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Abstract 

3D mapping is one of the challenging research areas of Computer Vision and Robotics. 

Mappings are often done with mobile robots. One of the best approach is the use of 

SLAM (Simultaneous Localization and Mapping) where a robot roams around and 

builds the map and also localizes its position on the currently built map. The robot needs 

the sense of depth of the environment and often equipped with depth sensor. It also 

needs Odometry data from the accelerometer or encoder set on the wheels. There are 

some other solutions where the map and localization is based on the features extracted 

and builds the map based on the depth images and use of loop closure by adjusting the 

error in perception. In this thesis work we used feature based mapping which does not 

need any Odometry data and the map can be built based on RGB image and Depth data. 

We used Kinect, a very popular depth sensor which is effective in this process under 

certain constraints. Here in our work we gathered the RGB and Depth data 

simultaneously and then chose suitable frames and found key features with SIFT 

algorithm. The extracted features in the RGB images has corresponding 3D co-

ordinates. The 3d co-ordinates have been found through intensive experiments done on 

calibrating the Kinect sensor and finding the best fit value of parameters to give more 

accurate 2D spatial points corresponding to each frame captured. The matched 3D 

points were then applied in Iterative closest Point (ICP) algorithm as initial points to 

merge the two depth images. When two images are merged they were saved in separated 

storages and another frame is extracted and registered with the previous ones. In this 

methodology multiple frames were stitched in 3D spatial co-ordinates. After forming 

the indoor map the map was evaluated with respect to the lengths of the objects formed 

in the map and the shape of the map along different 2D planes by comparing their area. 

Different version of ICP give different result in time complexity and accuracy. It was 

found IRLS (Iteratively Reweighted Least Square) ICP gave better results. The 

methodology we proposed can be implemented at faster time and fewer constraints and 

mapping do not depend on the movement noise of the robot. So the whole process is 

simpler and robust and can be used in indoor mapping, object detection and security 

purposes. 
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 Chapter 1 

Introduction 

1.1 Overview 

Building rich 3D maps of environments is an important task for mobile robotics, with 

applications in navigation, manipulation, semantic mapping and telepresence. So far, 

to reconstruct 3D model with fine geometric accuracy and rich visual information is the 

goal which is pursued unremittingly by researchers. Relative technologies have been 

developed vigorously by some communities including Photogrammetric, Computer 

Vision and Robotics. The applications of research results in the Digital City, Robot 

Navigation and other fields have demonstrated wide application prospect. However, 

due to the high complexity of real scene, to achieve this goal still seems far beyond our 

reach.  In practice geometric fine 3D indoor models are still rarely used. On the other 

hand, with the development of Digital Earth technology, urban 3D modeling technology 

has been mature to some extent. But indoor models of large public places have not 

entered public’s view yet. However, because of the importance of indoor navigation, it 

is imperative for 3D reconstruction to shift from outdoor to indoor context.  Now there 

have been some kinds of indoor3D reconstruction methods.  

 

Figure 1.1: SLAM with mobile robot 
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Simultaneous localization and mapping (SLAM) is an algorithm that allows a mobile 

robot to form a map of an unknown environment and locate itself within this map. 

SLAM can be implemented with Mobile Robot .It’s also known in the literature as 

Concurrent Localization and Mapping (CLM).We can place a robot in an unknown 

location in an unknown environment and have the robot incrementally build a map of 

this environment while simultaneously using this map to compute vehicle location. This 

process is often called Robot Pose Tracking in many of the papers [1]. The benefit to 

fusing a mapping conjunction with other means of recording movement is that it allows 

the algorithm to correct positioning estimates and detect and recover from errors 

regarding sensor data. It is also concerned with, on a secondary basis in this research 

area, navigation using the map. Applications include ocean surveying, oil pipeline 

inspection, mine exploration, crime scene investigation and military operations 

1.2 Problem Statement 

Simultaneous Localization and Mapping is a long process which includes use of lots 

algorithms to implement different steps [1]. The steps can be divided into 2 major parts: 

Localization and Mapping. Localization includes: Moving the robot, observing the 

environment, Detecting Landmarks, Associate new landmarks with previously 

observed landmarks, the robot’s motion from the distance between associated 

landmarks, Correct the new landmarks’ position for the estimated robot’s motion, Add 

corrected landmarks to the map and repeat. Mapping part includes extracting Key 

Figure 1.2: Demonstration of 3D maps 
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features, registration of 3d cloud, Loop Closure Detection to align the different part of 

map segments. 

Our focus is on 3d mapping. We developed an algorithm which makes 3d map of 

indoor. At first it takes Depth and RGB data from Kinect sensor. It preprocess the data 

and convert raw data into x, y, z spatial co-ordinates. Next similar features are extracted 

using SIFT algorithm and Homography using RANSAC. Then the cloud points are 

registered using a version of ICP [3] next the elements in the map is evaluated to check 

its feasibility to be used in SLAM. 

1.3 Research Challenges 

In the Simultaneous Localization and Mapping (SLAM) problem a mobile robot has to 

be able to autonomously explore the environment with its on-board sensors, gain 

knowledge about it, interpret the scene, build an appropriate map and localize itself 

relative to this map 

 Map Representation 

 Sparse set of landmarks (beacons, salient visual features) 

 Dense representation (stereo, dense depth data) 

In [4], the convergence of a filter which estimates the robot configuration and the 

absolute location of the landmarks by adopting a Kalman filter (absolute map filter, 

AMF), is theoretically proven. However, the proof is based on a perfect statistical 

knowledge of the error of each sensor and also on the hypothesis of a linear observation 

 Unstructured 3d Environment : 

 The 3d environment around us is not smooth and uniform.  

