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Abstract 

This thesis gives a brief idea on heart signal processing by using the method of 

phonocardiography. A digital stetescope was used to pick up the heart sounds from 

different patients and the corresponding analysis was performed. The thesis mainly 

attempts the use of standard deviation profile in heart rate calculation instead of the 

existing Shannon Energy profile at noisy environments. The thesis also emphasizes on 

the heart signal analysis using cheap and simple hardware and highly sophisticated use of 

software.  
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1. Introduction 

In developing nations of the world there is often a shortage of medical specialists and 

limited access to diagnostic equipment which lead to a poor basic healthcare system. For 

example in Bangladesh, the number of physicians for every 1000 people is 0.3 while in 

the United States it is 2.4 (World Bank 2010). This problem is particularly eminent in 

rural areas and as a result people residing in such communities are forced to travel long 

distances from their home to seek medical attention in more urban areas. This travel can 

be financially burdensome, uncomfortable to the patient and includes risk of road 

accidents. In many cases, it might deplete a family’s savings and leave them destitute. 

Lack of medical attention for patients in developing nations has fatal consequences. The 

most alarming statistics are in the case of cardiovascular diseases (CVDs) .CVDs are the 

number one cause of death globally.  According to the World Health Organization 

(WHO), an estimated 17.3 million people died from CVDs in 2008, representing 30% of 

all global deaths. Of these deaths, an estimated 7.3 million were due to coronary heart 

disease and 6.2 million were due to stroke. Low- and middle-income countries are 

disproportionally affected: over 80% of CVD deaths take place in low- and middle-

income countries. The number of people who die from CVDs, mainly from heart disease 

and stroke, will increase to reach 23.3. million by 2030  and CVDs are projected to 

remain the single leading cause of death. This emphases the need for improved healthcare 

access for these people.  
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An abnormal heart rate can often be an  indicator of  a CVD. The aim of this thesis is to 

develop an algorithm that can be used to calculate the heart rate of a patient. The device 

that  used for detection of the heart sound  is a modified stethoscope.  The earpiece of the 

stethoscope is replaced with a microphone input jack. The sound recorded by the 

stethoscope can then be fed into the signal processing software in a computer or a cell 

phone. For people in rural areas, the use of a cell phone and stethoscope to measure the 

heart rate would be very convenient. Before moving on to the signal processing part an 

overview of the heart and heart sounds is in order. 

 

1.1 Physiology of the heart 

The heart is made up of four chambers: the right and left ventricles, and the right and left 

atria. 

The right and left sides of the heart are separated by the septum. Circulatory blood flow 

proceeds through the following sequence: body circulation, vena cava, right atrium, right 

ventricle, pulmonary artery, lungs, pulmonary vein, left atrium, left ventricle, aorta, body 

circulation (see Figure below) In order for this flow to occur, the heart muscle contracts 

and relaxes in a repeated cycle, with the blood being forced to follow the correct pattern 

with the help of heart valves.   

 

Initially, the atria collect the blood from the circulation or lungs, depending on the side of 

the heart, in a passive way. This is the filling stage of the cardiac cycle, and is called the 

diastole. 
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During this period, the valves separating the atria and the ventricles are open; these are 

the right (mitral) and left (tricuspid) atrioventricular (AV) valves. The valves between the 

right ventricle and pulmonary artery (pulmonary valve) and the left ventricle and aorta 

(aortic valve) remain closed during the diastole.  

At the very end of the diastole, the atria contract, forcing more blood into the ventricles. 

The depolarization of the cardiac cells which caused the contraction of the atria then 

reaches to the ventricles. When the ventricles contract, the AV valves close due to the 

pressure difference and the blood is ejected through the aorta or pulmonary artery. Upon 

completion of ventricular contraction, the ventricles begin to relax and the dropping 

pressure quickly goes below that of the aorta and pulmonary artery, at which time the 

aortic and pulmonary valves close. 

 

Heart valves operate passively, acting as check valves to prevent back flow and take no 

active role in controlling the direction of flow. This design allows the timing of the 

cardiac cycle to be controlled by a single source which under normal conditions is the 

depolarization of the sinoatrial (SA) node. The SA node has its own timing sequence, and 

although the brain may modify its action, it is not under the direct control of the brain. 

This makes the heart a very independent organ. 

