

BAG-OF-WORDS MODELING FOR HIDDEN WEB

CRAWLER

A DISSERTATION SUBMITTED IN PARTIAL FULFILLMENT OF THE

REQUIREMENTS FOR THE DEGREE OF BACHELOR IN COMPUTER SCIENCE AND

ENGINEERING

Njingamndap Ousmanou Mohamed

(114450)

Supervised By

Md. Kamrul Hasan, PHD

Associate Professor

Department of Computer Science and Engineering (CSE)

Islamic University of Technology (IUT)

The Organization of the Islamic Cooperation (OIC)

Gazipur-1704, Dhaka, Bangladesh

2

This is to certify that this thesis entitled “BAG-OF-WORDS MODELING FOR HIDDEN WEB

CRAWLER” is a true work of NJINGAMNDAP OUSMANOU MOHAMED (114450) who

successfully carried out the thesis work under the supervision of Dr. Md. Kamrul Hasan,

associate professor Islamic university of Technology. This thesis counts as my final year

research work which puts an end to my four years program as bachelor student in

computer science and engineering at the Islamic University of Technology (IUT) Dhaka,

Bangladesh.

Author:

Signature:

Name: Njingamndap Ousmanou Md

Roll Number: 114450

Date:

Supervisor: Head of Department

Signature: Signature:

Name: Dr. Md. Kamrul Hasan Name: Prof. Dr. M.A. Mottalib

Date: Date:

Department of Computer Science and Engineering (CSE)

Islamic University of Technology (IUT)

3

ACKNOWLEDGMENT

Thanks to Allah (SWT), the most gracious and the most merciful. The satisfaction that

accompanies the successful completion of any task would be incomplete without the

mention of people whose ceaseless cooperation made it Possible, whose constant

guidance and encouragement crown all efforts with success.

I am grateful to my project supervisor Dr. Md. Kamrul Hasan for the guidance,

inspiration and constructive suggestions that help me in the preparation of this thesis

work. I am also thankful and grateful Systems and Software Lab (SSL) team for their

great support throughout this research, particularly Hasan Mahmud and Mohiuddin

Khan for all the tremendous useful criticisms and feedbacks.

Finally i also wish to take this opportunity to express my sincerest gratitude and

heartiest thanks to the head of CSE department, Prof. Dr. M. A. Mottalib, as well as the

Organization of the Islamic Cooperation for endless support it provides in the field of

education.

Gazipur Dhaka, Njingamndap Ousmanou Mohamed (114450)

Novenmber 2015

4

DEDICATION

THIS THESIS IS DEDICATED TO MY PARENTS WHO BROUGHT ME INTO THIS WORLD, AND

WHOSE LOVES REMAIN IN MY HEART FOREVER

5

ABSTRACT

The internet is an integral part of our daily life, many of our activities we do it online like

gaming, education and so on. Before getting any information online we have to search

for it, thus web search engine like Google which are web applications which search over

the internet for websites, become very popular. Search engine was there at the early

age of internet and become the tool for searching. Search engine has a component

which is charged of collecting information that we see on the interface when searching,

it is called “crawler”. The crawler collects the information by retrieving the content of

the pages it has the link, then look inside the content and take all the links. Hence it can

resume the process of retrieving the content of these new links and collect all the

content. The process continues until there is no more links to retrieve the content.

However, on the internet information are not only on the pages we see, there are a

tremendous amount of information that we are not seeing inside databases this is called

hidden web.

To access this information a normal user has to fill up form to access it. Like in the

ecommerce websites, we have to give some information on the research box to get

information about a product we are looking.

The crawler however has to be able to put the correct words on the form to crawl the

content inside databases. Many researches have been going out to solve this issue, to

determine the optimal list of words to fill up the form with. The list of words is also

known as the bag-of-words (BOW).

In this thesis, we propose a model of structuring words inside the bow to reduce access

to a words and set of related words on the bow. We have successful implemented the

structure and integrated it to a crawler we have also implemented and showed the

6

result of experiment. From that we are able to see the effect of the structure in a

crawler.

