Development of A Novel Single Phase Non-isolated AC-DC Buck-Boost Converter

by

Istiak Ahmed

MASTER OF SCIENCE

IN

ELECTRICAL AND ELECTRONIC ENGINEERING

Department of Electrical & Electronic Engineering Islamic University of Technology (IUT) Board Bazar, Gazipur-1704, Bangladesh.

January, 2021

© 2021 Istiak Ahmed

All Rights Reserved

CERTIFICATE OF APPROVAL

The thesis entitled "Development of A Novel Single Phase Non-isolated AC-DC Buck-Boost Converter" submitted by Istiak Ahmed, Student No. 152620 of Academic Year 2016-17 has been found as satisfactory and accepted as partial fulfillment of the requirement for the Degree of MASTER OF SCIENCE IN ELECTRICAL AND ELECTRONIC ENGINEERING on January 03, 2021.

BOARD OF EXAMINERS:

1.		
	Dr. Golam Sarowar (Supervisor)	Chairman
	Professor	
	Department of Electrical and Electronic Engineering	
	Islamic University of Technology (IUT), Board Bazar, Gazipur-1704	
_		
2.		
	Dr. Md. Ruhul Amin (Ex-Officio)	Member
	Professor & Head	
	Department of Electrical and Electronic Engineering	
	Islamic University of Technology (IUT), Board Bazar, Gazipur-1704	
3.		
5.	Dr. Md. Ashraful Hoque	Member
	Professor	
	Department of Electrical and Electronic Engineering	
	Islamic University of Technology (IUT), Board Bazar, Gazipur-1704	
4.		
	Dr. Ashik Ahmed	Member
	Professor	
	Department of Electrical & Electronic Engineering	
	Islamic University of Technology (IUT), Board Bazar, Gazipur-1704	
_		
5.	Professor Dr. Md. Raju Ahmed	Member (External)
	Professor	Member (External)
	Department of Electrical & Electronic Engineering	
	Dhaka University of Engineering & Technology (DUET), Gazipur	
	Dinka Chiversity of Engineering & rechnology (DOLT), Oaliput	

DECLARATION OF CANDIDATE

It is hereby declared that this thesis report or any part of it has not been submitted elsewhere for the award of any Degree or Diploma.

Dr. Golam Sarowar Professor Department of Electrical and Electronic Engineering Islamic University of Technology (IUT) Date: 03 January, 2021 Istiak Ahmed Student No. 152620 Academic Year: 2016-17 Date: 03 January, 2021 Dedicated to my dear parents

TABLE OF CONTENTS

Certificate of Approval		
Declaration of Candidate		
List of Tables		
List of F	Figures	Х
List of A	Abbreviations	XV
Acknow	ledgements	XVI
Abstract	t	XVII
Chapter	r 1 Introduction	1
_	Introduction	1
1.2	AC-DC Switch-mode Converters	2
1.3	Problem Identification	4
1.4	Thesis Objective	5
1.5	Thesis Organization	5
Chapter	r 2 Review of Existing AC-DC Converters	7
	Conventional Circuit Topologies	7
	1 Buck Converter	7
	2 Boost Converter	9
	3 Buck-Boost Converter	11
	4 Cûk Converter	13
2.1.		15
	Recent Topologies of AC-DC Buck-Boost Converter	17
2.2.		17
	Converter	• •
2.2.1		20
	DC step up-down converter	
2.2.	ε	22
2.2	capacitor for low power applications	24
2.2.4		24
	converter	07
Chapter		27
2 1	Boost Converter	77
3.1	Proposed AC-DC Buck-Boost Converter	27
3.2	Principle of Operation	28
3.3	Open Loop Data Analysis Ideal Voltage Gain Equation	31
3.4	Ideal Voltage Gain Equation	34

