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Abstract

Automatic recognition and analysis of human face allow many interesting appli-

cations in biometrics, human-computer interaction, and security industry, such

as person identification, age estimation, gender classification, and facial expres-

sion analysis. Deriving an efficient and effective feature representation is the

fundamental component for any successful facial recognition system. However,

the inherent variability of facial images caused by different factors like variations

in illumination, pose, facial expression, alignment, and occlusions make classifi-

cation a challenging task. Therefore, the aim of the ongoing research in facial

recognition is to increase the robustness of the underlying feature representation

against these factors.

In this thesis, we work toward developing a simple, yet effective appearance-

based feature descriptor for representing human facial image. A new local texture

pattern, namely the directional ternary pattern (DTP) has been introduced that

can effectively capture the texture properties of a local neighborhood and exhibits

robustness against illumination variations and random noise. The proposed DTP

operator encodes the texture information of a local neighborhood by labeling the

edge response values in all eight directions around the center point using three

different levels. Our encoding scheme employs a threshold in order to differentiate

between uniform and high-textured face regions, and thus, ensures the generation

of ternary micro-patterns consistent with the local texture property. The location

and occurrence information of the DTP micro-patterns within the facial image is

then represented with a spatial histogram, which functions as the facial feature

descriptor.
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Abstract ii

The performance of the proposed method has been evaluated in three differ-

ent applications, which are i) facial expression analysis, ii) face recognition, and

iii) gender classification from facial image. Different publicly-available bench-

mark image datasets were used for the experiments. We have also compared the

performance of the proposed method with some widely-used local pattern-based

feature descriptors. Experimental results demonstrate that, the DTP descriptor

is more robust in extracting facial information and provides higher classification

rate compared to some existing feature representation techniques.
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Chapter 1

Introduction

In this chapter, we first present an overview of our thesis that includes the sig-

nificance of the problem and the problem statement in detail. After that, we

present our thesis objectives and contributions. The chapter ends with a short

description on the organization of this thesis.

1.1 Background

With the increasing development of hardware and software technologies, the de-

mand for personalized interaction with consumer products and applications is

also increasing day by day. The most popular approach for achieving this is the

automated recognition and analysis of human face, which has attracted much

attention over the last two decades. One of the main reasons is that, facial

recognition provides a more natural and non-intrusive approach than the other

biometrics, such as fingerprint, voice, or retina, where the cooperation of the

subject is a must.

An automated facial recognition system usually consists of a sequential ar-

rangements of processing blocks, which is similar to a generic pattern recognition

model. The fundamental components embedded in a facial recognition system

are: image acquisition, pre-processing, feature extraction, classification, and post-

processing, as shown in Figure 1.1. A key issue in successful face analysis is to

find an efficient feature extraction method, which generates the facial feature vec-

tor for classifier training and testing. Although much work has been done, the

inherent variability of facial images caused by different factors like variations in

1
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Figure 1.1: Components of a generic facial recognition system.

illumination, pose, alignment, occlusion, and aging makes robust feature extrac-

tion a difficult and challenging task [5]. Therefore, extraction of facial feature is

an active research topic in computer vision, where the aim is to make the features

robust against these factors.

1.2 The Significance of the Problem

The ability to identify and analyse facial images could lead to many useful applica-

tions in biometrics, human-computer interaction, data-driven animation, surveil-

lance, and social robotics [6]. Nowadays, availability of inexpensive video cameras

has fueled the widespread development of facial recognition-based customized ap-

plications for devices like laptops, cell-phones etc. The reason is that, augmenting

person identification, gender classification, or facial expression recognition with

applications specific to a person or gender can provide a more user-friendly en-

vironment and human-like interaction. There are various services which can be

enabled through this kind of recognition system, such as personalized TV pro-

gram [7,8], intelligent digital photography [9], smart home [10] and many more.

In the last few years, social robotics has attained an increasing interest of

scientific community. In this field of research, the objective is to design robots

with the ability to move in populated environments and to interact with people.
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Person identification is one of the primary tasks for achieving this. Vision-based

face recognition provides a natural, intuitive, and nonintrusive approach for rec-

ognizing people. While for humans this is a trivial task, for robots it is still a very

challenging problem. Despite some recent advances, vision-based face recognition

is far from reaching human capability. For this reasons, new and more robust

computer vision and pattern recognition approaches need to be investigated.

1.3 Problem Statement

Deriving an efficient, robust, and effective feature representation is a critical issue

for any successful facial recognition system [11]. Although it receives consider-

able attention, the inherent variability of facial appearances makes recognition

in unconstrained environment a difficult and challenging task. Human faces are

non-rigid, dynamic objects with a large diversity in shape, color and texture, due

to multiple factors such as head pose, lighting conditions (contrast, shadows),

facial expressions, occlusions (glasses), ageing, and other facial features (make-

up, beard) [12].Therefore, the aim of the ongoing research in automated facial

analysis is to increase the robustness of the underlying facial feature descriptor

against these factors.

An extracted facial feature can be considered an efficient representation if

it can fulfill three criteria: first, it minimizes within-class variations of expres-

sions while maximizes between-class variations; second, it provides robustness

in uncontrolled environment; and third, it can be described in a low-dimensional

feature space to ensure computational speed during the classification step [13,14].

Therefore, it is both a challenge and our motivation to find a facial feature de-

scriptor satisfying the following three criteria: i) distinctiveness; ii) robustness;

and iii) computationally inexpensive cost.
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1.4 Thesis Objectives

Our thesis aimed at designing an effective appearance-based facial feature de-

scriptor based on a robust local texture encoding scheme, which overcomes the

limitations of the existing texture patterns. The designed facial feature represen-

tation should satisfy the following criteria:

• The feature descriptor should provide robustness against illumination vari-

ations and random noise in order to be used in real-life scenarios.

• It should be applicable in different face related problem domains, such as

face recognition, facial expression analysis, and gender classification.

• The feature descriptor should achieve superior performance in uncon-

strained environment than the existing state-of-the-art techniques.

• The feature extraction method should be computationally efficient and ef-

fective.

1.5 Thesis Contributions

The main contributions of this thesis are summarized as follow:

• In this thesis, we present a simple, yet effective and robust facial feature

descriptor constructed with a new local texture pattern, the directional

ternary pattern (DTP) for representing human facial image. The proposed

DTP operator encodes the texture information of a local neighborhood by

quantizing the edge response values in all eight directions around the center

point using three different levels. The proposed encoding scheme employs

a threshold in order to differentiate between uniform and high-textured

face regions, and thus, ensures the generation of ternary micro-patterns

consistent with the local texture property. The location and occurrence

information of the DTP micro-patterns within the facial image is then used

as the feature descriptor.
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• The recognition performance of the proposed method is evaluated in three

different face related problems: i. facial expression recognition, ii. face

recognition, and iii. gender classification. Different machine learning meth-

ods are exploited to classify images from several benchmark databases. Ex-

tensive experiments show the superiority of the DTP feature descriptor

against some well-known appearance-based feature representation methods.

