffic flow 
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theory is an important application for developing modern traffic control theory by finding 

adequate solutions of problems. Four models- Greenshields model(1935), Greenberg 

model(1959), Underwood model(1961), Bell shaped curve model(1967) have been used 

widely to characterize traffic flows as well as traffic conditions. Greenshields(1935) 

succeeded to develop a model of uninterrupted traffic flow that explains the sequences 

that are observed in real traffic flows and assumed a linear relationship between speed 

and density. It is mostly accurate and relatively simple. Greenberg (1959) has achieved a 

great success because this model can be derived analytically and established a non-linear 

relationship between speed-density. When density tends to zero, speed tends to infinity. 

Underwood (1961) tried to minimize the limitations on Greenberg model and established 

that speed becomes zero only when density reaches infinity which is the major drawback 

of this model. Drake (1967) proposed relationships that are based on normal statistical 

distributions such as bell shape. 

 

2.4 Traffic flow variables and crash prediction 

To understand the comparison of different models relationships investigate these 

relationships with real time traffic flow data is essential. Many researchers have been 

worked on traffic flow variables and their relationships for different models. Examples 

are: Verification of Flow-density relationship using strong data set collected from the 

Queen Elizabeth Way in Ontario (Hall et al., 1986), Analyzing the speed-flow 

relationship based on the traffic flow and travel time data in Singapore (Lum et al., 1998), 

speed-flow and flow-density relationships in normal traffic condition based on large data 

set (Nielsen and Jorgensen, 2008), Determine level of safety based on the speed-flow 

relationship of different lanes considering a certain traffic condition using Chengdu 

expressway data of China (Xie et al., 2011).  For proper understanding crash phenomena 

connection between crash prediction and normal traffic flow condition has to be 

established. 

Prediction of crash occurrence based on normal traffic flow condition is the most heavily 

studied topic in the development of real time crash prediction model as well as road 
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safety. Using normal traffic flow condition that changes with time and different situations 

for identifying the likelihood of crash occurrence is a significant concept in road safety 

development. But there is no clear understanding about how traffic flow variables and 

their relationships effect on road safety. Many researchers have done various types of 

analysis associated with different models to identify what the changes of normal traffic 

flow relationships occur in pre-crash traffic flow conditions. But the approaches are not 

sufficient to predict crash occurrence using traffic flow variables. Using cluster analysis, 

it is found that hazardous traffic condition can be great extent distinguished from the 

normal traffic condition (Hossain and Muromachi. 2011). Question may be asked which 

relationships are more suitable for representing traffic flow conditions. Also important to 

identify the methods to compare normal traffic flow relationships with pre-crash traffic 

flow conditions. 

As discussed earlier, different relationships can be generated to understand traffic flow 

conditions. These relationships can be flow-speed, speed-density and flow-density. For 

any type of research, it will be very much difficult to work with every possible 

relationship. To avoid the problem, most preferable relationship has to be identified. The 

relationship of speed-flow or speed-density is depended on only road type and free flow 

speed.  In most of the research work (mentioned earlier) speed-density proves to be good 

representative of traffic flow condition (Normal or Hazardous). Lee et al. (2002) 

established the concept of pre-crash condition and determine the likelihood of crash is 

significantly depended on short-term turbulence of traffic flow. They have identified two 

important factors of road crashes- speed and density. 

Relationships are established based on data. Accuracy of data related with proper data 

collection method is significant to finding the actual result. Using loop detector data in 

road crash prediction for road safety is still in preliminary stage. Modern sensor 

technologies have the ability to identify vehicle presence by vehicle signature and 

measure number of vehicle count as flow/occupancy and speed. Traffic flow parameters 

such as density, travel time and origin-destination pairs can be collected by installing 

image processors along roadway section (Mimbela and Klein, 2007). Detector 
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availability is also essential to get the required data for analysis. For pre-crash traffic flow 

condition, this importance is much higher. Obtaining downstream/ upstream/ nearest 

detector data is required to find out the comparison of different detector data before crash 

occurrence. Availability and accuracy of real-time traffic flow data are important to 

identify correct the relationships of speed, flow, density. Inductive loop detectors, 

magnetic sensors, video image processors, microwave radar sensors, infrared sensors, 

laser radar sensors have been used to determine traffic flow variables (speed, flow, 

density, space mean speed, travel time etc). These technologies have been chosen based 

on required accuracy/ size of database, cost and specifications for authorities (Mills and 

Gibson, 2006). Using loop detector data for establishing flow-occupancy relationship on 

aggregated studies has been done in previous studies (Coifman et al., 2000). 

Classical equations for different models are to be generated based on relationships. Many 

researchers have focus on the characteristic of traffic flow during period of 1950-1970. A 

number of mathematical models were established to describe speed-density relationship 

and calibrated by fitting curves or relationship with respect to normal traffic data (May, 

1991). Using traffic flow data classical equations for different fundamental models are 

generated to understand the significance or importance of variables. 

Method of analysis must be suitable and reliable based on objectives and purpose of 

research work. Comparing traffic flow relationships for different models can be done to 

identify the difference between normal and pre-crash traffic flow conditions and identify 

which model represent or goodness fit for normal and pre-crash traffic flow. Besides this, 

it is very much important to identify the time period of change occurrence for developing 

road safety. A developed regression model has been discovered using traffic flow 

variable relationships for Japanese cities (Ohta and Harata, 1989). Regression model 

analysis on normal traffic condition for different types of roads has been done earlier (LU 

and MENG, 2013). But thinking not only for normal traffic condition but also   for pre-

crash traffic flow condition is important now-a-days. The time difference between 

beginning of changes occurrence and crash time helps to find out in taking some safety 

measurement for avoiding the occurrence of crushes.  