3.5	Simulation results of the Proposed Single-Phase Non-	38
	isolated AC-DC Buck-Boost Converter under duty cycle	
26	variation Simulation results of Promoted Single Phase New isolated	40
3.6	Simulation results of Proposed Single-Phase Non-isolated	42
	AC-DC Buck- Boost Converter under Load variation (for	
3.7	duty ratio of 0.2) Simulation results of Proposed Single-Phase Non-isolated	44
5.7	AC-DC Buck-Boost Converter under Load variation (for	44
	duty ratio of 0.6)	
3.8	Simulation results of Proposed Single-Phase Non-isolated	48
5.0	AC-DC Buck- Boost Converter under frequency variation	10
	(for duty ratio of 0.2)	
3.9	Simulation results of Proposed Single-Phase Non-isolated	50
0.12	AC-DC Buck-Boost Converter under frequency variation	00
	(for duty ratio of 0.6)	
Chapte	er 4 Performance Analysis of Proposed Single-Phase	53
•	Non-isolated AC-DC Buck-Boost Converter	
4.1	Introduction	53
4.2	Power Factor and Harmonic distortion	53
4.3	Analysis of Proposed Converter under Duty Cycle Variation	54
4.4	Analysis of Proposed Converter under Load Variation	58
4.5	Analysis of Proposed Converter under Frequency Variation	64
4.6	Analysis of Proposed Converter with Recent Converter	71
	(Topology 1) under duty cycle variation	
4.7	Analysis of Proposed Converter with Recent Converter	74
	(Topology 2) under duty cycle variation	
Chapte	•	74
	the Observation of Dynamic Response	
5.1	Operating Principle of Single-Phase PFC	77
5.2	Control of PFC	79
5.3	Designing the Inner Average-Current Control loop	81
5.4	Designing the Outer Voltage Control loop	81
5.5	Transfer function of the PFC control loops for feedback control	82
5.6	Simulation with Designed Controller	83
5.7	Dynamic Response	85
5.8	Transfer function of the feedback control loops for Dynamic	87
	Response	

Chapter	6 Conclusion and Future Work	89
6.1	Conclusion	89
6.2	Future Works	90
References		91
Publication		

LIST OF TABLES

Table 2.1	Parameter Table for Conventional Buck Converter	8
Table 2.2	Performance Analysis of Conventional Buck Converter under Duty Cycle Variation	8
Table 2.3	Parameter Table for Conventional Boost Converter	10
Table 2.4	Performance Analysis of Conventional Boost Converter under Duty Cycle Variation	10
Table 2.5	Parameter Table for Conventional Buck- Boost Converter	12
Table 2.6	Performance Analysis of Conventional Buck-Boost Converter under Duty Cycle Variation	12
Table 2.7	Parameter Table for Conventional $C\hat{u}k$ Converter	14
Table 2.8	Performance Analysis of $C\hat{u}k$ Converter under Duty Cycle Variation	14
Table 2.9	Parameter Table for Conventional SEPIC Converter	16
Table 2.10	Performance Analysis of SEPIC Converter under Duty Cycle Variation	16
Table 2.11	Voltage gain comparison of Conventional Converters	17
Table 2.12	Parameter Table for Input switched single-phase AC-DC Buck-Boost Converter	18
Table 2.13	Performance Analysis of Input switched single-phase AC- DC Buck-Boost Converter under duty cycle variation	19
Table 2.14	Parameter Table for high efficiency single-phase switched capacitor AC to DC step up-down converter	21
Table 2.15	Performance Analysis of Single phase AC-DC Buck- Boost converter in two stage under duty cycle variation	22
Table 2.16	Parameter Table for bridgeless AC-DC Buck-Boost converter with switched capacitor.	23
Table 2.17	Performance Analysis of bridgeless AC-DC Buck-Boost converter with switched capacitor under duty cycle variation	24
Table 2.18	Parameter Table for modified single-phase PFC AC-DC buck-boost converter	25
Table 2.19	Performance Analysis of modified single-phase PFC AC- DC buck-boost converter under duty cycle variation	25