 

The final discussion point regarding the physiology of the heart relates to the nature of 

pathological dysfunction. The heart valves may become calcified with deposits related to 

blood contents. Due to the passive nature of their operation, the resulting stiffening is 

clearly detrimental to the function of the valves and is therefore the factor of most 
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concern when diagnosing the heart. The cardiac valves may become weakened by other 

factors, causing them to be unable to function appropriately in the high-pressure 

environment of the heart.  

 

The first heart sound, S1 is associated with the closing of the mitral and tricuspid valves. 

The second heart sound, S2 is associated with the closing of the aortic and pulmonary 

valves. This is further subdivided into the aortic valve (A2) and pulmonary valve (P2) 

closures. The sounds are actually slightly separated since the pulmonary valve closes 

slightly after the aortic valve; this may become more pronounced in pathological 

situations. 
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Fig: Structure of the Heart 
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1.2 Origins of Heart Sounds and Murmurs 

 

There is wide agreement that normal heart sounds (SI and S2) as heard by cardiac 

auscultation are not caused directly by the closing of the valves" but by vibrations set up 

in cardiac blood vessels by the sudden pressure change caused by the closing of the heart 

valves. As such, the amplitude of the heart sounds are expected to correspond with the 

size of pressure drop which in turn corresponds to the amount of fluid flow before valves 

closure. Also, the frequency characteristics correlate with the size of the valves, with 

lower frequency characteristics corresponding to larger valves. 

 

There has been much more debate regarding the origins of heart murmurs, likely as a 

result of the wide variety of physiological causes for the murmur themselves. However, 

studies have demonstrated that the origins of heart murmurs are the vibrations associated 

with turbulent flow. The sound energy density was also found to be proportional to the 

level of turbulence. Since laminar flow is the normal state of blood flow in human 

circulation, audible rnurmurs are usually associated with some pathological state. They 

are normally characterized by a higher frequency content than any other heart sounds4. 

Often heart murmurs do not indicate a pathological state. Any movement of fluid in a 

distensible chamber of vesse1 will cause vibrations of some sort, so everyone has some 

murmur if the recording instrument is sensitive enough. 
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1.3 Recoding the heart sound 

 

Cardiac sounds occur within a low frequency range. These can be classified into the 

categories discussed above. It is important to keep in mind that the audible presence of a 

certain class of heart sound can be normal for some ages but abnormal for others.  

 

For recording the signal, the stethoscope has to be placed on the chest and the output 

connected to a computer of cell phone. Amplitude is usually the loudest when the 

stethoscope is placed on the either the tricuspid or mitral valve area. 

 

 

Fig: Various regions on the chest for placing the stethoscope 
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The heart rate can be defined as the number of heart beats per minute(bpm). The range of 

acceptable heart rates for an average person at rest is claimed to be: 60 to 100bpm for an 

adult, 50-100 bpm for a teenager, 74 to 140 bpm for a child and 70 to 170 bpm for an 

infant. Heart rates vary with age but other factors such as fitness level, stress, exercise or 

any heart disease can also affect the heart rate.  
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2. Literature Review 

2.1 Heart sound signal retrieval and filtering 

All heart sound signals were taken using an electronic stethoscope followed by the use of 

appropriate filters.  

In the paper by Liang et al. (1999), an eighth-order Chebyshev type-I low-pass filter was 

used with a cutoff frequency at 882Hz. The signal passed through the filter was originally 

sampled at 11025 Hz with 16-bit accuracy, but was decimated by a factor of 5 by the 

filter to result in 2205Hz sampling frequency. The filtered signal was reversed and run 

back through the filter which results in zero phase distortion. 

In the paper by Fei Yu et al. (2008), a hardware low-pass filter was used to cut off high 

frequency components during recording. The frequency and phase response is as below. 
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D. Kumar et al. (2006), in their paper developed a procedure to first segment the heart 

sound signal into lobes with defined boundaries. Unlike the previously referred papers, 

Kumar avoided empirically tuning any filters. He performed the fast wavelet transform 

(FWT) using the db6 (Daubechies wavelet family) performed upto the 6
th

 level to remove 

high frequency components. Daubechies wavelet family was used for its effectiveness in 

capturing transient sounds and the decomposition depth level of 6 was experimentally 

tuned. 