 The reflecting surface should be a solid in order to reflect IR data for depth 

measurement. 

 Data association/Map convergence: 

 Adopt an optimal filter (accordingly to the dynamics and the observation) [5] 

 Use the best statistical model to characterize the error of the adopted sensor 

readings (it is better avoiding the use of sensors whose error is roughly known 

(statistically) in the estimation process) 

 Dynamic Environments  
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 World is not static 

 Doors / open close 

 Human / material motion 

 Dynamic object detection 

 Informed Sensing 

 Can sensor parameter be estimated 

 Is Auto calibration of sensor possible 

After the first precise mathematical definition of the stochastic map [6] early 

experiments ([7], [8]), have shown the quality of fully metric simultaneous localization 

and map building: the resulting environment model permits highly precise localization 

that is only bounded by the quality of the sensor data 

 Erroneous Odometry data : For automatic mapping this makes the global 

consistency of the map difficult to maintain in large environments where the drift 

in the Odometry becomes too important 

 Computational Requirement : According to Wikipedia "Researchers and experts 

in artificial intelligence have struggled to solve the SLAM problem in practical 

settings: that is, it required a great deal of computational power to sense a sizable 

area and process the resulting data to both map and localize." The complexities 

can be divided into 2 parts 

 Time : 

 Complexity 

A 2008 review [9] of the topic summarized: "SLAM is one of the fundamental 

challenges of robotics. But it seems that almost all the current approaches cannot 

perform consistent maps for large areas, mainly due to the increase of the 

computational cost and memory.” 

1.4 Thesis Objective 

Autonomous navigation and mapping is very popular nowadays. Google car is one such 

example. SLAM has become a prominent methodology to solve the autonomous 

movement and map generation. The related problems of data association and 

computational complexity are among the problems yet to be fully resolved. For example 
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the identification of multiple confusable landmarks. A significant recent advance in the 

feature-based SLAM literature involved the re-examination of the probabilistic 

foundation for Simultaneous Localization and Mapping (SLAM) where it was posed in 

terms of multi-object Bayesian filtering with random finite sets. It provide superior 

performance to leading feature-based SLAM algorithms in challenging measurement 

scenarios with high false alarm rates and high missed detection rates without the need 

for data association. 

Our thesis aimed at proposing a method which can be implemented as part of the steps 

of SLAM with  

 Feature based localization instead of Odometry data 

 No requirement of data associatively 

 Calculation of angle from static pose with feature 

 Justification of use of combination of SIFT-ICP to extract feature and depth 

map merging. 

1.5 Thesis Contributions 

Already  we  have  discussed  about  the  research  challenges  in  this  field and our 

objective.  And we have undertaken different type of procedures and but succeeded at 

few of them.- 

 We generated partial map with static translation and at heuristic speed of 

rotation. 

 We computed angle of rotation based on RGB based SIFT between 2 images 

and computed the angle of variation between the images. 

 Plotting the depth points in 2D plane at an angle derived in the above steps we 

get a 2D map of the room. 

 We have investigated several existing methods for 3d map generation for SLAM 

identifying their weakness and solved those with our method.  

 In the comparison step we evaluated the performance of depth point clouds of 

different ICP and found the best ICP which ensures good match and helps 

discarding bad match between cloud points. 
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 For performance analysis, we implemented our method and figured out the 

performance using real time dataset and measured the accuracy. 

 Comparative analysis of our method with others have also been done for getting 

the comparative performance with respect to other. 

1.6 Organization of thesis 

The rest of thesis will be organized as follows: 

In Chapter 2 we present the literature review of existing methods and their performance, 

strong point and weak points. In Chapter 3, we propose our verification method. There 

we discuss about the overall idea of our proposal and step by step implementation 

process. In Chapter 4, experimental set-up, experimental result and performance 

analysis of our method with various challenge is shown. Besides with other methods a 

comparative analysis is also shown. Lastly, in Chapter 5, we conclude the thesis 

contribution and shows the future scopes for further developing the proposed method. 
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 Chapter 2 

Literature Review 

2.1 3D Mapping 

We are familiarized ourselves with methods for 3D registration of images captured with 

cheap RGB-D sensors such as the Kinect. A Kinect mounted on a moving robot could 

replace both its RGB camera and its range finder. Another application would be 

affordable 3D reconstructions of objects or indoor scenes. For these applications we 

need to register consecutive frames to the same global coordinate space. In effect, we 

need to find the transformation that the camera made in between the captured frames. 

2.2 Simultaneous localization and mapping 

Simultaneous localization and mapping (SLAM) is an algorithm that allows a mobile 

robot to form a map of an unknown environment and locate itself within this map [1]. 

SLAM can be implemented with Mobile Robot. It’s also known in the literature as 

Concurrent Localization and Mapping (CLM).We can place a robot in an unknown 

location in an unknown environment and have the robot incrementally build a map of 

this environment while simultaneously using this map to compute vehicle location. This 

process is often called Robot Pose Tracking in many of the papers. The benefit to fusing 

a mapping conjunction with other means of recording movement is that it allows the 

algorithm to correct positioning estimates and detect and recover from errors regarding 

sensor data. It is also concerned with, on a secondary basis in this research area, 

navigation using the map. 

