
ISLAMIC UNIVERSITY OF TECHNOLOGY

UNDER GRADUATE THESIS

Cellular Automaton Based Motion
Planning for Mobile Wireless Sensor

Networks

Authors:
Ahnaf Munir (114401)

Shihabuzzaman (114402)

Supervisor:
Dr. Muhammad Mahbub Alam

Professor

Department of Computer Science and Engineering

A thesis submitted to the Department of CSE in fulfilment of the
requirements for the Degree of B.Sc Engineering in CSE.

Academic Year: 2014-15.

October, 2015

Declaration of Authorship
This is to certify that the work presented in this thesis is the outcome of

the analysis and investigation carried out by Ahnaf Munir and Shihabuzzaman
under the supervision of Dr. Muhammad Mahbub Alam in the Department of
Computer Science and Engineering (CSE), IUT, Dhaka, Bangladesh. It is also
declared that neither of this thesis nor any part of this thesis has been submit-
ted anywhere else for any degree or diploma. Information derived from the
published and unpublished work of others has been acknowledged in the text
and a list of references is given.

Authors:

Ahnaf Munir

Student ID - 114401

Shihabuzzaman

Student ID - 114402

Supervisor:

Dr. Muhammad Mahbub Alam
Associate Professor
Department of Computer Science and Engineering
Islamic University of Technology (IUT)

i

ISLAMIC UNIVERSITY OF TECHNOLOGY

Abstract

B.Sc in Computer Science and Engineering

Cellular Automaton Based Motion Planning for Mobile Wireless Sensor
Networks

by Ahnaf Munir (114401)
Shihabuzzaman (114402)

Mobile Wireless Sensor Networks (MWSN) is an ad-hoc network that com-
prises of a large number of sensors. The sensors usually have limited sens-
ing and communication capabilities. Recent times has seen a rapid develop-
ment in MWSN technology which has resulted in its increasing application
and transformed this sector into an important field of research. Mobility is a
key factor in the implementation of MWSN. After being deployed in the en-
vironment the sensors need to move around to increase the coverage of the
network while maintaining connectivity. This movement is done by the indi-
vidual sensors based on local information. The use of local information means
that Cellular Automaton (CA) is suitable for developing motion planning al-
gorithms for MWSN. CA is a biologically inspired discrete model. Although
there are works that have used CA for developing motion planning algorithm
for MWSN they mostly used square grids which is not a good representation
of the actual MWSN model. In this paper we develop a set of probabilistic and
deterministic cellular automaton (CA)-based algorithms for motion planning
problems in MWSNs for hexagonal grid. We consider scenarios where sensors
are either explicitly or randomly placed in the environment and they need to
disperse to maximize the covered area and also maintain connectivity. We con-
duct simulations for both the deterministic and probabilistic models and find
that the probabilistic model yield better results.. . .

ii

Acknowledgements
In full gratitude, we would like to acknowledge the following individuals

who encouraged, inspired, supported, assisted, and sacrificed themselves to
help our pursuit of the successful thesis work.

From our academy, we would like to thank Dr. Muhammad Mahbub Alam,
Professor, CSE, IUT for the continuous support of our thesis work and related
research, for his patience, motivation, and immense knowledge. His guidance
helped us in all the time of research and writing of this thesis.

We would also like to thanks Md. Sakhawat Hossen, Assistant Professor,
CSE, IUT for his insightful comments and encouragement, but also for the hard
question which incented us to widen our research from various perspectives.

Last but not the least, we would like to thank our families for supporting us
spiritually throughout the writing of this thesis and our life in general.

With Regards,
Ahnaf Munir (114401)
Shihabuzzaman (114402)

iii

Contents

Declaration of Authorship i

Abstract ii

Acknowledgements iii

1 Introduction 1
1.1 Motivation . 1
1.2 Thesis Contribution . 2
1.3 Thesis Outline . 2

2 Background 3
2.1 Mobile Airless Sensor Network (MWSN) 3
2.2 Cellular Automata (CA) . 4

2.2.1 Formal Definition . 4
Grid . 5
State . 6
Transition Function . 6
Neighbourhood . 6

2.3 Range of a Sensor . 7

3 Literature Review 8

4 Proposed Method 14
4.1 Mobile Dispersion Algorithm for Hexagonal Grid 14

4.1.1 Local Rule for Defining the Movement of the Sensors . . . 14
4.1.2 Movement Blocking Rule 15
4.1.3 Move Back Rule . 15
4.1.4 Movement Bound . 17

4.2 Modified Algorithm for Hexagonal Grid 17
4.2.1 Axes . 17
4.2.2 Move Back Rules . 18
4.2.3 Application of a probabilistic model 20

iv

4.3 Movement bound . 20
4.4 Flowchart . 21

5 Simulation environment and results 22
5.1 Simulator . 22
5.2 Simulation Environment . 22
5.3 Performance Metrics . 22
5.4 Performance Evaluation . 23

6 Conclusion and Future Work 27
6.1 Conclusion . 27
6.2 Future Work . 28

v

List of Figures

2.1 Creation of a MWSN . 4
2.2 Hexagonal Grid . 5
2.3 Hexagonal Grid . 5
2.4 Neighbors of the central cell in square grid 6
2.5 Neighbors of the central cell in hexagonal grid 7

