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Abstract: 

A computer operator or an office worker now-a-days spend most his time sedentary. 

Technology is improving day by day and we are also becoming mechanic. Office  

employees  have to stay in front  of the PC   almost  all  the day  long and this  

sedentary behavior  is  not  good  for health. As a consequence people of all ages 

can suffer through health problems. Doctor suggested to make some movements during 

office time so   that the probability of attacking by chronic diseases decreases. 

Therefore many proposals had been proposed to keep people moving during work time. 

However, for most office workers it is difficult to achieve a considerable reduction of 

the time spent seated within the office environment. To promote physical activity even 

in such sedentary situations, this work explores the possibilities of using an interactive 

office furniture to smoothly integrate physical activity into the daily working routine  

Chair is the most frequently used furniture by the office workers. We have made a 

system to interact with the PC using chair. By equipping motion sensing sensors with a 

chair the movement of the user can be detected which can be used as input device 

for PC. This way, the “Interactive Gesture Chair” becomes an input device that is 

ubiquitously embedded into the working environment, and provides an office worker 

with the possibility to use the movements of his body for rotating, tilting, or bouncing 

a chair to intuitively control the operations in Desktop Computer. In our thesis work we 

have used thresholding to define the chair gestures/movements. By analyzing the result 

we saw that threshold based gestures vary with the variety of weight of the people i.e. 

the people with different weights have different threshold value for same gesture. Then 

we tried machine learning algorithms to define gestures so that defined gestures 

should work for the people of different weights. First of all we tried Euclidian distance 

method to define gestures. Then we tried Dynamic Time Warping algorithm to define 

gestures and then we tried decision tree to find a universal threshold for gestures. 

These defined gestures can be used to control many application of PC. We defined 

these gestures to control Windows Multimedia Player. 
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1 Introduction: 

During everyday office work used to control our computers with keyboard and mouse 

sitting in front of computers. When we work in our office in front of computer we 

spend most of our work time sedentary throughout our daily routine. We remain 

seated when we are on the way to office by car, during meetings, during lunch etc. 

This sedentary behavior is considered as an important ergonomic factor which may 

lead to a variety of chronic diseases for both aged and young persons. Due to long 

time staying in chair, people may suffer from back pain, neck pain, etc. Therefore 

many proposals had been proposed to keep people moving during work time. However, 

for most office workers it is difficult to achieve an Ease of Use considerable reduction 

of the time spent seated within the office environment. To promote physical activity 

even in such sedentary situations, this work explores the possibilities of using an 

interactive office chair to smoothly integrate physical activity into the daily working 

routine. By equipping a flexible chair with a motion sensor, the movements of a person 

sitting on the chair can be tracked and transformed into input events that trigger 

various actions on a computer. Besides, interacting with computers for a long period of 

time is tiresome, so there is a need of an alternate way to do the tasks other than 

regular mouse, keyboard operations. This way, the “Interactive Gesture Chair” becomes 

an input device that is ubiquitously embedded into the working environment, and 

provides an office worker with the possibility to use the movements of his body for 

rotating, tilting, or bouncing a chair to intuitively control operations in Desktop 

Computer. Ubiquitous Information Systems (UIS) provide means for supporting single 

actors and groups in real-world situations by services over ubiquitous computing 

technologies anywhere and anytime. UIS come with more complex requirements than 

the more strongly constrained Information Systems for office settings. Contents shall be 

seamlessly provided by any kind of mobile or embedded device based on loosely 

coupled service infrastructures while users are moving in physical environments. 

Furthermore, situated communication and collaboration of user groups in highly 
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dynamic and context-dependent physical environments are far more complex than well-

structured online environments. While working on a desktop computer [2], we are used 

to traditional mouse and keyboard input.  We have learned  how  to handle  these 

devices  and  utilize  them as  powerful tools  for our  daily  computer-based  

activities.  Their  operation,  however, involves making the  same small repetitive  

movements with  our  hands  over  and  over  again,  while  the  rest  of  our body  

remains  largely  unchallenged [15,29].  On  the  other hand,  with  computing  

interfaces  becoming  more  and more ubiquitous,  we  see  increasing  numbers  of  

input  technologies  making  their  way  into  the  user  interface  that  support free-

form manipulation  of  digital  objects  through  touch, speech, gaze, or body 

gestures. Taking  this  evolution  further,  we  believe  that  interaction through 

furniture has high potential to  open a new input domain  beyond  the  current  

mouse-and-keyboard  paradigm. Thus, in a common desktop workplace for example, 

where we are surrounded by functional furniture of various kinds, we believe that these 

readily available elements (e.g., chair, desk) could actually become part of the 

computer interface [3]. The ubiquity of seated activities [2] in our daily lives, for 

example, provides an excellent context for the development of alternative human-

computer interfaces. Thus, we have only recently begun to explore the potential of 

chair-based interaction as novel input dimension for desktop interfaces [23]. Extending 

this concept in the present work, we explore the  

Potential of gestural chair interaction during regular desktop activities. In office 

environment when user needs to listen music or do some secondary task besides the 

primary task then it also interrupts the primary work, therefore decreasing performance. 

So regardless of the specific use context, such scenarios always involve a focused 

primary task and a peripheral secondary task requiring temporary attention, only to 

slide back into the periphery again. Still, such short interruptions can disrupt our 

concentration, make us lose focus and decrease our performance [3]. This is especially 

problematic in the office context, where we want our attention focused on the actual 
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work. Thus, it is desirable for transitions between primary and secondary tasks to work 

rather effortlessly [3], with minimal physical and mental demand. We think that this 

type of interaction with secondary tasks should aim at keeping a task in the periphery 

of our attention, while still providing the opportunity to control it when needed. In our 

work, we focus on improving users’ interaction with peripheral tasks in the office 

context by providing the opportunity for gestural interaction with flexible office chair 

(e.g., navigating to the next item in a playlist by briefly swinging the lower body to the 

right while sitting on the chair). Thereby, in comparison to traditional input devices, our 

goal is to reduce physical constraints [2] (i.e., supporting hands-free, eyes-free 

interaction) and to support input that can take place nearly in parallel with a user’s 

primary task. We believe that this flexible chair is very well-suited for such peripheral 

interaction styles due to its ubiquity and currently untapped potential as input medium. 

In this work, we explain the implementation of our sensor-based chair interface, we 

explore three different gesture styles for chair interaction (i.e., rotate left, rotate right, 

tilt backward, bounce), and describe possible application scenarios (such as music 

player control) of using recognized input gestures for the control of a desktop 

computer. 

The results of explorative gesture studies provide implications on the benefits and 

limitations of the proposed concept. User feedback and performance show high 

potential of chair gestures as additional input modality for ubiquitous, hands-free 

interaction with a desktop computer. Considering health issues, in our proposed 

architecture, user has to move his body which is at least better than staying a long 

period of time in a same position. Recently MIT media interaction LAB have started 

working on chair gesture. Also lots of research work are ongoing to explore the 

additional capabilities of this kind of gestural interaction between human and computer. 