7

TABLE CONTENTS

1. Introduction……………………………………………………………………………………………………..8

1.1 Motivations………………………………………………………………………………………………9

1.2 list of contributions …………………………………………………………………………........11

2. Related works…………………………………………………………………………………………………12

 2.1 Traditional web crawling…………………………………………………………………………12

 2.2 Horizontal deep web crawling………………………………………………………………...13

2.3 Vertical deep web crawling…………………………………………………………………....14

 2.4 Semantic content of web………………………………………………………………………..15

3. Proposed methodology……………………………………………………………………………………17

 3.1 Selection of key words from the web pages……………………………………………18

 3.2 Network of words…………………………………………………………………………………..24

 3.3 Sending request………………………………………………………………………................29

 4. Experiment result and analysis……………………………………………………………………….32

 4.1 Development…………………………………………………………………………………………..32

 4.2 Set up ……………………………………………………………………………………………………..32

 4.3 Result analysis………………………………………………………………………………….........33

5. Conclusion and Future Works……………………………………………………………………………36

6. References ……………………………………………………………………………………………………… 37

8

1. Introduction

Retrieving the information from the internet has always been a passionate and very

interesting field for the information retrieval researchers. Search engine is at the heart

of information retrieving. Search engine is made of three parts:

 The search box interface: which is the parts which is in charge of receiving the

input request of users and format it to send to the database server to process the

request and send the response back to the interface which will format it to show

to the user.

 Index database: It is the portion of the search engine in which information are

stored.

 Crawler: which is the program in charge of traversing the internet in order to

retrieve the information stored in the web pages and stored it in the indexed

databases which will be later sent as a response to a request to users.

Crawling is the process of exploring web applications automatically [22]. The crawler

explores the internet by starting from a set of seed of links, then retrieves the content of

links and collects all the links. Hence it start the process of retrieving the content of the

new links it as found then retrieves the content again until there is no more new links to

crawl. However the information of the internet is not only limited to the content of a

web page. There is a tremendous amount of information stores inside databases that to

access it we have to fill up a web forms. For a normal user we know which words to use.

But the crawler has to know which words is appropriate to fill up the form. The content

behind web form is called hidden web or deep web.

In order to fill up the web form and get more information from the backend databases,

we have to fill up the form with data related to the website. Vertical web crawlers (topic

focused crawlers), which are crawler that to look for a particular topic on the web, are

9

proposed to crawl only information related to a particular topic. These crawlers will

have predefined keys words related to a particular topic and fill up the form with these

key words and update its bag of words with the output of the form. However the

vertical crawlers will be useless on the websites which are not related to the topic they

are mining and there will be some waste of resources while interacting with the server

since they will have to go through their whole set of words to crawl the website

whereas it was only necessary to go through a small set of the list of words. In this

chapter we will the motivations of the research in section 1.1. Finally in section 1.2 we

summarize the contributions of this research work in addressing this challenge.

1.1 Motivations

The web has started as a connection of multiple pages, and the crawlers had to go

through the links connected the pages to find the content of the web. The web

applications have evolved a lot, letting to introduction of forms on which user has to

enter data in order to retrieve the information in the side the data bases. These

categories gave born to a new type of web crawlers which do not merely follow links but

have to fill up the web forms to retrieve data inside databases. These types of crawlers

are called hidden web crawlers. To retrieve information hidden in the deep web, the

web crawler would submit the HTML form many times, each time filled with a different

dataset. Thus the problem of crawling the deep web got reduced to the problem of

assigning proper values to the HTML form fields [4].

In 1998, Lawrence and Giles [5] estimated that 80 percent of web contents were hidden

in 1998. Later in 2000, Bright-Planet suggested that the deep web contents is 500 times

larger than what surfaces through following hyperlinks (referred to as shallow web) [6].

The size of the deep web is rapidly growing as more companies are moving their data to

10

databases and set up interfaces for the users to access them [6]. Only a small fraction of

the deep web is indexed by search engines. In 2007, He et al [7] randomly sampled one

million IPs and crawled these IPs looking for deep webs through HTML form elements.

The study also defined a depth factor from the original seed IP address and constrained

itself to depth of three. Among the sampled IPs, 126 deep web sites were found. These

deep websites had 406 query gateways to 190 databases. Based on these results with

99 percent confidence interval, the study estimates that at the time of that writing,

there existed 1,097,000 to 1,419,000 database query gateways on the web. The study

further estimated that Google and Yahoo search engines each has visited only 32

percent of the deep web. To make the matters worst the study also estimated that 84

percent of the covered objects overlap between the two search engines, so combining

the discovered objects by the two search engines does not increase the percentage of

the visited deep web by much.

From here, there are still lot of data remaining in the public web databases that are not

still covered by the web search engine. We will only search on the public databases

because accessing a private databases is not legal. These policies make the deep web to

grow day by day.

In order to tackle the issue of selecting words to fill up, we have propose in this research

work a model a network representing the connection among words. A Connection

between two words represent the likelihood for them to appear on the same wen

pages. The model is update as the crawling is going with the pages obtained from

crawling. Hence Network of words will be used to find the most likelihood which may

appear on the same pages with the words want to fill up the form. By this way the time

to locate relevant words to a web pages will reduce, and also the way words are

11

connected will give a kind of grouping of words in categories, which is very useful in case

of topic crawling.