In Kuan’s thesis (2010), the algorithm used by Pan and Tompkins in their paper (1985) 

used to determine the heart rate from ECG signals was carried over to do the same using 

an acoustic heart sound signal. After recording, the input signal is downsampled from 

44.1kHz to 500Hz and normalized. The signal was then passed through a 100-point FIR 

bandpass filter with cutoff frequencies of 5Hz and 70Hz. 
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In the paper by Mandal et al. (2010), the retrieved heart sound was firstly pre-amplified 

before passing it through an LPF-HPF combination to remove unnecessary regions of the 

signal followed by post-amplification. It then goes on to highlight two different classes of 

filtering and denoising techniques. The first of these methods employ an adaptive line 

enhancer (ALE) using the least mean square (LMS) algorithm and also the recursive 

mean square (RMS) algorithm. The ALE is able to suppress wideband noise of the sound 

signal by utilisation of an adaptive filter (used as a linear prediction filter) with the 

reference signal being a delayed version of the input heart sound signal. The purpose of 

the delay is to decorrelate noise so as the adaptive filter is only able to predict the heart 

sound signal and not the noise. The output signal is then subtracted from the input signal 

to obtain the error signal which is used to adaptively control the filter weights and 

minimise error. 

The second method used wavelet-based denoising techniques. The orthogonal wavelet 

transform is able to compress the energy contained in a signal into a few large 

components with the disorderly noise characterized by small coefficients scattered 

throughout the transform. These smaller coefficients are omitted and the wave is 

reconstructed using the larger wavelet coefficients. Two orthogonal wavelet transform 

techniques are mentioned; one of them is SureShrink which is a smoothness adaptive 

algorithm and works at multiple levels of wavelet decomposition. It also estimates risks 

using Stain's unbiased risk estimator. The SureShrink algorithm's parameters were 

modified to expedite computation. The other technique, BayesShrink, though outclassed 
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by newer techniques, was chosen for its efficiency in computation time which makes it 

viable for real-time operations. 

 

 

2.2 Signal pre-processing 

The signal is then processed further to help in the detection of the peaks.  

Liang et al. [1] used a technique to help accentuate medium intensity signals over those 

of low and high intensities. This was achieved by normalizing the signal and determining 

the Shannon energy envelope of the signal. 
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The average Shannon energy was calculated in continuous 0.02 second intervals with 

0.01 second overlapping. 

    
 

 
       

  
               

        where,          is the normalized and 

decimated signal.  

Fei Yu et al. [2] manually extracted the peaks before subsequent processing. Details are 

given in the next section. 

Kuan [4] used the same technique employed by Pan and Tompkins. The energy of the 

heart sound signal was quantified by differentiating, squaring and integrating over an 

empirically determined window length of 58ms (or 29 samples long). The resulting 

integrated quantity peaked in high energy areas, i.e the S1/S2 sounds. 
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Kumar et al. [3], using the signal approximation coefficients of the FWT he performed 

previously and the Shannon energy operator (given below), he computed the signal 

envelope. 

         
 

 
                    
 

   

 

where,    {a1,d1,a2,d2,…,a6,d6}  and  aj, dj are j
th

 level approximation and detail 

coefficients of the wavelet transformed heart sound signal, respectively, and N is the 

number of samples in the selected window. 

A window of 20ms was selected with 10ms overlaps to compute the Shannon energy. 

Boundaries of the sound lobes are identified out by analyzing the zerocrossing of the 

normalized Shannon energy, 

 

                     

where, ‘< >’ represents the average operator and    the normalized Shannon energy. The 

5
th

 level approximation coefficients were used. 

The lobe boundaries are validated by checking the sound lobe duration    , the interval 

between two consecutive sound lobes   
    and their loudness measured as the root mean 

square of the segment     . 

  
      and   

    
  is the start and stop sample index of the     segment, respectively. 
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       where,    is the sampling period 

  
           

        
      

     
 

      
 
 
    

    
     

 
 
    

   
        where,   = 1,2,…segments, 

                  and   is the heart sound signal 

The conditions used for validation are stated below. 

i. If     < 30ms or     > 250ms, the segment is considered to be noise-ridden and 

discarded. The durations were chosen on the basis of observed values in normal 

population 

ii. If   
    is less than 50ms, the two segments are considered to belong to the same 

sound and the result of a split diastole. As the first segment (the aortic sound lobe) 

is more important than the second segment (the pulmonary sound lobe), the 

second is discarded. 

iii. Splitting might not be captured by the Shannon energy due to low loudness of low 

frequency sounds, but pronounced local minima is observed nonetheless. If the 

local minima is less than 25% of the maximum value of the Shannon energy, the 

splitting is considered to occur at that position and the part of the segment with 

the highest loudness is kept. 

iv. Sustained high frequency sounds may be mixed in with the recording like 

swallowing sounds, speech and abnormal valve closure among other disturbances. 