Utilizing these chair gesture into a frequently used application is challenging. Actually 

success of this ‘interactive gesture chair’ depends on proper integration of the gestures 

with frequently used desktop application and accuracy of detecting movements. 
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2 Related Works 

Following the trend of designing more natural ways of interaction with computer 

systems, several attempts have been made  to  develop  technologies  that  extend  

interaction  beyond  long-established  mouse-and-keyboard  input.  Along with  that,  

we  see  more  and  more  devices  with  embedded sensing  and  communication  

capabilities [30].While  early work  in the field of  smart  office  environments  has 

demonstrated the ubiquitous integration of interactive technology [27], research interest 

has more recently also considered the extension of  interaction  into  the periphery. 

The Unadorned Desk is an example for this kind of interaction, which used the 

physical space around a desktop computer as input canvas [12]. Similarly, our work 

adds to the research conducted within this field by proposing the utilization of a chair 

as ubiquitous input device. 

While [19] Wexelblat [8] and Quek [7] both claim that semaphoric gestures are not 

natural for computer interactions and represent only a small part of human 

communication, we suggest that the “small part” is potentially well matched to 

secondary interactions. Secondary or background tasks are those which can take place 

concurrently with the primary task [2]. When the demands of the secondary task cause 

it to become the user’s primary focus, referred to as “forced divided attention” [9], 

negative performance effects on the primary task can occur [3]. Gestures have been 

used as an approach for reducing these effects, facilitating “eyes-free” interaction as 

demonstrated with marking menus, for example [5].Secondary task interactions are 

often considered a primary concern within notification systems research where a 

secondary event such as an instant messenger window may interrupt a primary task 

such as editing a text document [6]. Research in this area investigates the effects of 

distraction and recovery caused to a primary task by an interruption, looking at 
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methods for reducing distraction through positioning of a notification and prioritizing 

interruptions [7,9]. 

Previous works [19] also done to utilize gestural device use of projectors [ref to 20, 

31], a tabletop computer as desk replacement [6], or by adding tablet computers next 

to the display as an interactive region [8]. These tend to be complex (or expensive) to 

set up. In contrast, the new generation of depth-sensing technologies mean that 

detecting touches and hovering is low-cost, such as via Leap Motion or Microsoft’s 

Kinect camera. The problem is that these technologies do not provide visual feedback. 

Chairs have been used in computer-based scenarios, where body movements are 

sensed and interpreted as implicit input to a system [2]. The Internet Chair for 

example, used orientation tracking to support social situation awareness through 

spatialized audio [7]. The Chair Mouse translated natural chair rotation into large-scale 

cursor movement for navigation on large displays [8]. Rather than exploiting existing 

user behavior, however, our work focuses on the encouragement of new interaction 

metaphors that are currently not possible with traditional input devices. Based on a 

similar concept, ChairIO introduced a gaming interface that allows users to navigate 

virtual environments by controlling a flexible chair with their body [1]. In contrast to 

this, we are interested in the application of input metaphors for more general 

scenarios beyond the gaming context, which have the potential to enrich and facilitate 

user interaction during everyday desktop work. 

In particular, our work explores chair input in the context of gestural interaction, which 

has been proposed as alternative human-computer interface in the context of hand, 

finger, or full-body gestures [17,24]. Integrating our physical body into interactions with 

digital interfaces [7], it has been shown that such gestural interfaces can potentially 

provide wide-reaching benefits over traditional input devices, including naturalness and 

expressiveness of interaction, learnability, directness of interaction, available degrees of 

freedom, and exploitation of existing dexterous skills [2,5].  
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So like these many efforts have been made to design calm technologies that aim to 

reduce information overload by letting users select what information is at the center of 

their attention [11]. Moreover, special interest has been on the design of inattentive 

interaction techniques that can be easily performed in the periphery of attention. 

Whack[38] Gestures is an example of an inattentive, inexact interaction technique, 

allowing users to interact without the use of fine motor skills or detailed visual 

attention [3]. It has been shown that such semaphoric gestures can provide substantial 

benefits for secondary task interactions [4], and allow users to vary their level of 

engagement with a task [7]. 

Chairs have been used for unobtrusive [3] measurement of body movements [7, 10] 

and the development of posture recognition systems for the classification of a person’s 

sitting behavior [20] or emotions [4,21]. Chair-based tracking data has furthermore been 

explored for supporting people in learning [10,14] and ambient assisted living [7] 

environments. Finally, the usage of interactive chairs has also been explored as input 

devices for the navigation of virtual 2D and 3D environments in computer games [4], 

or for direct control of the mouse cursor in a desktop environment [6].The usage of 

hand, finger and full-body gestures has been explored extensively in many works [18], 

as well as their usage for primary and secondary tasks like controlling a music 

application while typing [ref to 12] or controlling an interface while driving [2]. 

The ChairIO[6] was also a famous a chair-based computer interface developed in the 

interactive media / virtual environments (im/ve) group at the University of Hamburg. 

The motivation for the development of the ChairIO came from one of the group’s 

interests, the search for alternative interaction devices and techniques. Of particular 

interest is the search for intuitive methods to control movement in immersive virtual 

environments. Experience, using the standard hand-coupled devices, had shown some 

of the disadvantages and deficiencies of those methods. A chair, especially one which 

allows movement in several directions, seemed like a potential candidate to support 3D 

motion, both directional and rotational. After some research into this idea, a new 
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device and method was introduced in [2] the chair-based interface to provide intuitive 

and hands-free navigational control of a virtual environment. 

Based on these related works, we have only recently come up with the idea of 

applying different gesture styles to flexible chairs [23], since we believe that many of 

the benefits seen in in other body-based gestural interfaces can transfer to the 

desktop environment. Building upon this work, we are further exploring the specific 

subset of semaphoric [3] chair gesture to find some effective gestures. 

Now-a-days people are trying to design some natural ways to interact with computers 

instead of mouse and keyboard. To follow that, people are equipping sensors with 

frequently used things to establish communication with PC. Chair is one of the 

frequently used furniture to equip sensor with to use as input device of computer. In 

the previous works of Media Interaction Lab [14, 21] they have used Gyroscope and 

Accelerometer to detect movement of the chair and controlled multimedia player by 

defined gestures. Another chair based gesture detection [15] uses Lumia smartphone 

for getting sensors data which performs both music player control and web browsing. 

To detect the movement of the chair we need to equip accelerometer and gyroscope 

with the chair. For that we need an MPU-6050 sensor, which have to be well equipped 

with the chair and will detect chair movements. 
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3 Background study: 

3.1 Ubiquitous Computing: 

Ubiquitous computing is a paradigm in which the processing of information is linked 

with each activity or object as encountered. It involves connecting electronic devices, 

including embedding microprocessors to communicate information. Devices that use 

ubiquitous computing have constant availability and are completely connected. 

Ubiquitous computing focuses on learning by removing the complexity of computing 

and increases efficiency while using computing for different daily activities. Ubiquitous 

computing is also known as pervasive computing, every ware and ambient intelligence.  

The main focus of ubiquitous computing is the creation of smart products that are 

connected, making communication and the exchange of data easier and less obtrusive. 

Here computing is made to appear anytime and everywhere. In contrast to desktop 

computing, ubiquitous computing can occur using any device, in any location, and in 

any format. A user interacts with the computer, which can exist in many different 

forms, including laptop computers, tablets and terminals in everyday objects such as 

a fridge or a pair of glasses. The underlying technologies to support ubiquitous 

computing include Internet, advanced middleware, operating system, mobile code, 

sensors, microprocessors, new I/O and user interfaces, networks, mobile protocols, 

location and positioning and new materials. 

