
	
	

ISLAMIC	UNIVERSITY	OF	TECHNOLOGY	
	
	

	Motif	Finding	Using	Non-Deterministic	Finite	Automata	

	
Authors:

Touhidul Alam Tapos (114410)

H.M. Amio Rahman (114448)

Supervisor:

Tareque Mohmud Chowdhury

Assistant Professor

Department of Computer Science and Engineering

A thesis submitted to the Department of CSE in partial fulfillment of the requirements for

the degree of B.Sc. Engineering in CSE

Academic Year: 2014-15

A Subsidiary Organ of the Organization of Islamic Cooperation

Dhaka, Bangladesh

October 2015

Declaration of Authorship

This is to certify that the work presented in this thesis is the outcome of the

analysis and investigation carried out by Touhidul Alam Tapos and H.M.

Amio Rahman under the supervision of Tareque Mohmud Chowdhury in the

Department of Computer Science and Engineering (CSE), IUT, Dhaka,

Bangladesh. It is also declared that neither of this thesis nor any part of this

thesis has been submitted anywhere else for any degree or diploma.

Information derived from the published and unpublished work of others has

been acknowledged in the text and a list of references is given.

Authors:

_____________________________ ___________________________

 Touhidul Alam Tapos H.M. Amio Rahman
 Student ID – 114410 Student ID – 114448

Supervisor:

Tareque Mohmud Chowdhury
Assistant Professor

Department of Computer Science and Engineering
Islamic University of Technology (IUT)

i

Abstract

Motif Finding is one of the topmost concerns on the basis of characteristics

of the species and its primary concept is finding the common DNA sequence

that specifies a certain characteristics of a species. In this thesis, here we

propose a methodology of finding method using an algorithm called non-

deterministic finite automata. Our primary concern is finding the best

common sequence that follows the pattern and gives an accurate result with

minimization of errors. And following that solving complexity issue that

occurs in automaton system, we try to minimize the system time and space

complexity so that it can find pattern with less storage needed. Using non-

deterministic approach so far we provided a better solution approach with

patterns both in matched and gapped situation.

ii

		

	 1	

Table	of	contents	

	
Declaration	of	Authorship																																																																																																											i	

	

Abstract																																																																																																																																															ii	

	

Chapter	1:	Introduction																																																																																																															3	

1.1 Overview		………………………………………………………………………………………………………3	

1.2 Problem	Statement		………………………………………………………………………………………..4	

1.3 Motivation		…………………………………………………………………………………………………….5	

1.4 Outline			……6	

	

Chapter	2:	Background																																																																																																																7	

2.1	Motif	Models…………………………………………………………………………………….…………….7	

2.2	Non-Deterministic	Finite	Automata	…………………………………..……………………………9	

	

Chapter	3:	Literature	Review																																																																																																	11		

3.1	Greedy	Profile	Motif	Search	………………………………………………………………………….11	

3.2	Gibbs	Sampling	……………………………………………………………………………………………12	

3.3	Randomized	Projection	……………………………………………………………………….……….13	

3.4	Micron	Automata	Processor.…………………………………………………………………………14	

3.5	Significant	score	of	Motif	in	Biological	Sequence	……………………………………………14	

3.6	Common	Motif	with	Gaps	using	Finite	Automata	...…………………………………………15	

	

Chapter	4:	Proposed	Method																																																																																																		17		

4.1	Overall	Concept………………………………………………………………………………..……….17	

4.2	Proposed	Algorithm	……………………………………………………………………………………..18	

4.3	Methodology	………………………………………………………………………………………………..19	

4.4	Experiments	and	Data	Analysis	...……………………………………………………………….....21	

		

	 2	

4.4.1	Data	set	………………………………………………………………………………………………….....21	

4.4.2	Results	……………………………………………………………………………………………….……..22	

4.4.3	Time	Complexity	..………………………………………………………………….…………………..24	

4.4.4	Time	Comparison	……………………………………………………………………………...…..…..26	

4.4.5	Result	Verification	………………………………………………..…………………………….……..26	

	

Chapter	5:	Conclusion																																																																																																																28		

5.1	Summery	of	the	thesis	………………………………………………………………………………....	28	

5.2	Future	works	……………………………………………………………………………………………....	28	

	

Bibliography...……………………………………………………………………………..............................	29	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

		

	 3	

Introduction		 	 	 	 	 	 				Chapter	1	
1.1	Overview	
	 	
Bioinformatics is one of the most promising sectors in modern era for research purpose

and DNA (Deoxyribonucleic acid) is the most common term used in the sector of

Biology and Bioinformatics. Without sequence information encoded as DNA, none of the

known living cells could exist. Understanding sequences is therefore fundamental to

Understanding biology. In this thesis, we study theoretical foundations and algorithms for

the motif discovery problem, where, given a set of such sequences over a finite alphabet,

we are asked to find exceptional patterns called as Motif. The reason for searching this

pattern is that this Motif carries an important Biological meaning. Therefore, discovered

patterns can serve as a basis for new biological hypotheses and direct further

experimentation.