Table 3.1	Parameter Table for Single-Phase Non-isolated AC-DC Buck Boost Converter	31	
Table 3.2	Performance Analysis of Single-Phase Non-isolated AC- DC Buck Boost Converter under duty cycle variation		
Table 3.3	Performance Analysis of Single-Phase Non-isolated AC- DC Buck Boost Converter under load variation (for duty ratio of 0.2)	32	
Table 3.4	Performance Analysis of Single-Phase Non-isolated AC- DC Buck Boost Converter under load variation (for duty ratio of 0.6)	32	
Table 3.5	Performance Analysis of Single-Phase Non-isolated AC- DC Buck Boost Converter under frequency variation (for duty ratio of 0.2)	33	
Table 3.6	Performance Analysis of Single-Phase Non-isolated AC- DC Buck Boost Converter under frequency variation (for duty ratio of 0.6)	33	
Table 3.7	Comparison between theoretical and simulation results of the proposed Buck-Boost converter	38	
Table 4.1	Performance Comparison of Proposed Buck-Boost converter under duty cycle variation	55	
Table 4.2	Performance Comparison of Proposed Buck-Boost converter under Load variation (for duty ratio of 0.2)	59	
Table 4.3	Performance Comparison of Proposed Buck-Boost converter under Load variation (for duty ratio of 0.6)	59	
Table 4.4	Performance Comparison of Proposed Buck-Boost converter under frequency variation (for duty ratio 0.2)	65	
Table 4.5	Performance Comparison of Proposed Buck-Boost converter under frequency variation (for duty ratio 0.6)	66	
Table 4.6	Performance Comparison of Proposed converter with recent converter (topology 1) under duty cycle variation	71	
Table 4.7	Performance Comparison of Proposed converter with recent converter (topology 2) under duty cycle variation	74	
Table 5.1	Parameter Table for the feedback controller of the proposed converter	84	
Table 5.2	Results of the Simulation of the Converter with Feedback Controller for 1000 Vdc	84	
Table 5.3	Changes in load for figure 5.10	86	

LIST OF FIGURES

Figure 2.1	Conventional AC-DC Buck Converter with Input Filter	7
Figure 2.2	Conventional AC-DC Boost Converter with Input Filter	9
Figure 2.3	Conventional AC-DC Buck-Boost Converter with Input Filter	11
Figure 2.4	Conventional AC-DC $C\hat{u}k$ converter with input filter	13
Figure 2.5	Conventional AC-DC SEPIC converter with input filter	15
Figure 2.6	Input switched single -phase AC-DC Buck-Boost Converter	18
Figure 2.7	Single phase AC-DC Buck-Boost converter in two stage	20
Figure 2.8	Bridgeless AC-DC Buck-Boost converter with switched capacitor	23
Figure 2.9	Modified single-phase PFC AC-DC buck-boost converter	24
Figure 3.1	Proposed Single-Phase Non-isolated AC-DC Buck Boost Converter	27
Figure 3.2	Four Modes of Operation of Proposed AC-DC Buck- Boost Converter (a) Mode 1:Proposed circuit in positive half cycle when M1 is ON.(b) Mode 2:Proposed circuit in positive half cycle when M1 is OFF.(c) Mode 3:Proposed circuit in negative half cycle when M1 is ON.(d)Mode 4:Proposed circuit in negative half cycle when M1 is OFF	29
Figure 3.3	Proposed Buck-Boost Converter with output voltage, the voltage across the inductor and output capacitor	34
Figure 3.4	(a): Input Current waveform of proposed buck-boost converter, (b): Input Voltage waveform of proposed buck-boost converter, (c): Output Voltage waveform of proposed buck-boost converter	39
Figure 3.5	(a): Input Current waveform of proposed buck-boost converter, (b): Input Voltage waveform of proposed buck-boost converter, (c): Output Voltage waveform of proposed buck-boost converter	40
Figure 3.6	(a): Input Current waveform of proposed buck-boost	41