Chapter 2: Literature Review 

11 
 

The aim of the work is to compare speed-density classical curves to estimate functional 

relationships of traffic flow data on normal traffic condition and pre-crash traffic 

condition. Shibuya 3 and Shinjuku 4 routes of Tokyo Metropolitan Expressway have 

been used for data collection because of their availability of detector and generating 

different types of traffic conditions. Single loop detectors are distributed throughout the 

freeway system. A large number of recorded speeds, flow, density measurements are 

observed to estimate the consistency of relations. Based on traffic flow data, several 

regression curves are compared to find which models are fit better in normal traffic 

condition and hazardous traffic condition using correlation coefficient      values.  

Flow, speed, occupancy data are available for different detectors. For this finding out the 

upstream/ downstream/ nearest detector data is much easier. Each of the detector data has 

been compared with normal traffic flow condition data to identify which represent mostly 

the pre-crash traffic flow condition. So another aim of this paper is to identify the 

appropriate representative models and detectors (from previous crash points) for pre-

crash traffic flow condition using normal traffic flow relationships. 
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Chapter 3 

Methodology 

  

3.1 Introduction 

A series of tasks have been performed to fulfill the research needs and stated objectives. 

Classical equations for different models (Greenshields, Greenberg, Underwood and Bell 

shape) have been derived from detector data. Then the equations for various traffic 

conditions were derived using simple linear regressions. The overall workflow is 

explained with Figure 3.1. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1: Overall workflow of the methodology 
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3.2 Study area and the data 

For the proposed study, it was required to have a suitable site where substantial number 

of crashes take place and at the same time, the location has sections which are access 

controlled and heavily instrumented, which helps in collecting high resolution traffic flow 

data as well as crash data with excellent accuracy. Moreover, the sensor spacing is also 

expected to be roughly homogeneous in order to derive conclusion from special 

variations. Shibuya 3 and Shinjuku 4 routes of Tokyo Metropolitan Expressway are 

chosen as the study area as they fulfill all these criteria. They are situated in the center of 

Tokyo Metropolitan area connecting and covering some important business and 

residential areas. The length of Shibuya 3 and Shinjuku 4 routes are respectively 11.9 

kilometers and 13.5 kilometers. A schematic diagram of the routes is provided in Figure 

3.2 (not drawn to scale). This study area contains uniformly spaced detectors having 

average distance of 250 meters from each other. Total number of detector placed in two 

routes is 210. The routes sustain high number of crushes every year. Crash data and 

Normal data were collected for 6 months (March 2014 to August 2014) and 620 crash 

samples had complete data. 

 

Figure 3.2: Shibuya 3 and Shinjuku 4 routes of Tokyo Metropolitan Expressway 

Source: provided by Tokyo Metropolitan Expressway Company Limited 
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3.3 Experimental Setup 

In Tokyo Metropolitan Expressways, data are stored for each detector for every eight 

milliseconds. The data is also stored for each lane covering information on speed, flow, 

occupancy and number of heavy vehicles. The authority aggregated the data for each 

detector for every one minute and provided us to conduct the research. Apart from 

detector data, they also provided us crash data which included information on date, time, 

location, vehicles involved, and types of lane. Also, a map was provided which included 

information on location of ramps, detector positions, and section length. 

The pre-crash data was defined as crash data within the vicinity of the crash just before 

the crash time. Hence, it was important to decide upon the term „near‟ and „just before 

crash time‟. Three locations were chosen – the closest detector (ND) location from crash, 

the nearest in the upstream (UD) and the nearest in the downstream (DD) as presented 

with Figure 3.3. 

 

Figure 3.3: Detector location with respect to crash location 

 

3.4 Data Preparation 

As mentioned earlier, a total 210 are detectors are placed in the two routes, considering 

both directions. Hence, the primary task is to identify nearest detector, upstream detector 
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and downstream detector for each crash point. Initially, the scope of the study was 

expected to cover up to two detectors both downstream and upstream. Hence, as it can be 

seen, DD2 suggests the second detector in the downstream from the crash location and so 

on. ND means nearest detector and NDB and NDA stand for Nearest Detector Before 

(NDB) and Nearest Detector After (NDA) as presented in Table 3.1. 

Table 3.1: Identifying different type of detector for each crash point 

Crash 

ID 

DD2 DD1 ND UD1 UD2 NDB NDA 

481 04 01 03 - - 03 03 

482 02 04 01 03 - 03 01 

483 02 04 01 03 - 03 01 

484 02 04 01 03 - 01 01 

485 02 04 01 03 - 01 01 

486 06 05 02 04 01 02 05 

487 06 05 02 04 01 02 05 

488 08 07 06 05 02 05 06 

489 08 07 06 05 02 05 06 

490 08 07 06 05 02 05 06 

491 09 08 07 06 05 07 08 

492 10 09 08 07 06 08 09 

493 13 10 09 08 07 09 10 

494 13 10 09 08 07 09 10 

 

After identifying detectors, pre-crash data (speed, flow, density) from the corresponding 

crashes were extracted from the database. For each crash and for each detector location 

(say, ND) ten separate datasets were retrieved, each for each minute before crash. Hence, 

the pre-crash dataset considers traffic conditions for up to ten minutes before crash. As 

the data contained information on speed, volume, occupancy and number of heavy 

vehicles. As number of heavy vehicles is not a variable considered as a fundamental 
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variable in four classical traffic flow theories selected in this study, it was dropped from 

the extracted dataset. Also, volume for each lane was merged into one number and the 

speed and occupancy represented the average for each detector. Table 3.2 presents the 

sample pre-crash data for the 5
th

 minute before crash for the nearest detector (ND) for the 

first six crash data. The flow is in number of vehicles unit, speed is in kilometers per hour 

and occupancy is in percentage value. 