The goal of this thesis is to analyze the motif finding algorithms and comparison of our

proposed algorithms with others:

• How motifs are searched in a given DNA sequence?

• How a motif with mismatches is computed?

• How the time and space complexity are computed?

These questions can be attributed to the areas of biology, statistics and algorithmic,

respectively. Our goal of the thesis is to compute an approach finding motif with a user

given mismatches and find the most occurred pattern.

‘Motif discovery’ (or ‘motif finding’) in biological sequences can be defined as the

problem of finding short similar sequence elements (building the ‘motif’) shared by a set

of nucleotide or protein sequences with a common biological function. The identification

of regulatory elements in nucleotide sequences, like transcription factor binding sites

(TFBSs), has been one of the most widely studied flavors of the problem, both for its

biological significance and for its bioinformatics hardness. Motifs are fundamental

		

	 4	

functional elements in proteins vital for understanding gene function, human disease, and

may serve as therapeutic drug targets.

1.2	Problem	Statement	
Motif finding problem of this thesis is different from other paper in different ways like ,

constructing data sets of the DNA sequence, matching given sequences and finding the

exact and non-exact matches in the data sequences. Numerous algorithms have been

developed for discovering motifs, as well as algorithms for scanning databases for

matches to a given motif or motifs. Some are specialized for discovery of DNA motifs.

The main problem of large amount of data is the inclusion of noisy and irrelevant data in

the information set. As the datasets become large the number of noisy, redundant and

uninformative gene also increases resulting in space-time complexity. We mainly focused

on finding the motifs accurately. So we work on a procedure using non-deterministic

finite automata (NFA), making the NFA from the given data set and finding a given l-mer

pattern from the dataset.

Main challenge in finding motif problem is with the large amount of biological data

generated due to DNA sequencing of various organisms, it is becoming necessary to

identify techniques that can help in finding useful information amongst all the data.

Finding motifs involves determining meaningful short sequences that may be repeated

over many sequences in various species

Our main goal is to redefine this procedure of NFA and optimize the result and

comparison of this algorithm with other NFA approach.

		

	 5	

1.3	Motivation	
In this section, we identify desired properties of the motif discovery algorithm to be

developed in this thesis. Before doing that, we discuss the user input to be made to such

an algorithm.

Every motif discovery algorithm should require that the user provides three pieces

Of information; first, a set of input sequences to be searched, second, some hypothesis on

the kind of pattern to be looked for, and third, knowledge on sequence composition, that

is, a specification of sequence features that are to be expected and should hence not be

reported as new motifs. While it is clear that input sequences must be provided, the

second and third aspects are often not recognized as input to be made by the user. Both

are, however, fundamental to motif discovery. To exemplify that, let us assume that no

assumptions on pattern type are made. Then, in an extreme case, an algorithm might

report the whole input text itself as a long motif with one occurrence and a high

significance score. Testing a larger space of motifs is therefore not always an advantage,

even when runtimes are not considered. A motif space should therefore consciously be

chosen by the user based on the scientific question to be addressed. When searching for

transcription factor binding sites, for instance, we can use knowledge on known binding

motifs to specify a suitable range of motif lengths to be considered and possibly a

maximal allowed degree of degeneracy, that is, a limit on the use of wildcard characters.

The third requirement, providing information on expected sequence composition, can be

seen as answering the question of what is already known about the studied sequences. For

example, if nothing is known, it is a new result that a genome contains overrepresented

patterns comprised of many Cs and Gs. If, in contrast, a biologist knows that the GC

content (i.e. the fraction of nucleotides that are C or G) is high, these news are hardly

surprising. As the goal of automated motif discovery is to find novel sequence features, it

is inevitable that information about what is already known needs to be available.

Therefore, the user should provide a background model or null model. This analysis of

input to be made by the user directly translates into the first two requirements on a motif

discovery algorithm listed below. Additionally, we formulate two further requirements.

		

	 6	

Flexibility of background models: Background text models should be general enough to

describe complex dependencies. I.i.d. Models and first order Markovian models are

insufficient for many applications, especially those concerning DNA.

Appropriate scoring functions: The scoring function used to assess motifs should

reflect the statistical significance with respect to the background model. The statistical

properties of motifs can strongly be affected by self-overlaps (see Example 1.8). Hence,

overlapping must be accounted for.

Exactness: To eliminate the risk of missing significant motifs, the algorithm should not

work heuristically but extract a motif that is provably optimal with respect to the scoring

function.

Practicality: The algorithm should be able to solve practical problem instances on

current hardware in reasonable time.

The development of mathematical and algorithmically means to achieve this is the main

goal of the present thesis. Before we can formalize the problem, we need to introduce

some notation.