Ubiquitous computing is viewed less as a discrete field of technology, but rather as an 

emerging application of information and communications technology that is integrated 

into the everyday world more than ever before. The goal is to meet the claim 

of “everything, always, everywhere “for data processing and transmission through the 

ubiquity of ICT systems. The following characteristics define this application paradigm: 

(i)miniaturization: ICT components are becoming smaller and more mobile,(ii) 
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embedding: as ICT components are integrated into everyday objects, they transform 

them into smart objects, (iii)networking: ICT components are linked to each other and 

communicate generally via radio; they are therefore not part of a fixed environment or 

application, but are instead designed to form networks spontaneously, (iv)ubiquity: while 

embedded ICT components are increasingly ubiquitous, they are at the same time 

increasingly less noticeable—or even invisible—to most people, (v)context-awareness: ICT 

components use sensors and communication to collect information about their users 

and environment and adjust their behavior accordingly (Wagner et al., 2006). 
Communications technologies and microelectronics, in particular, are key requirements 

for almost all ubiquitous computing applications. Although energy autarky is certainly 

not an important characteristic of all ubiquitous computing applications, supplying 

energy is clearly a central task. Maturation and availability of ubiquitous computing-

relevant technologies is expected soon, within the next one to four years; nearly all of 

the technological requirements needed for ubiquitous computing should be met in the 

foreseeable future. Ubiquitous computing will permeate everyday life—both private and 

working—and is therefore expected to have far-reaching consequences that will be 

reflected in a variety of socio-economic contexts. Both positive and negative effects 

are likely in equal measure at several levels. Safety and privacy, for example, make up 

two ends of one key pole. The following discussion presents the impact of ubiquitous 

computing in terms of privacy, economics, society and the digital divide. 

Key features of ubiquitous computing include consideration of the human factor and 

placing of the paradigm in a human, rather than computing, environment, use of 

inexpensive processors, thereby reducing memory and storage requirements which is 

now a days a critical issue , capturing of real-time attributes, Totally connected and 

constantly available computing devices, focus on many-to-many relationships, instead of 

one-to-one, many-to-one or one-to-many in the environment, along with the idea of 

technology, which is constantly present. 
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3.2 Gestures: 

A gesture is a form of non-verbal communication or non-vocal communication in which 

visible bodily actions communicate particular messages, either in place of, or in 

conjunction with, speech. Gestures include movement of the hands, face, or other parts 

of the body. Gestures differ from physical non-verbal communication that does not 

communicate specific messages, such as purely expressive displays, proxemics, or 

displays of joint attention. Gestures allow individuals to communicate a variety of 

feelings and thoughts, from contempt and hostility to approval and affection, often 

together with body language in addition to words when they speak. Gesture processing 

takes place in areas of the brain such as Broca's and Wernicke's areas, which are 

used by speech and sign language. In fact, language is thought by some scholars to 

have evolved in Homo sapiens from an earlier system consisting of manual gestures. 

The theory that language evolved from manual gestures, termed Gestural Theory, dates 

back to the work of 18th-century philosopher and priestAbbé de Condillac, and has 

been revived by contemporary anthropologist Gordon W. Hewes, in 1973, as part of a 

discussion on the origin of language. 

3.2.1 Study on gestures: 

Gestures have been studied throughout the centuries from different viewpoints. During 

the Roman Empire, Quintilian studied in his Institution Oratoria how gesture may be 

used in rhetorical discourse. Another broad study of gesture was published by John 

Bulwer in 1644. Bulwer analyzed dozens of gestures and provided a guide on how to 

use gestures to increase eloquence and clarity for public speaking. Andrea De Jorio 

published an extensive account of gestural expression in 1832. 

3.2.2 Categories of gestures: 

Pointing at another person with an extended finger is considered rude in many 

cultures. 
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List of gestures: 

Although the scientific study of gesture is still in its infancy, some broad categories of 

gestures have been identified by researchers. The most familiar are the so-called 

emblems or quotable gestures. These are conventional, culture-specific gestures that 

can be used as replacement for words, such as the hand wave used in the US for 

"hello" and "goodbye". A single emblematic gesture can have a very different 

significance in different cultural contexts, ranging from complimentary to highly 

offensive[8] The page List of gestures discusses emblematic gestures made with one 

hand, two hands, hand and other body parts, and body and facial gestures. 

Another broad category of gestures comprises those gestures used spontaneously 

when we speak. These gestures are closely coordinated with speech. The so-called 

beat gestures are used in conjunction with speech and keep time with the rhythm of 

speech to emphasize certain words or phrases. These types of gestures are integrally 

connected to speech and thought processes. 

Other spontaneous gestures used during speech production known as iconic gestures 

are more full of content, and may echo, or elaborate, the meaning of the co-occurring 

speech. They depict aspects of spatial images, actions, people, or objects. For example, 

a gesture that depicts the act of throwing may be synchronous with the utterance, "He 

threw the ball right into the window. “Such gestures that are used along with speech 

tend to be universal. For example, one describing that he/she is feeling cold due to a 

lack of proper clothing and/or a cold weather can accompany his/her verbal 

description with a visual one. This can be achieved through various gestures such as 

by demonstrating a shiver and/or by rubbing the hands together. In such cases, the 

language or verbal description of the person does not necessarily need to be 

understood as someone could at least take a hint at what's being communicated 

through the observation and interpretation of body language which serves as a gesture 

equivalent in meaning to what's being said through communicative speech. 
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Studies affirm a strong link between gesture typology and language development. 

Young children under the age of two seem to rely on pointing gestures to refer to 

objects that they do not know the names of. Once the words are learned, they 

eschewed those referential (pointing) gestures. One would think that the use of gesture 

would decrease as the child develops spoken language, but results reveal that gesture 

frequency increased as speaking frequency increased with age. There is however a 

change in gesture typology at different ages, suggesting a connection between gestures 

and language development. Children most often use pointing and adults rely more on 

iconic and beat gestures. As children begin producing sentence-like utterances, they 

also begin producing new kinds of gestures that adults use when speaking (iconics and 

beats). Evidence of this systematic organization of gesture is indicative of its 

association to language development. 

Gestural languages such as American Sign Language and its regional siblings operate 

as complete natural languages that are gestural in modality. They should not be 

confused with finger spelling, in which a set of emblematic gestures are used to 

represent a written alphabet. American Sign Language is different from gesturing in that 

concepts are modeled by certain hand motions or expressions and has a specific 

established structure while gesturing is more malleable and has no specific structure 

rather it supplements speech. We should note, that before an established sign 

language was created in Nicaragua after the 1970s, deaf communities would use 

"home signs" in order to communicate with each other. These home signs were not 

part of a unified language but were still used as familiar motions and expressions used 

within their family—still closely related to language rather than gestures with no 

specific structure. This is similar to what has been observed in the gestural actions of 

chimpanzees. Gestures are used by these animals in place of verbal language, which is 

restricted in animals due to their lacking certain physiological and articulatory abilities 

that humans have for speech. Corballis (2009) asserts that "our hominin ancestors 

were better pre-adapted to acquire language-like competence using manual gestures 
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than using vocal sounds." This leads to a debate about whether humans, too, looked 

to gestures first as their modality of language in the early existence of the species. 