The general steps of SLAM are as follows [25]: 

1. Move robot  

2. Observe environment  

3. Detect landmarks  

4. Associate new landmarks with previously observed landmarks  

5. Estimate the robot’s motion from the distance between associated landmarks  
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6. Correct the new landmarks’ position for the estimated robot’s motion   

7. Add corrected landmarks to the map and repeat 

In order to implement such an algorithm three pieces of hardware are necessary: a 

mobile robot, a means to observe the environment and a computer. Of these essential 

pieces of hardware, the means to observe the environment is the most specific to 

SLAM. Observing the robot’s environment can be implemented in several ways. 

Examples are sonar, monocular cameras, and laser range finders. Laser range finders 

provide the most accurate observations but have historically been the most expensive 

until the advent of the Microsoft Kinect. With the Microsoft Kinect it is now possible 

to get an array of depth data (640 x 480) that is accurate to the millimeter. 

 

2.2.1 Landmark Extraction: 

Landmark extraction may be achieved via a variety of methods. This is a critical part 

of the algorithm as it is used as an input to the EKF algorithm [30]. The method used is 

generally determined by the type of landmark to be extracted in the environment and 

the type of sensor used to detect these. 

Figure 2.1: Odometry based SLAM 
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2.2.1.1 Spike Landmarks: 

Spike landmark extraction is a simple algorithm 

concerned with landmark extraction from laser 

or depth range data. In scanning systems where 

scans yield multiple values within a certain 

angle of scanning, this algorithm tries to find 

extreme differences in the values read by the 

scanners [26]. This happens when the distance 

measured at one angle is largely different to the distance measured at the next angle. 

This indicates that there is a geometric change between the angles, which can be 

interpreted as a landmark. 

Equation: 

𝑚 =
∆𝑓(𝑎)

∆𝑎
=

𝑓(𝑎 + ℎ) − 𝑓(𝑎)

(𝑎 + ℎ) − (𝑎)
=

𝑓(𝑎 + ℎ) − 𝑓(𝑎)

ℎ
 

Due to the method in which this extraction algorithm works, it has an inherent flaw. It 

requires that the environment be highly populated with landmarks. As it requires a high 

degree of change between ranges scans, which means that it will not work in an 

environment with either zero or smooth edges [10]. 

Figure 2.2: Spike Landmarks 
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2.2.1.2 RANSAC: 

Random Sampling Consensus is a method of landmark 

extraction that works by trying to identify lines from 

range scans. This can be particularly useful in Indoor 

environments as walls are easily identified by this 

method [26]. RANSAC associates range readings with 

lines and is known as a form of scan matching. This is 

done by taking a random sample of range values from an 

unassociated scan and then using a least squares 

algorithm to try and find a line that best fits these 

readings. Once the line has been found, the algorithm 

will count the number of range values that match that line 

and if this count is above a consensus threshold, these 

values are then associated with a line [27]. 

Algorithm: 

While 

 there are still unassociated laser readings, 

 and the number of readings is larger than the consensus, 

 and we have done less than N trials. 

Do 

 Select a random laser data reading. 

 Randomly sample S data readings within D degrees of this laser data reading 

(for example, choose 5 sample readings that lie within 10 degrees of the 

randomly selected laser data reading). 

 Using these S samples and the original reading calculate a least squares best fit 

line. 

 Determine how many laser data readings lie within X centimeters of this best 

fit line. 

 If the number of laser data readings on the line is above some consensus C do 

the following: 

 Calculate new least squares best fit line based on all the laser readings 

determined to lie on the old best fit line. 

 Add this best fit line to the lines we have extracted. 

 Remove the number of readings lying on the line from the total set of 

unassociated readings. 

Figure 2.3: RANSAC 



3D Indoor Depth Mapping Using SIFT Feature Based ICP Registration 

11 
 

End Loop 

This algorithm can thus be tuned based on the following parameters: 

N – Max number of times to attempt to find lines. 

S – Number of samples to compute initial line. 

D – Degrees from initial reading to sample from. 

X – Max distance a reading may be from line to get associated to line. 

C – Number of points that must lie on a line for it to be taken as a line 

2.2.2 Landmark Association: 

The next step of SLAM is to associate these newly found landmarks with previously 

observed landmarks that are believed to be the same. We have also referred to this as 

re-observing landmarks [26]. 

 Might not re-observe landmarks every time step.  

 Might observe something as being a landmark but fail to ever see it again.  

 Might wrongly associate a landmark to a previously seen landmark. 

As stated in the landmarks chapter it should be easy to re-observe landmarks.  As such 

the first two cases above are not acceptable for a landmark.  In other words they are bad 

landmarks.  Even if you have a very good landmark extraction algorithm you may run 

into these so it is best to define a suitable data-association policy to minimize this.  

𝑟 = 𝑘 ∗ 𝑑𝑋 + 𝑚 ∗ 𝑑𝜃 + 𝑙 

The value of k, m will vary from robot to robot. 
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2.3 Localization: 

In the SLAM process Projective geometry is use instead of Euclidian geometry. 