These noises are identified by computing jitter. 
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Mandal et al. [5] performed decomposition of the signals upto level 5 by using 

Daubechies 6 (db6) wavelets. Levels 4, 5 and 6 detail coefficients were used to calculate 

the Shannon entropy after which the subbands were scaled and added up to give a partial 

reconstruction. The normalized Shannon energy signal envelope was computed and 

passed through a peak detector.  

 

2.3 Peak detection and identification of S1 and S2s 

The relevant peaks are then identified by introducing a threshold.  

Liang et al. [1] further delved into this process. Extra peaks were rejected by imposing a 

time-limit computed for each recording based on the mean interval and standard 

deviation. Any peaks occurring before the computed time was considered to be irrelevant, 

and disregarded. Similarly, an upper time-limit was used to search for any lost peaks. If 

none was found within that time, the threshold was lowered until one was picked up.
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Then, to properly classify S1 and S2 sounds, Liang's algorithm took the largest interval 

between two peaks as the diastolic period and marked the successive intervals, both 

forwards and backwards, accordingly if they were within imposed tolerance values. 

Hence, S1s and S2s are also identified consequently with the start of the systolic period 

being S1 and the end being S2. 

Kumar et al. [3] utilized the fact that S2 sounds contain high frequency components that 

S1 sounds do not due to aortic valves closing with relatively higher pressure than mitral 

valves. In rare cases, like for patients using prosthetic single tilted disk valves, the S1 

sounds are seen to contain the higher frequency components. Proper assignment of S1 

and S2 is seen in the next section with this part discussing the determination of the 

location of the two sounds.  

To extract the high frequency components of the segments identified previously, the 

Shannon energy operator is applied once more, but this time to the segments and using 

the FWT detail coefficients. The adaptive threshold given below is used to make out the 

heart cycle, 
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                  where,     is a constant initially fixed to 3.0 

and later adapted in certain situations 

Applying this threshold, high-frequency segments (HFS) and low-frequency segments 

(LFS) can be detected in the segmented heart sound. A heart cycle can therefore be 

assumed to comprise of an LFS between two HFS with the duration between the two 

HFS being used to calculate the instantaneous heart rate. The duration is computed as 

follows, 

      
  

   

 
        

       
       

   

 
              where,       

  is the duration between k
th 

and (k+1)
th

 HFS                                                        is the duration of HFS 

 

Two conditions are imposed for the proper identification of heart cycles. 

i. If the heart cycle duration is greater than the average of the previous 3 durations, 

an HFS peak is assumed to have been missed. This is dealt with by lowering the 

HFS threshold by increasing     in the adaptive threshold’s algorithm by 0.1 

intervals until the peak is found. The 3-cycle average is seen to be sufficient even 

in arrhythmic cases. 

ii. If extra HFS markers are picked up due to noisy segments in the heart cycle, the 

correct one is identified by checking which peak was present in the previous 

cycle. 

S1 and S2 sounds are classified by first estimating the systolic (S1-S2) interval duration 

from the cycle duration and comparing with every segment pair duration. The interval 



24 

 

with the least deviation from t he estimate is considered to be the S1-S2 interval with the 

starting segment designated as the S1 sound and the end segment, the S2 sound. In order 

to account for extreme arrhythmic cases which might render this classification process 

inefficient, the following steps are performed. 

i. HFS cannot automatically be assigned to be S2 sounds in atypical cases, so proper 

identification of S1 and S2 sounds requires further checks to be performed. A 

correctly detected heart cycle is chosen containing 2 HFS and 1 LFS and the 

systolic interval is estimated from the cycle duration using the formula below, 

 

    
               

              where,      
     

  is the estimated systolic interval 

of the   k                                                                 k
th

 cycle 

 