The function of gestures may have been a significant player in the evolution of 

language. 

3.2.3 Social significance: 

Gestures, commonly referred to as “body language,” play an important role in industry. 

Proper body language etiquette in business dealings can be crucial for success. 

However, gestures can have different meanings according to the country in which they 

are expressed. In an age of global business, diplomatic cultural sensitivity has become 

a necessity. Gestures that we take as innocent may be seen by someone else as 

deeply insulting. The following gestures are examples of proper etiquette with respect 

to different countries’ customs on salutations: In the United States, “a firm handshake, 

accompanied by direct eye contact, is the standard greeting. Direct eye contact in 

both social and business situations is very important.” In the People’s Republic of 

China, “the Western custom of shaking a person's hand upon introduction has become 

widespread throughout the country. However, oftentimes a nod of the head or a slight 

bow will suffice.” In Japan, “the act of presenting business cards is very important. 

When presenting, one holds the business card with both hands, grasping it between the 

thumbs and forefingers. The presentation is to be accompanied by a slight bow. The 

print on the card should point towards the person to which one is giving the card.” In 

Germany, “it is impolite to shake someone's hand with your other hand in your pocket. 

This is seen as a sign of disrespect” In France, “a light, quick handshake is common. 

To offer a strong, pumping handshake would be considered uncultured. When one 

enters a room, be sure to greet each person present. A woman in France will offer her 

hand first. 

Gestures are also a means to initiate a mating ritual. This may include elaborate 

dances and other movements. Gestures play a major role in many aspects of human 

life. Gesturing is probably universal; there has been no report of a community that 
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does not gesture. Gestures are a crucial part of everyday conversation such as 

chatting, describing a route, negotiating prices on a market; they are ubiquitous. 

Additionally, when people use gestures, there is a certain shared background 

knowledge. We use similar gestures when talking about a specific action such as how 

we gesture the idea of drinking out of a cup. When an individual makes a gesture, 

another person can understand because of recognition of the actions/shapes. Gestures 

have been documented in the arts such as in Greek vase paintings, Indian Miniatures 

or European paintings. 

Gestures play a central role in religious or spiritual rituals such as the Christian sign of 

the cross. In Hinduism and Buddhism, a mudra (Sanskrit, literally "seal") is a symbolic 

gesture made with the hand or fingers. Each mudra has a specific meaning, playing a 

central role in Hindu and Buddhist iconography. An example is the Vitarka mudra, the 

gesture of discussion and transmission of Buddhist teaching. It is done by joining the 

tips of the thumb and the index together, while keeping the other fingers straight. 

Gestures according to Neurology: 

Gestures are processed in the same areas of the brain as speech and sign language 

such as the left inferior frontal gyrus (Broca's area) and the posterior middle temporal 

gyrus, posterior superior temporal sulcus and superior temporal gyrus (Wernicke's area). 

It has been suggested that these parts of the brain originally supported the pairing of 

gesture and meaning and then were adapted in human evolution "for the comparable 

pairing of sound and meaning as voluntary control over the vocal apparatus was 

established and spoken language evolved".As a result, it underlies both symbolic 

gesture and spoken language in the present human brain. Their common neurological 

basis also supports the idea that symbolic gesture and spoken language are two parts 

of a single fundamental semiotic system that underlies human discourse. The linkage 

of hand and body gestures in conjunction with speech is further revealed by the 

nature of gesture use in blind individuals during conversation. This phenomenon 

uncovers a function of gesture that goes beyond portraying communicative content of 
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language and extends David McNeill's view of the gesture-speech system. This suggests 

that gesture and speech work tightly together, and a disruption of one (speech or 

gesture) will cause a problem in the other. Studies have found strong evidence that 

speech and gesture are innately linked in the brain and work in an efficiently wired 

and choreographed system. McNeill's view of this linkage in the brain is just one of 

three currently up for debate; the others declaring gesture to be a "support system" of 

spoken language or a physical mechanism for lexical retrieval. 

Because of this connection of co-speech gestures—a form of manual action—in 

language in the brain, Roel Willems and Peter Hagoort conclude that both gestures 

and language contribute to the understanding and decoding of a speaker's encoded 

message. Willems and Hagoort's research suggest that "processing evoked by gestures 

is qualitatively similar to that of words at the level of semantic processing." This 

conclusion is supported through findings from experiments by Skipper where the use of 

gestures led to "a division of labor between areas related to language or action 

(Broca's area and premotor/primary motor cortex respectively)." The use of gestures in 

combination with speech allowed the brain to decrease the need for "semantic 

control." Because gestures aided in understanding the relayed message, there was not 

as great a need for semantic selection or control that would otherwise be required of 

the listener through Broca's area. Gestures are a way to represent the thoughts of an 

individual, which are prompted in working memory. The results of an experiment 

revealed that adults have increased accuracy when they used pointing gestures as 

opposed to simply counting in their heads (without the use of pointing gestures) 

Furthermore, the results of a study conducted by Marstaller and Burianová suggest 

that the use of gestures affect working memory. The researchers found that those with 

low capacity of working memory who were able to use gestures actually recalled more 

terms than those with low capacity who were not able to use gestures. 

Although there is an obvious connection in the aid of gestures in understanding a 

message, "the understanding of gestures is not the same as understanding spoken 
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language." These two functions work together and gestures help facilitate 

understanding, but they only "partly drive the neural language system." 

 

 

3.3 MPU-6050 

3.3.1 MPU-6050 Overview: 

According to the InvenSense MPU-6050 datasheet, this chip contains a 3-axis 

gyroscope and a 3-axis accelerometer. This makes it a “6 degrees of freedom inertial 

measurement unit” or 6DOF IMU, for short. Other features include a built in 16-bit 

analog to digital conversion on each channel and a proprietary Digital Motion 

Processor™ (DMP) unit. 

The DMP combines the raw sensor data and performs some complex calculations 

onboard to minimize the errors in each sensor. Accelerometers and gyros have 

different inherent limitations, when used on their own. By combining the data from the 

two types of sensors and using some math wizardry (a process referred to as sensor 

fusion), you apparently can get a much more accurate and robust estimate of the 

heading. The DMP on the MPU6050 does exactly that and returns the result in 

“quaternions”. These can then can be converted to yaw-pitch-roll, or to Euler angles 

for us humans to read and understand. The DMP also has a built in auto-calibration 

function that definitely comes in handy, as we will see later. 

The biggest advantage of the DMP is that it eliminates the need to perform complex 

and resource intensive calculations on the Arduino side. The main downside is that it 

seems that the manufacturer did not provide much information on the proprietary inner 

workings of the DMP.  Nevertheless, smart and creative folks figured out how to use its 

main features, and were nice enough to share the results with the rest of us. You can 

still pull the raw, accelerometer and gyro data as well, disabling the DMP, if this works 
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better for your application, or you want to apply your own filtering and sensor fusion 

algorithms. 