Table 3.2: Pre-crash data set (for 5 min, ND) 

Crash ID flow Speed Occupancy 

1 8 31.8 2.9 

2 10 30 3.05 

3 5 28.85 1.7 

4 4 31.6 1.1 

5 21 10.8 17.4 

6 13 10.5 20.6 

 

Normal dataset was compiled by taking random selecting detector data for various 

detectors at various locations. However, it was taken care of that no data is collected from 

any direction of any route 3 hours before and 3 hours after a crash. The total number of 

samples collected for normal data was 1289. A sample of the normal dataset is provided 

with Table 3.3 

Table 3.3: Normal Dataset (Sample) 

Flow Speed Occupancy 

7 1.5 29.1 

47 1.9 33.65 

35 58.9 12 

49 45.05 14.1 

30 22.85 27.35 
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9 91.65 1.9 

19 8.7 42.75 

50 53.7 17.25 

 

 

3.5 Classical Speed-density Models: 

Fundamental relationship among three major variables of traffic flow theory: flow (q), 

speed (V) and density (K) is given below: 

q = V * K                         (1) 

Equation (1) is important to generate relationship between speed and density and other 

relationships as density-flow and speed-flow will be got automatically. 

Around 80 years ago, first traffic flow model (Greenshields model) established to find out 

the relationships of major variables representing traffic flow condition. Greenshields 

(1935) suggested a linear relationship between speed and density. 

K =    (1- 
 

  
                                                                                                                     (2) 

Where     = jam density (when V = 0);    = free flow speed 

May (1991) established classical speed-density relationships for some other important 

models using fundamental relationship. 

Greenberg: 

K =    
  

                                                                                                                            (3) 

Underwood: 

K =   ln(
  

 
)                                                                                                                      (4) 
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Bell-shape: 

K =       
  

 
                                                                                                                   (5) 

Where     is the density at maximum flow level;    is the speed at maximum flow level. 

To get speed-flow model (if necessary), common suggestion proposed by many 

researchers was using density and speed data for establishing the mathematical models 

and then covert them using equation (1). From these equation, only     or     and one of 

   or    are need to know to get a speed-density relationship curve.  

 

3.6 Simple Linear Regression Model: 

Simple regression analysis always involves a single independent or predictor variable and 

a single dependent or outcome variable. The purpose of simple linear regression analysis 

is to make predictions about the value of the outcome or dependent variable in giving 

certain values of the predictor or independent variable. For example: in speed-flow 

relationship if density is dependent variable and speed is an independent variable, for a 

certain value of speed a predicted density value will be found. 

Simple linear regression analysis produces a linear regression line: 

Y = bX + a                                                                                                                        (6) 

Where, 

Y = predicted value of dependent variable; 

X = value of dependent variable; 

b = unstandardized regression coefficient or slope;   

a = intercept (means the point where the regression line intercepts the Y axis) 
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Square of distance between data point and drawn line using data is called squared 

deviation for that point. Adding all of squared deviation for each of the data point 

together is called sum of squared deviations, or sum of squares. The sum of the squared 

deviations sometimes called sum of squares will be different depending on where line has 

been drawn in scatter plot. In any scatterplot, there is only one line that produces the 

smallest sum of squares and this line is the regression line. In short, the linear regression 

line represents the straight line that produces the smallest sum of squared deviations from 

the line. 

From regression analysis, correlation coefficient (  ) is also found which represents the 

percent of the data is the closest of the line of the best fit. It indicates how well the 

regression line represents the data. For example if    = 0.65, it means that 65% of the 

total variation in Y can be explained by linear relationship between X and Y. 

 

3.7 Deriving linear forms for classical traffic flow theories 

Equation (2), (3), (4), (5) represents classical equations of speed-density relationship for 

different models. In order to run regression analysis, these non-linear models were 

transformed into linear equations as presented with Table 3.4 

Table 3.4: Transformation from speed-density function 

Model  Speed-density Function Transformation 

Greenshields K =    (1- 
 

  
  K =     -    * 

 

  
 

Greenberg 
K =    

  

   lnK = ln(     + (- 
 

   
)V 

 

Underwood K =    ln(
  

 
) K=    ln(  ) -    ln(V) 

Bell Shape K=       
  

 
        = 2  

 ln(  )  - 

2  
 ln(V) 
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CHAPTER 4 

RESULTS AND ANALYSIS 

 

4.1 Introduction 

The results obtained through the previously outlined methodologies are presented in this 

chapter. In order to predict crash phenomena using traffic flow theory, Simple linear 

regression analyses are performed by using a popular open source statistical analysis 

program named “R”. 

 

4.2 Normal Traffic condition 

Figure 4.1 shows matrix scatter plot for normal traffic flow data. These kind of plot helps 

to identify the relationships between traffic flow variables such as speed, density and 

occupancy. Generally when density increases, speed will decrease but when flow 

increases, speed will increases to a certain limit and then start declining. 

 

Figure 4.1: Matrix of scatter plots for normal traffic flow data 
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Figure 4.2 shows regression lines for four models (Greenshields, Greenberg, Underwood, 

Bell Shape) using R. Table 4.1 represents four regression line equations for normal traffic 

flow condition. Regression line equations help in estimating parameters (   ,   ,    ,      

of models. 

            

 

              

Figure 4.2: Regression lines for four models (Normal flow data) 

 

Table 4.1: Regression line equations for normal traffic condition 

Model Transformation Regression line equation 

Greenshields K =     -    * 
 

  
 K = 36.585631 - 0.389404V 

Greenberg lnK = ln(     + (- 
 

   
)V 

 

lnK = 4.0815583 - 

0.0309193V 

Underwood K=    ln(  ) -    ln(V) K = 72.4114 - 15.1288lnV 

Bell Shape    = 2  
 ln(  )  - 2  

 ln(V) 

 

   = 2754.902 - 624.42lnV 
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From regression analysis, the correlation coefficients      and estimated parameters are 

found for each model. 