1.2 List of contributions

In this these works we have define a model for generating the bag of words as a

network of connected words. In this model words are nodes of the network and edges

connecting two words are the likelihood of for the words to appear in the same

documents. That means if the weight of the connection between two words is big thus

there is high probability to be in the same web pages or documents. But this way

whenever two nodes of the networks are found in the same document their weight will

be increasing.

The network will grow as the crawling is going on. By this way the network will be

update with the current information it collects from pages.

12

2. Related works

As we started earlier in the introduction, crawler is not something new, thus many

research works have been going on in this field. In this chapter, we will discuss about

some of the earlier works done in the field of deep web crawler and information

retrieval in general. We will start by looking in the earlier generation of web crawler in

section 2.1. Then we will go for horizontal web crawler also known as general crawlerin

section 2.2. Then we will move to topic based crawler in section 2.3. Finally we will talk

about some methods to detect useful information on the web or semantic content of

web in section 2.4.

2.1 Traditional web crawling

Web applications can be represent as a direct graph where nodes are pages and edges

are connection between two pages [22]. Early web crawler were designed to exploit this

structure of web applications in order to crawl the whole internet. In 1993 four web

crawlers where written World Wide Web Wanderer, Jump Station, and World Wide Web

Worm [2]. These crawlers crawl the whole internet by following the interconnected web

applications. In [3], Brin and Page tried to address the issue of scalability by introducing

a large scale web crawler called Google. The main concern here is to download the

maximum number of pages by making the crawler to run on multiple computers.

However web applications have evolved. The content of web applications in not

accessible only by following links between. Web applications have introduced web

forms which the users have to fill up in order to retrieve information behind the form

[12]. Bright-Planet estimated that the deep web contents is 500 times larger than what

surfaces through following hyperlinks. This information is located inside databases. Thus

the traditional web crawlers fail to crawl web applications containing the web forms.

13

Thus there is a need of new type of crawler to tackle the issue of exploring data inside

web forms.

2.2 Horizontal deep web crawler

As stated earlier, contents of web applications are not only through the links between

web pages. We applications have databases where they store data, and most often

accessing this information is through web forms. Deep crawler is a crawler which tackle

the issue of filling the web forms in order to get access to databases. The main purpose

of the deep web crawler is to find the right words to fill up the forms with [5] given a

websites. Many researchers addressed this issue. In [5], Raghavan and Garcia-Molina

proposed a semi-automatic method to fill up the form that mostly depends on human

inputs. Thus this system is not full automatic and can be used in an industrial concept.

Also Liddle and al [9] described a method to detect form elements and make a HTTP GET

and POST requests using default values specified for each field. This system is not fully

automated and only focus on default values of the system whereas there are many

others values that may be used to fill up the web forms and not all the web applications

will give default values for html forms. Barbosa and Freire[4] proposed a two phase

algorithm to generate textual queries. The first stage collected a set of data from the

website and used that to associate weights to keywords. The second phase used keys

words to retrieve the data. The previous process is improved by Ntoulas and al. [8] by

defining three policies for sending queries to the interface: a random policy, a policy

based on the frequency of keywords in a reference document, and an adaptive policy

that learns from the downloaded pages. Given four entry points, this study retrieved 90

percent of the deep web with only 100 requests. In [6], M.Soulemane, M. Rafiuzzaman

and H. Mahmud proposed a method to detect single input text, then fill it up with

generated data to retrieve the maximum data from the web page. YU [8] proposed a

14

novel method for extracting entity data from deep web precisely. These approaches aim

to retrieve maximum content of web applications. These are called horizontal web

crawlers because they do not specify which content of the web pages they want to

retrieve rather the retrieve everything. However these researches were only interested

to have a set of words and fill up the form with the words inside the set. Then update

the set of words with new words found from the output result. But web forms in web

applications will not require the same set of words to retrieve the maximum number of

words. By using all words in the set of words we can retrieve the maximum content of

the web application. But instead of that, we can detect the sub set of words in the set of

words (also called bag-of-words) which can retrieve the maximum hidden content of the

web application. This process will obviously reduce the amount of requests and the time

needed to retrieve the hidden contents of the web application. However these

researches do not take into account relationship between words and content of the

websites.

2.3 Vertical deep web crawler

Vertical deep web crawler is a deep web crawler that retrieve only data from the deep

web that are related to a specific topic. They are also called topic focused web crawler.

In [26], Panagiotis Liakos, Alexandros Ntoulas,Alexandros Labrinidis and Alex Delis

presented a topic focused web crawler, in which the crawler eliminates irrelevant links

from the result of the web forms, and this is done based on the information about the

links which is given on the result of web forms. Thus it allows to avoid crawling links

which are not relevant to the topic of the crawler. The crawler starts with a set of words

related to specific topic, it crawls the web application these given words. However a

topic is made of sub topics and for a single website using a sub set of bow may be

15

enough to retrieve the content instead of taken the whole content of the bow. This

method does not specify a way to select a sub set of bow to retrieve the whole content.