1.4	Outline	
We first start with an introduction of motif models in Section 2.1, a general introduction

of finite automata in Section 2.2, a background study of our work related papers

discussed in Chapter 3.Chapter 4 consists of the our proposed method and its algorithm

with full methodology, Chapter 5 analyze the data set of our given algorithm and

comparison with other existing algorithms. Chapter 6 discussion of the algorithm and

further work that also can be implemented with this approach.

		

	 7	

Background	 	 	 	 	 	 		Chapter	2																																																																																																													

 This chapter is divided into two categories. First part includes the fundamental of

motif, motif discovery, models, different way to express motif in biological sequences.

Second part of the chapter includes basic automata, non-deterministic finite automata and

its basic structure, working procedure of NFA.

2.1	Motif	Models	
A DNA molecule consists of two anti-parallel chains of nucleotides forming a double

helix. In DNA, each nucleotide contains one of the four bases adenine, cytosine, guanine,

or thymine and, thus, a strand of DNA can be formalized as a string over the alphabet

∑= {A, C, G, T}. Transcription factors are proteins that bind to DNA in a sequence

specific manner. That means they recognize special (sets of) sequences of nucleotides,

called binding motifs. The motif-finding problem arises when DNA sequences contain

instances of binding sites of a transcription factor but the binding motif of this factor is

unknowns. Then finding motif algorithm might reveal a pattern that is shared by all

sequences that can then by hypothesized to be the transcription factor’s binding motif.	

Some important features that are helpful to identify motif or know about motif are given

below:

• Motifs are patterns are of length 5 to 20 bases and are repeated over many

sequences.

• They are small, have constant size, and are repeated very often.

• They are statistically over-represented in regulatory regions.

The purpose of motif models is to generalize a limited number of observed motif

instances to a larger set of similar strings that we predict to be motif instances as well.

That means, when we encounter one of these strings in an unknown piece of DNA, we

would annotate this position as a putative motif instance. Motif models differ in the way

this generalization is done. The most widely used models are consensus strings with a

		

	 8	

Hamming neighborhood (i.e. the set of strings with a limited Hamming distance to the

consensus), position weight matrices (PWMs) along with a score threshold, and

generalized strings (also known as IUPAC strings in the context of DNA). Following, we

explain the three models using the example of a DNA binding site, namely record

MA0107.1 in the Jaspar database (Sandelin et al., 2004) which represents the binding site

of the Rel protein domain as described by Kunsch et al. (1992). The database contains 18

experimentally verified binding sites that are shown in Figure 1.1a. Some of these sites

occur multiple times such that the set of all sites contains 14 distinct sequences.

Consensus Strings with Hamming Neighborhood: When confronted with a set of

motif instances, a consensus string can be obtained by majority vote at each position as

depicted in Figure 1.1b. In the shown case, the consensus GGGAATTTCC has a

Hamming distance of up to three to the original sequences. Therefore, the motif might be

modeled as the set of all strings with a Hamming distance of at most three to the

consensus. Thus, the given 18 strings are generalized to all 3676 strings with at most

three differences to GGGAATTTCC. The underlying assumption is that only the number

of mismatches is important and not their position. Whether or not this assumption is

justified depends on the application. In case of transcription factor binding sites, some

positions are usually more conserved than others, challenging this assumption.

Nonetheless, the Weeder algorithm by Pavesi et al. (2004), which uses this motif model,

outperformed many other methods in a benchmark study by Tompa et al. (2005).

Position Weight Matrices: A position weight matrix (PWM) of length l is a | ∑ | * l

matrix, where each entry w_i gives the score to be counted when character _ is found at

position i (Staden, 1984). Given a putative motif instance, the scores for the characters

at all positions are summed up to obtain a score for the instance. When the score is above

a pre-chosen threshold, the string is said to be a motif instance. A common method to

obtain a PWM is the translation of a position frequency matrix (PFM) into log-odds

scores, where the PFM contains, for each position, the number of times each character

occurred at this position in the sample sequences. An example is shown in Figure 1.1d.

		

	 9	

Figure 2.1: Different motif models of the binding site MA0107.1

 from the Jaspar database are shown: (a) original sequences (b) consensus string obtained

by position-wise majority vote (c) minimal IUPAC string matching all sequences (d)

position frequency matrix (e) position weight matrix containing log-odds scores

computed assuming uniform background distribution and 0.5 pseudo counts (f) sequence

logo.

Generalized Strings: A generalized string is a sequence of character sets. Each set gives

the allowed characters at that position. The generalized string g = {A, G}, {A}, {A,T} for

example, matches AAA, AAT, GAA, and GAT. Sets containing more than one letter

(like {A, G} or {A, T} are called wildcards. In case of nucleotide sequences, all possible

sets are commonly abbreviated by IUPAC one-letter codes (IUPAC stands for

International Union of Pure and Applied Chemistry, the one-letter codes for sets of DNA

characters have been proposed by Cornish-Bowden, 1985).