Table 4.2:    and estimated parameters value for normal traffic condition 

Model                

Greenshields 0.8397 93.95   36.586 

Greenberg 0.8044  32.34  59.238 

Underwood 0.8562 119.86  15.1288  

Bell Shape 0.7544 82.43  17.67  

 

Traffic density and speed relationship on the models of Greenshields, Greenberg, 

Underwood, and Bell-shape are much related with correlation coefficients of each model.  

The highest value of correlation coefficient is related to Underwood model with    

0.8562 and after that Greenshields model with    is 0.8397 (Table 4.2). 

Comparing the four model‟s parameters, the free flow speed    in Greenshields model is 

lower than Underwood model (93.95 and 119.86) because of the difference between    

values. As Bell Shape model‟s regression is not very accurate compared to other 

models           , it‟s    only shows to be 82.43.    can be assume to be 32.34 

because there is only one estimation for this parameter presented in Greenberg Model in 

which the value of    is 0.8044.    is assumed to be 15.1288 as the underwood model is 

better than the Bell-shape model.    value is higher in Greenberg because of 

comparatively low    value than Greenshields. 
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Table 4.3: Classical Equations with parameters (Normal Traffic Condition) 

Model Name Classical Equation 

Greenshields K=36.586(1- 
 

     
  

Greenberg 
K=59.238    

 

     
 
 

Underwood K=15.1288ln
      

 
 

Bell Shape K=17.67    
     

 
     

 

 

4.3 Comparison of     values 

4.3.1 Pre-crash traffic condition (UD1)  

Regression Analysis has been performed in first upstream detector (UD1) up to 10 min 

before crash point. Table 4.4 shows the correlation coefficient values      for four 

models. 

Table 4.4: Coefficient      values for UD1 

Model Name T=10 T=9 T=8 T=7 T=6 

Greenshields 0.5406 0.5377 0.525 0.5449 0.5403 

Greenberg 0.6581 0.6948 0.6374 0.6426 0.6743 

Underwood 0.733 0.6987 0.7264 0.7061 0.7226 

Bell Shape 0.6493 0.5379 0.5518 0.5925 0.592 

 T=5 T=4 T=3 T=2 T=1 

Greenshields 0.5552 0.5337 0.5179 0.5472 0.549 

Greenberg 0.6897 0.6054 0.6934 0.7005 0.6595 

Underwood 0.7388 0.7455 0.7118 0.7747 0.7585 

Bell Shape 0.5939 0.6086 0.4955 0.6165 0.6266 

 

The highest and lowest value of correlation coefficients      in different models are 

0.552 and 0.5179; 0.7005 and 0.6054; 0.7747 and 0.6987; 0.6493 and 0.4955. Correlation 

coefficients      values are lower for pre-crash condition in each model compared to 

normal condition. Greenberg and Underwood model performs well for pre-crash 

condition. Each of the time periods, Underwood model performs better than Greenberg 
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model. Greenshields model performance is the poorest. Bell shape performance does not 

follow any sequence. 

4.3.2 Pre-crash traffic condition (DD1) 

Regression analysis is performed in first downstream detectors (DD1) to identify whether 

the same principle of first upstream detectors (UD1) is applicable or not (Table 4.5). 

Table 4.5: Coefficient      values for DD1 

Model Name T=10 T=9 T=8 T=7 T=6 

Greenshields 0.5933 0.6063 0.5748 0.6023 0.5909 

Greenberg 0.6576 0.6703 0.7438 0.7571 0.7418 

Underwood 0.7799 0.818 0.7931 0.7944 0.7673 

Bell Shape 0.6336 0.7121 0.6355 0.6629 0.5959 

 T=5 T=4 T=3 T=2 T=1 

Greenshields 0.5985 0.5931 0.6227 0.5976 0.6025 

Greenberg 0.7276 0.6986 0.7844 0.7388 0.7354 

Underwood 0.7894 0.7835 0.7905 0.8085 0.7827 

Bell Shape 0.6483 0.6634 0.6397 0.6811 0.5865 

 

The highest and lowest value of correlation coefficients      in different models are 

0.6227 and 0.5748; 0.7844 and 0.6576; 0.818 and 0.7673; 0.7121 and 0.5865. Correlation 

coefficients      values are lower in each model compared to normal condition but 

comparatively higher than UD1. Greenberg and Underwood coefficient values are very 

close in some cases (T=6, T=3) which indicate hazardous traffic condition. Again, 

Greenshields model performance is the poorest. Bell shape performance does not follow 

any sequence. 

4.3.3 Pre-crash traffic condition (ND) 

The most important detectors in any crash phenomena are nearest detectors (ND) because 

these detectors are much closer to crash points. Regression analysis has been performed 

with great importance in ND (Table 4.6). 
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Table 4.6: Coefficient      values for ND 

Model Name T=10 T=9 T=8 T=7 T=6 

Greenshields 0.1962 0.2034 0.2203 0.2179 0.1968 

Greenberg 0.611 0.6367 0.6342 0.6533 0.6236 

Underwood 0.6733 0.6837 0.7165 0.6724 0.6532 

Bell Shape 0.5608 0.5997 0.615 0.5468 0.5226 

 T=5 T=4 T=3 T=2 T=1 

Greenshields 0.2108 0.2182 0.2216 0.195 0.1951 

Greenberg 0.6288 0.6921 0.6665 0.6594 0.6253 

Underwood 0.6651 0.6842 0.6552 0.6101 0.5888 

Bell Shape 0.5264 0.5093 0.4887 0.4374 0.3964 

 

Ranges of correlation coefficient      in different models are 0.195 to 0.2216; 0.611 to 

0.6921; 0.6101 to 0.7165; 0.3964 to 0.615. Correlation coefficients      values are lower 

in each model compared to normal condition and pre-crash condition for DD1. 