The MPU-6050 communicates with a microcontroller through an I2C interface. It even 

has a built in an additional I2C controller that allows it to act as a master on a 

second I2C bus. The intention is for the IMU to read data from say, an external 

magnetometer (hooked up via those XDA / XCL pins you see on the breakout board) 

and send it to the DMP for processing. I have not found much detail on how to make 

the DMP use external magnetometer data yet, but fortunately that is not needed for 

my self-balancing robot at this point. 

Lastly, the MPU-6050 has a FIFO buffer, together with a built-in interrupt signal. It can 

be instructed to place the sensor data in the buffer and the interrupt pin will tell the 

Arduino, when data is ready to be read. 

3.3.2 MPU-6050 / GY-521 break-out board schematics: 

Below is the schematic of the GY-521 break-out board for the MPU6050 chip. 
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    Fig: MPU6050-schematic Circuit View 

 

3.3.3 Hooking the MPU-6050 / GY-521 to an Arduino Uno: 

The InvenSense MPU6050 chip is a 3.3V IC, with a working voltage range of 2.375V-

3.46V, according to its datasheet. As you can see from the schematics above, the GY-

521 breakout board has a built in low drop-out voltage regulator, so it is safe to 

power the chip through the Arduino 5V rail. This is recommended, as due to the 

voltage drop-out of the regulator on the VCC line, using the Arduino 3.3V rail may not 

provide enough voltage. I tested powering the chip both with 3.3V and 5V from the 

Arduino successfully, but in my final set-up opted for the 5V input. 

Based on what we have read online and what we saw on my tests, the 3.3V SDA / 

SCL lines of the IMU work fine connected directly to the corresponding Arduino 5V I2C 

pins. If you want to be absolutely safe, you could use a level shifter, voltage divider, 

or an inline 10k resistor to protect the MPU6050 I2C lines. I opted for simplicity over 

safety, in my set-up and (so far) all is well. 
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   Fig: Arduino Uno connections 

 

 

 

 

 

Pin configurations: 

MPU6050 / GY-521 Arduino UNO Pin 

VCC 5V (the GY-521 has a voltage regulator) 

GND GND 

SDA A4 (I2C SDA) 

SCL A5 (I2C SLC) 

INT D2 (interrupt #0) 

3.3.4 How an accelerometer works: 

An accelerometer works on the principle of piezo electric effect. Here, imagine a 

cuboidal box, having a small ball inside it, like in the picture above. The walls of this 

box are made with piezo electric crystals. Whenever you tilt the box, the ball is forced 

to move in the direction of the inclination, due to gravity. The wall with which the ball 

collides, creates tiny piezo electric currents. There are totally, three pairs of opposite 

walls in a cuboid. Each pair corresponds to an axis in 3D space: X, Y and Z axes. 

Depending on the current produced from the piezo electric walls, we can determine the 

direction of inclination and its magnitude. We can have a look at this figure below. 
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Fig:Accelerometer working mechanism 

3.3.5 How gyroscope works: 

Gyroscopes work on the principle of Coriolis acceleration. Imagine that there is a fork 

like structure that is in constant back and forth motion. It is held in place using piezo 

electric crystals. Whenever, you try to tilt this arrangement, the crystals experience a 

force in the direction of inclination. This is caused as a result of the inertia of the 

moving fork. The crystals thus produce a current in consensus with the piezo electric 

effect, and this current is amplified. The values are then refined by the host 

microcontroller. Now check this short video that explains, how a MEMS gyroscope 

works. 
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   Fig: Gyroscope working principle 

 

 

 

 

 

 

 

 

4 Problem statement: 

Recent works show that, chair based gesture was approached through basic brute 

force mechanism, which involves thresholding in axes values. We also implemented that 

in the previous semester, but after implementing that we saw major drawbacks of the 

traditional thresholding approach, major drawback was threshold seems to be different 

for different person, different age, different height etc. We have seen that if we 

determine threshold for one people or group of people that works less efficiently for 

any other people of different age or different weight. Threshold have to be changed 

for different kind of people. The threshold which works for young people doesn’t work 

good for mid aged people, the threshold have to be changed manually for the mid-

range people. If we choose mid-range people for standard it also shows less accuracy 

for aged person, if we set threshold for a stand weighted person, then we saw 

threshold varies for greater weighted person, In this way the thresholding becomes a 

cumbersome way to resolve the detection of gestures for different people. So wee 

need to think some alternatives to this traditional thresholding approach, like machine 

learning or different improved thresholding approach which is based on decision tree. 
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Decision tree calculates threshold in a more different and efficient way which takes 

data’s and class label, then learns from the data and creates good threshold. It is very 

important because if we are designing something that works for a very few people and 

if more people wants to use that system that system needs to be changed or 

configured manually every time, needs to calibrate for different group of people, but it 

shouldn’t be the case, what we are implanting should work for numerous number of 

people, then the work will be great. Also sitting style is different for different kind of 

people, teenagers may sit in such way which may differs from the mid-range people or 

aged people. It’s because of the center of gravity is different for different people, so 

while thresholding we have seen potential effect of this issue. For the changing of 

people weight reacts in different point that means center of gravity is changed, this 

changes the threshold for them, and so it also becomes an issue. 

Recent works show that people are determining threshold in manual ways like x, y, z 

axis thresholding for both accelerometer and gyroscope. We worked on that type of 

thresholding in the previous semester we find out the drawbacks of it which was 

mainly reconfiguring and calibrating the system every time. We thought of some 

different approaches like thresholding with decision tree or implementing machine 

learning algorithm, in this context machine learning approaches like dtw or hmm can 

be used. Also about accuracy, accuracy means percentage of correctly determining the 

movements. Machine learning can give better results but for machine learning we have 

to train with lots of data with the classifier label also, but for decision tree based 

thresholding approach we don’t need that much amount of data but decision tree 

thresholding may give less accuracy, so after finding effective gestures it is also 

necessary to analyze data and to find out which mechanism machine learning or 

decision tree thresholding is good. 

Finding a suitable position to accouter sensor that will give a good precision of data is 

also important in this context because after setting up the sensor in the chair we saw 

that for setting the sensor in different place of the chair, the sensors give different 
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kind of data, somewhere all values are negative always and somewhere mixture of 

negative and positive values, at some position sensors give meaningful data which can 

be easily detected and can be used for thresholding and other works, so it’s another 

kind of issue here to effectively set up or accouter the sensor in the chair or in the 

system.  

Distinguishing unconscious movements from gesture movements is also important 

because using the ubiquitous system, which takes input continuously from the 

movements can also give wrong data, it is called wrong because the user is not 

performing the gestures rather the system is considering the movements as gesture 

which is totally wrong, so what we can do is somehow isolate the state of taking input 

and not taking input such that user makes usual movement, incorrectly gesture is not 

detected. 