2.2	Non-Deterministic	Finite	Automata	
Nondeterministic finite automata (NFAs) are probably best known for being equivalent to

right-linear context-free grammars and, thus, for capturing the lowest level of the

Chomsky-hierarchy, the family of regular languages. It is well known that NFAs can

offer exponential saving in space compared with deterministic finite automata (DFAs),

that is, given some n -state NFA one can always construct a language equivalent DFA

with at most 2n states [67]. This so-called power set construction turned out to be

		

	 10	

optimal, in general. That is, the bound on the number of states is tight in the sense that for

an arbitrary n there is always some n -state NFA which cannot be simulated by any DFA

with less than 2n states [63,64]. These two milestones from the early days of automata

theory form part of an extensive list of equally striking problems of NFA related

problems, and are the basis of description complexity. Moreover, it initiated the study of

the power of resources and features given to finite automata see, e.g., [21] for a survey on

limited resources for finite automata.

 Figure 2.2: (a) Input string that is on a queue is entered into the NFA system. (b) NFA

from where the given inputs are checked whether they are accepted or not.

Our tour on the subjects listed in the abstract of NFAs related problems cover some

(recent) results in the field of description and computational complexity. It obviously

lacks completeness, as NFAs fall short of exhausting the large selection of finite

automata related problems considered in the literature. We give our view of what

constitute the most recent interesting links to the considered problem areas. Our

nomenclature of finite automata is as follows: A nondeterministic finite automaton

(NFA) is a quintuple A = (Q,Σ, δ, q0, F), where Q is the finite set of states , Σ is the

finite set of input symbols , q0 ∈ Q is the initial state , F ⊆ Q is the set of accepting

states , and δ : Q x Σ → 2Q is the transition function . A finite automaton is deterministic

(DFA) if and only if |δ (q, a)| = 1, for all states q ∈ Q and letters a ∈ Σ . The language

accepted by the finite automaton A is defined as L (A) = {w ∈ Σ∗ | δ (q0, w) ∩ F != ∅},

where the transition function is recursively extended to δ : Q x Σ∗ → 2Q .

		

	 11	

Literature	Review			 	 	 	 Chapter	3																																																																																																													

 There are so many algorithms exist so far on the area of motif finding. Different

algorithms have been approached by different data structure like – Suffix tree, Hash

table, Automata etc. But no existing algorithms have followed the trade off between run

time and efficiency of the algorithm. We have discussed here few existing algorithms that

works on exact matched or gapped match, though our focus has always been on finding

motif within gapped match. In Section 3.1 we discussed Greedy profile Motif Search

which follows a greedy algorithm , Section 3.2 Gibbs Sampling , one of the widely used

Method for Finding motif , Section 3.3 A Randomized projection , which follows random

distribution pattern, Section 3.4 Micron Automata Processor , A built-in processor chips

in which solve pattern finding using automaton process, Section 3.5 includes a NFA

approach of scoring motif and finally in 3.6 a motif search with gap that uses finite

automata process.

3.1	Greedy	Profile	Motif	Search	

This algorithm Use P-Most probable l-mers to adjust starts positions until we reach a

“best” profile; this is the motif. Select random starting positions. It create a profile P

from the substrings at these starting positions and change the starting position to the

starting , Then Find the P-most probable l-mer a in each sequence position of a. Later

Compute a new profile based on the new starting positions after each iteration and

proceed until we cannot increase the score anymore. Basic algorithms are given below –

GreedyProfileMotifSearch(DNA, t, n, l)
 1. Randomly select starting positions s=(s1,...,st) from DNA
 2. bestScore = 0
 3. while Score(s, DNA) > bestScore
 4. Form profile P from s
 5. bestScore = Score(s, DNA)
 6. for i = 1 to t
 7. Find a P-most probable l-mer a from the ith sequence
 8. si = starting position of a
 9. return bestScore

		

	 12	

Figure 3.1: A simple greedy profile motif search algorithm

Limitations:

• Since we choose starting positions randomly, there is little chance that our guess

will be close to an optimal motif, meaning it will take a very long time to find the

optimal motif.

• It is unlikely that the random starting positions will lead us to the correct solution

at all.

• In practice, this algorithm is run many times with the hope that random starting

positions will be close to the optimum solution simply by chance

3.2	Gibbs	Sampling	

We can improve the previous algorithm by introducing Gibbs Sampling, an iterative

procedure that discards one l-mer after each iteration and replaces it with a new one.

Gibbs Sampling proceeds more slowly and chooses new l-mers at random increasing the

odds that it will converge to the correct solution.

Procedure:

• Randomly choose starting positions = (s1... st) and form the set of l-mers

associated with these starting positions.

• Randomly choose one of the t sequences.

• Create a profile P from the other t -1 sequences.

• For each position in the removed sequence, calculate the probability that the l-mer

starting at that position was generated by P.