Greenshields regressions are not so accurate for ND compared to UD1 and DD1. In some 

case Greenberg performs better compared to Underwood (T=4 to T=1). These two 

differences represent better pre-crash traffic condition. 

4.3.4 Pre-crash traffic condition (NDB and NDA) 

To understand the cause of change occurrence, regression analysis has to be performed 

for nearest detectors before (NDB) which are related with ND and UD1 and nearest 

detectors after (NDA) which are related with ND and DD1. 

Table 4.7: Coefficient      values for NDB 

Model Name T=10 T=9 T=8 T=7 T=6 

Greenshields 0.3678 0.3671 0.3678 0.3655 0.3503 

Greenberg 0.6465 0.634 0.6475 0.6316 0.628 

Underwood 0.6972 0.6836 0.6968 0.6722 0.6637 

Bell Shape 0.5995 0.5451 0.5326 0.5587 0.5212 

 T=5 T=4 T=3 T=2 T=1 

Greenshields 0.377 0.3722 0.3522 0.3643 0.3816 

Greenberg 0.6363 0.6428 0.6457 0.6773 0.667 

Underwood 0.6759 0.71 0.6499 0.6948 0.6854 

Bell Shape 0.5301 0.5461 0.4301 0.5391 0.5338 
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In table 4.7, Ranges of correlation coefficient      in different models are 0.3503 to 

0.3816; 0.628 to 0.6773; 0.6499 to 0.71; 0.4301 to 0.5995. Greenshields    values are 

slightly higher than ND but still lower than DD1, UD1. Greenberg and Underwood 

regression accuracy are very close in some cases (T=3 to T=1). These differences 

represent better hazardous condition as discussed earlier (section 4.3.2). 

Table 4.8: Coefficient      values for NDA 

Model Name T=10 T=9 T=8 T=7 T=6 

Greenshields 0.2928 0.2974 0.3019 0.154 0.3028 

Greenberg 0.61 0.6398 0.7053 0.7176 0.6857 

Underwood 0.7492 0.7766 0.7852 0.7556 0.7637 

Bell Shape 0.6345 0.683 0.6397 0.6327 0.6438 

 T=5 T=4 T=3 T=2 T=1 

Greenshields 0.3067 0.3009 0.3119 0.3087 0.2943 

Greenberg 0.7238 0.697 0.7205 0.7327 0.6679 

Underwood 0.7495 0.7317 0.7304 0.7183 0.6685 

Bell Shape 0.603 0.5687 0.5702 0.552 0.4715 

 

Observing Table 4.8, it is found that correlation coefficients      in different models are 

varies between 0.154 and 0.3119; 0.61 and 0.7327; 0.6685 and 0.7852; 0.4715 and 0.683. 

Greenshields    values are slightly higher than ND but lower than DD1, UD1, NDB. 

Greenberg performs similar (T=5) and better (T=3 to T=1) compared to Underwood in 

some cases. Still Bell shape performance does not follow any sequence.  

Observing    values of different models for each detector, it is found that ND, NDA, 

NDB and DD represent better hazardous traffic condition. 

 

4.4 Comparison of estimated parameters 

From regression analyzes, regression line equations have been found. These equations are 

used to estimate the parameters of each models and represented with classical equations. 
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Table 4.9: Classical Equations (speed-density) for UD1 

Model Name T=9 T=8 T=7 

Greenshields K=35.34(1- 
 

     
  

 

36.25(1- 
 

     
  

 

35.23(1- 
 

     
  

 

Greenberg 
K=44.95    

 

     
 
 

 

43.6    
 

     
 
 

 

43.53    
 

     
 
 

 

Underwood K=14.1ln
      

 
 

 

14.57ln
      

 
 

 

14.13ln
      

 
 

 

Bell Shape K=19.16    
     

 
     67.31    

     

 
     18.62    

     

 
     

 T=6 T=5 T=4 

Greenshields K=36.04(1- 
 

     
  

 

35.35(1- 
 

     
  

 

35.24(1- 
 

     
  

 

Greenberg 
K=44.04    

 

     
 
 

 

43.72    
 

     
 
 

 

42.06    
 

     
 
 

 

Underwood K=14.37ln
      

 
 

 

14.51ln
      

 
 

 

14.97ln
      

 
 

 

Bell Shape K=19.15    
     

 
     19.1    

     

 
     19.63    

     

 
     

 T=3 T=2 T=1 

Greenshields K=34.81(1- 
 

     
  

 

35.72(1- 
 

     
  

 

34.41(1- 
 

     
  

 

Greenberg 
K=43.39    

 

     
 
 43.5    

 

     
 
 41.97    

 

     
 
 

Underwood K=14.55ln
      

 
 

 

15.11ln
      

 
 

 

14.63ln
      

 
 

 

Bell Shape K=18.84    
     

 
     19.84    

     

 
     18.74    

     

 
     

 

From classical equations (Table 4.9), estimated parameters of each model can be found 

for UD1.    (85.15 to 91.112) and    (33.67 to 36.25) of Greenshields model are 

comparatively lower than normal condition (  =93.95,   =36.586) due to low    values 

compared to normal data.    (35.32 to 37.78) of Greenberg are slightly higher than 

normal data (  =32.34) and corresponding    (41.97 to 44.9491) are comparatively 

higher than Greenshields but lower than normal (  =59.238). Underwood    (109.646 to 

126.42) are much fluctuating due to better performance for pre-crash condition and Bell 
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Shape    (67.31 to 74.053) can be assumed to be lower compared to normal condition 

(  =82.43). No considerable change has been found in parameter   . 