3.1 Initial state of an automaton with 10,000 cells and 729 sensors . . 8
3.2 An example of a cycle and the usefulness of multiplication factor 11
3.3 Neighbors break connectivity for Rc = 3. 12
3.4 Quadrant Move Back Rule . 12
3.5 Move back rules for a cell with multiple sensors. (a) Quadrant

move back and (b) 180-move back. 13

4.1 The x and y axes in the initial algorithm 15
4.2 The x and y axes in the initial algorithm 16
4.3 (a) Quadrant Move Back (b) 180 Move Back 16
4.4 The x and y axes in a hexagonal grid 18
4.5 Limitations of 180 Moveback . 19
4.6 The two quadrants on the left side. 19
4.7 Movement Bound Rule . 20
4.8 Flowchart of proposed mechanism. 21

5.1 Performance Graph Without Movement bound 23
5.2 Performance Graph With Movement bound 24
5.3 Different value of performance metric aSCC for different algorithm 24
5.4 number of nodes connected for different algorithm 25

vi

List of Tables

5.1 Results for 20*20 un-overlapped deployment without movement
bound . 25

5.2 Results for 10*10 overlapped deployment without movement bound 26
5.3 Results for 20*20 un-overlapped deployment with movement bound 26
5.4 Results for 10*10 overlapped deployment with movement bound 26

vii

Chapter 1

Introduction

1.1 Motivation

Advances in electronic components combined with the need of obtaining in-
formation about systems that need to be monitored have allowed the develop-
ment of new kinds of computer networks. A Mobile Wireless Sensor Network
(MWSN) is a special kind of network with distributed sensing and processing
capabilities. It can be used in a wide range of applications, such as environmen-
tal monitoring, industrial applications, smart transport systems, security of our
daily life, environmental monitoring etc. [1, 2, 3]

A MWSN is different from any traditional network. A typical MWSN con-
sists of several tiny mobile nodes which have limited attributes (e.g. energy,
transmission range, memory, processing power and so on.). One of the impor-
tant optimization problems in an MWSN is to maximize the coverage of the
network while maintaining coverage. The sensors in a MWSN have movement
capabilities. They are deployed in a certain area and they need to move around
to increase the coverage of the network while maintaining connectivity among
themselves.

The movement of a sensor requires significant amount of energy. Since the
sensors have limited power this movement should be restricted as much as
possible in order to save energy for sensing and communication. So a balance
must be maintained among coverage, connectivity and movement. This prob-
lem, called the Mobile Dispersion Problem is what we address here.

The sensors in a MWSN only use local information due to their limited sens-
ing and communication range. The use of small amount of local information
makes Cellular Automata (CA) suitable for developing MWSN algorithms and
testing them [4-8, 13-15]. CA is biologically inspired model that uses informa-
tion gathered from its neighbors to make decisions.

1

Chapter 1. Introduction 2

1.2 Thesis Contribution

The contribution of this thesis is as follows:

1. All the mobile dispersion algorithms that uses CA were developed for
square grid. But square grid is not a good representation of the the actual
sensors as compared to hexagonal grid. We use an dispersion algorithm
proposed by Salim et. Al [12] for developing an CA-based algorithm for
a hexagonal grid. The hexagonal grid gives much better representation of
an actual MWSN model.

2. Our initially proposed algorithm contains rules that were developed for a
square grid. These rules create certain problems when applied to sensors
in a hexagonal grid. So we modify the existing rules to fit a hexagonal
grid better.

3. Even after modification of the rules some problems exists in the determin-
istic model which cause disconnection among the sensors. Such problems
are addressed through the use of a probabilistic model instead of the ini-
tial deterministic model.

4. The limited energy of the sensors means that their movement should be
limited in order to preserve them for other uses such as sensing the envi-
ronment and communicating with other senors. We develop rules to limit
the movement of the sensors which eventually results in preservation of
energy.

1.3 Thesis Outline

The paper is organized as follows: Chapter 2 provides a short overview of
MWSN and CA; Chapter 3 discusses the state of the art in the field; Chapter
4 discusses our proposed algorithms; Chapter 5 shows the results of our algo-
rithms ; and Chapter 6 concludes the paper and presents future work.

Chapter 2

Background

2.1 Mobile Airless Sensor Network (MWSN)

Mobile Wireless Mobile Networks (MWSNs) are distributed adhoc networks of
nodes that can sense, actuate, compute and communicate with each other using
point-to-point, multi-hop communication. This kind of network may consist of
hundreds to thousands of sensor nodes that have the capability of sensing, pro-
cessing and communicating using a wireless medium. Nodes in such networks
include mobile sensors, robots, and even humans. Such systems combine the
most advanced concepts in perception, communication and control to create
computational systems capable of large-scale interaction with the environment,
extending the individual capabilities of each network component to encompass
a much wider area and range of data.

Due to the absence of any networking infrastructure the nodes must coop-
erate to accomplish communication, global control and distributed information
aggregation. MWSNs aims to collect data and sometimes control an environ-
ment.

The establishment of a mobile wireless sensor network is illustrated in Fig-
ure 2.1. Initially, the sensor nodes are deployed over an area of interest as il-
lustrated in Figures 2.1(a) and 2.1(b). The node deployment can be done, for
example, by dropping a large number of sensor nodes from an airplane in a
certain area, or placing them in this area by hand or using a robot. They are
able to discover their locations (see Figure 2.1 (c)) and organize themselves as a
wireless network (see Figure 2.1 (d)). A MWSN must be able to operate under
very dynamic conditions.

Once the network is formed and the sensor nodes are operating, most sensor
nodes will be able to sustain a steady state of operation, where energy reservoirs
will be nearly full, and they will be able to support all the sensing, processing,
and communication tasks required. In this mode, sensor nodes will constitute a

3

Chapter 2. Background 4

multi-hop network. The sensor nodes begin to establish routes by which infor-
mation passed to one or more sink nodes. Sink nodes are typical sensor nodes
that usually differ from other types of sensor nodes in the following aspects:
they have more energy, longer radio range and do not perform sensing. When
there are structural differences among the nodes we say that the network is het-
erogeneous. In this work, we just address the homogeneous networks (that is,
we consider that all nodes have the same structure and properties).