Cameras generate a projected image of the world. Euclidian geometry is suboptimal to 

describe the central projection and the mathematics becomes complex. Whereas 

Projective geometry uses homogenous coordinates by which points at infinity can be 

represented using finite coordinates. 

2.3.1 Recursive Bayes Filter: 

To find the best state estimate, different types of Recursive Bayes Filters are used 

during localization. Recursive Bayes Filter is derived using a belief 

𝑏𝑒𝑙(𝑥𝑡) = 𝑝(𝑥𝑡|𝑧1:𝑡, 𝑢1:𝑡) 

Where, 

𝑥𝑡 = 𝑠𝑡𝑎𝑡𝑒 𝑖𝑛 𝑡𝑖𝑚𝑒 𝑡 

𝑧𝑡 = 𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛 𝑎𝑡 𝑡𝑖𝑚𝑒 𝑡 

𝑢𝑡 = 𝑚𝑜𝑡𝑖𝑜𝑛 𝑐𝑜𝑛𝑡𝑟𝑜𝑙 𝑎𝑡 𝑡𝑖𝑚𝑒 𝑡 

Here Markov assumption is used to state that the current state estimate depends only on 

the previous state estimate and all previous states can be ignored.  

The resultant equation has two parts: 

 Prediction step:   

𝑏𝑒𝑙̅̅ ̅̅ (𝑥𝑡) = ∫ 𝑝(𝑥𝑡|𝑢𝑡, 𝑥𝑡−1) 𝑏𝑒𝑙(𝑥𝑡−1) 𝑑𝑥𝑡−1 

 Correction step: 

𝑏𝑒𝑙(𝑥𝑡) = 𝜂 𝑝(𝑧𝑡|𝑥𝑡) 𝑏𝑒𝑙̅̅ ̅̅ (𝑥𝑡) 

 

2.3.2 Motion Models: 

Mainly two types of motion models are widely used in designing robots: 

1. Odometry-based 

2. Velocity-based 
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2.3.2.1 Standard Odometry-based Model: 

In this model, motion controls are executed with the help of wheel encoders and/or 

Gyro sensors.  

Robot moves from  (�̅�, �̅�, �̅�) to (�̅�′, �̅�′, �̅�′) 

Odometry information  𝑢 = (𝛿𝑟𝑜𝑡1, 𝛿𝑡𝑟𝑎𝑛𝑠, 𝛿𝑟𝑜𝑡2) 

𝛿𝑡𝑟𝑎𝑛𝑠 = √(�̅�′ − �̅�)2 + (�̅�′ − �̅�)2 

𝛿𝑟𝑜𝑡1 = 𝑎𝑡𝑎𝑛2(�̅�′ − �̅�, �̅�′ − �̅�) − �̅� 

𝛿𝑟𝑜𝑡2 = �̅�′ − �̅� − 𝛿𝑟𝑜𝑡1 

In case of systems with Gaussian noise, 𝑢 = 𝒩(0, Σ). 

2.3.2.2 Velocity-based Model: 

In this model, motion controls are executed with the help of wheel encoders and/or 

Gyro sensors. 

Robot moves from (𝑥, 𝑦, 𝜃) to (𝑥′, 𝑦′, 𝜃′) 

Odometry information𝑢 = (𝑣, 𝑤) 

(
𝑥′
𝑦′

𝜃′

) = (
𝑥
𝑦
𝜃

) + (

−
𝑣

𝜔
sin 𝜃+

𝑣

𝜔
sin(𝜃+𝜔∆𝑡)

−
𝑣

𝜔
sin 𝜃+

𝑣

𝜔
sin(𝜃+𝜔∆𝑡)

𝜔∆𝑡

) 

 

Figure 2.4: Demonstration of Odometry equation and Gaussian noise 

Figure 2.5: Gaussian noise generated during rotation 
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2.3.3 Sensor Models: 

Mostly used sensors in SLAM are: 

1. Laser scanner 

2. Kinect sensor 

3. Range-Bearing sensor 

The different types of sensor model are: 

1. Beam-Endpoint model 

 Beam of laser is transmitted and the endpoint is recorded as the beacon 

2. Ray-cast model 

 First obstacle along the line of sight is recorded 

2.3.4 Kalman Filter 

Kalman filter estimates states and observations in a linear system. The motion and 

observation models are defined by, 

 Motion model: 

𝑥𝑡 = 𝐴𝑡𝑥𝑡−1 + 𝐵𝑡𝑢𝑡 − 𝜖𝑡 

 Observation model: 

𝑧𝑡 = 𝐶𝑡𝑥𝑡 + 𝛿𝑡 

Here, 

𝐴𝑡 = 𝑆𝑡𝑎𝑡𝑒 𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛 𝑚𝑎𝑡𝑟𝑖𝑥   (𝑛 ∗ 𝑛) 

𝐵𝑡 = 𝑀𝑎𝑝𝑠 𝑐𝑜𝑛𝑡𝑟𝑜𝑙 𝑖𝑛𝑝𝑢𝑡 𝑖𝑛𝑡𝑜 𝑠𝑡𝑎𝑡𝑒 𝑣𝑒𝑐𝑡𝑜𝑟   (𝑁 ∗ 𝑙) 

𝐶𝑡 = 𝑀𝑎𝑝𝑠 𝑠𝑡𝑎𝑡𝑒 𝑣𝑒𝑐𝑡𝑜𝑟 𝑡𝑜 𝑎𝑛 𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛 𝑧𝑡(𝑘 ∗ 𝑛) 