• We investigate DTP features for low-resolution facial recognition, a criti-

cal problem but seldom addressed in the existing work. Compared to the

previous work, DTP features provide better performance, which is very

promising for real-world applications.

• In real-world scenarios, images can easily be corrupted with random noise.

Therefore, in this thesis, we empirically evaluate the performance of our

proposed method under the presence of Gaussian noise. Experimental re-

sults show that, DTP performs more robustly under the presence of noise

than the other existing methods.

1.6 Organization of the Thesis

The rest of the thesis will be organized as follows: in Chapter 2 we present the

background and related work on different facial feature representation methods.

We also present a description on the pattern recognition algorithms used in our

experiments. We state the detailed description of the proposed facial feature

representation scheme in Chapter 3. The experimental setup and the performance

evaluation of our proposed method goes on Chapter 4. And we draw conclusion

in Chapter 5 with a note of the future scope of research in this area.



Chapter 2

Literature Review

In this chapter, we first present a discussion on different geometric and

appearance-based facial feature representation, which is followed by a review on

different local appearance-based methods. Finally we end the literature review

with a description of the pattern recognition methods used in this study.

2.1 Facial Feature Representation Methods

During the last two decades, many methods have been proposed for different

face-related problems, where different facial feature extraction techniques have

been introduced. Based on the types of features used, facial feature extrac-

tion approaches can be roughly divided into two different categories: geometric

feature-based methods and appearance-based methods [6].

2.1.1 Geometric Feature-Based Methods

In geometric feature-based methods, the feature vector is formed based on the

geometric relationships, such as positions, angles or distances between different

facial components (eyes, ears, nose etc.). Earlier methods for facial recognition

are mostly based on these geometric feature representations.

For facial expression recognition, facial action coding system (FACS) [15] is a

popular geometric feature-based method which represents facial expression with

the help of a set of action units (AU). Each action unit represents the physical

behavior of a specific facial muscle. Later, Zhang [1] proposed a feature extrac-

tion method based on the geometric positions of 34 manually selected fiducial

6
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Figure 2.1: Locations of 34 fiducial points (Courtesy of Z. Zhang [1]).

points. A similar representation was adopted by Guo and Dyer [16], where they

employed linear programming in order to perform simultaneous feature selection

and classifier training. Recently, Valstar et al. [17,18] have studied facial expres-

sion analysis based on tracked fiducial point data and reported that, geometric

features provide similar or better performance than appearance-based methods

in action unit recognition.

For face recognition, elastic bunch graph match (EBGM) [19] algorithm is the

most commonly-used geometric feature-based method. In this method, human

faces are represented as graphs, where nodes are positioned on fiducial points and

edges are labeled using distance vectors. A set of Gabor wavelets co-efficients is

assigned to each node, which is called jet. While the geometrity of the faces is

encoded by the edges, the jets represents the grey value distribution. Brunelli

and Poggio [20] investigated a set of 16 geometric features for designing a gender

classification model. The features were extracted with HyperBF networks. Later,

Abdi et al. [21] experimented with a radial basis function (RBF) network and a

perceptron, and achieved good classification result for both pixel-based inputs

and measurement-based inputs (geometric features).

However, the effectiveness of geometric methods is heavily dependent on the

accurate detection of facial components, which is a difficult task in changing and

unconstrained environment, thus making geometric methods difficult to accom-

modate in many scenarios [6].



2.1 FACIAL FEATURE REPRESENTATION METHODS 8

Figure 2.2: Facial feature representation based on PCA for expression recognition

(Courtesy of Uddin et al. [2]).

2.1.2 Appearance-Based Methods

Appearance-based methods extract the facial appearance by applying image fil-

ter or filter bank on the whole face image or some specific facial regions. For

facial expression recognition, Principal component analysis (PCA) [22], indepen-

dent component analysis (ICA) [23, 24], Gabor wavelets [25, 26] and more recent

enhanced ICA (EICA) [2] are the commonly-used appearance-based methods.

Among these techniques, PCA is a global feature extraction method, where the

whole facial image is taken into account during feature vector generation. This

method provides an optimal linear transformation from the original image space

to an orthogonal eigenspace with reduced dimensionality in the sense of least mean

squared reconstruction error [27]. On the other hand, ICA and Gabor wavelets

extract the local features of an image, therefore called local feature descriptors.

In face recognition, PCA is usually called the ‘eigenface’ method, which

was introduced by Turk and Pentland [28]. Later, linear discriminant analy-

sis (LDA) [29], 2D PCA [30], local features analysis (LFA) [31], and dynamic link

architecture (DLA) [32] methods were also investigated for feature representation

in face recognition systems. Although PCA and ICA feature descriptors can ef-

fectively capture the variability of the training images, their performances deteri-
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Figure 2.3: Facial feature representation based on ICA for expression recognition

(Courtesy of Uddin et al. [2]).

orate in changing environment [33]. Donato et al. [34] presented a comprehensive

analysis of different techniques for facial action recognition, which included PCA,

ICA, local feature analysis (LFA), Gabor wavelets, and local principal compo-

nents (PCs). Among these techniques, ICA and Gabor wavelets provided the

best recognition rate. However, Gabor wavelets based facial image representa-

tion is time and memory intensive, since it requires convoluting facial images with

multiple Gabor filters of many scales and orientations.

Recently, local appearance face descriptors based on local binary pattern

(LBP) [11, 35] and its variants [36] have attained much attention due to their

superior performances in uncontrolled environment. Local binary pattern is a

simple, yet effective local texture description technique, which is computation-

ally efficient and robust against non-monotonic illumination variation. The LBP

operator encodes the local texture by quantizing the neighbor gray levels of a

neighborhood with respect to center value and thus forms a binary pattern that

acts as a template for micro-level information such as edge, spot, or corner. How-

ever, the LBP method performs weakly under the presence of large illumination

variation and random noise [5], since a little variation in the gray level can easily

change the LBP code. Later, local ternary pattern (LTP) [5] was introduced to

increase the robustness of LBP in uniform and near-uniform regions by adding
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an extra intensity discrimination level and extending the binary LBP value to

a ternary code. More recently, Sobel-LBP [33] has been proposed to improve

the performance of LBP by applying Sobel operator to enhance the edge infor-

mation prior to applying LBP for feature extraction. However, in uniform and

near-uniform regions, Sobel-LBP generates inconsistent patterns as it uses only

two discrimination levels just like LBP. Another approach using derivative-based

local texture pattern [37] takes the advantage of detailed high-order derivative

descriptions and keeps the spatial relationships in local regions. Another method

named local directional pattern (LDP) [6] employed a different texture encoding

approach, where directional edge response values around a position is used instead

of gray levels. The motivation was to exploit more stable edge response values

instead of gray levels in order to encode the local texture, which increases the

robustness of the underlying feature descriptor. Although this approach achieves

better recognition performance than local binary pattern, LDP tends to produce

inconsistent codes in uniform and near-uniform facial regions and is heavily de-

pendent on the selection of the number of prominent edge directions.