FIGURE 2.1: Creation of a MWSN

2.2 Cellular Automata (CA)

A Cellular Automaton (CA) is a discrete time decentralized system that can be
used to model physical systems. It is a biologically inspired model that uses
small amount of local information for making decisions.

2.2.1 Formal Definition

A CA can be formally defined as a 4-tuple (L, S,N, δ) where:

• L is a regular grid. The elements that compose this grid are called cells.

• S is a finite set of states

• N is a finite set (of size |N | = n) of neighborhood index, such that ∀c ∈ L :

r + c ∈ L

• δ : Sn → S is a transition function

The four components are discussed briefly below:

Chapter 2. Background 5

Grid

The cells in the cellular automata reside on grids. This grid can be of various
types. They can be in any finite number of dimensions. The shape can me
rectangular, triangular, hexagonal etc. The grid can have either finite or infinite
size.

FIGURE 2.2: Hexagonal Grid

FIGURE 2.3: Hexagonal Grid

Generally, a grid is called regular if it is a coverage of d-dimensional space,
that is, the elements of the grid (cells) together complete the d-dimensional
space entirely, and the translation of the grid in d independent directions re-
sults in the grid itself.

Chapter 2. Background 6

State

A finite set of states is associated with any cellular automata. The cells can be in
any of these states. The simplest set of states are the on and off states or 0 and
1. In every time step each of the cell changes or retains its state by consulting
the rules that have been defined for that particular automata. The rules usually
consider the state of the cell and also of those that are its neighbors (discussed
below) in the previous time step.

Transition Function

The trasition function is responsible for changing the states of the cells. The
state of a cell c ε C, at time t + 1, is determined via the transition function δ

depending on the current state of c and the states of cells in the neighborhood
of c at time t.

Neighbourhood

The neighbors of a cell are the cells that are considered to be adjacent to it. The
number of adjacent cells that are considered neighbor depends on that particu-
lar cellular automata. In case of a square grid if all the adjacent cells (maximum
8) of a cell are considered as the neighbors, then this is called a Moore neigh-
borhood [9].

FIGURE 2.4: Neighbors of the central cell in square grid

Chapter 2. Background 7

FIGURE 2.5: Neighbors of the central cell in hexagonal grid

In figures 2.4 and 2.5 the neighbors of the central black cell are shown. The
number within the cells denote the distance of the neighbors from the central
cell

2.3 Range of a Sensor

Each sensor in a MWSN has two kind of range associated with it; the commu-
nication range and the sensing range.

The communication range of a sensor is the area surrounding the sensor
within which the sensor can communicate with other sensors. So if any sensor
is located within the communication range of a sensor then the two sensors can
communicate with each other. We represent communication range by Rc.

The communication range of a sensor is the area surrounding the sensor
within which it can sense the environment. So a sensor can sense the environ-
mental area that falls within its sensing range. We represent communication
range by Rs.

Chapter 3

Literature Review

Our work is based on the CA model that was introduced by Cunha et. Al [7].
Cunha also discussed discussed the applicability of CA for MWSN model and
also introduces an algorithm to solve the network topology problem.

The paper by Salim et. Al [6] provides improved algorithm for the problem
defined in Cunha. This work greatly increases the lifespan of the network.

Most of the solutions that have been proposed for our problem are either
global or distributed algorithms that are also, arguably, highly complex. A sim-
ple approach has been proposed in [11]. This paper deals with sensor node
placement algorithm running on cellular automaton. The goal of this paper is
to achieve adequate coverage, connectivity and sparsity while being resilient to
changing environment condition.

FIGURE 3.1: Initial state of an automaton with 10,000 cells and 729
sensors

8

Chapter 3. Literature Review 9

Sensors are placed randomly on a square grid and move in two steps. Dur-
ing even cycle each node calculates the weighted distance of every other sen-
sors in the neighborhood. Then the decision to move is taken probabilistically
based on weighted distance. The equation used to calculate weighted distance
of neighborhood is: k = 8N1 + 4N2 + 2N3 + 1N4

Where Nn is the number of nodes within a distance of n cell from the sensor
in question. Probability of movement varies for different value of K.

k is then used to determine the probability of movement:

• For k = 0 or k ≥ 8 the node has a 50% chance of moving

• For 5 ≤ k ≤ 7 the node has a 20% chance of moving

• For 1 ≤ k ≤ 4 the node has a 5% chance of moving

Once it has taken the decision to move, a sensor chooses at random one of
its eight immediate neighboring cells while following two conditions:

• The chosen cell must be empty

• The chosen cell must also be outside the reach of all other nodes

During the odd time step the node actually moves as defined in the even
time step.

Papers by Salim et. Al [11], [12] discusses algorithms for moving the nodes
in the network. The papers considered grid with square cells where each cell
can be either empty or contain one or more nodes. The nodes would then either
remain in its cell or move to the adjacent cells according to the algorithm. We
discuss the algorithm as our initial rules are based on [12].

The algorithm determines the movement direction of a sensor s based on
the weighted number of neighbors of s in the positive and in the negative x-
direction (respectively, y-direction). The weights assigned to neighbors in case
of Rc = 3 are as follows: the weights for neighbors at distances 1, 2 and 3 are 4,
2 and 1, respectively. In case of Rc = 2, the weights for neighbors at distances 1
and 2 are 2 and 1, respectively.In an ideal case, one sensor can have neighbors
at distance 3 away in case of Rc = 3 and Rs = 1 to maximize the coverage while
maintaining connectivity. For this reason we assign the weights to be inversely
proportional to the distance.