• Choose a new starting position for the removed sequence at random based on the

probabilities calculated in step 4.

• Repeat steps 2-5 until there is no improvement

		

	 13	

Limitations:

• Gibbs sampling needs to be modified when applied to samples with unequal

distributions of nucleotides (relative entropy approach).

• Gibbs sampling often converges to locally optimal motifs rather than globally

optimal motifs.

• Needs to be run with many randomly chosen seeds to achieve good results.

3.3	Randomized	Projection	

It uses a random array of projecting position on a given string to find the motifs and store

them in a Motif Bucket.

Procedure:

• Choose k positions in string of length l.

• Concatenate nucleotides at chosen k positions to form k-tuple.

• This can be viewed as a projection of l- dimensional space onto k-dimensional

subspace.

• Select k out of l positions uniformly at random.

• For each l-tuple in input sequences, hash into bucket based on letters at k selected

positions.

• Recover motif from enriched bucket that contain many l-tuples.

• Some projections will fail to detect motifs but if we try many of them the

probability that one of the buckets fills in is increasing.

Limitations:

• It cannot estimate multi-way distances nor can it estimate 1-norm distances.

• Projection on only Boolean data and nearly independent data.

	

	

		

	 14	

3.4	Micron	Automata	Processor	

A Non-von Neumann architecture called the Micron automata processor that is a

intergraded computer processor which works on the PCI slot of the motherboard and

works only to solve problems related to DFA and NFA. [6]

• It can create simulation to solve the problems

• A Processor only to solve finite automaton problems

• It can solve the finite automaton problems faster than any existing algorithms

• It’s a costly processor to work with

3.5	Significance	score	of	Motif	in	biological	sequence	

 Here the methodology provides e formula that computes from the NFA to match

given sequence. It at first deletes the nodes that are not connected to the final state. It [4]

then formulates an algorithm that counts the matched position

Require: (A,Q, σ,F, δ) be a (minimal) NFA whose language is A*M
1: S ←{σ}
2: for i = 1 . . . ℓ do
3: S ←∪q∈S δ(q, Xi)
4: if S ∩ F != ∅ then
5: report i as a matching position
6: end if

7: end for

Figure 3.2: NFA Pattern matching. Returns all matching positions of motif M in X1:ℓ.

Complexity is O (|Q| * ℓ).

Figure 3.3: Minimal NFA whose language is (A|C|G|T)*G(G|C)G

		

	 15	

Given the String AGCGGTGGGCGA. Now-

• i = 3, X3 = C,S ←δ({0, 1}, C) = {0, 2};

• i = 4, X4 = G,S ←δ({0, 2}, G) = {0, 1, 3}, matching position;

• i = 5, X5 = G,S ←δ({0, 1, 3}, G) = {0, 1, 2};

• i = 6, X6 = T,S ←δ({0, 1, 2}, T) = {0};

• i = 7, X7 = G,S ←δ({0}, G) = {0, 1};

• i = 8, X8 = G,S ←δ({0, 1}, G) = {0, 1, 2};

• i = 9, X9 = G,S ←δ({0, 1, 2}, G) = {0, 1, 2, 3}, matching position;

• i = 10, X10 = C,S ←δ({0, 1, 2, 3}, C) = {0, 2}.

• i = 11, X11 = G,S ←δ({0, 2}, G) = {0, 1, 3}, matching position;

• i = 12, X12 = A,S ←δ({0, 1, 3}, A) = {0}.

We hence return three matching positions: 4, 9 and 11.

Limitations:

• Only on exact match, no gapped match is established

3.6	Common	Motifs	with	gaps	using	Finite	Automata	
It present an algorithm that uses finite automata to and the common motifs with gaps

occurring in all strings belonging to a finite set S = {S1,S2,…….Sr}. In order to find these

common motifs it first identify the factors that exist in each string. Therefore the

algorithm begins by constructing a factor automaton for each string Si.

To find the common factors of all the strings, the algorithm needs to gather all the factors

from the strings together in one data structure and this is achieved by computing an

automaton that accepts the union of the above-mentioned automata. Using this automaton

it is able to create a new factor alphabet. Based on this factor alphabet a finite automaton

is created for each string Si that accepts sequences of all non-overlapping factors residing

in each string. The intersection of the latter automata produces the finite automaton which

accepts all the common subsequences with gaps over the factor alphabet that are present

in all the strings of the set S = {S1,S2…..Sr}. These common subsequences are the

common motifs of the strings. [2]

		

	 16	

As an example consider a set of strings S = {aabccddab, babbcdacd}. It finds common

motifs in this set of strings bounded from parameters where p = 2; q = 3.