This estimated duration is compared to the two intervals (HFS-LFS and LFS-

HFS) comprising the cycle and the interval with the smallest deviation from the 

estimated value is taken as the systolic interval. Hence, the starting segment class 

(either HFS or LFS) can be assigned as the S1 sound. 

ii. The other segment class is assigned as the S2 sound. 
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Extraneous LFS segments might exist in the signal creating giving rise to more than one 

LFS segments between two HFS. The irrelevant LFSs can be removed by comparing the 

estimated systolic interval with all the possible LFS-HFS (or HFS-LFS, if HFS is 

assigned as S1) pair durations. The pair with the least deviation from the estimate is 

considered to be the correct LFS-HFS pair with all other LFSs making up the other pairs 

removed. 

 

Kuan [4] did not discuss any methods used to properly pick up any missing peaks or 

eliminate extra peaks. She only used a threshold to pick up the peaks belonging to the 

S1/S2 sounds. After locating the peaks, intervals between the peaks were tabulated. This 

resulted in two Gaussian-like clusters. The intervals closer to the cluster with the smaller 
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time period were considered the systolic periods and the other intervals, the diastolic 

periods with the relative peaks being assigned as S1 and S2 sounds. 

 

Fei Yu et al. [2] also used a simple threshold. He then manually isolated the two peaks 

and plotted their frequency spectrums to pick out distinguishing characteristics. It was 

observed that there are discernible differences between the two spectrums at the 

frequencies 15Hz and 65Hz. The S1 beat possesses higher valued components at around 

15Hz than the S2 beat and similarly, S2 contains components with greater amplitude at 

65Hz than S1. Hence, a bandpass filter with cutoff frequencies at 10Hz and 20Hz was 

used to eliminate all S2 peaks from the signal leaving only the S1s. This signal was then 

normalized and the energy square calculated using the formula,  

         
       

             
   where, Y is the amplitude of the signal 
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The S1 peaks were evident when the above normalized signal was plotted against time. 

The peak locations can then be stored but to correct for the delay created by the filter the 

time value, taken to be Tmax, S1 is assumed to start 0.26s earlier than Tmax. The S1 peaks 

can be extracted and saved by taking out a 0.3s interval window from the plot starting 

from the acquired location. The same procedure was applied to find the S2 peak locations 

and the S2 extracted signal. Murmurs can also be isolated using the same algorithm. 

The extracted signals can be convolved with the original signal to detect the quality, 

intensity and locations of S1s, S2s and murmurs. This can be used to monitor variation of 

the heart sound signal and perform diagnosis. 

 

In the paper by Mandal et al. [5], after passing the normalized Shannon entropy envelope 

through the peak detector, the subbands are again scaled and added up to give a partial 

reconstruction amplifying S1-S2 factors. Any peaks detected are sent to a boundary-

calculation algorithm and adaptive thresholding is used to recalculate peak points in case 

none are detected. No further details of the algorithms were provided nor any mention of 

correctly distinguishing the S1 and S2 segments. 
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2.4 Heart rate calculation 

Liang et al. [1] did not delve into this section, their paper emphasized on the correct 

detection of peaks and their locations. 

Fei Yu et al. [2] computed energy square of the heart sound signal and passed it through a 

low-pass filter with a cutoff frequency of 10Hz. The resulting signal was then normalized 

and a threshold of 0.2 was used to correctly identify the peaks. Taking three of the peak 

locations, the heart rate was calculated as given below. 

  
  

  
 

     

  
  where,   is the sample frequency, n is the index,    =   

    is the number of samples in a heart beat cycle, and T is 

time period. 

     
  

 
 

    

  
       where,      is the heart beat rate 

 

Kuan [4] calculated the instantaneous rate by taking the median of the S1-S1 

interval values over 9 beats around specified index peak location.  

    
  

                           
                    where,     is the instantaneous 

heart     b         e                                                                                          heart beat rate at 

    beat, 
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and,     is the S1-S1 interval 

between beat        and   and      

Kumar et al. [3] calculated the instantaneous heart rate previously (as detailed in the 

previous section) and used it for S1/S2 classification. 

Mandal et al. [5] did not include any mention of heart beat rate calculation in their paper. 