The state representing an individual sensor is a pair(x,y),x,y ε-1,0,1. The
state remembers the last move of the sensor. The direction of movement is

Chapter 3. Literature Review 10

stored in the state because, in order to avoid infinite loops, the algorithm pre-
serves the current movement direction. For example, a pair (0,1) means that
in the last time step the sensor did not move in the x-direction and moved
upwards along the y-direction. The next movement step of a sensor s is de-
termined by the weighted neighborhood of s and the previous movement di-
rection of s that is stored in the pair of integers representing s. When a cell
has more than one sensor, each represented by a pair(x,y),x,y ε-1,0,1, the al-
gorithm computes the potential movement direction for each of these sensors.
(The movement direction depends on (x, y) and, thus, may be different for dif-
ferent sensors in the same cell.)

The algorithms use a parameter (multiplier), M >= 2, that serves to encour-
age the sensor to keep moving in the direction of its previous movement step.
We define the movement rule as follows.

Suppose that a sensor s is represented by a pair (sx, sy). Suppose that w1 is
the sum of weights of neighbors of s in the negative x-direction (to the left of s).
Suppose that w2 is the sum of basic weights of neighbors of s in the positive x-
direction (to the right of s). The potential movement of s in x-direction depends
on the value of sx, i.e. by remembering the last move, the sensor tries to keep
moving in the same direction, unless there is a really good reason to change
the direction. So the movement of a sensor along the x-direction depends on
its neighbors in the positive and negative x-direction and the current value of
sx. If we use a multiplier M, then the decision of movement to the x-direction
is determined by a value x-move(s) defined as

ifsx = 0, x−move(s) = w2 − w1

ifsx = −1, x−move(s) =M × w2− w1

ifsx = 1, x−move(s) = w2− (M × w1)

Now, if x-move(s) = 0 then the sensor does not move in the x-direction. If
x-move(s) >= 1, then the sensor moves to the negative x-direction whereas if x-
moves(s) <= 1, then the sensor moves to the positive x-direction. Movement in
the y-direction is determined analogously. If we do not have multipliers, that
is, set M = 1, the movement rules defined by the weighted neighborhood of
a sensor together with the move back rules can lead to infinite cycles. This is
illustrated by the following example (Figure 3.2).

Chapter 3. Literature Review 11

FIGURE 3.2: An example of a cycle and the usefulness of multipli-
cation factor

We consider a network with communication radius 3 and the initial con-
figuration consists of sensors in a 6 * 6 square. After some t time steps the
configuration is depicted in Figure 3.2(a) (the cell marked as black contains a
sensor) and in the next time step the configuration is as in Figure 3.2(b). It can
be seen that the connectivity of the network is broken as shown in Figure 3.2(a).
Hence the network applies the move back rules, and the resulting configuration
is the same as Figure 3.2(a), which means that the network has entered into an
infinite cycle. For this reason, the algorithm introduces a multiplier M > 2 that
encourages a sensor to keep moving in its previous direction. The sensor (i.e.
the state of the cell containing this sensor) remembers the previous movement
direction and weights of neighbors in the opposite direction are multiplied with
M. Going back to the example depicted in Figure 3.2, the computation step from
configuration as shown in Figure 3.2(a) using a multiplier, M = 2, yields a con-
figuration as in Figure 3.2(c).

We introduce rules that attempt to prevent the network from losing con-
nectivity. Below we consider a movement step in the positive x-direction. The
same rules apply to the three other directions. If a sensor s does not see any
neighbors within distance Rc − 1 in the negative x-direction, a movement step
in positive x-direction is blocked.

Consider a cell with m sensors s1, s2, ..., sm. Each sensor determines inde-
pendently whether it should move or not. If all the sensors move to a posi-
tive x-direction, then sensor s1 checks within distance Rc − 1 in the negative

Chapter 3. Literature Review 12

x-direction for the connectivity and if there is no sensor within distance Rc − 1

then only sensor s1 will not move to the positive x-direction. In case all sensors
in the cell try to move in one of the other three directions, a similar control step
is done in the opposite direction.

The above blocking conditions still do not guarantee the preservation of
connectivity because the sensors that are within distanceRc−1 of each other can
move to the opposite directions as in Figure 3.3. For this reason, we introduce
the following ‘move back’ rules. At any given time period t, before moving to
the positive x-direction, a sensor s remembers whether or not it has a neighbor
in two different quadrants (marked as circles Q1 and Q2 in Figure 3.4) in the
negative x-direction. At the next time period t+1, if the sensor finds that there is
no sensor in one of these quadrants but there was at least one sensor in the same
quadrant at period t, then the sensor moves back in the negative x-direction.
The same rule applies to three other directions.

FIGURE 3.3: Neighbors break connectivity for Rc = 3.

If we are concerned only about the loss of connectivity, the move back rule
can be simplified by remembering only whether or not there were neighbors in
the direction opposite to the current movement, that is, in case of Figure 3.4,
quadrants Q1 and Q2 can be combined together. We call this simplified rule the
1808-move back rule.

FIGURE 3.4: Quadrant Move Back Rule

Chapter 3. Literature Review 13

If we have a cell with m sensors and x-move (si) > 0 for all i = 1,, k,
where k ≤ m, then in case of 180-move back rule, only sensor s1 checks cells
for a distance Rc in the negative direction and if it finds that there is no sensor
in the negative direction then it moves back in the negative direction. All other
sensors move according to the other rules. On the other hand, in the case of
quadrant move back, before moving to a new direction each sensor remembers
whether there is any sensor in the quadrants of the opposite direction.