Figure 3.4: Transition diagrams of finite automata M1e and M2e for the set of strings

S = {aabccddab; babbcdacd} from the example and the output of this using automata

Figure 3.5: Transition diagram of finite automaton MS from the example

Limitations:

• Complexity O (nk) when size increases as steps require intersection of automata

		

	 17	

Proposed	Method	 	 	 									Chapter	4																																																																																																													
	

4.1	Overall	Concept	
Our algorithm for finding motif starts with the given DNA sequences and a user defined

l-mer with number of mismatches if any. Goal is to find the motif with highest probable

pattern with l number in the given sequences. Now our work is on two scenarios where

exact matches are computed and on other approximate are computed. Given the sequence

of pattern, first according to our algorithm we are going to construct a NFA for each of

the possible of the string according to the l-mer. According to the concept of NFA, when

a next base is found on the sequences, it will create a new node with possible

combination of l sequence of this base, also previous occurred base will append and look

for pattern. In this way for each possible combination of pattern occurrence a path will be

expanded. Whenever a l-mer pattern is found it keeps the track of that pattern on a hash

table and search for the next occurrence. When we have read the entire input sequence

file we will have a long list of possible motif occurrences of l-mer on the hash table

containing each of the pattern with its frequency. Highest frequency of those sequences is

most probable occurrence and each of the highest frequency is the candidate of the motifs

of that sequences. Given the sequences of these candidate motifs we can analyze which

factors are the reasons that are likely to occur in the sequences of these data sets.

Now, we are likely to have the candidate’s motif that occurs in different sequences of

DNA data set. Given the sequences of different species and their DNA set , we can find

the pattern that occur in which places , it will be helpful if the pattern of same species has

exact or approximate matches in a position.

		

	 18	

4.2	Proposed	Algorithm	

Motif_By_NFA(Smn,k)	

1. Given n number of String S each with m size in total S={S1, S2, …… , Sn},

we need to find l-mer matched pattern in total n sequences where

6<=l<=20

2. If the value of k is 0

3. For each set of string sequences we construct a NFA N containing each of

the l sequences pattern as accepted, so total n-m+1 pattern

4. For the next string sequences, again same possible combination of l

sequence will be checked

5. If a new pattern is found, its staring value and pattern will be saved in a

storage as a counter for number of motifs and its index position

6. If a matched pattern is found, it will just increment the number of

occurrence of the matched pattern on the storages

7. If k is > 0

8. Number of k defines the at most mismatches, so if a unmatched string is

found it can still represent a pattern with at most k mismatches

9. If mismatched number is > k, that will not be considered as a pattern

10. This iteration will continue at all the sequence, then it will increment l

value by 1, until l is less than or equal to 20

11. For exact matches, Return the table containing the most probable motif

candidate that appears in sequences

12. For approximate matches, Return the motifs with at most k mismatches that

counts and find the most probable of this pattern that occurs

		

	 19	

4.3	Methodology	

For the demonstration of the given algorithm, let’s assume 2 string sequences of ATGCA

& ATTGA. We have to find the l-mer pattern of occurrence. Lets assume here 2<=l<=3.

First for the l=2 , we construct NFA, where possible candidates are AT,TG,GC,CA and

for 2nd string AT,TT,TG,GA. So AT and TG are the most occurred pattern here.

L=2

Pattern AT TG GC CA TT GA

Frequency 2 2 1 1 1 1

Table 4.1: Frequency of matches for Length(l=2)

For l=3, we construct NFA, where possible candidates are ATG,TGC,GCA and for 2nd

string ATT,TTG,TGA. So each motif occurred once here.

L=3

Pattern ATG TGC GCA ATT TTG TGA

Frequency 1 1 1 1 1 1

Table 4.2: Frequency of matches for Length (l=3)

So in these scenario highest candidates of motif are AT and TG, with each probability of

20% of occurrences.

This sequences is calculated when k=0, so for exact matches this is the output of the

motif candidates.

Now for k=1 and l=2, we first compute the same way and output candidates are same as

without mismatches as the condition of being k and l is k<<l

		

	 20	

So for k=1 and l=3, we get from 1st string ATGCA – A_TG, AT_G, T_GC, TG_C,

G_CA, GC_A total 6 occurrences

And from 2nd string ATTGA – A_TT, AT_T, TT_G, T_TG, TG_A, T_GA total 6

occurrences.

Figure 4.1: NFA for AGTAC. 3-mer patterns of AGT, GTA, TAC

		

	 21	

Figure 4.2: NFA for ATGCA & ATTGA. Total 6 unique 3-mer patterns

So with Gapped match each probability of the sequences are equally distributed among

these examples.

4.4	Experimental	Data	And	Analysis	

In	 this	 paper,	 we	 have	 used	Homo	 sapiens,	 Sus	 Scrofa,	 Aedes	 aegyapti	 these	 three	

species	of	data	set.	The	data	was	taken	from	GeneBank	database.	This	data	set	has	

sequences	among	829	bases	to	850	bases.	Table	shows	the	dataset	we	have	used	for	

experimental	purpose.	