Under Gaussian noise of the environment the models are defined by, 

 Motion model: 

 

 

 Observation model: 

 

 

Here, 

𝜇𝑡 = 𝑆𝑡𝑎𝑡𝑒 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒 
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Σ𝑡 = 𝑆𝑡𝑎𝑡𝑒 𝑎𝑛𝑑 𝐿𝑎𝑛𝑑𝑚𝑎𝑟𝑘 𝑐𝑜𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 

𝑄𝑡 = 𝑀𝑒𝑎𝑠𝑢𝑟𝑒𝑚𝑒𝑛𝑡 𝑛𝑜𝑖𝑠𝑒 𝑐𝑜𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 

𝑅𝑡 = 𝑃𝑟𝑜𝑐𝑒𝑠𝑠 𝑛𝑜𝑖𝑠𝑒 𝑐𝑜𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 

 

But the real world is non-linear with angular motion and measurements. Kalman filter 

produces inaccurate estimations when calculated with a non-linear and non-Gaussian 

distribution. To solve this problem Extended Kalman Filter is introduced. 

 

Figure 2.6: EKF under Gaussian noise 
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2.3.5 Extended Kalman Filter: 

This filter uses first order Taylor expansion to linearize Kalman Filter. The linearization 

function creates a tangential curve of the non-Gaussian distribution. 

Jacobian of Prediction 

 

Jacobian of Correction 

 

The Jacobian Matrix is a non-square matrix 

of dimension 𝑚 ∗ 𝑛 to map the derivative of 

the linearization function to the state vector. 

Given, a vector-valued function 

 

The Jacobian matrix is defined as, 

Figure 2.7: Jacobian model, courtesy Wikipedia 

Figure 2.8: Comparison between Taylor and EKF 
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Finally the linearized model leads to, 

 Motion model 

 

 

 Observation model: 

 

2.4 Feature Based Mapping 

2.4.1 Mapping Using SURF and Loop Closure 

In this type approach, the underlying structure of the map is a graph with nodes and 

links. The nodes save Odometry poses for each location in the map. The nodes also 

contain visualization information like laser scans, RGB images, depth images and 

visual words [15] used for loop closure detection. The links store rigid geometrical 

transformations between nodes. There are two types of links: neighbor and loop closure. 

Neighbor links are added between the current and the previous nodes with their 

Odometry transformation. Loop closure links are added when a loop closure detection 

is found between the current node and one from the same or previous maps. The 

approach [17] involves combining two algorithms, loop closure detection [16] and 

graph optimization [18], through a memory management process [16] that limits the 

number of nodes available from the graph for loop closure detection and graph 

optimization, so that they always satisfy online requirements. 
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Figure 2.9: Memory management in RTAB 

The approach is based on a memory management method, which limits the number of 

locations used for loop closure detection so that the computation time remains under 

real-time constraints. The idea consists of keeping the most recent and frequently 

observed locations in a Working Memory (WM) used for loop closure detection, and 

transferring the others into a Long-Term Memory (LTM). When a match is found 

between the current location and one stored in WM, associated locations stored in LTM 

can be updated and remembered for additional loop closure detections. The pseudo code 

for mapping is stated below 
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2.4.2 3D Indoor Mapping With SIFT [19] 

Many scanning are performed from different station to obtain occlusion free 3D object 

model. Laser scanner data (point cloud) is in local coordinate system center of which is 

the laser scanner. In this case, all point clouds must be registered into common 

coordinate system to visualizing 3D model of the object. Generally first point cloud 

was selected as a reference and the others are registered into its coordinate system. 

Many methods have been developed for registration of point clouds. The most popular 

method is iterative closest point (ICP) method (Chen and Medioni, 1992; Besl and 

McKay, 1992). Another one is least square 3D image matching method (Guen and 

Akca, 2005). In addition, registration can be performed with object details extracted 

from point clouds (Deveau et al., 2004; Briese and Pfeifer, 2008). The registration 

methods of point clouds were investigated with details in Salvi et al. (2007). 



3D Indoor Depth Mapping Using SIFT Feature Based ICP Registration 

20 
 

 

Figure 2.10: SIFT key points with translation and rotation 

Laser scans have been made as overlapping beginning of the first point cloud. In that 

case, to combine all point clods, the registration must be performed relation to reference 

point clouds. The registration parameters have been computed by laser scanning points 

with different techniques in overlapping area. In this study, pair-wise registration was 

performed by intensity image created from laser scanner data. Key points from intensity 

images were extracted and matched by SIFT method. After outlier points were detected 

by statistical method, point cloud coordinates for each conjugate key points were 

determined using range image data. The registration parameters were computed with 

these corresponding points and residuals on SIFT points were computed. Then the 

results of the method were compared with the ICP. 

The key points are summarized as follows: 

 Indoor mapping with SIFT 

 Use only SIFT feature to merge depth image 

 No mobile robot/ Odometry  

 Autonomous registration 

 Result compared with ICP  
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The algorithm procedure can be stated as follows: 

 Laser scans have overlapping beginning of the first point cloud 

 Registration must be performed relation to reference point clouds. 

 Pair-wise registration was performed 

 Intensity image created from laser scanner data.  