FIGURE 3.5: Move back rules for a cell with multiple sensors. (a)
Quadrant move back and (b) 180-move back.

At any period t, s1 checks the quadrants of the opposite direction and if it
finds that there is no sensor in one of the quadrants at that time period but there
was at least one in that quadrant at time t − 1, then only sensor s1 moves back
in negative x-direction. Other sensors continue with other rules. These rules
are applied similarly in the other three directions.

For example, in Figure 3.5, a cell C1 contains multiple sensors and all came
from west then, in case of 180-move back rule sensor s1 (one of the sensors in
C1) checks Rc distance in the west and in case of quadrant move back rule it
checks Q1 and Q2 quadrants at the west.

Chapter 4

Proposed Method

In this chapter, we give a high-level description of the algorithm that disperses
sensors from an initial configuration while trying to maintain connectivity in a
hexagonal grid. In particular, for simplicity, below we talk about the movement
of an individual sensor. However, in the general case, one cell may contain
more than one sensor and the state of the cell needs to remember the informa-
tion for each sensor it contains. We consider a scenario where Rc > Rs.

4.1 Mobile Dispersion Algorithm for Hexagonal Grid

Our initial algorithm is similar to the one introduced by Salim et. Al in [12].
The rules for moving each sensors of the network are discussed below. We also
discuss rules to limit the movement of the nodes.

4.1.1 Local Rule for Defining the Movement of the Sensors

The basic rule is used to determine the direction a node will move. The move-
ment each sensor is divided into two separate movements - movement along
x-axis and movement along y-axis. To determine the direction of movement the
weight of the neighbors must be calculated. The weights assigned to neighbors
in case of Rc = 3 are as follows: the weights for neighbors at distances 1, 2 and
3 are 4, 2 and 1, respectively. In case of Rc = 2, the weights for neighbors at
distances 1 and 2 are 2 and 1, respectively. The two axes for a sensor are shown
in Figure 4.1

The movement along x-axis is determined by calculating the weight of the
neighbors located to the left and right of the sensor. The sensor moves in the
direction with lesser weight. If the weight on both sides are equal the sensor
does not move along the x-axis.

14

Chapter 4. Proposed Method 15

The movement along the y-axis is calculated in a similar method to that of
the x-axis. Here the weight of the neighbors located up and down of the sensor
are calculated. The sensor moves in the direction with lesser weight. If the
weight on both sides are equal the sensor does not move along the y-axis.

FIGURE 4.1: The x and y axes in the initial algorithm

4.1.2 Movement Blocking Rule

Movement blocking rule is applied to prevent disconnections in the network.
If a sensor s does not see any neighbors within distance Rc − 1 in the negative
x-direction, a movement step in positive x-direction is blocked. The same rules
apply to the three other directions.

Consider a cell with m sensors s1, s2, ..., sm. Each sensor determines inde-
pendently whether it should move or not. If all the sensors move to a posi-
tive x-direction, then sensor s1 checks within distance Rc − 1 in the negative
x-direction for the connectivity and if there is no sensor within distance Rc − 1

then only sensor s1 will not move to the positive x-direction. In case all sensors
in the cell try to move in one of the other three directions, a similar control step
is done in the opposite direction.

4.1.3 Move Back Rule

The above blocking conditions still do not guarantee the preservation of con-
nectivity because the sensors that are within distance Rc − 1 of each other can
move to the opposite directions as in Figure 4.2.

Chapter 4. Proposed Method 16

FIGURE 4.2: The x and y axes in the initial algorithm

The two black cells each contain one sensor each with Rc = 2. Calculating
the weights of the left and right sensor determines that they must move left and
right respectively. But such movement would mean that the sensors move out
of each others communication range. As result a disconnection occurs in the
network. This problem is eliminated by the application blocking rule.

For this reason, we introduce the following ‘move back’ rules. At any given
time period t, before moving to the positive x-direction, a sensor s remembers
whether or not it has a neighbor in two different quadrants (marked as circles
Q1 and Q2 in Figure 3.4) in the negative x-direction. At the next time period
t + 1, if the sensor finds that there is no sensor in one of these quadrants but
there was at least one sensor in the same quadrant at period t, then the sensor
moves back in the negative x-direction. The same rule applies to three other
directions.

FIGURE 4.3: (a) Quadrant Move Back (b) 180 Move Back

If we have a cell with m sensors and x-move (si) > 0 for all i = 1,, k,
where k ≤ m, then in case of 180-move back rule, only sensor s1 checks cells
for a distance Rc in the negative direction and if it finds that there is no sensor
in the negative direction then it moves back in the negative direction. All other
sensors move according to the other rules. On the other hand, in the case of

Chapter 4. Proposed Method 17

quadrant move back, before moving to a new direction each sensor remembers
whether there is any sensor in the quadrants of the opposite direction.

4.1.4 Movement Bound

Movement bound limits the total number of movement a sensor can make. A
threshold value is selected. If a node tries to move more times than the thresh-
old value its movement will be blocked. So the sensor will not move any further
in the network.

Movement bound is used to conserve energy of the sensors. Movement
requires a lot of energy for the sensors. So limiting the number of movement a
node can make will save energy and increase the lifetime of the network.

4.2 Modified Algorithm for Hexagonal Grid

The algorithm that was initially proposed was a conversion of the method in-
troduced in [12] with the addition of a simple movement bound rule. Although
the performance of the algorithm was similar to that of [12] for some metrics, it
faced some problems for some other ones. The most noticeable problem was the
large number of disconnected sensor and the formation of loops. This problem
arises because of the characteristics of the hexagonal grid. So some modifica-
tion were required to be made to eradicate the problems. The modifications are
discussed below.