 

2.5 Results 

The algorithm developed by Liang et al. [1] was able to correctly identify peaks with 

about 93% accuracy and, tested under different conditions remained fairly robust in its 

efficiency. Misinterpretations were due to large background noises and serious murmurs. 

Fei Yu et al. [2] did not provide such specific numbers as their focus was primarily on the 

fabrication of an intelligent electronic stethoscope. 

Kuan [4] used an ECG signal as a reference to test their system. The algorithm was able 

to correctly pick up peaks from the heart sound signal with 100% accuracy. It was also 

able to positively predict S1 peak locations with an accuracy of 88.4% and had a 

sensitivity of 92.1%. 

Kumar et al. [3] were able to achieve an average sensitivity of 97.95% and specificity of 

98.20% testing on a range of patients possessing mechanical valves, bio-prosthetic valves 

and native valves. In the best case heart sound, 100% sensitivity and specificity was 

achieved and in the worst case sample, 95.67% sensitivity and 96.12% specificity. Wrong 
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detection was mainly the cause of relevant adjacent segments being affected during 

removal of noise. The achieved sensitivity of noise detection by jitter approach was 

92.20%, though high frequency noisy segments lasting less than 50ms were not able to be 

detected. A manual inspection of corresponding ECG signals’ QRS complexes and T-

waves was used as the reference. 

Mandal et al. [5] calculated the noise reduction and heart sound recovery percentages 

using the formulae below and compared the different filters and denoising techniques. 

 

          
       

              

     
     

      

               
        

              

        
     

                   where,        is the original 

heart sounds signal                                                                             sounds signal 

and       
    is the one 

corrupted     with noise 

The LMS-ALE algorithm resulted in an HS recovery of 91-93% with 89-92% noise 

reduction. RLS-ALE turned up 95-97% HS recovery with 90-92% noise reduction. Both 

BayesShrink and SureShrink algorithm recovered the heart segments with 96-98% 

accuracy with 88-91% noise reduction with BayesShrink and 91-92% noise reduction 

with SureShrink. Considering the above results, the SureShrink algorithm is seen to 

provide the best performance. 
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2.6 Conclusion 

We observed that heart sound segmentation and peak extraction results were generally 

quite favourable but none of the papers delved into matters concerning environmental 

noise contamination of the recordings, the conditions under which the signals were taken 

and the effectiveness of their algorithms in non-ideal circumstances. Incorrect 

identification of peaks mostly occurred when faced with atypical heart signals indicating 

possible presence of cardiovascular diseases (CVDs). Carrying out diagnoses when 

dealing with such signals would prove more robust if compared with a database of heart 

sounds of patients with various CVDs. Hence, we conclude by highlighting that this field 

has room for more research and improvements which, if realized, could vastly help 

mitigating the increasing number of heart related deaths. 
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3. Our Approach  

We have opted to work in the time domain rather than frequency domain as most of the 

noise introduced into the recordings are of low frequency and have components in the 

same region as our signal of interest. This makes it quite difficult to extract and 

distinguish the signal’s frequency characteristics over the noise’s spectrum. Complicated 

frequency domain analysis is required to work with signals contaminated to this level, 

which in turn necessitates the availability of significant processing power and time. As 

our aim is to eventually port our software for use in cellphones where processing power 

is limited, frequency domain analysis is hardly feasible. 

Below is an outline of our developed noise tolerant algorithm for calculation of 

heart rate using PCG signals. 

 

3.1 Signal pre-processing 

We start by reading the recorded heart signal into MATLAB. The first and last 5 seconds 

of the signal were discarded as those segments are usually contaminated with placement 

noises. The remaining signal was then normalized by subtracting the mean and dividing 

by the maximum value of amplitude. 
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3.2 Extracting regions of interest 

The normalized signal was then divided into windows 1 second in length and the standard 

deviation value of each window was calculated using all the points enclosed by the 

window. It was observed that windows with lower standard deviation values tended to 

contain less noise than those with higher values, so 5 successive windows with standard 

deviation values within the defined threshold of +0.1 to -0.1 were taken as a region of 

interest. All 5 second intervals satisfying the criterion are extracted and stored for 

subsequent signal processing steps. 
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3.3 Filtering 

The extracted signals were then run through a Chebyshev Type-I bandpass filter with 

cutoff frequencies at 10Hz and 20Hz. According to a research by Fei Yu et al. [2], 

observing the frequency spectrums of isolated S1 and S2 sounds, peaks at 15Hz and 