2.2 Local Texture Pattern Operators

In this section, we present a review on some widely-used local pattern-based facial

feature descriptors.

2.2.1 Local Binary Pattern (LBP)

Local binary pattern (LBP) is a gray-scale and rotation invariant texture prim-

itive that describes the spatial structure of the local texture of an image. LBP

was first introduced for texture classification [38] and later this method has been

successfully applied in face-related problems, such as face recognition [35], gender

classification [39, 40], and facial expression recognition [11]. The LBP operator

selects a local neighborhood around each pixel of an image, thresholds the P

neighbor gray values with respect to the center pixel and concatenates the re-
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sult binomially. The resulting binary value is then assigned to the center pixel.

Formal definition of the LBP operator takes the following form:

LBPP,R(xc, yc) =
P−1∑
p=0

s(ip − ic)2
p (2.1)

s(v) =

 1, v ≥ 0

0, v < 0
(2.2)

Here, ic is the gray value of the center pixel (xc, yc), ip is the gray value of its

neighbors, P is the number of neighbors and R is the radius of the neighborhood.

In practice, the LBP operator considers the signs of the differences of the gray

values of P equally spaced neighbors with respect to the central pixel in a local

neighborhood, which is then represented using a P -bit binary number. If any

neighbor does not fall exactly on a pixel position, then the value of that neighbor

is estimated using bilinear interpolation. The LBP histogram of the encoded

image block is then used as a texture descriptor for that block. The basic LBP

encoding process is illustrated in Figure 2.4.

Figure 2.4: Illustration of the LBP encoding process. Here, the LBP binary code

for pixel C is 01110000.

One extension to the original LBP operator, known as the uniform LBP

(ULBP), exploits certain LBP patterns, which appear more frequently in a sig-

nificant area of the image. These patterns are known as the uniform patterns

as they contain very few spatial transitions (bitwise 0/1 changes) in a circular

sequence of bits, which is represented by a uniformity measure U . The U value of

an LBP pattern is defined as the number of bitwise transitions from 0 to 1 or vice

versa in that pattern. One example of a uniform pattern is 00011111. It has a U

value of 1 as there is only one transition from 0 to 1. Ojala et al. [38] observed
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that, LBP patterns with U ≤ 2 are the fundamental properties of texture, which

provide a vast majority of all the 8-bit binary patterns present in any texture

image. Therefore, uniform patterns are able to describe significant local texture

information, such as bright spot, flat area or dark spot, and edges of varying

positive and negative curvature [38]. All the other patterns (U > 2) are grouped

under a miscellaneous label. The mapping of LBPP,R to LBPU2
P,R (LBP patterns

with U value ≤ 2) is implemented with a lookup table of 2P entries.

Figure 2.5: Uniform LBP Patterns for P = 8. The black and white dots represent

bit value of 1 and 0 in the LBP code, respectively (Courtesy of Guo et al. [3]).

2.2.2 Local Ternary Pattern (LTP)

LBP codes are resistant against monotonic illumination variations. However, the

LBP operator thresholds at exactly the value of the center pixel, and therefore,
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are sensitive to noise in uniform and smooth regions since a little variation can

cause its value to alter with respect to the center value. Given that many facial

regions are relatively uniform, it is potentially useful to improve the robustness of

the underlying descriptors in these areas [5]. To address this issue, local ternary

pattern (LTP) [5] was proposed, which extends LBP to a 3-valued code in order

to provide more consistency in both smooth and high-textured regions under the

presence of noise. In the LTP encoding process, gray values in a zone of width

±t about the center pixel are quantized to 0, and those above +t and below −t

are quantized to +1 and −1, respectively. Hence, the indicator s(v) in equation

(2.2) is replaced by a 3-valued function:

s′(ip, ic) =


1, ip ≥ ic + t

0, |ip − ic| < t

−1, ip ≤ ic − t

(2.3)

Here, t is a user-defined threshold. The combination of these 3 levels gives

the final LTP code, as illustrated in Figure 2.6.

Figure 2.6: Illustration of the LTP encoding process. Here, the LTP code is

1100(-1)(-1)0(-1) for t = 5.

2.2.3 Local Directional Pattern (LDP)

LDP [4,6] is a gray-scale texture pattern which characterizes the spatial structure

of a local image texture. A LDP operator computes the edge response values in

all eight directions at each pixel position and generates a code from the relative

strength magnitude. Since the edge responses are more illumination and noise

insensitive than intensity values [6, 41], the resultant LDP feature describes the
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local primitives including different types of curves, corners, and junctions, more

stably and retains more information. Given a central pixel in the image, the eight

directional edge response values mi, i = 0,1,...,7 are computed by Kirsch masks

Mi in eight different orientations centered on its position, as shown in Figure 2.7.

Figure 2.7: Kirsch edge response masks in all eight directions.

Presence of edge or corner will cause high edge-response values in their respec-

tive directions. Likewise, uniform or smooth regions will provide edge response

values of same or similar magnitudes in different directions. Therefore, The LDP

operator sets the most prominent k directions to 1 and others to 0 in order to

obtain a 8-bit binary pattern based on the relative strength of the edge response

values in different directions. Formally, the LDP code is derived by

LDPk =
7∑

i=0

bi(mi −mk)2
i (2.4)

bi(a) =

 1, a ≥ 0

0, a < 0
(2.5)

Here, mk is the magnitude of the k-th most significant directional response. Since

the edge responses are less sensitive to illumination and noise than intensity

values, the resultant LDP feature retains more information and characterizes

the texture primitives in a more robust manner. The LDP encoding process is

illustrated in Figure 2.8.

After computing the LDP code for each pixel (r, c), the input image I of size

M ×N is represented by a LDP histogram H using equation 2.6. The resultant
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Figure 2.8: Illustration of the LDP encoding process, (a) original image, (b)

magnitude of eight directional edge responses, (c) LDP binary code = 00100011

for center C.

histogram H is the LDP descriptor of that image.

H(t) =
M∑
r=1

N∑
c=1

f(LDPk(r, c), t) (2.6)

f(a, t) =

 1, a = t

0, otherwise
(2.7)

Here, t is the LDP code value. For a particular value of k, the LDP descriptor

is a C8
k = 8!/(8!× (k − 8)!) element feature vector.

Figure 2.9: An example of the LDP encoding, (a) Original image, (b) LDP en-

coded image (Courtesy of Jabid et al. [4]).
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2.3 Machine Learning Techniques

For a facial recognition system, different machine learning approaches such as

linear programming, template matching, linear discriminant analysis, or support

vector machine (SVM) can be used. In this thesis, we have used template match-

ing and support vector machine for recognizing facial images.