Table 4.10: Classical Equations (speed-density) for DD1 

Model Name T=9 T=8 T=7 

Greenshields K=36.8(1- 
 

     
  

 

36.82(1- 
 

     
  

 

37.23(1- 
 

     
  

 

Greenberg 
K=45.73    

 

     
 
 

 

47.65    
 

     
 
 

 

48.02    
 

     
 
 

 

Underwood K=15.67ln
      

 
 

 

15.88ln
      

 
 

 

15.88ln
     

 
 

 

Bell Shape K=20.04    
     

 
     20.38    

     

 
     19.94    

     

 
     

 T=6 T=5 T=4 

Greenshields K=38.45(1- 
 

     
  

 

38.65(1- 
 

     
  

 

37.45(1- 
 

     
  

 

Greenberg 
K=48.86    

 

     
 
 

 

48.44    
 

     
 
 

 

45.91    
 

     
 
 

 

Underwood K=15.76ln
      

 
 

 

15.78ln
      

 
 

 

15.53ln
      

 
 

 

Bell Shape K=20.25    
     

 
     20.37    

     

 
     19.76    

    

 
     

 T=3 T=2 T=1 

Greenshields K=38.52(1- 
 

     
  38.24(1- 

 

     
  38.92(1- 

 

     
  

Greenberg 
K=49.17    

 

     
 
 

 

46.86    
 

     
 
 

 

47.99    
 

     
 
 

 

Underwood K=15.97ln
      

 
 

 

15.53ln
      

 
 

 

16.21ln
      

 
 

 

Bell Shape K=19.97    
    

 
     20.48    

     

 
     20.71    

     

 
     

 

In table 4.10, Greenshields model    values (82.257 to 88.56), Underwood     values 

(103.85 to 114.98) and Bell Shape    values (64.77 to 70.21) are comparatively lower 

than UD1. Greenshields    values (36.17 to 38.915) and Greenberg    values (45.65 to 

49.17) are slightly higher than UD1. These two differences happen due to more 
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regression accuracy compared to UD1.    (32.57 to 36.08) of Greenberg are slightly 

higher than normal data (  =32.34) and UD1. 

Table 4.11: Classical Equations (speed-density) for ND 

Model Name T=9 T=8 T=7 

Greenshields K=25.24(1- 
 

     
  

 

26.18(1- 
 

      
  

 

26.74(1- 
 

      
  

 

Greenberg 
K=40.34    

 

     
 
 

 

41.53    
 

     
 
 

 

42.11    
 

     
 
 

 

Underwood K=13.43ln
      

 
 

 

13.96ln
      

 
 

 

13.47ln
      

 
 

 

Bell Shape K=18.31    
     

 
     18.76    

     

 
     18.77    

     

 
     

 T=6 T=5 T=4 

Greenshields K=25.82(1- 
 

     
  

 

27.21(1- 
 

      
  

 

27.69(1- 
 

     
  

 

Greenberg 
K=40.53    

 

     
 
 

 

40.96    
 

     
 
 

 

43.24    
 

     
 
 

 

Underwood K=13.92ln
      

 
 

 

15.03ln
      

 
 

 

15.03ln
      

 
 

 

Bell Shape K=18.45    
     

 
     19.93    

     

 
     19.93    

     

 
     

 T=3 T=2 T=1 

Greenshields K=27.5(1- 
 

     
  

 

26.72(1- 
 

      
  

 

27.27(1- 
 

     
  

 

Greenberg 
K=41.15    

 

     
 
 

 

39.84    
 

     
 
 

 

40.26    
 

     
 
 

 

Underwood K=14.32ln
      

 
 

 

13.67ln
      

 
 

 

13.76ln
      

 
 

 

Bell Shape K=19.10    
     

 
     18.37    

     

 
     18.61    

     

 
     

 

In table 4.11, Greenshields    values (96.21 to 111) are comparatively higher than UD1 

and UD2,    values (24.62 to 27.696) are simply the opposite due to low regression 

accuracy compared to other detectors. Underwood    values (107.45 to 128.72) are lower 

than DD1 and suddenly drop on T=4. Then increment of    is continued up to T=1. 
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Sudden    drop is also observed in bell shape model on T=5. As Underwood    values 

increases or decreases, Bell Shape    values (64.365 to 72.77) increases or decreases. The 

changes in Underwood and Bell Shape    values happens due to Greenberg model 

performs better than Underwood and Bell shape model in this time period which 

represent better hazardous traffic condition. Greenberg    (39.84 to 43.237) and    

(34.49 to 39.05) are relatively higher than DD1. 