4.4.1	Data	set:	

Homo	Sapiens	 Sus	Scrofa	 Aedes	aegyapti	

NM_001166002.2	 BW970508	 KJ736826	
NM_001166004.2	 BW971304	 KJ736827	
NM_001166003.2	 BW972295	 KJ736825	

NM_181773.4	 BW973679	 KJ736824	

Table 4.3: List of different used Gene Sequences

		

	 22	

4.4.2	Results:	

Here we have considered variable length motif discovery with computing both as exact

match and gapped match with 1 or 2 gaps at most each of the sequences. As a motif

length of 6 without mutation (6,0), total number of potential motif presents in the DNA

sequence is 824. For each set of different motif target sets we compute the candidates one

and find the most occurred one. After each occurrence of the potential motif in a

sequence of either 0,1 or 2 mismatches we find the potential motif in that sequences.

Considering the scenario of this motif data we can find the probabilistic of the highest

occurred motif in that scenario of l-mer. Now with this methodology we can consider

each of l values motif and find the most occurred one in this consent.

Our values of these three sequences are computed here as three condition (6,0), (6,1) and

(6,2) where 6 is the motif length and 0, 1 or 2 is the at most mismatches and considered

as a probable motif.

The occurrence of candidates motif in three sequences are given below :

Species / l-k (6,0) (6,1) (6,2)

Homo	Sapiens AAAAAG

ACCCTG

AGAGGC

….

GTCCAG

TCCAGC

GCAAAA

GTCAGC

Sus	Scrofa CATCAT CCGCGC

CTGTGG

GCCGCG

CAAAGG
Aedes	aegyapti AAATTT

AATTTA

CAATTT

…

AATTTA TTATCA

 AATTCA

Table 4.4: Matched Sequences for Different Configuration (l,k)

		

	 23	

From the given data scenario we can predict the candidate motif for this cases, with (6,0)

exact matches of motif are computed from the species and from (6,1) and (6,2)

approximate matches are computed from the data scenario.

Frequency comparison among the species motifs difference are given on the graph on

here.

Figure 4.3: Match Frequency of Sus scrofa

Figure 4.4: Match Frequency of Homo sapiens

		

	 24	

\

Figure 4.5: Match Frequency of Aedes aegepty

Here in figure three species and there motif frequency comparison are given on the basis

of exact and 1 or 2 mismatches. The motif with exact matches has less number of match

count whereas motif with mismatch has more of a match count

4.4.3	Time	Complexity	

According to the construction and searching of the algorithm NFA usually take a specific

amount of build time and search through the NFA a computational time. So time

complexity of a NFA of m node is O(m) at average case and O(2m) at worst case and

running time for an NFA is O(m2n) because it is non deterministic and computer checks

for every possible path for the current character string. So at average case its total

complexity will be O(m+m2n) which is far better than [2] which having polynomial time

as O(mn) as l>3.

		

	 25	

Here a run time computation of three different species is considered as it takes the

program to execute and finish. The more it counts with the mismatches the run time

exceeds more.

 Figure 4.6: Run time for three species sequence on different motif configuration

Run time comparison stats show at the time approximate under 50s we get two results for

(6,0) for Aedes Aegepty and Sus Scrofa , but for Homo Sapiens it took almost 100s ,

double of that. Again for (6,1) the comparison is almost same, as first two took time as

100s and the later one about 200s, almost double of last results. It grows exponentially

for (6,2) first two species it took 200s and for Homo Sapiens its almost 400s, so it follows

a binary exponential approach as time complexity was discussed.

	

	

		

	 26	

4.4.4	Time	Comparison	

A time comparison of our proposed algorithm is computed against a formal hash table

approach and our run time is computed against that algorithm, and by far its performance

is getting better the more length and mutation increases.

Figure 4.7: Run time comparison with Hash Table

Here on the hash table algorithm the time takes 130,240 and 405 secods for 6-mer with

exact,1 or 2 mismatches, but in our proposed algorithm it takes 47,105 and 207 seconds

for this same sequence motif. So gradually its providing better performance than these

approach.

4.4.5	Result	Verification	

For our result evaluation we used Fasta, Blast, CompareMotif (Online de novo motif

finding tool)

http://bioware.ucd.ie/~compass/biowareweb/Server_pages/comparimotif.php . For input

it takes motif in one text file and DNA sequence in another text file then there is a field of

variation in motif if there is 0.5 then it will consider 50 percent mutation from its parents

		

	 27	

and if it is 1 then it will show the exact match of the motif. For the following output

inputs were

1.Compare Motif

• Motif file

• 1st DNA sequence from Sus Scrofa

dataset

• IC Value 1.0 (exact match)

2. Proposed System

• Motif File

• 1st DNA sequence from Sus Scrofa

dataset

• Exact match

Figure 4.8: Result comparison from the proposed system and online de novo

motif finding tools.