	converter, (b): Input Voltage waveform of proposed buck-boost converter, (c): Output Voltage waveform of proposed buck-boost converter	
Figure 3.7	(a): Input Current waveform of proposed buck-boost converter, (b): Input Voltage waveform of proposed buck-boost converter, (c): Output Voltage waveform of proposed buck-boost converter	43
Figure 3.8	(a): Input Current waveform of proposed buck-boost converter, (b): Input Voltage waveform of proposed buck-boost converter, (c): Output Voltage waveform of proposed buck-boost converter	44
Figure 3.9	(a): Input Current waveform of proposed buck-boost converter, (b): Input Voltage waveform of proposed buck-boost converter, (c): Output Voltage waveform of proposed buck-boost converter	45
Figure 3.10	(a): Input Current waveform of proposed buck-boost converter, (b): Input Voltage waveform of proposed buck-boost converter, (c): Output Voltage waveform of proposed buck-boost converter	46
Figure 3.11	(a): Input Current waveform of proposed buck-boost converter, (b): Input Voltage waveform of proposed buck-boost converter, (c): Output Voltage waveform of	47
Figure 3.12	proposed buck-boost converter (a): Input Current waveform of proposed buck-boost converter, (b): Input Voltage waveform of proposed buck-boost converter, (c): Output Voltage waveform of	48
Figure 3.13	proposed buck-boost converter (a): Input Current waveform of proposed buck-boost converter, (b): Input Voltage waveform of proposed buck-boost converter, (c): Output Voltage waveform of proposed buck boost converter	49
Figure 3.14	proposed buck-boost converter (a): Input Current waveform of proposed buck-boost converter, (b): Input Voltage waveform of proposed buck-boost converter, (c): Output Voltage waveform of proposed buck-boost converter	51
Figure 3.15	(a): Input Current waveform of proposed buck-boost converter, (b): Input Voltage waveform of proposed buck-boost converter, (c): Output Voltage waveform of proposed buck-boost converter	52
Figure 4.1	Graphical comparison of Power Factor between	56

	proposed and conventional converter under Duty Cycle Variation	
Figure 4.2	Graphical comparison of Efficiency between proposed and conventional converter under Duty Cycle Variation	56
Figure 4.3	Graphical comparison of Voltage Gain between proposed and conventional converter under Duty Cycle Variation	57
Figure 4.4	Graphical comparison of THD between proposed and conventional converter under Duty Cycle Variation	57
Figure 4.5	Graphical comparison of Power Factor between proposed and conventional converter under Load Variation (for duty ratio 0.2)	60
Figure 4.6	Graphical comparison of Efficiency between proposed and conventional converter under Load Variation (for duty ratio 0.2	60
Figure 4.7	Graphical comparison of Voltage Gain between proposed and conventional converter under Load Variation (for duty ratio 0.2)	61
Figure 4.8	Graphical comparison of THD between proposed and conventional converter under Load Variation (for duty ratio 0.2)	61
Figure 4.9	Graphical comparison of Power Factor between proposed and conventional converter under Load Variation (for duty ratio 0.6)	52
Figure 4.10	Graphical comparison of Efficiency between proposed and conventional converter under Load Variation (for duty ratio 0.6)	62
Figure 4.11	Graphical comparison of Voltage Gain between proposed and conventional converter under Load Variation (for duty ratio 0.6)	63
Figure 4.12	Graphical comparison of THD between proposed and conventional converter under Load Variation (for duty ratio0.6)	63
Figure 4.13	Graphical comparison of Power Factor between proposed and conventional converter under frequency Variation (for duty ratio of 0.2)	67

Figure 4.14	Graphical comparison of Efficiency between proposed and conventional converter under frequency Variation (for duty ratio of 0.2)	67
Figure 4.15	Graphical comparison of Voltage Gain between proposed and conventional converter under frequency Variation (for duty ratio 0.2)	68
Figure 4.16	Graphical comparison of THD between proposed and conventional converter under frequency Variation (for duty ratio 0.2)	68
Figure 4.17	Graphical comparison of Power Factor between proposed and conventional converter under frequency Variation (for duty ratio of 0.6)	69
Figure 4.18	Graphical comparison of Efficiency between proposed and conventional converter under frequency Variation (for duty ratio of 0.6)	69
Figure 4.19	Graphical comparison of Voltage Gain between proposed and conventional converter under frequency Variation (for duty ratio 0.6)	70
Figure 4.20	Graphical comparison of THD between proposed and conventional converter under frequency Variation (for duty ratio 0.6)	70
Figure 4.21	Graphical comparison of Power Factor between proposed and recent converter (topology 1) under duty cycle Variation.	72
Figure 4.22	Graphical comparison of Efficiency between proposed and recent converter (topology 1) under duty cycle Variation	72
Figure 4.23	Graphical comparison of Voltage gain between proposed and recent converter (topology 1) under duty cycle Variation	73
Figure 4.24	Graphical comparison of THD between proposed and recent converter (topology 1) under duty cycle Variation	73
Figure 4.25	Graphical comparison of Power Factor between	75