 Intensity images were extracted and matched by SIFT method 
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 Chapter 3 

Proposed Method: 3D Indoor Depth Mapping 

Using SIFT Feature Based ICP Registration 

3.1 Skeleton of Proposed Method 

The following figure shows the overall steps of the proposed method: 

 

Figure 3.1: The basic steps of proposed method 

 

At first we take the Depth image and the RGB image simultaneously. The RGB 

images are run through SIFT algorithm and they give us extracted features. With the 

use of RANSAC the homography between the points are found. Then the matched 

points are mapped back to their 3d co-ordinates and sent to ICP algorithm. Since ICP 

algorithm works on 3d geometric model on some initial random guess. But when the 

matched points are sent for initial estimate it gives better performance [12]. The 

points also carry significant common geometric pattern. The algorithm returns 2 
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matrices and the merged data points. The matrices are Rn and Tn which are rotation 

matrix and translation matrix. Therefore if the data points are Data1, Data2 then the 

projection of Data2 on Data1 is, 

Merged Data = Rn*Data1 + Tn 

Then data points are saved in the storage and the algorithm usually runs for every 2 

frames and merging the depth images on the basis on 3d cloud point registration. 

3.2 Acquiring Depth Data 

At first the data is taken from the Kinect camera and data consist of 2 parts one depth 

and another image. Since RGB data minimum rate in MatLab API is 640*480 so for 

computational purpose they are converted into 320*240 same as depth image and 

saved in database. Both depth data and RGB data comes as video input frame and are 

saved in double variable format. So for each of 320*240 we get pixel wise depth 

value returned by the Kinect. 

3.3 Pre-Processing 

The pre-processing is an essential part of the Mapping without appropriate RGB and 

Depth data feature based SLAM is almost impossible. The purpose is to make the 

world co-ordinate ready for feature extraction and registration. Also conversion of 

raw data to cm/m gives us better perspective and easy calculation of error and 

accuracy. 
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3.3.1 Conversion from 3D to 2D data 

Procedure:  

When depth images taken they have certain resolution of [X Y] and Z is the depth value 

for each correspondent [X Y]. So the pixel co-ordinate has to be converted into linear 

length with respect to the depth value. So mid of the depth image is taken as (0,0) then 

the left side has negative length in X axis and right side has positive and for Y the upper 

part is positive and lower part is negative. The equation for conversion is as follows: 

• Raw Data converted to depth matrix, Z’ 

• X and Y matrices calculated 

𝑋𝑖,𝑗 = (𝑗 −
𝑤

2
) ∗ 𝑆 ∗ (𝑢𝑡 + 𝑀𝑖𝑛𝐷) 

𝑌𝑖,𝑗 = (𝑖 −
ℎ

2
) ∗ 𝑆 ∗ (𝑢𝑡 + 𝑀𝑖𝑛𝐷) 

𝑤 = 𝑤𝑖𝑑𝑡ℎ 

ℎ = ℎ𝑒𝑖𝑔ℎ𝑡 

𝑀𝑖𝑛𝐷 = 𝑀𝑖𝑛𝑖𝑚𝑢𝑚 𝐴𝑐𝑡𝑖𝑣𝑒 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑜𝑓 𝐾𝑖𝑛𝑒𝑐𝑡 

𝑆 = 𝑆𝑐𝑎𝑙𝑒 𝐹𝑎𝑐𝑡𝑜𝑟 

With the help of above formula the 3d co-ordinates of depth data under homographic 

plane is found. Here the value of S=.0021 and MinD=10 are taken with trial and error 

basis.  

3.3.2 Conversion to Reduced Cloud Point 

During feature extraction or cloud point conversion the data set is reduced to lower size 

to faster computation. Careful measures were taken so that necessary information is not 

lost. The reduced cloud point was achieved in 2 formats. 

1. Resizing the raw depth image 

2. Sampling: the cloud point was taken as sampled. 

The MatLab scatter plot is very slow to show the 3d plot data in real time. So sampling 

the data showed the 3d frame properly. But lots of points remain vacant. While the 

reduced size shows continuous data but the smaller version of it. 
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3.4 Feature Extraction of the Key-points 

In this step the feature descriptor is calculated for each of the key-point found in the 

previous step. We used SIFT (Scale-Invariant Feature Transform) for calculating the 

descriptor so that descriptors are highly distinctive, invariant as possible to variations 

such as changes in viewpoint and illumination [13]. Before calculating the descriptor 

for each of the key-point Gaussian weighting around center is done in order to provide 

some weight that is inversely proportional to the distance from the key-point.  Next a 

16X16 neighborhood around the key-point is taken. It is divided into 16 sub-blocks of 

4X4 size. For each sub-block, 8 bin orientation histogram is created. So a total of 128 

bin values are available. The overall step may be shown as the following image: 

  

The first image shows that the Gaussian has been applied around the point of interest 

and rest two images show how the 128 bins are found as we said in the above. Finally 

the 128 bins value is represented in vector as key-point descriptor for the usage in next 

step of our proposed method. 

Figure 3.2: Gaussian Filter 
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Figure 3.3: Feature (Descriptor) extraction 

Figure 3.4: Steps of SIFT algorithm 
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A summarization of our SIFT algorithm is as follows: 

1. Load Image 

2. Resample Image to double size 

3. for each octave 

 create Gaussian blur intervals 

 create difference of Gaussian intervals 

 compute edges for each interval 

4. end for 

5. Search each object for stable extrema 

6. Create key points at dominant orientations of extrema 

7. for each key point  

 rotate sample grid to key point orientation 

 sample region and create descriptor 

8. end for 

9. optionally save pyramid images 

10. save output images 

11. save descriptors 

After running the algorithm, these features are matched to the SIFT feature database. 