In our research we tackle this issue.

2.4 Semantic content of web

The semantic content of web tries to address the issue of detecting the sections of a

webpages that contents the main information of the web pages. Meaningless

information found on a page may be advertisements sections. Researchers have

proposed algorithms to extract the real semantic content from HTML. The wrapper-

based algorithms [13], [14], [15], and [16] are easy to design and may have high

performance. But the trained templates may lose effectiveness quickly when websites

change their templates. Tag ratio-based algorithms [17] [18] may extract the real

semantic content without the assumption of fixed template, here the assumption is that

the main information of the website is found on the line where the ratio number of

words divided by the number of tags is the lowest one. In [10], the author proposed a

method to retrieve the semantic content of web via repeated structure, this method is a

mixture of both wrapper-based algorithm and the tag ratio-based algorithm. In order to

separate the web page into different portions we will be taken into account repeated

structure [10]. In our proposed crawler, we divide a web page into different section with

the assumption that this sections are independent, that means the data content in each

section are not related. Further explanation is given in chapter3.

 In[27] Schonhofen proposed a method to identify document topics using the wikipedia

category network, and this method can be used in order to find related terms to a given

words. Crawling can use this method to find related words, however this is different

from our method in the sense that the crawler is independent of any third party website

16

and detecting a topic is based on interconnection of words in the bow. A section of

interconnected words can be defined as a topic.

17

3. Proposed Methodology

The main problem of the deep crawler is to find the meaningful words to fill up the form

to retrieve the most relevant result from databases. Given a website, a web crawler may

have already its bow filled with predefined words [26] or may look for words inside the

page and fill its bow [4], [6], [8]. Using the content inside their bow, these crawler will fill

the form and get the result then update the bag of words with the result of the HTTP

request send to the server. However these methods do not take into account that words

are related. There are words that most often appear together in the same area or topic

or subtopic. Our solution concept consists of modeling the bow as a graph of words

where words are interconnected. The connection between words represent the

likelihood to appear in the same documents and we define what we mean by

documents in the upcoming sections. Before going into detail of the generation of the

bow, let see the overall working process of the crawler we define. To fully fulfill this

task, the crawler follows the following steps:

1. Selection of key words from the web pages

2. Update the pool of URLs

3. Selection of terms highly related to previous keys words

4. Update the network of words

5. Send requests to webservers and then get the result.

6. Go to step 1 until the end of crawling

18

Fig.2 System Overview

In the following section we will go into details of these steps. In section 3.1, we describe

the mechanism of section of keys words giving a web pages. Then in section 3.2 we

describe the network of words, its structure, how the words are organized, the

mechanisms of updating the network of words, and the mechanisms of selecting related

terms in the network of words. In section 3.3 we have the sending request to the

webserver. Finally, in section 3.4 we have the overall algorithms.

3.1. Selection of key words from the web pages

To find relevant keys words on a website, we will use TF (term frequency) and IDF

(inverse document frequency) (without making any assumption about terms and stop-

words, thus the crawler will support evolution of a language and multiple languages).

In order to apply IDF we need to a set of documents, in our case we define a document

as parts of the web page defined by repeated and non-repeated structures. As we can

19

we on the pictures below the results of the forms are set of information into repeated

structures. The information blocks follow the same appearance only the content of the

information changes. Moreover the GUI of websites becomes more and more organizes

into independent block thus we can take those blocks as the documents. Thus the most

relevant key words will be those which repeated the least in components or partitions

of the website.

 Fig.3. edx.org home page

20

 Fig.4. portion of html code of the edx.org home page

As we can observe from the fig.2, there is a repetition of blocks of structure and the

difference between each block is only the content. There is no relationship between

content of block. From fig.3 we can see clearly that the structure of all the structures is

the same in name of tag and attributes of tags (in fig.3 the attribute is “class”). We will

locate these repeated structures based on DOM (Document object model) of the

underlined web pages.

In order to find the different documents, we will:

 Determine the repeating structure of the website base on the attribute of the

html elements like the “id” and “class” attribute. Siblings on the DOM(document

object model) of a web page will be consider repeated strutures the have similar

class and id attibute.

Starting from the root of DOM, we will get all the chlidren on the root. Then find

all the similar siblings based on their attributes and their names. Hence all the

remaining children will be consider as new roots and we will traverse them to find

similar children. This process will continue until the whole DOM of the page is

traversed. This mechanism is depicted in the following algorithm.