2.3.1 Template Matching (TM)

Template matching is used to verify the effectiveness of the proposed feature

representation for face recognition. In template matching, the feature vector

generated from the facial image of one person is compared with all the candidates’

template feature vectors. The dissimilarity between the testing sample and the

template feature vector is a test of goodness-of-fit that can be measured using a

non-parametric statistic test. We used the chi-square statistic in our experiments.

The chi-square measure is defined as:

D(S,M) =
J∑

j=1

(S(j)−M(j))× (S(j)−M(j))

S(j) +M(j)
(2.8)

Here, S is the histogram of the testing sample, M is the model histogram of

a category, and J is the number of bins in the histogram. After calculating the

dissimilarity value for each of the candidates, the testing sample is assigned to

the candidate with the smallest dissimilarity value.

Based on the face physiology knowledge, it can be said that, facial features ex-

tracted from some specific face regions (such as eye and mouth areas) contribute

more than features extracted from other regions [6]. In this context, if the face

regions can be weighted based on the importance of the contained information of

the corresponding regions, it could potentially increase the discrimination abil-

ity of the underlying classifier. Therefore, weighted chi-square statistic is used

to give more or less importance to particular face regions while measuring the

dissimilarity value. The weighted chi-square measure is defined as:

Dw(S,M) =
∑
i,j

wi
(Si(j)−Mi(j))× (Si(j)−Mi(j))

Si(j) +Mi(j)
(2.9)



2.3 MACHINE LEARNING TECHNIQUES 17

Here wi is the weight assigned with the region Ri. Adopted weights for dif-

ferent regions of a partitioned (7× 7) sample face image are illustrated in Figure

(a) (b)

Figure 2.10: (a) Sample face image divided into 7 × 7 sub-regions, (b) Adopted

weights for different regions are shown in color. Here, black indicates weight 0,

dark gray indicates 1, light gray indicates 2, and white indicates 4.

2.3.2 Support Vector Machine (SVM)

Support vector machine (SVM) is a state-of-the-art machine learning approach

based on the modern statistical learning theory. It has been successfully applied in

different classification problems. SVM performs the classification by constructing

a hyper plane in such a way that the separating margin between positive and

negative examples is optimal. This separating hyper plane then works as the

decision surface.

Given a set of labeled training samples T = {(xi, li), i = 1, 2, ..., L}, where

xi ∈ RP and li ∈ {−1, 1}, a new test data x is classified by

f(x) = sign(
L∑
i=1

αiliK(xi, x) + b) (2.10)

Here, αi are Lagrange multipliers of dual optimization problem, b is a thresh-

old parameter, and K is a kernel function. The hyper plane maximizes the

separating margin with respect to the training samples with αi > 0, which are

called the support vectors.

SVM makes binary decisions. To achieve multi-class classification, the com-

mon approach is to adopt the one-against-rest or several two-class problems. In
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our study, we used the one-against-rest approach. Radial basis function (RBF)

kernel was used for the classification problem. The radial basis function K can

be defined as

K(xi, x) = exp(−γ||xi − x||2), γ > 0 (2.11)

||xi − x||2 = (xi − x)t(xi − x) (2.12)

Here, γ is a kernel parameter. A grid-search was carried out for selecting

appropriate kernel parameter values, as suggested by [42].



Chapter 3

Proposed Feature Descriptor Based on

Directional Ternary Pattern (DTP)

In this chapter, we explain the proposed directional ternary pattern (DTP), a new

local texture pattern for effective facial feature representation, which includes

the description of the basic DTP operator and how to construct facial feature

descriptor based on DTP. After that, we present a modification of the DTP

encoding scheme that can effectively reduce the DTP feature vector length.

3.1 Directional Ternary Pattern (DTP)

Both LBP and LTP methods use merely the gray level intensity values to en-

code the local texture of an image, which makes these methods unstable under

the presence of large illumination variations. LBP is also susceptible to random

noise. Therefore, some recent local pattern operators exploit more stable gradi-

ent information or edge response values instead of gray levels. One such method

is the Sobel-LBP [33] that combines the LBP with the Sobel operator in order

to enhance the local features and thus facilitates the extraction of more detailed

information. Another approach is the local directinal pattern (LDP) [4, 6] that

employs eight directional edge response values to encode the local texture. How-

ever, since both Sobel-LBP and LDP methods use two discrimination levels (0

and 1) to generate binary texture patterns, these methods tend to produce in-

consistent codes in uniform and smooth regions, where the intensity variations

among the neighbors are negligible. Considering these limitations, we present the

19
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directional ternary pattern (DTP) - a new local texture primitive for representing

facial feature. Instead of quantizing the gray level intensities like LBP or LTP,

the DTP operator encodes the more stable edge response values of a local neigh-

borhood, which retains more information of the local image content. In addition,

while the binary LDP and Sobel-LBP coding fails to differentiate between smooth

and high-textured facial regions, the proposed method employs a ternary coding

scheme that discriminates between smooth and high-textured face regions with a

threshold, and thus ensures the generation of consistent texture micro-patterns.

3.1.1 The Basic DTP Encoding Scheme

Edge responses are more stable than intensity values [6]. Therefore, an encoding

scheme that exploits the edge responses in different directions can retain more

information of the local region. The proposed directional ternary pattern (DTP)

operator encodes the local texture by assigning a 3-valued code to each pixel

based on the edge response values in different directions about the center pixel.

Here, eight directional edge response values are computed by Robinson masks

centered on a pixel oriented in eight different directions as shown in Figure 3.1.

Figure 3.1: Robinson eight directional edge response masks. Different orientations

are obtained by rotating these masks by 90◦. Here, N, S, E, and W correspond

to North, South, East, and West, respectively.

By applying these eight masks, we obtain eight edge response values, each of

which represents the edge significance in its corresponding direction. Presence of

edge or corner will produce high edge-response values in their respective direc-
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tions. On the other hand, uniform or smooth regions will produce edge response

values of similar magnitudes in different directions. Therefore, unlike the LDP

operator [6] that always sets the most prominent k directions to 1 and others to

0 for forming a binary code regardless of the local region being uniform or not,

the DTP operator employs a ternary coding scheme that differentiates between

the smooth and high textured regions using a threshold. After computing the

average µ of all eight directional edge response values, those responses within a

±t margin about the mean µ are quantized to 0, those above µ + t and those

below µ− t are quantized to +1 and −1, respectively, as shown in equation 3.1.

SDTP (ri) =


1, ri > µ+ t

0, µ− t ≤ ri ≤ µ+ t

−1, ri < µ− t

(3.1)

Here, ri is the edge response value in the i-th direction, µ is the average edge

response value and t is a user-defined threshold. Figure 3.2 illustrates the basic

DTP encoding method.