Each of key point specifies 4 parameters: 2D location, scale, and orientation. To 

increase recognition robustness Hough transform can be used. Next each key point 

votes for consistent with the key points. Locations in the Hough accumulator that 

accumulate at least 3 votes are selected as candidate object/pose matches. A verification 

step matches the training image for the hypothesized object/pose to the image using a 

least-squares to the hypothesized location 

3.5 Iterative Closest Point 

Iterative Closest Point (ICP) is an algorithm employed to minimize the difference 

between two clouds of points [3]. ICP is often used to reconstruct 2D or 3D surfaces 

from different scans, to localize robots and achieve optimal path planning (especially 

when wheel Odometry is unreliable due to slippery terrain). 
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In the algorithm, one point cloud, the reference, or target, is kept fixed, while the other 

one, the source, is transformed to best match the reference. The algorithm iteratively 

revises the transformation (combination of translation and rotation) needed to minimize 

the distance from the source to the reference point cloud. 

Inputs: reference and source point clouds, initial estimation of the transformation to 

align the source to the reference (optional), criteria for stopping the iterations. 

Output: refined transformation. 

Essentially, the algorithm steps are: 

1. Select random/initial points 

2. For each point in the source point cloud, find the closest point in the reference point 

cloud with Euclidean or K-d tree  

3. Estimate the combination of rotation and translation using a mean squared error cost 

function that will best align each source point to its match found in the previous 

step. The cost function is 

𝐸 ≔ ∑(𝑅𝑝𝑖
+ 𝑡 − 𝑞𝑖)2

𝑖

 

4. Transform the source points using the obtained transformation. 

5. Iterate (re-associate the points, and so on). 

  

Figure 3.5: Merging 3D cloud points 



3D Indoor Depth Mapping Using SIFT Feature Based ICP Registration 

29 
 

Finally the ICP returns a transformation matrix and translation vector with which 2 

depth images can be registered. 

3.5.1 Iteratively Reweighted Least Squares ICP 

The algorithm that we analyze is a version of the ICP algorithm that uses iteratively re-

weighed least squares (IRLS), which has previously been touched upon in e.g. [20]. 

IRLS is widely used in robust linear regression. From a computational point of view 

this method is very similar to the method of weighting of point-pairs, but the weights 

are obtained from an M-estimation criterion. As calling of the residuals is needed in 

order to define what a large residual is. In each iteration we are determining a scale 

parameter for fixed residuals. An update of the rigid body transformation is then found 

while the scale parameter is kept unchanged. The standard deviation of the error of the 

“good” data that represents what it is supposed to represent pretty well is as summed to 

be known. It should be given from knowledge about the acquirement of the data or by 

some other assumptions. 

A weight function w is defined as 

Init the error to ∞ 

Calculate correspondence 

Calculate alignment 

Apply alignment 

Update error 

If error > threshold 

Y = CP(M,S),e 

(rot,trans,d) 

S`= rot(S)+trans 

d` = d 

Figure 3.6: ICP Steps 
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 Chapter 4 

Experimental Result and Performance Analysis 

4.1 Experimental Setup 

We have implemented the proposed model and compared with a number of existing 

approaches. All those implementation and simulation have been done using MATLAB 

R2013a on a personal computer of 2.1 GHz processors with 8 GB main memory. We 

have taken the corridor depth and RGB image of our dormitory. We have taken different 

data with and without translation of camera. Since we have omitted the Odometry data 

for localization we used a Tripod to capture data. 

 

Figure 4.1: Collecting Dataset 
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The datasets were all generated by us. A separate program was written in MatLab to 

gather the data and store. Initially data were collected from 3 different locations. 

4.2 Data Set 

The data set was formed by taking RGB and depth images of 3 different locations. They 

are (a) Data set table tennis (b) Dataset Student Center of IUT (c) Data set of corridor. 

The data sets have following characteristics: 

1. The objects in the data was stationary. 

2. There were no moving objects. 

3. Lighting effect was constant. 

4. Data set of environment was captured at different view of angle and 

translation. 

5. All data were stored offline. 

6. Both video and static data was gathered 

The following table shows the Mean and variance of each of the RGB and Depth. 
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Figure 4.2: Dataset of Table Tennis 

Figure 4.3: Dataset of Student Center 

Figure 4.4: Dataset of Corridor 
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4.3 Intermediate Result (Features Detected) 

In figure 4.5, features were extracted from two RGB images and a line was drawn from 

each of the corresponding matches. It has been found that many corresponding features 

do not match. So a nearest neighbor search was applied. 

In figure 4.6 same algorithm was applied against different dataset and the stitched 

image is demonstrated in figure 4.7. 

 

 

Figure 4.5: Feature Detected and Merged in Data Set 1 

Figure 4.6: Feature Detected in Data Set 2 

Figure 4.7: Image merged in Data Set 2 
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4.4 Final Result (Registered 3D Map) 

In figure 4.8 two cloud points of two different frames are plotted with blue and red 

marker. Figure 4.9 demonstrates registered cloud points between two frames based on 

initial key feature points and geometric patterns with the help of ICP. 