21

The following algorithm is for determining repeated structures then cpmputing TF-

IDF of words

Algorithm 1 find documents

INPUT: a node N of the DOM

Output: List D of documents

ND  N

while ND is not empty

C ← getchildren(ND0)

for all i ← 0 to |C|

 if Ci.attribut == Ci+1.attribut then

 D.insert(Ci)

 else

 ND.insert(Ci)

 end if

end for

 end while

 e = CERT(N)

 D.insert(e)

22

 Fig5. DOM of a webpage

 Fig6. Sections(documents) from edx.org

23

After finding the documents we can now find the keys(relevant) words from each

documents by using term frequency and inverve document frequency(TF-IDF) concept

to remove terms and stop words.

TF(term frequency) is used to compute the frequency of occurency of words in a

particular documents. If we consider only the the TF mecanism then prepositions and

articles will have highest frequency since they tend to appear the most in a single

document. For that reason we will use also IDF(inverse document frequency), given a

set of documents the IDF will give the highest mark to terms which are present in less

documents and least mark to terms which appear in most of the documents.

Using TF-IDF, the crawler will support multiple languages, there will be no interaction of

the human being to indicate the stop words.Having a list D of n document, the equation

1 shows how to compute the TF of a term t in a document d.

TF(d,t)= {
0 𝑖𝑓 𝑛(𝑑, 𝑡) = 0

1 + log (1 + log(𝑛(𝑑, 𝑡)) 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (1)

Where n(d,t) is the number of time term appears in the document d. And the IDF for a

term t is compute following the equation 2 given a list D of n document.

𝐼𝐷𝐹(𝑡) = 𝑙𝑜𝑔
1 + |𝐷|

|𝐷t|
 (2)

Where Dt is the number of documents in which the term t appears.

The following algorithm is used to computer the relevant keys words in each document

found using the agorithm 1 then those words will be used to build the networds of

words comsidered as the bag of words:

24

algorithm 2 compute words relevancy

INPUT: D documents

OUPUT: W list of words

N<------- |D|

for all i <----- 0 to |D|

 T <----- getTerms (Di)

 for all j <----- 0 to |T|

 Wij (Ti)<----- IDF(Tj)*TF(Di,Tj)

 end for

 sort(Wi)

end for

Wi will contain the list of words of document Di sorted by relevancy order. Thus W

contains words for all documents we have.

Having this list of relevant words, we can now build the networks of words in the next

section.

3.2 Network of words (NW)

NW represents a directed weighted graph of words where the edge eij represents the

number of documents in which the terms i and j appear simultaneously.

Let’s n b the number of relevant keys terms we select from a document Di.

25

 Fig.7 Network of words

In the network of words also called bag of words, we will determine d relevant terms

highly connected to the n relevant terms of the document Di, then use the n + d words

to crawl the website. By this ways we can reduce the amount of results need to send to

webserver in order to crawl the maximum amount of hidden web. Thus, with the

networks of words, there is no longer need to all the keys words of the bag –of-words to

crawl a particular website. By this way the amount of query to crawl a website will

significantly reduce, hence the hidden crawling time will reduce significantly also.

From here we can see how this general hidden web crawler can adapt to a specific

website, using only words related to the content of the websites to crawl the content of

the websites. By update the NW by the n relevant words found, the system will be in

constant learning process and the more we crawl the better the accuracy of the

26

connectivity between the words. The regular learning process of the network of words

will make the selection of related terms more precise, more websites focus and more

grouping of words. By this way the crawler will have only words related to the crawled

website in order to get more data from the hidden web with less queries.

Also the network will allow to stay focus on the topics of the website by using only a

small range of its data to crawl the given website.

 Fig.6 words grouping in the network of words

W19

W18

W16

W26

W25

W17

W12

W29

W15

W14

W13

W11
W9 W10

W8
W7

W30

W1

W5

W4

W6

W3

W34

W35

W2

W33

W28

W27

W31

W24

W36

W38

W32

W37

W22

W20

W23

W21

27

From the previous figure we can see that in the network of words, some words are

more connected to others and we have mark this difference by colors. Thus more

connected words have the same color, hence when crawling a website and I find a

relevant words which are in the network of words I will just pick inside the latter the

words having the same color. Here the web crawler will focus on data of the website

and use only keys words related to it. In vertical hidden web crawler, the network of

words will be very useful to connect words of the subcategories between them, thus

reducing the number of words needed to crawl a website which contains only a

subcategories of the focused topic.

 Compare to others solutions which propose to take the whole content of the bag-of-

words to only crawl a small subset of a topic, the network of words will reduce this by

selecting only the words related to the specified words of the websites, thus avoiding

irrelevant requests and reducing the crawling, thus improving the crawler performance.

The following two algorithms will be on selection of related keys on the network of

words and the update of the network.