(a) (b) (c)

Figure 3.2: Illustration of the DTP operator, (a) Original image, (b) Eight direc-

tional edge responses, (c) DTP code = 0(-1)(-1)00110 for t=40.

One of the main advantages of the DTP operator is that, it exploits edge

response values instead of gray levels for forming the texture patterns, which is

more stable under the presence of noise and illumination variations. In addition, it

ensures consistent pattern generation through the more robust ternary encoding

scheme that exploits a threshold in order to differentiate between smooth and

high-textured face regions. In order to reduce the length of the feature vector,
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each DTP code is further split into its corresponding positive and negative parts,

and treated as two separate binary patterns, namely PDTP and NDTP . Thus, the

number of features reduces from 38 (= 6561) to 2× 28 (= 512). Here, PDTP and

NDTP take the form:

PDTP =
7∑

i=0

SP (SDTP (ri))2
i, where SP (v) =

 1, v = 1

0, otherwise
(3.2)

NDTP =
7∑

i=0

SN(SDTP (ri))2
i, where SN(v) =

 1, v = −1

0, otherwise
(3.3)

Figure 3.3 illustrates the generation of PDTP and NDTP codes from the original

DTP code.

Figure 3.3: Generation of PDTP and NDTP codes from the original DTP code.

Here, the original DTP code is 0(-1)(-1)00110 and the corresponding PDTP and

NDTP codes are 00000110 and 01100000, respectively.

3.1.2 Facial Feature Representation with DTP

After applying the DTP operator on all the pixels of an image we get two encoded

images, one for PDTP and the other for NDTP . Histograms generated from these

two encoded images are spatially concatenated to form a combined histogram, the
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DTP histogram, which functions as a feature representation for the face image.

The DTP histogram generation process is shown in Figure 3.4.

Figure 3.4: Illustration of DTP histogram generation process.

Histograms generated from the whole encoded image contain no location in-

formation of the micro-patterns, but merely their occurrences are expressed.

However, presence of location information and spatial relationships provides a

better facial feature representation and describes the image content more accu-

rately [6, 35, 43]. Therefore, the DTP histogram is modified to an extended his-

togram in order to incorporate some degree of location information. First, each

image is partitioned into a number of regions and individual DTP histograms are

generated from each of those regions. Finally, the histograms of all the regions

are concatenated to obtain an extended DTP histogram. For the facial expression

recognition process, this histogram collection is used as the facial feature vector.

The process is illustrated in Figure 3.5.
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Figure 3.5: Each face image is partitioned into a number of regions and individual

DTP histograms generated from each of the regions are concatenated to form the

feature vector.

3.2 Compressing the DTP features

This section presents a modified encoding scheme for the DTP operator that

effectively reduces the number of possible DTP features from 2 × 28 to only 34,

without any loss of information.

3.2.1 Compressed DTP encoding

The strength of the DTP features lies in the quantization of stable edge response

values and the discrimination between smooth and high-textured facial regions.

To compute the eight directional responses, the DTP operator uses the Robinson

compass masks. The reason is that, Robinson compass masks are easier to imple-

ment than other compass masks (such as Kirsch masks) as they rely only on the

co-efficients of 0,1, and 2 and are symmetrical about their directional axis [44].

Therefore, only the results on four of the masks are required to be computed.

The results from the other four masks can be obtained by negating the results
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from the first four.

Figure 3.6: Robinson edge response masks. It can be observed that, the masks

r0, r1, r2, and r3 are symmetrical to r4, r5, r6, and r7, respectively.

Now, let us assume that, N and S are the edge response values from two

opposite directions (such as north and south). Due to the symmetric property of

the Robinson masks, the magnitude of the edge responses N and S will always

be the same, only the sign will be the opposite. As a result, the average edge

response value around a point will alwasy be 0. Therefore, while quantizing the

edge response values with a threshold, the edge responses from any two opposite

directions N and S will always follow any of the three properties listed below for

any t > 0:

• If N > (µ+ t), then S < (µ− t).

• If N < (µ− t), then S > (µ+ t).

• If (µ− t) ≤ N ≤ (µ+ t), then (µ− t) ≤ S ≤ (µ+ t).

From Figure 3.7, it can be observed that, based on the position of the one

edge response, we can tell where the opposite edge response will lie for all t > 0.

Therefore, instead of quantizing both of the edge response values in opposite

directions, we can quantize one, without any loss of information, which effectively
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(a)

(b) (c)

Figure 3.7: An illustration of the possible 3 conditions for t = 40 and different

values of N and S.

decrease the number of possible DTP patterns from 38 to 34. In this new encoding

scheme, each time we select two opposite edge response values and use one single

level to represent both. Thus, we need only a 4-digit base-3 number to represent

a local neighborhood. The encoding scheme can be represented formally by the

following equation:

cDTP = SDTP (RN)×33+SDTP (RE)×32+SDTP (RNE)×31+SDTP (RNW )×30

(3.4)
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SDTP (v) =


0, v > µ+ t

1, µ− t ≤ v ≤ µ+ t

2, v < µ− t

(3.5)

Here, RN , RE, RNE and RNW are the edge response values from the north,

east, north-east, and north-west directions, respectively. The difference between

the basic DTP encoding and this compressed DTP encoding scheme is that, here

we are using one base-3 digit for labeling two edge responses, while in the basic

DTP encoding, each edge response is labeled with one base-3 digit. Therefore,

the total number of possible DTP patterns in the compressed encoding scheme

is 34 (=81) instead of 38 (=6561). The compressed DTP encoding is illustrated

in Figure 3.8. In this figure, for the given 3× 3 neighborhood, the corresponding

compressed DTP code is 1012.

3.2.2 Facial Feature Representation with Compressed

DTP

Applying the compressed DTP operator on all the pixels of an image will result

in an encoded DTP image, where the value of each pixel will range between 0

and 80. The distribution information of these compressed DTP micro-patterns

are then represented as a spatial histogram, namely the CDTP histogram. In

order to incorporate some degree of location information of the micro-patterns,

the CDTP histogram is modified to an extended histogram just like the DTP

histogram. This is done by partitioning the compressed DTP encoded image into

a number of regions and generating individual CDTP histograms from each of

the regions. Finally, the histograms of all the regions are spatially concatenated

to obtain the extended CDTP histogram, which functions as the facial feature

vector. The process is illustrated in Figure 3.9.
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Figure 3.8: Illustration of the compressed DTP encoding (t = 40) using four

directional edge response, (a) Quantization of edge response from North (N)

(Compressed DTP code value = 1), (b) Quantization of edge responses from

East (E) (Compressed DTP code value = 0), (c) Quantization of edge response

from North-East (NE) (Compressed DTP code value = 1), (d) Quantization of

edge response from North-West (NW ) (Compressed DTP code value = 1). Here,

the compressed DTP code is obtained by concatenating the quantization results

of a, b, c, and d, which is 1012.