4.2.1 Axes

The division of the axes needs to be changed for the hexagonal grid. The mod-
ified axes are shown in figure 4.4. The weight calculation of the up-down and
left-right neighbors are done according to the new axes.

The change id made ensure that there is one cell at each radius distance
along both of the axes. Also the number of cells on all four sides are equal in
this orientation of the axes.

Chapter 4. Proposed Method 18

FIGURE 4.4: The x and y axes in a hexagonal grid

Also in case of hexagonal grid, for one of the axes the nodes will face some
problem when it moves along that axis. In Figure 4.4 we can see that there is
no position within radius 1 that is only up or down; they have component in
either left or right also. When a node moves only up or down it must also move
either left or right. In our algorithm we assume that when a node is required to
move up or down, it choses the cell with the lower weight.

4.2.2 Move Back Rules

The 180 – move back rule faces some problems in case of hexagonal grid. This
illustrated in Figure 4.5. The node 2 in Figure 4.5(a) calculated the weights and
determines that it is required to move up and right. So it remembers that it had
two neighbors to the left and two neighbors below. The position of the nodes
in the next time step is shown in Figure 4.5(b). In this case if the node 2 apply
180 move back rule it determines that it does not require to move back and
moves left. This creates a permanent disconnection in the network and the size
of the largest connected component in the network is reduced from 4 to 2. So
for hexagonal grid we only apply quadrant move back rule.

Chapter 4. Proposed Method 19

FIGURE 4.5: Limitations of 180 Moveback

To avoid this problem in hexagonal grid we will only use quadrant move
back rule. The division of the two quadrants in case of hexagonal grid is shown
in Figure 4.7. Such division is made to ensure equal number of neighbors in
both quadrants. Here the dark grey color represents the first quadrant while
the light grey color represents the second quadrant.

FIGURE 4.6: The two quadrants on the left side.

Chapter 4. Proposed Method 20

4.2.3 Application of a probabilistic model

Even after avoiding the 180 move back rule we face certain problems that occur
irrespective of the choice of the move back rule applied. The number of nodes
in the largest connected component remains too low for proper routing of data
through the network.

The main reason for this problem is that the nodes simultaneously try to
determine their next position in the grid. This problem can be solved if we
move the sensors using a probabilistic model instead of a deterministic model.
In the new method in each time step a node will try to move with probability p.
If p < 0.5 then the node will move in that time step. Otherwise the node will do
nothing. It will remain in its current position and wait for the next time step.
The process will be repeated in all the subsequent time step.

The use probabilistic model greatly improves the disconnection problem. So
this model is preferred in our algorithm over the deterministic model.

4.3 Movement bound

The energy of the nodes in the MWSN is very limited. Movement of the nodes
require large amount of energy. To increase the lifetime of the sensors and con-
sequently the network, the movement of the individual nodes should be re-
stricted. Restricting the movement of the nodes helps improve the lifetime of
the network at the cost of the coverage area. Balance should be ensured be-
tween the coverage and the lifetime of the MWSN.

FIGURE 4.7: Movement Bound Rule

Chapter 4. Proposed Method 21

In our algorithm we have tried to stop the movement of a node if it fall in a
loop. Suppose node n is at position A. During the next movement n moves to
B. The node then returns backs to A. If for the next movement n wants to return
back to B it is assumed that n has fallen in a loop and its movement is blocked.
So if the four consecutive positions of a node is A-B-A-B then after returning
back to A the node will not move any further.

4.4 Flowchart

The entire algorithm can be depictedd with the help of an algorithm as shown
in Figure 4.8.

FIGURE 4.8: Flowchart of proposed mechanism.

Chapter 5

Simulation environment and results

5.1 Simulator

To test our CA-based algorithms we developed our own simulator. The codes of
the simulator were written on Pyhton. The simulator determines the position
of each of the deployed nodes and presents a graphical representation of the
network for each time step. It also calculates the performance metrics which
allows us to compare the performance of the different algorithms.

5.2 Simulation Environment

The results that are shown below are for networks containing 400 nodes. The
nodes are placed in a hexagonal grid in two different distributions.The simula-
tions were executed both with and without implementing the movement bound
on the sensors. Since a probabilistic model was used there is a chance the sim-
ulation might continue up to infinity. To cope with such cases the maximum
time step has been set to 1500 i.e. if the simulation continues for 1500 time steps
it will terminate manually.

We considered two methods of deployment for the sensors. In the first
method the 400 nodes were placed in a 20 × 20 grid where each cell contained
exactly one sensor. In the second method the sensors were placed in a smaller
10×10 grid where each cell contain up to 5 nodes while certain cells may remain
empty.

5.3 Performance Metrics

• Number of nodes in the largest connected component.

• Number of cells that are sensed.

22

Chapter 5. Simulation environment and results 23

• Strongly Connected Component (aSCC):

aSCC =
averagecoverage(aCOV)

averagehopdistance(aHD)

• Average coverage

aCOV =
totalcoverage

numberofsensors

where total coverage means the number of cells that are sensed.

• Average hop distance(aHD)

aHD =

∑
r16=r2 hd(r1, r2)

n(n− 1)

• hd(r1,r2) is the hop distance between r1 and r2

5.4 Performance Evaluation

The graphs in Figure 5.1 and 5.2 below showing the time step vs network cov-
erage for three different value of probability threshold. If the threshold value is
low the nodes will require more time step to reach its maximum coverage.