Algorithm 3 select related words

--

INPUT: W (list of relevant words) and NW (network of words)

OUTPUT: WR (words related to W)

for all i <----- 0 to |W|

 t <----- get_connected_terms(NW,Wi)

 t <----- select_d_highly_connected(t)

 WR <----- WR + t

End for

28

Algorithm 4 update NW

INPUT: W, NW, D

OUTPUT: NW

for all i <----- 0 to |W|-1

 for all j<----- i+1 to |W|

 eij <----- NW.get_weight(Wi, Wj)

 d <----- documents_where_appearing_simultaneously(D,Wi,Wj)

 eij <----- eij + d

 NW.setweight(Wi, Wj, eij)

 End for

End for

The algorithm 4 (update) is the one which will keep the network of words in constant

learning process. In fact whenever a new relevant word is found the word will be added

to the network and will be connected with the words with which they appear in the

same documents. If two words are found during crawling and are already in the network

of words then their likelihood (weight of their edges) will be increase.

29

3.3 Sending request

In order to get the data from the database, we send a request to server. In this research

work we only consider the get method. However the main purpose of the research work

is not about using get or post method. In the bellow figure can see how the link will be

formatted to be sent to the server.

30

3.4 Crawling algorithm

With the help of the previous algorithms, we can rewrite the overall working process of

the crawler, and the following algorithm gives the process

Algorithm crawl

--

INPUT: seeds

OUTPUT: pool_url

pool_url <----- seeds

While not empty(pool_url)

 url <----- getNonVisitedUrl(pool_rul)

 content <----- getcontent(url)

 content <----- removeallscrpit(content)

 content <----- removestyle(content)

 pool_url <----- pool_url + select_all_url(content)

 /*determine form and crawl the hidden content if it exists*/

 If web_form_in(content) then

 D <----- find_documents(contents)

 W <----- compute_word_relevancy(D)

 WR <-----select_related_words(NW,W)

 NW<----- updateNW(W,NW,D)

 W <----- sort(W,WR)

 i<-----0

 while not all_seen(W) and N > 0

 i<-----i+1

 term<----- get_highly_connected_term_notUsed(W)

 content<-----sendRequest(term)

 D<-----findDocuments(content)

 CWi<----- compute_words_relevancy(D)

 WR<----- select_related_words(NW,CWi)

31

 NW<----- updateNW(CWi,NW,D)

 pool_url <----- pool_url + select_all_url(content)

 CWi<----- CWi+WR

 If nrequest==I then

 I=0;

 W<-----W+CW

 end if

 N<----- N-1

 end while

 end if

end while

Here N represent the maximum number of allowed requests to send to server to retrieve hidden content. And “n” represent the number

of steps after which we will update the current words used to fill the forms. But this the will be a kind of priority between words. Thus the

first words to be seen will have a relative priority related to the number of “n”.

The crawler starts by retrieving the content of seed links. Then it divides the content

into section to form documents. Then the crawler computes the frequency of terms in

each documents. Hence it computes the inverse document frequency. Then it computes

the products of the inverse documents frequency times the term frequency. Then the

crawler selects n most relevant terms in each documents based on TF*IDF. And it

selected terms in the bag-of-words weightiest edge for each relevant data. These terms

plus the relevant terms can be used to crawl the deep web. And this sub set of words

will be update with new relevant words found during crawling plus the related words to

the news keys words.

The Bag-of-words is update with new relevant terms found during crawling and for two

relevant words found in the same document, their edge weight will be updated by an

amount. By this way the bag-of-words will be learning regroup words of the same topic

together, near each other in the network of words.

32

4. Experiment result and analysis

4.1 Development

The crawler which has been developed in our research work, starts from an initial URL

and continuously crawl the internet. After downloading the pages, the crawler will

segment the pages into different sections and we will consider these sections of the

pages as documents as mentioned above in section 3. The html of each of the

documents will be remove and tokens will be forms from words of the documents. Base

on TF*IDF, the relevancy of each token will be find in the documents. The most relevant

words in each document will be inserted inside the bag-of-words following the

procedure stated in section 3.

We have used java programming as the programming language of development given

numerous API available in this language to interact with internet. The development was

done using Netbeans 7.4 and JDK 1.8. We have also use Jsoup, which a library to

traverse DOM tree of web pages.

4.2 Experimental Setup

For the experiment we have considered the Open Directory Project (dmoz), a

multilingual open content directory of World Wide Web links. The listings of the site are

grouped into categories (which may include various sub-categories) depending on their

topic. Dmoz indexes approximately 5 million links that cover a broad area of topics. Each

link is accompanied with the site’s title, a brief summary and its categorization. The links

are searchable through a keyword search interface and dmoz enforces an upper limit on

the number of returned results (10,000 results).