Figure 3.9: Generation of compressed DTP feature vector.



Chapter 4

Experiments and Results

In this chapter, we evaluate the performance of the proposed method for face

recognition, facial expression recognition, and gender classification. We also

present a comaprison of our method in terms of classification rate with some

state-of-the-art local texture-based facial feature descriptors, namely local binary

pattern (LBP) [11,35], local ternary pattern (LTP) [5], and local directional pat-

tern (LDP) [4, 6]. We also assess the performance of the DTP descriptor for

low-resolution and noisy images, which is presented at the end of this chapter.

4.1 Experimental Setup and Dataset Descrip-

tion

4.1.1 Face Recognition

The effectiveness of the DTP feature representation method for face recognition

is evaluated in accordance to the Colorado State University (CSU) Face Identi-

fication Evaluation System that uses full-frontal face images from the FERET

database [46]. The FERET database consists of a total of 14,051 gray-scale im-

ages representing 1,199 individuals. The images contain variations in lighting,

facial expressions, pose angle, etc. In this work, only frontal faces from four

different sets are considered. These sets are:

• fa set, used as a gallery set for training only, contains single frontal images

of 1,196 people.

29
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• fb set (1,195 images), the subjects were asked for an alternative facial ex-

pression than in the fa photograph.

• dupI set (722 images), the photos were taken later in time.

• dupII set (234 images), this is a subset of the dupI set containing those

images that were taken at least a year after the corresponding gallery image.

The face images were cropped from the original ones using the ground truth of

the two eye positions and then normalized to 100× 100 pixels. Figure 4.1 shows

sample face images from the FERET database.

Figure 4.1: Sample face images of a person from different sets of the FERET

database, (a) image from fa set, (b) image from fb set, (c) image from dupI set,

and (d) image from dupII set.

4.1.2 Facial Expression Recognition

The recognition ability of the proposed method is evaluated based on a set of pro-

totypic emotional expressions, which includes anger, disgust, fear, joy, sadness,

and surprise. This 6-class expression can be further extended to a 7-class expres-

sion set by adding neutral face expression images. The performance evaluation

is performed with two well-known image databases, namely the Cohn-Kanade

(CK) facial expression database [45] and the Japanese female facial expression

(JAFFE) database [25].

The CK database comprises 100 university students who were around 18 to

30 years old at the time of image acquisition. Among them, 65% were female,



4.1 EXPERIMENTAL SETUP AND DATASET DESCRIPTION 31

15% were African-American, and 3% were Asian or Latino. A series of facial

expression displays were performed by the subjects starting from neutral or near-

neutral to one of the six prototypic emotional expressions stated before. The

image sequences were digitized into 640 × 480 or 640 × 690 pixel resolution. In

our setup, we first selected 1224 face image sequences from a total of 96 subjects,

where each of the images was labeled as one of the six prototypic expressions.

This 6-class expression dataset was then extended to a 7-class expression dataset

by including additional 408 images of neutral expression face. Figure 4.2 shows

the sample prototypic expression images from the CK database.

Figure 4.2: Sample expression images from the Cohn-Kanade database.

The JAFFE database comprises facial expression images of 10 Japanese female

subjects. All the images were digitized into a resolution of 256× 256 pixels. The

images were taken from a frontal pose, and the subjects’ hair was tied back in

order to facilitate the exposure of all the expressive zones of the face. In the

image scene, an even illumination was created using tungsten lights. Instead of

revealing the actual names, the subjects are referred with their initials, which are

KA, KL, KM, KR, MK, NA, NM, TM, UY, and YM. In our setup, the 6-class

expression dataset comprises a total of 283 images, while the 7-class expression



4.1 EXPERIMENTAL SETUP AND DATASET DESCRIPTION 32

set includes additional 50 neutral expression images. Figure 4.3 shows the sample

prototypic expression images from the JAFFE database.

Figure 4.3: Sample expression images from the JAFFE database.

The selected images were cropped from the original ones based on the positions

of the two eyes and normalized to 150 × 110 pixels. The ground-truth of eye

position data was provided for cropping. No alignment of facial features (such

as alignment of mouth) was performed in our setup. Figure 4.4 shows a sample

cropped facial image from CK database.

Figure 4.4: Cropping of a sample face image from the original one.

4.1.3 Gender Classification

The effectiveness of the proposed method for gender classification is also evaluated

with the face images from the FERET face database [46]. For our experiment,
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(a)

(b)

Figure 4.5: Sample male and female face images from the FERET database, (a)

male, (b) female.

we selected a total of 1800 images, among which 900 were male and the rest 900

were female face images. The selected images were cropped from the original

512× 768 pixel images using the ground truth of the two eye positions and then

normalized to 100 × 100 pixels. Figure 4.5 shows some sample male and female

images from the FERET database.

4.2 Experimental Results

4.2.1 Performance Evaluation for Face Recognition

4.2.1.1 Optimal Parameter Selection

The classification rate of the proposed method can be influenced by adjusting two

parameters: the threshold value t and the number of regions in which the facial

image is to be partitioned. We first selected a fixed number of regions (7 × 7)

and search for the optimal value of t. In our experiment, the DTP threshold

value was set to 5, 10, 20, and 30 and the corresponding recognition rate was

checked in order to find the optimal value. Next, we searched for the optimal

number of regions with the determined t value. We considered three cases, where
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Table 4.1: Recognition rate of DTP for different threshold values using non-

weighted template matching.

Threshold (t) value
Recognition Rate

fb dup I dup II

5 0.92 0.67 0.65

10 0.94 0.68 0.66

20 0.93 0.66 0.62

30 0.92 0.62 0.59

Table 4.2: Recognition rate of DTP for different number of regions using non-

weighted template matching.

Number of regions
Recognition Rate

fb dup I dup II

3× 3 0.86 0.59 0.57

5× 5 0.91 0.64 0.62

7× 7 0.94 0.68 0.66

images were divided into 3× 3, 5× 5, and 7× 7 regions. Non-weighted template

matching was used for the classification task. Table 4.1 shows the recognition rate

of the DTP feature representation method for different threshold values. Here,

the recognition rate can be defined formally by the following formula:

Recognition rate =
Number of correctly classified samples

Total number of samples
(4.1)

It can be observed that, the best recognition rate is achieved for t = 10.

Table 4.2 shows the recognition rate of DTP for different number of regions when

t = 10. Here, the highest recognition rate is achieved for images partitioned into

7× 7 sub-regions, which indicates that, increasing the number of sub-regions can

enhance the performance. However, it also increases the length of the feature

vector and thus imposes a higher level of computational complexity.
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Table 4.3: Recognition rate of different feature representation methods using

weighted template matching.