Raw data collected from sensor have lots of noise especially the data which have no 

variations in them to detect change can be filtered and these data can be noise, also 

noise can unnecessarily create values in raw data which in return makes gestures what 

was not actually performed, so after getting raw data some filter such as high pass 

filter or low pass filter is needed to filter the data to remove the unnecessary signals. 
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5 Proposed methodology: 

5.1 Prototype: 

Before going to implementation, first we created a prototype of our system as shown 

in the preceding figures. It is portable system because we can move the chair 

anywhere while the sensors are accoutered at the back side of the chair. The chair 

should be a flexible office chair. We are considering to equip sensors on the back of 

the flexible chair, where data will be passed to our computer through data cable. As 

discussed earlier MPU-6050 sensor is connected with the arduino at mega 2560. We 

are now using MPU 6050 as a combined unit of accelerometer and gyroscope sensor 

to detect the movement of the chair based on the movement of the user. We have to 

collect the data of Accelerometer and Gyroscope for the people with different weights 

and ages for rotating, tilting and bouncing. We will be first using data cables or burner 

cables to pass the data and later on based on other measurements and accuracy we 
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will collect data by using Bluetooth sensor. We have used thresholding to detect 3 

gestures (tilt backward, rotate right, rotate left).We have got threshold by analyzing the 

data of the users. Then we have also analyzed thresholding and machine learning to 

find which suits best in the system. 

 

  Fig: Work Flow of how machine learning algorithm will work 

 
Figure: Proposed Interactive Gesture Chair 

 

5.2 System Designed: 

Most of the time we used to operate PC sitting on chair .So chair is so much related 

to computer activities and chair can be found everywhere. We can use the movements 

of a chair to communicate with PC. As much as movements we can define, we will be 

Sensors will be 

equipped here 
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able to control more application. So the higher degree of freedom the chair have more 

gesture can be defined, more application can be controlled. Also gestures by chair 

movement is much easy because we operate PC by sitting on chair, as we ourselves is 

sitting on chair , and we are close to PC, so if we control PC by chair gesture it will 

be easy to implement and easy to set up in a new system. Based on our proposed 

architecture of the whole system we thought of buying a flexible office chair and 

arduino board and MPU 6050. We bought a flexible high quality office chair which has 

3 degree of freedom, rotate right, and rotate left, tilt backward. Additionally we can 

use bounce movements as gesture but it is more difficult to perform for the user. An 

MPU-6050 sensor is accoutered with the chair to determine the movement of the chair 

according to the body movement of the user. The MPU 6050 communicates with the 

Arduino through the I2C protocol. The MPU 6050 is connected to Arduino as shown in 

the following diagram. A burner cable is connected to arduino to pass the data of 

Accelerometer and Gyroscope to PC.  
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   Fig: work flow of whole system 

 

 

Fig: Chair and sensor implementations 
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Fig: Rotate right gesture 

 

  Fig: Rotate left Gesture 
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            Fig: Back Gesture 

We have collected the data of Accelerometer and Gyroscope for the people with 

different weights and ages for rotating, tilting and bouncing. 

We have gone through four approaches to define gestures which are described below: 

5.2.1 Euclidean distance: 

In mathematics, the Euclidean distance or Euclidean metric is the "ordinary" (i.e. 

straight-line) distance between two points in Euclidean space. With this distance, 

Euclidean space becomes a metric space. The associated norm is called the Euclidean 

norm. Older literature refers to the metric as Pythagorean metric. A generalized term 

for the Euclidean norm is the L2 norm or L2 distance. 

The Euclidean distance between points p and q is the length of the line segment 

connecting them (pq).In Cartesian coordinates, if p = (p1, p2,..., pn) and q = (q1, q2,..., 

qn) are two points in Euclidean n-space, then the distance (d) from p to q, or from q 

to p is given by the Pythagorean formula: 
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The position of a point in a Euclidean n-space is a Euclidean vector. So, p and q are 

Euclidean vectors, starting from the origin of the space, and their tips indicate two 

points. The Euclidean norm, or Euclidean length, or magnitude of a vector measures 

the length of the vector: 

 

Where the last equation involves the dot product. 

A vector can be described as a directed line segment from the origin of the Euclidean 

space (vector tail), to a point in that space (vector tip). If we consider that its length is 

actually the distance from its tail to its tip, it becomes clear that the Euclidean norm 

of a vector is just a special case of Euclidean distance: the Euclidean distance 

between its tail and its tip. 

The distance between points p and q may have a direction (e.g. from p to q), so it 

may be represented by another vector, given by 

 

In a three-dimensional space (n=3), this is an arrow from p to q, which can be also 

regarded as the position of q relative to p. It may be also called a displacement 

vector if p and q represent two positions of the same point at two successive instants 

of time. 

The Euclidean distance between p and q is just the Euclidean length of this distance 

(or displacement) vector: 
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 Which is equivalent to equation 1, and also to: 

 

5.2.1.1 One dimension: 

One In one dimension, the distance between two points on the real line is the 

absolute value of their numerical difference. Thus if x and y are two points on the real 

line, then the distance between them is given by: 

  

In one dimension, there is a single homogeneous, translation-invariant metric (in other 

words, a distance that is induced by a norm), up to a scale factor of length, which is 

the Euclidean distance. In higher dimensions there are other possible norms. 

5.2.1.2 Two dimensions: 

In the Euclidean plane, if p = (p1, p2) and q = (q1, q2) then the distance is given by 

 

This is equivalent to the Pythagorean Theorem. 

Alternatively, it follows from (2) that if the polar coordinates of the point p are (r1, θ1) 

and those of q are (r2, θ2), then the distance between the points is 

  

But we have used six dimensional Euclidean distance on the axis’s of 

accelerometer(ax,ay,az) and gyroscope(gx,gy,gz) .So the distance between template(t) 

and sample(s) is  

D(s,t)= (axs-axt)2+(ays-ayt)2+(azs-azt)2+(gxs-gxt)2+(gys-gyt)2+(gzs-gzt)2 
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5.2.1.3 Limitations: 

Where there is a high noise-to-signal ratio and negative spikes, any correlation is 

difficult to establish. The Euclidean distance method also suffers in such cases. 

Euclidean distance measures the correlation between quantitative, continuous variables. 

It is not suitable for ordinal data, where preferences are listed according to rank 

instead of according to actual values. 

It can't determine the correlation between user profiles who have similar trends in 

tastes, but different ratings for some of the same items. A method like the Pearson 

correlation would give an indication of how similar a set of preferences are, regardless 

of fluctuations in individual ratings. 

5.2.2 DTW algorithm: 

In time series analysis, dynamic time warping (DTW) is an algorithm for measuring 

similarity between two temporal sequences which may vary in time or speed. For 

instance, similarities in walking patterns could be detected using DTW, even if one 

person was walking faster than the other, or if there were accelerations and 

decelerations during the course of an observation. DTW has been applied to temporal 

sequences of video, audio, and graphics data — indeed, any data which can be turned 

into a linear sequence can be analyzed with DTW. A well-known application has been 

automatic speech recognition, to cope with different speaking speeds. Other 

applications include speaker recognition and online signature recognition. Also it is 

seen that it can be used in partial shape matching application. 

In general, DTW is a method that calculates an optimal match between two given 

sequences (e.g. time series) with certain restrictions. The sequences are "warped" non-

linearly in the time dimension to determine a measure of their similarity independent 

of certain non-linear variations in the time dimension. This sequence alignment method 
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is often used in time series classification. Although DTW measures a distance-like 

quantity between two given sequences, it doesn't guarantee the triangle inequality to 

hold. 