33

We have also used stackoverflow which is a multilingual website for questions and

answers, for sharing information and group exchange. The web site is well known for its

tremendous questions and answers content.

The experiment was conducted using a single personal computer with the following

characteristics:



 Processor: Intel core2 duo 2.80 GHz

 4 GB of RAM

 1000 GB hard disk

 500 Kbps bandwidth

In this experiment we have determined the number of the request needed to crawl the

hidden web. We will measured the number of distinct links found in website base on the

number of related words we selected from network of words. By this way we can see

the effect of the network of words in reducing the number of requests needed to get a

maximum amount of hidden web. We will also see the effect of the amount of output

consider to see evaluate the number of distinct link we will get.

4.3 Result analysis

4.3.1 Related words effect evaluation

Figure.7 shows the result from our crawler using [28] as the initial links. By filling up the

form found on [28] multiple times and keeping track of the distinct links in the output

result, we were able to draw the below graphs depending on three parameters :

 d = number of related words

 m= number of relevant words from a document

34

 page = the numbers of documents

On figure, both graphs have the same m and page but different d. And the graph having

the highest d(number of related words) detects more distinct links after the same

iteration which is the intended output we were looking for. This result proves the

usefulness of the network of words to select the most important words of the website.

0

5000

10000

15000

20000

25000

0 5 10 15 20 25 30 35

n
u

m
b

er
 o

f
u

n
iq

u
e

lin
ks

Anumber of requests

d=3 m=3 page=5 d=5 m=3 page=10

 Fig.7 variation related words got from network of words

Let d = number of related words

m= number of relevant words from a document

page = 10*50= 500 documents

35

4.3.2 Amount of result: evaluation of effect

In figur2 8 we have the output of the crawlers based on the number of output

documents taken into consideration. We can see that the graph having the higher

numbers of documents tends to perform well at the beginning of the crawling better as

we good we can see that both graphs may grow at same speed. Since the graph have

the same d, we can say that the graphs shapes is only affected by the amount of

documents page. However we have to notice that more documents means more times

consuming for the crawler. Thus considering the a high amount of document to have a

good result will only make the crawling slow.

0

2000

4000

6000

8000

10000

12000

14000

16000

0 5 10 15 20 25

n
u

m
b

er
 o

f
 u

n
iq

u
e

lin
ks

number of iterations

Chart Title

d=5 m=3 page=10 d=5 m=3 page=5

 Fig.4 variation related words got from network of words

Let d = number of related words

m= number of relevant words from a document

number of documents = page *10

36

5. Conclusion and future work

Our research work was to retrieving that inside the databases with minimum resources

need by modeling the bag-of-words into networks of words. We have successfully

conducted the research and found satisfactory result from section 4, which show the

usefulness of the bag-of-words organized as a network of words. From the result of

section 4.3, we can say that if the crawler runs for a long time the networks of words

will have a strong connection between words and words grouping will be more

highlighted. This grouping of words will be very useful to control website only focusing

on a specific content the bag-of-words instead of considering all the content when

crawling or a method that does to take into account the connection among words.

Future experiment may be

 To integrate a databases inside the crawler to store the information learnt, this

will allow the web crawlers to continue learning where it stops and it will not

always start from the beginning.

 To evaluate the effect of bag-of-words inside topic focus crawling

 Evaluate the hidden web on the client side

37

References

 [1] B. He, M. Patel, Z. Zhang, and K. C.-C. Chang, “Accessing the deep web,” Commun. ACM, vol. 50, no. 5, pp.

94–101, May 2007. [Online] Available: http://doi.acm.org/10.1145/1230819.1241670

[2] O. A. McBryan, “Genvl and wwww: Tools for taming the web,” In Proceedings of the First International World

Wide Web Conference, 1994, pp. 79–90

[3] S. Brin and L. Page, “The anatomy of a large-scale hypertextual web search engine,” in Proceedings of the

seventh international conference on World Wide Web 7, ser. WWW7. Amsterdam, The Netherlands, The

Netherlands: Elsevier Science Publishers B. V., 1998, pp. 107–117. [Online]. Available:

http://dl.acm.org/citation.cfm?id=297805.297827

[4] L. Barbosa and J. Freire, “Siphoning hidden-web data through keywordbased interfaces,” in In SBBD, 2004,

pp. 309–321

[5] S. Raghavan and H. Garcia-Molina, “Crawling the hidden web,” in Proceedings of the 27th International

Conference on Very Large Data Bases, ser. VLDB ’01. San Francisco, CA, USA: Morgan Kaufmann Publishers Inc.,

2001, pp. 129–138. [Online]. Available:http://dl.acm.org/citation.cfm?id=645927.672025

[6] M.Soulemane, M. Rafiuzzaman and H. Mahmud “Crawling the Hidden Web: An Approach to Dynamic Web

Indexing” International Journal of Computer Applications (0975 – 8887) Volume 55– No.1, October 2012

[7] YU Hai-tao1,2, GUO Jian-yi, YU Zheng-tao, XIAN Yan-tuan, YAN Xin A Novel Method for Extracting Entity Data

from Deep Web Precisely

[8] A. Ntoulas, “Downloading textual hidden web content through keyword queries,” in In JCDL, 2005, pp. 100–

109.