Operator
Recognition Rate

fb dup I dup II

LBP 0.95 0.65 0.65

LTP 0.96 0.65 0.66

LDP 0.95 0.63 0.66

DTP 0.97 0.71 0.69

Compressed DTP 0.96 0.72 0.66

4.2.1.2 Performance on FERET Database

The performance of the DTP feature representation method is compared with 3

widely-used local texture operators, namely local binary pattern (LBP) [35], local

ternary pattern (LTP) [5], and local directional pattern (LDP) [6]. Experiments

were carried out on images partitioned into 7 × 7 sub-regions using weighted

template matching. The adopted weights were same as shown in Figure 3.1. Table

4.3 shows the recognition rate of different texture operators. It can be observed

that, both DTP and compressed DTP achieves superior performances than the

other mehtods. However, the recognition rates of the DTP and the compressed

DTP methods are not identical as they employ different encoding schemes, and

therefore, the generated patterns are different which results in slight differences

in the classification rates.

4.2.2 Performance Evaluation for Facial Expression

Recognition

In order to evaluate the proposed method in expression recognition, we carried out

a ten-fold cross-validation to measure the classification rate. In a ten-fold cross-

validation, the whole dataset is randomly partitioned into ten subsets, where

each subset comprises an equal number of instances. One subset is used as the
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testing set and the classifier is trained on the remaining nine subsets. The average

classification rate is calculated after repeating the above process for ten times.

A support vector machine with a radial-basis function (RBF) kernel was used as

the classifier.

4.2.2.1 Optimal Parameter Selction

For facial expression recognition, we compute the classification rates for images

divided into 3 × 3, 5 × 5, and 7 × 6 regions. The threshold t was set to 40

empirically using the same optimal parameter selection procedure described in

the section 4.2.1.

4.2.2.2 Performance on CK Database

For expression recognition also, we have compared the performance of the pro-

posed method with the three well-known local pattern operators, namely local

binary pattern (LBP) [11], local ternary pattern (LTP) [5], and local directional

pattern (LDP) [6]. Table 4.4 and Table 4.5 show the recognition rate of these

local pattern-based feature descriptors against the Cohn-Kanade 6-class and the

7-class expression dataset, respectively. In both cases, DTP and compressed DTP

exhibits superior performances in recognizing expression images. For the 6-class

dataset, DTP achieves an excellent recognition accuracy of 97.5%, while the ac-

curacy of compressed DTP is 97.3%. On the other hand, for the 7-class dataset,

the recognition accuracy of DTP and compressed DTP are 95.8% and 95.2%,

respectively. Here, inclusion of neutral expression images results in a decrease

in the accuracy. For both the 6-class and the 7-class recognition problem, the

highest classification rate is obtained for images partitioned into 7 × 6 regions.

The confusion matrix of recognition using the DTP feature descriptor for the

6-class and the 7-class dataset are shown in Table 4.6 and Table 4.7, respectively,

which provides a better picture of the recognition accuracy of individual expres-

sion types. It can be observed that, for the 6-class recognition, all the expressions

can be recognized with high accuracy. On the other hand, for the 7-class dataset,
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while anger, disgust, fear, and surprise can be recognized with high accuracy,

the recognition rates of joy, sadness, and neutral expressions are lower than the

average.

Table 4.4: Recognition rate (%) for the CK 6-class expression dataset.

Feature descriptor
Number of regions

3× 3 5× 5 7× 6

LBP 79.3 89.7 90.1

LTP 91.3 92.3 94.6

LDP 80.2 91.9 93.7

DTP 94.5 97.1 97.5

Compressed DTP 94.2 96.8 97.3

Table 4.5: Recognition rate (%) for the CK 7-class expression dataset.

Feature descriptor
Number of regions

3× 3 5× 5 7× 6

LBP 73.8 80.9 83.3

LTP 85.3 88.5 88.9

LDP 75.7 86.3 88.4

DTP 90.3 93.9 95.8

Compressed DTP 89.9 93.5 95.2

4.2.2.3 Performance on JAFFE Database

For the JAFFE database, the DTP feature descriptor achieves classification rates

of 92.5% and 88.7% for the 6-class and the 7-class expression datasets, respec-

tively. Table 4.8 and Table 4.9 show the recognition rates of different feature

descriptors with the JAFFE 6-class and the 7-class expression datasets, respec-

tively. It can be observed that, DTP achieves the highest classification rates in all

cases. The recognition rate on the JAFFE database is relatively lower than the
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Table 4.6: Confusion matrix for the CK 6-class recognition using DTP feature

representation (for images partitioned into 7 × 6 regions). Rows represent true

class and columns represent classification rate (%).

1 2 3 4 5 6

1 Anger 97.7 0 0 0 0 2.3

2 Disgust 0 97.9 0 1.6 0 0.5

3 Fear 0 0.4 96.0 0 0 3.6

4 Joy 0.6 0.5 0 98.9 0 0

5 Sad 0 0 0 0 100 0

6 Surprise 0 0 0 3.4 0 96.6

CK database. The main reason is the incorrect labeling of some of the facial ex-

pression images in the JAFFE database. Figure 4.6 shows examples of incorrect

labeling of expression images in the JAFFE database.

Figure 4.6: Some mislabeled sample expression images in the JAFFE Database.

4.2.3 Performance Evaluation for Gender Classification

To evaluate the performance of the proposed method for gender classification,

we have used the dataset described in section 4.1.3. Experiments were carried

out on images partitioned into 7 × 7 sub-regions. For gender classification, the

optimal value of t was found to be 10. A support vector machine was used for the

classification task. Table 4.10 shows the classification rate of the different feature

descriptors. From the classification rate, it is evident that, the performance
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Table 4.7: Confusion matrix for the CK 7-class recognition using DTP feature

representation (for images partitioned into 7 × 6 regions). Rows represent true

class and columns represent classification rate (%).

1 2 3 4 5 6 7

1 Anger 98.5 0 0 0 0 1.5 0

2 Disgust 0 98.0 0 0 0 2.0 0

3 Fear 0 0.4 98.5 0 0 1.1 0

4 Joy 0.5 0.5 0 93.2 0 5.8 0

5 Sad 0 0 0 0 93.4 0 6.6

6 Surprise 0 0 0 1.9 0 98.1 0

7 Neutral 5.9 0 0 0 3.0 0 91.1

Table 4.8: Recognition rate (%) against the JAFFE 6-class expression dataset.

Feature descriptor
Number of regions

3× 3 5× 5 7× 6

LBP 84.1 87.6 90.5

LTP 84.3 87.9 90.9

LDP 83.2 88.9 90.7

DTP 87.5 90.1 92.5

Compressed DTP 87.1 89.8 92.2

of the proposed method is superior with comparison to other existing feature

descriptors.