5.2.2.1 Implementation: 

This example illustrates the implementation of the dynamic time warping algorithm 

when the two sequences s and t are strings of discrete symbols. For two symbols x 

and y, d(x, y) is a distance between the symbols, e.g. d(x, y) = | x - y | 

int DTWDistance(s: array [1..n], t: array [1..m]) { 

    DTW := array [0..n, 0..m] 

    for i := 1 to n 

        DTW[i, 0] := infinity 

    for i := 1 to m 

        DTW[0, i] := infinity 

    DTW[0, 0] := 0 

    for i := 1 to n 

        for j := 1 to m 

            cost:= d(s[i], t[j]) 

            DTW[i, j] := cost + minimum(DTW[i-1, j  ],    // insertion 

                                        DTW[i  , j-1],    // deletion 

                                        DTW[i-1, j-1])    // match 

    return DTW[n, m] 

} 
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We sometimes want to add a locality constraint. That is, we require that if s[i] is 

matched with t[j], then | i - j | is no larger than w, a window parameter. 

We can easily modify the above algorithm to add a locality constraint (differences 

marked in bold italic). However, the above given modification works only if | n - m | 

is no larger than w, i.e. the end point is within the window length from diagonal. In 

order to make the algorithm work, the window parameter w must be adapted so that | 

n - m | ≤ w (see the line marked with (*) in the code). 

int DTWDistance(s: array [1..n], t: array [1..m], w: int) { 

    DTW := array [0..n, 0..m] 

    w := max(w, abs(n-m)) // adapt window size (*) 

    for i := 0 to n 

        for j:= 0 to m 

            DTW[i, j] := infinity 

    DTW[0, 0] := 0 

    for i := 1 to n 

        for j := max(1, i-w) to min(m, i+w) 

            cost := d(s[i], t[j]) 

            DTW[i, j] := cost + minimum(DTW[i-1, j  ],    // insertion 

                                        DTW[i, j-1],    // deletion 

                                        DTW[i-1, j-1])    // match 

  

    return DTW[n, m] 

5.2.3 Decision tree: 
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A decision tree is a decision support tool that uses a tree-like graph or model of 

decisions and their possible consequences, including chance event outcomes, resource 

costs, and utility. It is one way to display an algorithm. Decision trees are commonly 

used in operations research, specifically in decision analysis, to help identify a strategy 

most likely to reach a goal.  

A decision tree is a flowchart-like structure in which each internal node represents a 

"test" on an attribute (e.g. whether a coin flip comes up heads or tails), each branch 

represents the outcome of the test and each leaf node represents a class label 

(decision taken after computing all attributes). The paths from root to leaf represents 

classification rules. In decision analysis a decision tree and the closely related 

influence diagram are used as a visual and analytical decision support tool, where the 

expected values (or expected utility) of competing alternatives are calculated. 

A decision tree consists of 3 types of nodes: 

1. Decision nodes - commonly represented by squares 

2. Chance nodes - represented by circles 

3. End nodes - represented by triangles 

Decision trees are commonly used in operations research, specifically in decision 

analysis, to help identify a strategy most likely to reach a goal. If in practice decisions 

have to be taken online with no recall under incomplete knowledge, a decision tree 

should be paralleled by a probability model as a best choice model or online selection 

model algorithm. Another use of decision trees is as a descriptive means for 

calculating conditional probabilities. 

Decision trees, influence diagrams, utility functions, and other decision analysis tools 

and methods are taught to undergraduate students in schools of business, health 

economics, and public health, and are examples of operations research or management 

science methods. 
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5.2.3.1 Advantages and disadvantages: 

Among decision support tools, decision trees (and influence diagrams) have several 

advantages. Decision trees: 

― Are simple to understand and interpret. People are able to understand decision 

tree models after a brief explanation. 

― Have value even with little hard data. Important insights can be generated based 

on experts describing a situation (its alternatives, probabilities, and costs) and their 

preferences for outcomes. 

― Allow the addition of new possible scenarios 

― Help determine worst, best and expected values for different scenarios 

― Use a white box model. If a given result is provided by a model. 

― Can be combined with other decision techniques. 

5.2.3.2 Limitations of decision trees: 

― For data including categorical variables with different number of levels, 

information gain in decision trees are biased in favor of those attributes with more 

levels. 

― Calculations can get very complex particularly if many values are uncertain 

and/or if many outcomes are linked. 

 

 

 



41 | P a g e  

 

 

 

 

5.2.4 Thresholding based Approach: 

 

 Here we can see the raw data collected from the accelerometer and gyroscope and 

we saved the data in text file like this way, here we clearly isolated the data axes and 

the data type whether accelerometer or gyroscope data by putting spaces.In threshold 

based approach we took value of the accelerometer and gyroscope .Observed the 

values and analyze them, we saw values differs in which axis mainly then identified 

them for the respective gestures. After that we gradually put the threshold on the data 

one by one axes, because applying all the thresholds at once may create troubles in 

determining and evaluating the decision statements in respective axes, we mainly saw 

differences in gyroscope axis values, so we first set threshold on gyroscope axes 

values and later gradually put threshold on the accelerometer axes values. The arduino 

code where we set preliminary thresholds are shown below: 
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Fig: Thresholding of data on the axes values 
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6 Algorithm Analysis: 

6.1 Euclidian distance based Approach: 

 

In Euclidean based approach we take the values of six axes then manually select the 

best matching template and then manually compare the new values to the templates 

axes by axes, the matching procedure is based on six axes data. Euclidean distance 

gives us a good precision of data, so we primarily thought that Euclidean distance is 

best based on data analysis before we have seen the dtw algorithm. Manually 

calculated template matrix are shown here  
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Fig: calculated matrix of the templates 
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6.2 DTW Based Approach: 

DTW is manly a dynamic time warping algorithm for measuring similarity between two 

temporal sequences which may vary in time or speed. For instance, similarities in 

walking patterns could be detected using DTW, even if one person was walking faster 

than the other, or if there were accelerations and decelerations during the course of 

an observation. DTW has been applied to temporal sequences of video, audio, and 

graphics data — indeed, any data which can be turned into a linear sequence can be 

analyzed with DTW. The limitations of Euclidean and advantages of the DFTW can be 

seen from the below figure. 

 

 Fig: DTW algorithm and Euclidean comparison 
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 Fig: Code snapshot of DTW algorithm 

After finding several flaws of Euclidean distance like not considering the points of 

different peaks and not considering the shape of the signal, we took decision of 

stepping out to dtw algorithm, then afterwards we followed window based dtw algorithm 

Implemented in arduino which identifies the vector class in real time while we are 

processing data, the code snapshot is provided, the dtw gave us the class level for 

each of the data and then we saved the data on the CSV file which is a standard 

comma separated value file for keeping this kind of data. The CSV file we get the 6 

dimensional data and The decision criteria or the decision value of steady or right or 

left value. The sample output of CSV data is shown below. 
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6.3 Decision Tree Based Approach: 

After seeing the data analysis based on the Euclidean and dtw algorithm we decide to 

make a decision tree based on the class labels identified on the dtw algorithm and 

thresholding based approach. We put the output CSV files in the weka software and 

choose the ID3 decision tree classifier (named as J48) in the software and then got a 

graph, but from the graph , decisions were not clear how it was chosen , so we 

selected the visualize tree option , which shows us the below tree which clearly 

identifies the appropriate threshold , here is the uniqueness of our thesis work, the 

previous works don’t actually used the decision tree algorithm to find effective 

threshold , decision tree gives an well approximated threshold that works best with lots 

of people it also helps us to give a universal threshold which works for a variety of 

people more flawlessly. Though the success depends on the amount of data provides 

but we put some effective data which have some variations in them to get better 

results and then after training the decision tree algorithm with less amount of data , it 

shows us better performance in choosing threshold which we couldn’t achieve via 

manual thresholding and it also better that machine learning approach and manual 
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thresholding of the data axes , in the tree we can see that data mainly depends on 

gyroscope values , especially on the Gy value then the depends on Gx values and 

later on chooses accelerometer values of making thresholds ,. After analyzing by 

decision tree we identified that decision tree gives us the actual thresholds which can 

be used to find changes on the data based on the respective gesture. 