FIGURE 5.1: Performance Graph Without Movement bound

Chapter 5. Simulation environment and results 24

FIGURE 5.2: Performance Graph With Movement bound

Figure 5.1 and Figure 5.2 are showing difference between an algorithm us-
ing movement bound with an algorithm not using movement bound. Without
movement bound the algorithm gives greater coverage, but the number of time
steps is increased. That means it requires more movement which consumes a
lot of energy.

On the other hand the algorithm using movement bound gives a little less
coverage but it reduces movement dramatically. As movement consumes a lot
of energy this movement bound algorithm offers a much more energy efficient
solution at the cost of coverage. The loss of coverage is however insignificant
compared to the reduction in movement of the sensors.

FIGURE 5.3: Different value of performance metric aSCC for dif-
ferent algorithm

Chapter 5. Simulation environment and results 25

Figure 5.3 shows the aSCC metric for the different algorithms. We see that
the modified algorithm with a probabilistic model gives much better result
compared to the other models. The data for the square grid was collected from
[12]. Figure 5.4 shows the number of connected sensors in case of a determinis-
tic model and a probabilistic model. The results shown here justifies the use of
a probabilistic model over a deterministic model.

FIGURE 5.4: number of nodes connected for different algorithm

The tables shown below compare the minimum, maximum, average and
median movements of the sensors with and without the application of move-
ment bound. The results are shown for cases when the sensors are deployed
deterministically also when they are deployed randomly.

TABLE 5.1: Results for 20*20 un-overlapped deployment without
movement bound

time probability connected no of overlapped max min avg median
steps the nodes sensed grid movement

simulation cells
runs
451 398 2786 0 159 32 94 101
409 0.5 398 2783 3 148 23 92 94
423 398 2779 7 147 20 92 95
434 399 2789 4 129 20 95 98
472 0.4 400 2799 1 152 28 92 97
550 398 2781 5 151 31 92 94
506 400 2797 3 157 29 95 95
397 0.3 394 2755 3 138 16 91 95
363 399 2786 7 157 20 92 94

Chapter 5. Simulation environment and results 26

TABLE 5.2: Results for 10*10 overlapped deployment without
movement bound

time probability connected no of overlapped max min avg median
steps the nodes sensed grid movement

simulation cells
runs
363 399 2786 6 157 20 91 94
528 0.5 394 2755 3 178 42 101 103
395 400 2793 7 158 44 94 96
454 394 2771 1 194 29 98 103
441 0.4 397 2773 6 156 26 96 95
559 400 2793 7 207 39 99 100
415 398 2782 4 152 30 94 95
353 0.3 400 2793 7 153 28 92 95
416 398 2781 5 142 30 93 95

TABLE 5.3: Results for 20*20 un-overlapped deployment with
movement bound

time probability connected no of overlapped max min avg median
steps the nodes sensed grid movement

simulation cells
runs
224 397 2624 155 11 0 7 7
236 0.5 397 2643 136 15 0 7 7
203 397 2583 196 14 0 7 6
207 400 2636 164 15 0 6 6
242 0.4 398 2646 140 9 0 7 7
245 398 2709 77 12 0 7 7
256 399 2705 88 11 0 7 7
222 0.3 400 2742 158 11 0 7 7
232 396 2646 126 9 0 7 7

TABLE 5.4: Results for 10*10 overlapped deployment with move-
ment bound

time probability connected no of overlapped max min avg median
steps the nodes sensed grid movement

simulation cells
runs
249 399 2646 147 18 0 8 8
225 0.5 398 2580 206 14 0 8 8
250 395 2629 139 19 0 8 8
248 398 2675 111 17 0 8 8
241 0.4 397 2638 141 17 0 8 8
250 398 2632 154 18 0 8 8
274 396 2699 73 16 0 8 8
212 0.3 398 2616 170 14 0 8 8
221 397 2627 152 18 0 8 8

Chapter 6

Conclusion and Future Work

6.1 Conclusion

In our work we have developed an algorithm for CA-based MWSN for a hexag-
onal grid. The initial algorithm was converted from a similar algorithm applied
in square grid. Along with the basic movement rules to increase the coverage
there were some additional rules that improved the connectivity. A basic rule
was also included to improve the lifetime of the network by limiting the num-
ber of move a sensor can make.

The initially proposed algorithm was based on an algorithm for square grid.
So it did not address some of the uniqure characteristics of a hexagonal grid.
Therefore some problems remained which were not addressed by this algo-
rithm. So modifications were made to the existing algorithm to make it more
suitable for the hexagonal grid.

One of the main changes that were made was the orientation of the axis. As
the neighbors could be symmetrically divided following the square grid, the y
-axis was tilted so that the division of the neighbors was accurate. The change
in axes meant that the weight calculation had to be modified according to the
new axes. Changes were also made to the quadrants in quadrant-move back
rule to accommodate the new axes. The 180-move back rule had to dropped
as it could not prevent disconnections in the network. The movement bound
ruled was improved so that it could predict loops in the network and prevent
them.

Despite the aforementioned changes in the network disconnections could
not be prevented. To ensure no disconnections occurred a probabilistic model
was introduced. Instead of trying to move in each time step the sensors now
move according to a probability value.

In order to compare the performance the algorithms we developed a sim-
ulator using Pyhton. The Results from the simulation showed that our final

27

Bibliography 28

algorithms performed better that our initial algorithm also the algorithm de-
veloped for square grid.

6.2 Future Work

In the future we would like to further enhance our existing algorithm so that
it can be used in a three dimensional space. Our current algorithm is limited a
two dimensional plane and we would like to convert it to a algorithm for three
dimensional space.