	proposed and recent converter (topology 2) under duty cycle Variation	
Figure 4.26	Graphical comparison of Efficiency between proposed and recent converter (topology 2) under duty cycle Variation	75
Figure 4.27	Graphical comparison of Voltage gain between proposed and recent converter (topology 2) under duty cycle Variation	76
Figure 4.28	Graphical comparison of THD between proposed and recent converter (topology 2) under duty cycle Variation	76
Figure 5.1	Proposed converter with feedback controller	77
Figure 5.2	PFC waveforms	78
Figure 5.3	The DC Transformer model of the proposed AC-DC Buck-Boost converter	78
Figure 5.4	PFC Control Loops	80
Figure 5.5	PFC Current Loop	81
Figure 5.6	PFC Voltage Loop	81
Figure 5.7	PI controller	82
Figure 5.8	Voltage controller for feedback control	83
Figure 5.9	(a): Waveshape of Input voltage and Input current of proposed converter with feedback, (b): Waveshape of Output voltage of proposed converter with feedback	85
Figure 5.10	Non-isolated Single Phase AC-DC Buck-Boost Converter for Dynamic Analysis	86
Figure 5.11	Typical waveform of output voltage for load change of the circuit of figure 5.10	87
Figure 5.12	Proportional gain	87
Figure 5.13	Integral gain	88

LIST OF ABBREVIATIONS

PFC	Power Factor Correction
SMPS	Switch Mode Power Supply
SEPIC	Single-ended Primary-inductor Converter
THD	Total Harmonic Distortion
MOSFET	Metal Oxide Semiconductor Field Effect Transistor
IGBT	Insulated Gate Bipolar Transistor
IEEE	Institute of Electrical and Electronics Engineers
PF	Power Factor
PWM	Pulse Width Modulation
PI	Proportional- Integral

Acknowledgement

First, I offer my gratitude to the Almighty ALLAH Subhanahu Wa Ta'la for giving me the capability to do this work with good health.

I am very much grateful to my research supervisor, Professor Dr. Golam Sarowar for his support and guidance throughout the course of this work. He has created a research environment for which I was able to explore many ideas without constraint. I have gained a wealth of knowledge and experience in science and engineering through his direction that is beyond value to my future endeavors.

As I am currently doing a job, the journey was not easy for me to complete my thesis work unless I got continuous support from my family. I am thankful to my family members especially to my parents for their continuous support throughout my entire academic life. I would also like to acknowledge the support from some of my friends who have been a constant source of inspiration all along this work.

Abstract

Switched mode power converters have been studied broadly and used in industrial products. The classification comes as Buck, Boost and Buck-Boost for the basic topology in which single inductor is presented and also Cuk, Sepic and Zeta for higher order topology in which two inductors are presented in the circuit. A new topology of Single - Phase AC-DC Buck-Boost converter is presented in this thesis book. Conventional AC-DC converters use full-wave bridge rectifier that has the drawbacks like pulsating input current, high electromagnetic interference (EMI), high crest factor, low input power factor, low efficiency, and harmonic pollution at power system etc. Instead of using a single phase rectifier followed by DC-DC converter, two inductors and two capacitors are used with suitable combination of switch and diodes. The proposed converter provides better conversion efficiency than the conventional converter throughout the variation of duty cycle. Input power factor of the proposed converter is less than the conventional converter for lower and higher duty cycles. By using suitable feedback control in closed loop system, the problem of low input power factor has been corrected. The proposed converter with PFC controller provides very high input power factor (0.994) which is almost close to unity. The proposed converter has lesser total harmonic distortion (THD) of input current in comparison with the conventional one for higher duty cycles but for lower duty cycles the conventional converter shows better performance Again, using the feedback controller, the THD of input current is kept close to IEEE Standards for the proposed converter. The proposed converter with feedback controller provides higher conversion efficiency, reduced total harmonic distortion (THD) of input current and quality power factor. Dynamic response of the proposed converter has also been observed. The proposed converter can maintain a desired level of output voltage with sudden changes in load. Analysis and simulation results of the circuit are obtained using software simulation. The main advantage of this new AC-DC converter is it's superior efficiency over conventional AC-DC converters.