 

 

  

Figure 4.8: Unregistered Data points Figure 4.9: Registered Data points 

Figure 4.10: Map of Student Center Corner Figure 4.11: Map of Corridor 
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4.5 Performance Measurement 

We have measured the performance by calculating accuracy of the objects found in 

the map. Accuracy means the percentage of derived length/area with respect to 

original objects. We calculate the accuracy by the following formula: 

Accuracy =
𝐷𝑒𝑟𝑖𝑣𝑒𝑑 𝐿𝑒𝑛𝑔𝑡ℎ

𝐸𝑥𝑎𝑐𝑡 𝑙𝑒𝑛𝑔𝑡ℎ/𝑎𝑟𝑒𝑎
 

Higher accuracy means a less possibility of error. In order to be the map more 

accurate we need good Odometry data. So during translation of camera we also 

compute the Odometry and angle as required and consequently provided the data to 

the algorithm to generate the map. We discussed about various challenge in this sector 

in Chapter 1.  

 

Figure 4.12: Kinect Raw Sensor data vs Real Distance data 

The relation between Kinect raw depth data with the increase of object from the camera 

position is not linear. So the data is usually multiplied with a constant called Multiplier 

Constant S to acquire the Depth in cm against raw value returned by it. The choice of 

S also do not follow any linear equation. Though by experiment it revealed that the S 

can be predicted to have better result for higher degree polynomial function. 

Here we show the performance of our proposed method in those challenges.  
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4.6 Linear Length Accuracy computation 

 

The accuracy of the map was generated by calculating the real distance between the 

points and the plane from which camera captures the image. In the map each point has 

3 points x, y, z so distances of the object were counted by Euclidean distance formula 

as,𝑑 = √(𝑥1 − 𝑥2)2 + (𝑦1 − 𝑦2)2 + (𝑧1 − 𝑧2)2.  

And the accuracy was measured as 

𝑎𝑐𝑐 = 1 − (𝑟𝑒𝑎𝑙 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 − 𝑑𝑒𝑟𝑖𝑣𝑒𝑑 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒)/100 

  

Figure 4.13: Object measurement 
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Table 4-2 

Object Multiplier S Real 

Distance(Z,X,Y) 

Derived 

Distance 

Accuracy (%) 

1 .0021 210 209.7 99.7 

40 33.5 98.5 

35 33.6 98.6 

1 .0026 210 206.33 95 

40 38.75 98.10 

35 33.25 96.875 

2 .0027 210 205 95 

50 46.4 96.4 

70 64.56 94.56 

2 .0021 210 208 98 

50 44.9 94.9 

70 66.28 96.28 

3 .0031 220 217 97 

35 33.2 98.2 

50 49.5 99.2 

3 .0025 220 214.2 94.2 

35 31.32 96.32 

50 49.5 98.69 

4 .019 321.8 218.9 98.2 

75.3 75.11 99.81 

55.5 51.5 96 

4 .021 321.8 319.2 97.4 

75.3 72.8 97.5 

55.5 52.2 96.7 

5 .022 330 327.89 97.89 

140 138.5 98.5 

110 102 92 

5 .029 330 321 91 

140 134.59 94.59 

110 108 98.2 

Overall Accuracy 96.772 % 

 

The table 4.2 shows of the objects found in map in length. Length, width and 

distance from plane of camera were taken from real world measurement and also 

calculated from generated map. Accuracy was computed between the real world 

and derived measurement. During the calculation from the map, Kinect was 

calibrated for different values of S (described in section 3.3.1). The result is 96.772% 

which is acceptable.  
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4.7 Area Accuracy computation 

The accuracy of the map can be estimated with respect to area .Each 3d map can be 

projected on the 2d surface .The area by the surface can be more accurate if the shape 

is real. In this way taking projection of the map or taking area of different plane and 

comparing with original cross sectional surface can give us a parametric measure of 

shape of the acquired map. 

 

Figure 4.14: Accuracy computation using area 

    

In the above figure (4.14) the area of the 3d map has been segmented in to 

A1,..An,...Am,...Ak, Aq sum of which gives A. The A was calculated in this manner 

and real value of the area and an accuracy of 89% was found. 
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4.8 Runtime Analysis 

Our data set was used to find the metrics between 3 variants of ICP. The result shows 

comparison of IRLS ICP [3], ICP using K-D tree, ICP (standard using random points), 

ICP (standard using matched points) 

 

Figure 4.1: Runtime Analysis 
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 Chapter 5 

Conclusion 

5.1 Summary of Contributions 

Our work verified the use of SIFT based feature extraction and ICP based registration 

to be used in SLAM. It has been found that use of IRLS ICP gives best performance 

which can reduce the time complexity of SLAM algorithm to be implemented real time. 

Also it infers the fact that use of feature based SLAM can reduce dependency on 

Odometry. We have also found that we can generate the map even without a robot by 

just translating the camera to new position having common geometric pattern. 

5.2 Limitations and Future Work 

The scatter plot of the MatLab is very slow to merge and view multiple images. So use 

of C++ or C# based 3D plotting will show the whole map of the surrounding. We can 

make the system online by sending data to a server running our algorithm and a robot 

with low computation may carry the camera and connect with the server wirelessly. 

This concept can also be extended for UAV carrying camera and communication 

module and thus will give us 3D map of remote places form aerial view point. 
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