[9] S. W. Liddle, D. W. Embley, D. T. Scott, and S. H. Yau1, “Extracting Data behind Web Forms,” Lecture Notes in

Computer Science, vol. 2784, pp. 402–413, Jan. 2003.

[10] Zheng He, Hangzai Luo, Jianping Fan, Xiao Liu EXTRACTING THE SEMANTIC CONTENT OF WEB PAGES VIA

REPEATED STRUCTURES

[11] S. Lawrence and C. L. Giles, “Searching the world wide web,” SCIENCE, vol. 280, no. 5360, pp. 98–100, 1998.

[12] M. K. Bergman, “The deep web: Surfacing hidden value,” September 2001. [Online]. Available:

http://www.brightplanet.com/pdf/deepwebwhitepaper.pdf

[13] Ziv Bar-Yossef and Sridhar Rajagopala, “Template detection via data mining and its applications,” in

International Conference on World Wide Web, 2002.

[14] Shian-Hua Lin and Jan-Ming Ho, “Discovering informative content blocks from web documents,” in ACM

SIGKDD international conference on Knowledge discovery and data mining, 2002.

http://dl.acm.org/citation.cfm?id=297805.297827
http://www.brightplanet.com/pdf/deepwebwhitepaper.pdf

38

[15] Lan Yi, Bing Liu, and Xiaoli Li, “Eliminating noisy information in web pages for data mining,” in ACM SIGKDD

international conference on Knowledge discovery and data mining, 2003.

[16] Sandip Debnath, Prasenjit Mitra, and C. Lee Giles, “Automatic extraction of informative blocks from

webpages,” in ACM SIGAPP SAC, 2005.

[17] Thomas Gottron, “Content code blurring: A new approach to content extraction,” in InternationalWorkshop

on Text Information Retrieval, 2008, pp. 29–33.

[18] T Weninger, WH Hsu, and J Han, “Cetr: Content extraction via tag ratios,” in International Conference on

World Wide Web, 2010.

[19] S. Lawrence and C. L. Giles, “Searching the world wide web,” SCIENCE, vol. 280, no. 5360, pp. 98–100, 1998.

[20] M. K. Bergman, “The deep web: Surfacing hidden value,” September 2001. [Online]. Available:

http://www.brightplanet.com/pdf/deepwebwhitepaper.pdf

[21] B. He, M. Patel, Z. Zhang, and K. C.-C. Chang, “Accessing the deep web,” Commun. ACM, vol. 50, no. 5, pp.

94–101, May 2007. [Online]. Available: http://doi.acm.org/10.1145/1230819.1241670

[22] Seyed M. Mirtaheri, Mustafa Emre Dinc¸t¨urk, Salman Hooshmand, Gregor V. Bochmann, Guy-Vincent

Jourdan, ”A Brief History of Web Crawlers”, arXiv:1405.0749v1 [cs.IR] 5 May 2014

[23] J. Bau, E. Bursztein, D. Gupta, and J. Mitchell, “State of the art: Automated black-box web application

vulnerability testing,” in Security and Privacy (SP), 2010 IEEE Symposium on. IEEE, 2010, pp. 332–345.

[24] A. Doup´e, M. Cova, and G. Vigna, “Why johnny cant pentest: An analysis of black-box web vulnerability

scanners,” in Detection of Intrusions and Malware, and Vulnerability Assessment. Springer, 2010, pp. 111–131.

[25] J. Marini, Document Object Model, 1st ed. New York, NY, USA: McGraw-Hill, Inc., 2002.

[26] Panagiotis Liakos, Alexandros Ntoulas,Alexandros Labrinidis, Alex Delis,” Focused crawling for the hidden

web” 16 April 2015 Springer Science+Business Media New York

[27] Schonhofen, P.: Identifying document topics using the wikipedia category network. In: Proceedings of the

2006 IEEE/WIC/ACMInternational Conference onWeb Intelligence (WI), pp. 456–462, Hong Kong (2006)

[28] http://stackoverflow.com/

http://www.brightplanet.com/pdf/deepwebwhitepaper.pdf
http://doi.acm.org/10.1145/1230819.1241670