Here it shows the motif comparison between two algorithms. One is proposed one and

according to our results we can check from de novo tools the frequency of these motif

according to their system.

		

	 28	

Conclusion	 	 	 	 	 	 		Chapter	5																																																																																																													
	

5.1	Summary	
In	 this	 thesis	we	 try	 to	 find	 an	 efficient	 algorithm	 for	motif	where	 both	 the	 exact	

match	 and	gapped	match	 are	 computed	using	 automata.	As	 the	basic	 of	 automata	

contains	 the	parallelism	of	different	possible	of	 the	path,	we	are	 try	 finding	every	

possible	motif	 in	 a	 sequence	 in	 a	way	where	we	 can	 get	 the	most	 probable	motif	

with	highest	frequency	in	this	method.	

As	 with	 the	 comparison	 with	 other	 paper,	 our	 main	 focus	 was	 to	 compute	 with	

variable	 length	motif	 for	 different	DNA	 sequence	 of	Homo	 sapiens,	Mus	Musculus	

With	similar	data	 set	of	 some	papers.	Our	goal	was	 to	 compute	 the	variable	motif	

possibility	 of	 different	 length	 and	 find	 out	 the	 most	 probable	 one	 using	 NFA	

Approach.	

	

5.2	Future	Work	
Though	 our	 search	 process	 in	 this	methods	 are	 in	 binary	 exponential	 search,	 we	

have	 tried	 to	minimize	 it	 from	 the	 exhaustive	 search	 of	 [2],	 but	 our	main	 future	

focus	 would	 be	 reduce	 the	 search	 process	 using	 index	 table	 so	 it	 can	 store	

dynamically	that	minimizes	the	result.	

	

		

	 29	

Bibliography	

 [1] Yazmín Magallanes, Ivan Olmos : Motifs Recognition in DNA Sequences

 Comparing the Motif Finding Automaton Algorithm against a Traditional

 Approach, Universidad de las Américas, Puebla, 2010

 [2] Pavlos Antoniou, Jan Holub : Finding Common Motifs with Gaps using Finite

 Automata, Dept. of Computer Science, King's College London, London, 2006

 [3] Tobias Marschall: Construction of minimal DFAs from biological motifs,

 Bioinformatics for High-Throughput Technologies, Computer Science XI,

 Dortmund, Germany, December 9, 2010

 [4] Grégory Nuel: Significance Score of Motifs in Biological Sequences, Institute

 for Mathematical Sciences (INSMI), CNRS, Paris, November 2, 2011

 [5] Markus Holzer: Nondeterministic Finite Automata-Recent Results on the

 Descriptional and Computational Complexity, Institut für Informatik Gießen,

 Hesse, Germany, January 2008

 [6] Christopher Sabotta: Advantages and challenges of programming the

 Micron Automata Processor, Iowa State University, 2013

 [7] Tobias Marschall: Algorithms and Statistical Methods for Exact Motif Discovery,

 Bioinformatics for High-Throughput Technologies, Computer Science XI,

 Dortmund, Germany, 2014

 [8] Indranil Roy and Srinivas Aluru: Finding Motifs in Biological Sequences using

 the Micron Automata Processor, School of Computational Science and

 Engineering Georgia Institute of Technology, Atlanta, GA 30332, 2014

 [9] L’ubomíra Išto ˇnová: Descriptional Complexity of Finite State Automata , Pavol

 Jozef Šafárik University in Košice, September 9, 2010

 [10] Kayleigh Hyde: NONDETERMINISTIC FINITE STATE COMPLEXITY,

 University of Hawai’i, Manoa, April 2013

 [11] Adnan Ferdous Ashrafi ,	 A.K.M Iqtidar Newaz :A Modified Algorithm For DNA

 Motif Finding Considering Mutation,	 Department of Computer Science and

 Engineering (CSE) Islamic University Of Technology(IUT), 2014

		

	 30	

 [12] Sabine Broda, Ant_onio Machiavelo: Average Case Complexity of NFA's,

 Centro de Matem_atica da Universidade do Porto, 2008

 [13] Nadia Pisanti_z, Alexandra M. Carvalho: RISOTTO: Fast extraction of motifs

 with mismatches, Dipartimento di Informatica, Universit_a di Pisa, Italy ,2002

 [14] Paolo Ribeca∗ and Emanuele Raineri: Faster exact Markovian probability

 functions for motif occurrences: a DFA-only approach, Bioinformatics and

 Genomics Unit, Center for Genomic Regulation, C/ Dr.Aiguader 88, E08003

 Barcelona, Spain, page 2839-2848, October 9, 2008

 [15] Maxime Crochemore and Christophe Hancart. Automata for matching patterns. In

 G. Rozenberg and A. Salomaa, editors, Handbook of Formal Languages, volume2,

 Linear Modeling: Background and Application, chapter 9, pages 399–462.

 SpringerVerlag, 1997.