We want to develop sensor convergence algorithm where the distributed
sensors will move back to a certain position in the environment. After the ini-
tial deployment the sensors disperse within the environment and collect envi-
ronmental information. Usually the information collected by a single sensors
is insignificant and the information of all sensors must be combined to make
it meaningful. The sensors should therefore return to a specific position in the
environment to collectively form meaningful information. We want to develop
and algorithm to facilitate such movement.

Object tracking is another field that can be explored. After the sensors dis-
perse they will track a certain object in the environment. Usually the object will
be mobile and the sensors must communicate with other to accurately track the
position of the object.

Bibliography

[1] G. Huang, “Casting the wireless sensor net”, Technol. Rev. (Manchester, NH)
106, pp. 50–57., 2003.

[2] B. Liu, P. Brass, O. Dousse, P. Nain, and D. Towsley, “Mobility improves
coverage of sensor networks, in Proceedings of the 6th ACM Interna-
tional Symposium on Mobile Ad Hoc Networking and Computing (Mo-
biHoc’05”, University of Illinois at Urbana–Champaign, Urbana, IL, ACM, IL,
USA, 2005, pp. 300–308.

[3] S.A. Munir, B. Ren, W. Jiao, B. Wang, D. Xie, and J. Ma “Mobile wireless
sensor network: Architecture and enabling technologies for ubiquitous
computing”, in Proceedings of the 21st International Conference on Advanced
Information Networking and Applications Workshops (AINAW ’07), IEEE, Nia-
gara Falls, Ontario, Canada, Vol. 2, 2007, pp. 113–120.

[4] Banerjee, S. Das, H. Rahaman, and B. Sikdar, “CA based sensor node
management scheme: An energy efficient approach, in International Con-
ference on Wireless Communications”, Networking and Mobile Computing,
2007 (WiCom 2007), IEEE, hanghai, China, 2007, pp. 2795–2798.

[5] Y. Baryshnikov, E. Coffman, and K. Kwak, “High performance sleep–wake
sensor systems based on cyclic cellular automata”, in International Confer-
ence on Information Processing in Sensor Networks, 2008 (IPSN’08), IEEE, St.
Louis, Missouri, USA, 2008, pp. 517–526.

[6] S. Choudhury, K. Salomaa, and S.G. Akl, “A cellular automaton model for
wireless sensor networks”, J. Cell. Autom 7 (2012), pp. 223–241.

[7] R.O. Cunha, A.P. Silva, A.A.F. Loreiro, and L.B. Ruiz, “Simulating large
wireless sensor networks using cellular automata”, in Proceedings of the
38th Annual Simulation Symposium, 2005, IEEE, Washington, DC, USA, 2005,
pp. 323–330.

29

Bibliography 30

[8] M. Esnaashari and M. Meybodi, “A cellular learning automata based clus-
tering algorithm for wireless sensor networks”, Sens. Lett. 6 (2008), pp.
723–735.

[9] M. Garzon, “Analysis of Cellular Automata and Neural Networks”, Texts
in Theoretical Computer Science, Springer-Verlag, London, UK, 1995.

[10] Sami Torbey, Selim G. Akl, “Reliable Node Placement in Wireless Sensor
Networks Using Cellular Automata”, 11th International Conference, WCNC
2012, Orléan, France, September 3-7, 2012.

[11] Salimur Choudhury, Kai Salomaa, and Selim G. Akl, “Cellular Automa-
ton Based Motion Planning Algorithms for Mobile Sensor Networks ”, In
Proceedings of the First International Conference, TPNC 2012, Tarragona, Spain,
October 2-4, 2012.

[12] Salimur Choudhury, Kai Salomaa and Selim G. Akl, “Cellular Automa-
ton Based Algorithms for the Dispersion of Mobile Wireless Sensor Net-
works ”, International Journal of Parallel, Emergent and Distributed Systems
2014, 29:2, 147-177

[13] K.J.J. Kumar, K.C.K. Reddy, and S. Salivahanan, “Novel and efficient cellu-
lar automata based symmetric key encryption algorithm for wireless sen-
sor networks ”, Int. J. Comput. Appl. 13(4) (2011), pp. 30–37.

[14] K. Kwak, “Minimalist detection and counting protocols in wireless sensor
networks ”, Columbia University, 2008, ISBN 9780549860716

[15] W. Li, A. Zomaya, and A. Al-Jumaily, “Cellular automata based models of
wireless sensor networks ”, in Proceedings of the 7th ACM International Sym-
posium on Mobility Management and Wireless Access, ACM Digital Library,
Tenerife, Canary Islands, Spain, 2009, pp. 1–6.

[16] Sang-Ki Ko, Hwee Kim, and Yo-Sub Han “A CA Model for Target Track-
ing in Distributed Mobile Wireless Sensor Network ”, in Proceedings of the
13th International Conference on Control, Automation and Systems (ICCAS),
Gwangju, Korea, 2013, pp. 1356 - 1361.

	Declaration of Authorship
	Abstract
	Acknowledgements
	Introduction
	Motivation
	Thesis Contribution
	Thesis Outline

	Background
	Mobile Airless Sensor Network (MWSN)
	Cellular Automata (CA)
	Formal Definition
	Grid
	State
	Transition Function
	Neighbourhood

	Range of a Sensor

	Literature Review
	Proposed Method
	Mobile Dispersion Algorithm for Hexagonal Grid
	Local Rule for Defining the Movement of the Sensors
	Movement Blocking Rule
	Move Back Rule
	Movement Bound

	Modified Algorithm for Hexagonal Grid
	Axes
	Move Back Rules
	Application of a probabilistic model

	Movement bound
	Flowchart

	Simulation environment and results
	Simulator
	Simulation Environment
	Performance Metrics
	Performance Evaluation

	Conclusion and Future Work
	Conclusion
	Future Work