4.2.4 Performance Evaluation for Low-Resolution Images

Automated facial analysis is useful in smart meeting, surveillance and many other

applications, where often only low-resolution video data is available. Since geo-

metric methods like detection of facial action units are difficult to accommodate in

these scenarios, appearance-based methods seem to be a better solution. There-

fore, the performance of the proposed method is also evaluated on low-resolution
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Table 4.9: Recognition rate (%) against the JAFFE 7-class expression dataset.

Feature descriptor
Number of regions

3× 3 5× 5 7× 6

LBP 81.5 82.3 85.3

LTP 84.6 85.0 86.7

LDP 83.3 85.3 85.9

DTP 85.3 86.9 88.7

Compressed DTP 85.9 86.5 88.2

Table 4.10: Male and female classification rate (%) of different feature descriptors

from facial images.

Feature descriptor
Classification rate(%)

Male Female Overall

LBP 92.78 92.78 92.78

LTP 92.89 92.89 92.89

LDP 89.81 90.08 89.94

DTP 93.21 93.02 93.11

Compressed DTP 92.9 93.10 93.05

images. Experiments were conducted on images from the CK 6-class expression

dataset. We considered 3 different image resolutions: 75 × 55, 48 × 36, and

37 × 27. The original images were down-sampled to obtain these low-resolution

images. All the images were partitioned into 7 × 6 regions while forming the

feature vector. Here also, the performance of the DTP feature descriptor is com-

pared with LBP, LTP, and LDP. Table 4.11 shows the recognition rates of these

methods for low resolution expression images. From the recognition accuracy, it

is evident that, facial feature representation based on DTP is more robust than

other existing local texture patterns over a useful range of low resolutions.



4.2 EXPERIMENTAL RESULTS 41

Table 4.11: Recognition rate (%) using low-resolution images from the CK 6-class

dataset.

Feature descriptor
Image resolution

75× 55 48× 36 37× 27

LBP 88.9 83.5 79.7

LTP 89.7 85.9 83.3

LDP 90.7 89.1 84.4

DTP 93.9 92.2 89.1

Compressed DTP 93.5 91.9 88.7

Figure 4.7: Sample low resolution images used in the experiments.

4.2.5 Performance Under the Presence of Noise

To investigate the robustness of the porposed DTP descriptor under the presence

of noise, further experiments were conducted on the images from the CK 6-class

expression dataset. In the experimental setup, the images in the testing set were

contaminated with Gaussian white noise of different variances, while the training

samples were kept unchanged. All the images were partitioned into 7× 6 regions

during feature vector generation. Table 4.12 shows the corresponding recognition

rates of LBP, LTP, LDP, and DTP aganist images corrupted with Gaussian white

noise of mean 0 and different variances (0.01, 0.02, 0.03, 0.04, and 0.05). It can

be observed that, in all cases DTP achieves significantly higher recognition rates

than the other micro-pattern operators. The superiority of DTP encoding is due

to the utilization of stable edge responses and its discriminating capability of
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Table 4.12: Recognition rate (%) on images from the CK 6-class dataset corrupted

with Gaussian white noise with zero mean and different variances.

Feature descriptor
Noise variance

0.01 0.02 0.03 0.04 0.05

LBP 73.7 66.7 64.5 62.3 61.9

LTP 77.1 70.4 67.3 65.0 62.3

LDP 70.9 61.3 55.1 52.4 48.2

DTP 87.7 79.7 73.4 69.6 66.5

Compressed DTP 87.5 79.3 73.1 68.8 65.3

smooth and high textured areas from different face regions.

Figure 4.8: Sample expression images contaminated with Gaussian white noise

with zero mean and different variances.

Our experimental results validate that, the proposed DTP feature representa-

tion performs better than the existing local pattern-based feature descriptors for

different face-related problems. In addition, utilization of the symmetric property

of the Robinson compass masks enables the computation of DTP features faster

than other edge response based texture patterns such as LDP.

4.2.6 Computation Time Analysis

In order to determine the feasibility of the proposed method for real-time recogni-

tion systems, we have also examined the computation time of the DTP features.

Table 4.13 shows the average computation time to calculate local pattern fea-

tures from an image with a resolution of 100× 100. It can be observed that, the
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Table 4.13: Average computation time for different local pattern operators

Operator Computation Time

(in seconds)

LBP 0.39

LTP 0.53

LDP 0.77

DTP 0.66

Compressed DTP 0.41

average computation time for DTP and compressed DTP features from a single

image is 0.66s and 0.41s, respectively, which is feasible for real-time scenarios. If

we compare the computation time with the other existing texture operators, we

can see that, both DTP and compressed DTP have lower computation time than

the other existing edge response based texture operator, namely LDP. However,

the computation time for DTP and compressed DTP is slightly higher than the

LBP operator. This difference is due to time required for the computation of

edge response values.



Chapter 5

Conclusions

5.1 Summary of Contributions

This thesis addresses the issue of designing an effective and robust facial fea-

ture representation that eliminates the limitations of the existing approaches and

can be used in different face-related applications, such as face recognition, facial

expression recognition, and gender classification.

We have introduced a new local texture pattern, the directional ternary pat-

tern (DTP), and a robust facial feature descriptor constructed with the DTP

codes for representing facial image. The DTP operator integrates the local edge

responses for texture encoding, and also differentiates smooth and non-smooth

areas with three different levels. We present a comprehensive study on the effec-

tiveness of the proposed method, which has been evaluated for three face-related

porblems: i) face recognition, ii) facial expression recognition and iii) gender

classification. Extensive experiments using different benchmark databases show

the superiority of the DTP descriptor against three well-known appearance-based

feature representation methods, namely LBP, LTP, and LDP.

We have investigated DTP features for low-resolution facial recognition, a

critical problem but seldom addressed in the existing work. Compared to the

previous work, DTP features provide better performance, which is very promising

for real-world applications. In addition, random noise in image is very common

for real-world applications. Therefore, the feature descriptor should also be able

to deal with random noise and produce stable features. In this work, the perfor-

mance of the proposed method has also been evaluated against images corrupted

44
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with Gaussian white noise. Experimental results reveal that, the proposed DTP

feature descriptor can perform more robustly and accurately under the presence

of noise. The effectiveness of the proposed method is due to its texture discrim-

inating capability, and robustness under illumination variations and presence of

noise as compared to existing representations, therefore, can be used in real-time

applications for consumer products.

5.2 Limitations and Future Works

• In our work, we have only considered single static images for facial expres-

sion recognition. Psychological experiments by Bassili [47] have suggested

that facial expressions can be recognized more accurately from sequence

images than from a single image. In future, we plan to incorporate tempo-

ral information with the DTP method for facial expression recognition from

video sequence images. This can be done by introducing Hidden Markov

Model for classification.

• Our proposed method uses a global threshold t to generate DTP codes,

which may not be ideal for every local neighborhood in the image. There-

fore, we plan to incorporate an automated local threshold selection method

with the DTP encoding. One possible way is to consider the variance of

the edge response values in the local neighborhood in order to find the local

threshold.
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