Table 4.12: Classical Equations (speed-density) for NDB 

Model Name T=9 T=8 T=7 

Greenshields K=30.56(1- 
 

     
  

 

30.99(1- 
 

    
  

 

31.74(1- 
 

     
  

 

Greenberg 
K=41.36    

 

     
 
 

 

43.22    
 

     
 
 

 

43.25    
 

    
 
 

 

Underwood K=13.52ln
      

 
 

 

14.13ln
      

 
 

 

13.79ln
      

 
 

 

Bell Shape K=18.73    
     

 
     18.78    

     

 
     19    

     

 
     

 T=6 T=5 T=4 

Greenshields K=31.36(1- 
 

     
  

 

31.87(1- 
 

     
  

 

32.37(1- 
 

     
  

 

Greenberg 
K=42.35    

 

     
 
 

 

42.38    
 

     
 
 

 

44.11    
 

     
 
 

 

Underwood K=14.34ln
      

 
 

 

14.18ln
      

 
 

 

15.34ln
      

 
 

 

Bell Shape K=18.94    
     

 
     18.97    

     

 
     20.26    

     

 
     

 T=3 T=2 T=1 

Greenshields K=31.71(1- 
 

  
  

 

31.52(1- 
 

     
  

 

31.62(1- 
 

     
  

 

Greenberg 
K=42.78    

 

  
 
 

 

42.26    
 

    
 
 

 

42.78    
 

     
 
 

 

Underwood K=14.49ln
      

 
 

 

14.69ln
      

 
 

 

14.17ln
      

 
 

 

Bell Shape K=19.01    
     

 
     19.45    

     

 
     18.62    
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For NDB (Table 4.12), Greenshields    values (88.265 to 96.284) are comparatively 

lower than ND and    values (30 to 32.37) are simply the opposite due to high regression 

accuracy compared to ND. Sudden drops happen in Underwood    value (107.91 to 

128.78) at T=4 and Bell Shape    value (65.59 to 73.35) at T=3 due to very close 

regression accuracy in some cases. Greenberg    (41.36 to 44.114) and    (34.26 to 

38.45) are relatively higher than DD1. 

Table 4.13: Classical Equations (speed-density) for NDA 

Model Name T=9 T=8 T=7 

Greenshields K=28.71(1- 
 

      
  

 

29.68(1- 
 

    
  

 

29.97(1- 
 

     
  

 

Greenberg 
K=43.16    

 

     
 
 

 

45.77    
 

     
 
 

 

46.2    
 

     
 
 

 

Underwood K=15.24ln
      

 
 

 

15.92ln
      

 
 

 

15.41ln
      

 
 

 

Bell Shape K=19.61    
     

 
     65.98    

     

 
     19.76    

     

 
     

 T=6 T=5 T=4 

Greenshields K=30.1(1- 
 

     
  

 

31.3(1- 
 

     
  

 

30.55(1- 
 

    
  

 

Greenberg 
K=45.92    

 

     
 
 

 

47.03    
 

     
 
 

 

45.51    
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In NDA (Table 4.13), Greenshields    values (90.976 to 101.56) are comparatively 

higher than NDB and    values (28.18 to 31.29) are simply the opposite due to low 

regression accuracy for NDB. Underwood    values (104.746 to 116.9) are much stable 

from T=5 to T=1.  As Underwood    values increases or decreases, Bell Shape    values 

(65 to 70.872) increases or decreases. The changes in Underwood and Bell Shape    

values happens due to Greenberg model performs better than Underwood and Bell shape 

model in this time period which represent better hazardous traffic condition. . Greenberg 

   values (42.94 to 47.03) and are relatively higher than NDA due to better regression 

accuracy and and    (33.74 to 37.809) does not follow any sequence.
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CHAPTER 5 

CONCLUTIONS 

 

5.0 General 

This study utilized sensor data placed on Tokyo Metropolitan Expressways to collect pre-

crash and normal traffic condition data and compare their characteristics from the 

classical two phase traffic flow theory perspective. This chapter summarizes the key 

findings based on the pre-set objectives. 

 

5.1 Derive and compare classical two-phase traffic flow theories 

The first objective was to derive and compare classical two-phase traffic flow 

relationships for pre-crash and normal traffic condition data. This will include deriving 

four classical traffic flow theories – Greenshields, Greenberg, Underwood and Bell-

shaped models, separately for pre-crash and normal traffic data. The following sub-

sections discuss the findings. 

5.1.1 Greenshield’s Theory 

Greenshields model (  =0.8397) performed well in normal condition. Observing each of 

the pre-crash condition, it was found that the highest regression accuracy in Greenshields 

model was 0.6227. So, Greenshields performance was not accurate compared to normal 

condition.  

Free flow speeds in Greenshield‟s Theory for pre-crash condition varied from 82.257 to 

111. Values were comparatively lower than normal (93.95) where accuracy was 

relatively higher. Opposite thing was also found. So, there is a relation between free flow 

speed and correlation coefficient (inversely proportional). Higher free flow speeds 

represent hazardous traffic condition. 
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Jam density values in Greenshield‟s Theory for pre-crash condition varied from 24.62 to 

38.915. Values were comparatively lower than normal (36.586) where accuracy was 

relatively higher (0.6227). Proportional relationship has been found between jam density 

and correlation coefficient. Low jam density values represent hazardous traffic condition. 

5.1.2 Greenberg’s Theory 

Greenberg model    (0.6054 to 0.7844) performed well in pre-crash condition though 

accuracy was lower than normal (0.8044). Some considerable changes were found in 

model performance through comparing with other models (section 5.1.5). Better 

performance of Greenberg model represents hazardous traffic condition. 

   of Greenberg model was higher than normal data (32.34) due to better accuracy. 

Greenberg jam density in pre-crash condition was always lower than normal. As 

performance of model was increased, jam density value was increased. Increasing value 

of jam density may explain hazardous traffic condition. 

5.1.3 Underwood Theory 

Underwood model performed well in pre-crash condition (0.6101 to 0.7852) but 

comparatively lower than normal (0.8562).  Some considerable changes were found in 

model performance through comparing with other models (section 5.1.5). Free flow 

speed values could be lower or higher than normal (119.86). Decreasing values of free 

flow speed can represent the comparison between pre-crash and normal data. No 

considerable change was found in parameter   . 