 

 

                Fig: Decision tree 
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7 Result Analysis: 

7.1 Threshold Based: 

Task name Used gesture Error(out of 100) Time(sec) 

Pause/play Tilt backward 15 178 

Play  next Rotate right 12 261 

Play previous Rotate left 13 287 

 

We took data of different users, we took data of approximately 10 persons then, 

inspected the performance of the data by calculating the accuracy, for each person we 

took rotate right, rotate left, steady and bounce operations and observed how much 

accurately the system can detect their movements, then we did some calculations 

which considers the time of inputs, number of detected gestures and number of 

persons. 

Accuracy = ((300-(15+12+13))/300)*100%=86.67% cc 

Average time to perform a gesture = (178+261+287)/300=2.42 seconds. 

7.2 Euclidian Distance Based: 

Task name Used gesture Error(out of 100) Time(sec) 

Pause/play Tilt backward 11 171 

Play next Rotate right 6 263 

Play previous Rotate left 4 279 

 

After thresholding we chose Euclidean based approach we take the values of six axes 

then manually select the best matching template and then manually compare the new 

values to the templates axes by axes, the matching procedure is based on six axes 

data. Euclidean distance gives us a good precision of data, so we primarily thought 
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that Euclidean distance is best based on data analysis before we have seen the dtw 

algorithm. In the same way we collected data for 10 persons calculated the gesture 

perform time and number of persons and number of gestures correctly detected and 

number of gestures wrongly detected. So we considered all this and calculated the 

total accuracy of the Euclidean algorithm.  

Accuracy = ((300-(11+6+4))/300)*100%=93% 

Average time to perform a gesture = (171+263+279)/300=2.38 seconds 

7.3 DTW Based: 

Task name Used gesture Error(out of 100) Time(sec) 

Pause/play Tilt backward 8 242 

Play next Rotate right 7 257 

Play previous Rotate left 4 223 

 

Again we saw some limitations of Euclidean distance like not considering the points of 

different peaks and not considering the shape of the signal, we took decision of 

stepping out to dtw algorithm, then afterwards we followed window based dtw algorithm 

Implemented in arduino which identifies the vector class in real time while we are 

processing data, the code snapshot is provided, the dtw gave us the class level for 

each of the data and then we saved the data on the CSV file. In the same way we 

collected data for 10 persons calculated the gesture perform time and number of 

persons and number of gestures correctly detected and number of gestures wrongly 

detected. So we considered all this and calculated the total accuracy of the DTW 

algorithm. 

Accuracy = ((300-(8+7+4))/300)*100%=93.67% 

Average time to perform a gesture = (242+257+223)/300=2.41 seconds 
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7.4 Decision Tree Based 

Task name  Used gesture Error(out of 100) Time(sec) 

Pause/play Tilt backward 13 235 

Play next Rotate right 9 252 

Play previous Rotate left 11 219 

 

Here is the uniqueness of our thesis work, the previous works don’t actually used the 

decision tree algorithm to find effective threshold , decision tree gives an well 

approximated threshold that works best with lots of people it also helps us to give a 

universal threshold which works for a variety of people more flawlessly. Though the 

success depends on the amount of data provides but we put some effective data 

which have some variations in them to get better results and then after training the 

decision tree algorithm with less amount of data, it shows us better performance in 

choosing threshold which we couldn’t achieve via manual thresholding and it also 

better that machine learning approach and manual thresholding of the data axes. Like 

previous way we collected data for 10 persons calculated the gesture perform time 

and number of persons and number of gestures correctly detected and number of 

gestures wrongly detected. So we considered all this and calculated the total accuracy 

of the DTW algorithm 

Accuracy = ((300-(13+9+11))/300)*100%=89% 

Average time to perform a gesture = (235+252+219)/300=2.35 seconds 

 

 

 



52 | P a g e  

 

 

8 Conclusion & Future Work: 

In this paper, we presented the iterative design process of a novel input technique 

based on gestural interaction with a sensor-equipped flexible office chair. A basic set 

of semaphoric chair gestures was defined, which can be mapped to specific functions 

for controlling applications on a desktop computer. We explored the application of 

these chair gestures as additional input modality for focused interaction with a web 

browser, and peripheral interaction with a music player. Corresponding experimental 

results indicate overall positive user feedback, and comparable task performance as 

with more familiar keyboard or touch input. 

The embodied aspects of chair-based input [7] seemed to facilitate interaction, which 

indicates high potential to enrich the computing experience and capture the interest of 

a larger audience. However, as with other gestural interfaces, there are some 

challenges when designing for chair-based gestural interaction [21,24,31], such as 

distinguishing between natural behavior and gestural input, revealing the gestural input 

scope, creating understandable metaphors for actions invoked by the gestural input, or 

providing reliable real-time system feedback [23]. Further, ergonomic aspects regarding 

the effects of physical body movements to perform gestures with a flexible chair will 

have to be taken into account for future design of gestures and applications. 

Summarizing, as for any other input modality, there are always trade-offs: While input 

time and physical effort may be higher for chair gestures than traditional hand-

mediated input devices, this must be balanced against the benefits of always-available, 

eyes-free, hands-free operation that an interactive chair can provide in a computing 

environment. Based on these unique features, chair gestures seem highly promising for 

opportunistic interaction in a desktop environment. Particularly suitable in the context 

of peripheral interaction, interactive chairs could therefore serve as platform for a 

whole range of applications that enable users to quickly issue commands to an 

application and rapidly return to their other ongoing activities. In addition, the 
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introduction of technologies integrating the body into our interactions is a strategy with 

great potential to avoid physical inactivity [7]. Chair gestures are certainly not a 

panacea for every potential input problem faced by end users. Still, the gestures can 

serve a valuable purpose as alternative input modality in situations that afford eyes- or 

hands-free interaction, or when we simply want to break up the monotony of the 

mouse-and-keyboard desktop paradigm. 

Future work will focus on solving practical challenges that arise with gestural chair 

interaction, including improvement of recognition robustness, further exploration of the 

gestural input scope, and definition of suitable applications that integrate chair 

gestures into the computing experience. Therefore, we will investigate the application of 

gestural chair input for other usage scenarios besides the proposed web browser and 

music player control (e.g., application launching, task management, notification 

handling). Finally, as for a novel input technique it is always the question of longterm 

acceptance and use, we plan to conduct a long-term insitu deployment to further 

explore the integration of semaphoric chair gestures into the computing experience. 
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