5.1.4 Bell-shaped Theory 

Bell shape model performance (0.3964 to 0.7121) was not very accurate compared to 

normal data (0.7544) and did not follow any pattern or sequence. Free flow speeds 

(64.365 to 74.05) were comparatively lower than normal (82.43). No considerable change 

was found in other parameter    . 
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5.1.5 Comparison among classical two-phase theories 

Underwood and Greenberg model performed well in pre-crash condition compared to 

Greenshields and Bell Shape. Generally in pre-crash traffic condition, Underwood model 

performed better than Greenberg model. But in some cases, it was found that Greenberg 

accuracy was closed to Underwood or exceeded Underwood accuracy (Table 4.5, 4.6, 

4.7, and 4.8). These differences represent better hazardous traffic condition as well as 

better pre-crash data. Greenshields and Greenberg free flow speeds were better than Bell 

Shape to represent better pre-crash condition. When Greenberg model performs better 

than Underwood and Bell shape model, variation of free flow speed in Underwood is 

proportional to variation of free flow speed in Bell Shape. 

 

5.2 Longitudinal variation for time and space: 

5.2.1 Greenshield’s Theory 

As discussed earlier, Greenshields model was not accurate enough in pre-crash condition. 

Greenshields regression accuracy for UD1, DD1, ND, NDB, NDA were 0.552, 0.6227, 

0.2216, 0.3816, 0.3119. Greenshields performed well for downstream detectors. 

Comparatively much lower values were observed for ND, NDA, NDB which indicates 

that nearest and downstream detectors represent better hazardous traffic condition. 

Analyzing free flow speed for UD1(91.112), DD1(88.56), ND(111), NDA(101.56), 

NDB(96.284), it was clear that free flow speeds were higher than normal (93.95) for ND, 

NDA, NDB due to low regression accuracy (section 5.1.1). 

Highest jam density values for UD1, DD1, ND, NDB, NDA were 36.25, 38.915, 27.696, 

32.37, 31.29. Jam density values were lower than normal (36.586) for ND, NDB, NDA 

due to low regression accuracy and higher for DD1 due to high accuracy (relationship 

discussed in section 5.1.1). No particular time slice was found to be significantly 

superior. 
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5.2.2 Greenberg’s Theory 

Greenberg model performance was much better for DD1(0.7844), ND(0.6921) and 

NDA(0.7327) compared to other detectors. As better accuracy in Greenberg represents 

hazardous traffic condition, nearest detectors and downstream detectors may explain the 

comparison between pre-crash and normal traffic. Particular time slice was found to be 

significantly superior (section 5.2.5). 

   values were much higher for ND(39.05), NDA(37.809) and NDB(38.45) and Jam 

density values were higher in nearest and downstream detectors compared to upstream 

detectors because Greenberg performed on these detectors compared to others. Higher    

value and increasing jam density indicate hazardous traffic condition which may be 

explained using nearest and downstream detectors data.  

5.2.3 Underwood Theory 

Underwood model performed better for each of the detector in pre-crash condition. 

Underwood free flow speed values were lower for ND, NDA compared to other which 

represent better pre-crash condition. Free flow speed values were much stable for NDA 

(T=5 to T=1). Values were suddenly dropped for NDB, ND at T=4. Free flow speed 

values were continuously increasing in ND (T=4 to T=1). These changes in values 

happened due to some uncertain behavior of Underwood model performance (section 

5.2.5). Nearest detectors may represent considerable the difference between pre-crash and 

normal data.  

5.2.4 Bell-shaped Theory 

Observing each of the detectors, it was found that Bell Shape model correlation 

coefficient values were lower for nearest detectors (0.3964 to 0.683) compared to others 

(0.4955 to 0.7121). Sudden drop of free flow speeds were observed in ND (T=4). Free 

flow speed values were continuously increasing in ND (T=4 to T=1). These happened 

due to some uncertain behavior of free flow speed which generally did not follow any 

changing pattern (section 5.2.5). 
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5.2.5 Comparison among classical two-phase theories 

Greenberg and Underwood coefficient values were very close for DD1 (T=6, T=3), NDB 

(T=3 to T=1) and NDA (T=5). Greenberg performed better compared to Underwood for 

ND (T=4 to T=1) and NDA (T=3 to T=1). It means that nearest and downstream 

detectors represent better hazardous traffic condition.  

Free flow value was suddenly dropped in Underwood for ND (T=4) and NDB (T=4). 

Sudden free flow drop was also observed in bell shape model for ND (T=5) and NDB 

(T=3). Variations of free flow speed in ND and NDA were proportional. Underwood free 

flow speed values were much stable for NDA (T=5 to T=1). These changes happened due 

to Greenberg model performed better than Underwood and Bell shape model at this time 

period.  

 

5.3 Variation between normal and hazardous traffic conditions 

Some important conclusions have been found from the analyses. All four classical two-

phase traffic flow models held true for both normal and pre-crash traffic conditions. 

Underwood performs better in explaining both normal and pre-crash data. Both 

Underwood and Greenberg perform well for pre-crash data. Greenshields model performs 

the poorest and Bell-shape‟s performance did not follow any specific pattern. 

Nearest and downstream detectors explain pre-crash data better than upstream detectors. 

Estimated parameters are much depended on model accuracy. Substantial Changes has 

been found in model accuracy and free flow speed between 5 to 1 minutes before crash 

time. Decreasing jam density and increasing free flow speed represents better hazardous 

traffic condition 
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5.4 Limitations and future scope 

There are some limitations in this study which can be improved in future work. Different 

crash types are not considered in this work. Only one sampling was done from normal 

traffic data to verify normal traffic condition for different models. Hypothetical testing 

can be done to identify normal and pre-crash graphs are statistically significant or not.  

To improve the results, data collection period need to increased or use two different data 

period together. Three-phase traffic conditions need to be checked. Important future 

scope is to see all variables together and model things in three dimensions. 
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