85Hz were found to be present in the S1 spectrum which are absent in S2 and could be 

used to distinguish between S1 and S2 sounds. As the heart rate can be determined using 

either all the S1 sounds or the S2s, the louder and more distinct S1 sounds were chosen to 

be kept suppressing the S2 sounds using the filter proposed. Furthermore, the 15Hz peak 

was used to keep the S1s rather than 85Hz as another major source of noise 

contamination which are lung sounds mostly have frequency components in the 60-

100Hz region. Hence, lung sounds are also effectively eliminated using the chosen filter. 
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3.4 Magnitude & Phase Response of designed filter 
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3.5 Peak detection 

The filtered signals were then again divided into windows but this time of 0.02s lengths 

and their standard deviation values computed. The objective this time is to determine the 

S1 peak locations. Windows containing the peaks were seen to have higher standard 

deviation values. Adaptive thresholds were used to determine the windows with these 

high values and designate them to be S1 peak locations. Extra peaks that might have been 

picked up around these S1 sounds are rejected by using a time limit. If peaks are picked 

up around 20ms of each other, the peak with the maximum amplitude is kept and the 

others are discarded. 
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We have also implemented Liang’s [1] algorithm using the Shannon energy profile for 

peak detection as a basis of comparison. It is clearly evident from the plot below that 

Shannon energy profile performs poorly when dealing with noisy signals. 

 

 

Our proposed algorithm is seen to be more tolerant to noise and hence, more robust.  

The time intervals between the remaining S1 peaks are computed and the mean interval is 

used to calculate the heart rate using the formula shown. 

    
  

  
  where,    = mean interval between peaks  
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4. Results and Analysis: 

4.1 Sample results: 

Below are some of the selected results obtained using noisy PCG signals using both the 

our algorithm and the one proposed by Liang [1]. 

Subject ID Oximeter 

reading  

Calculated 

HR  

Percentage 

Error  

Shannon 

HR 

Percentage 

error 

1  63  64  1.59  66 4.76 

2 80 80 0 80 0 

5 83  102 22.9 66 20.5 

8 73  80 9.58  67 8.22 

9 71  63 11.3  94 32.4 

11 90  101 12.2  61 32.2 

13 95  90 5.26  103 8.42 

14 73  71  0  71 0 
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4.2 Analysis Using GUI in MATLAB 

4.2.1 Introduction to GUI:  

In computing, graphical user interface (GUI, sometimes pronounced 'gooey') is a type 

of user interface that allows users to interact with electronic devices through 

graphical icons and visual indicators such as secondary notation, as opposed to text-based 

interfaces, typed command labels or text navigation. GUIs were introduced in reaction to 

the perceived steep learning curve of command-line interfaces (CLI), which require 

commands to be typed on the keyboard. 

The actions in GUI are usually performed through direct manipulation of the graphical 

elements. Besides in computers, GUIs can be found in hand-held devices such 

as MP3 players, portable media players, gaming devices, household appliances, office, 

and industry equipment. The term GUI is usually not applied to other low-

resolution types of interfaces with display resolutions, such as video 

games (where HUD is preferred), or not restricted to flat screens, like volumetric 

displays because the term is restricted to the scope of two-dimensional display screens 

able to describe generic information. 

 

4.2.2 GUI in MATLAB: 

MATLAB supports developing applications with graphical user interface features. 

MATLAB includes GUIDE (GUI development environment) for graphically designing 

GUIs. It also has tightly integrated graph-plotting features. GUIs (also known as 

http://en.wikipedia.org/wiki/Computing
http://en.wikipedia.org/wiki/User_interface
http://en.wikipedia.org/wiki/User_(computing)
http://en.wikipedia.org/wiki/Human-computer_interaction
http://en.wikipedia.org/wiki/Icon_(computing)
http://en.wikipedia.org/wiki/Secondary_notation
http://en.wikipedia.org/wiki/Text-based_user_interface
http://en.wikipedia.org/wiki/Text-based_user_interface
http://en.wikipedia.org/wiki/Learning_curve
http://en.wikipedia.org/wiki/Command-line_interface
http://en.wikipedia.org/wiki/Computer_keyboard
http://en.wikipedia.org/wiki/Direct_manipulation
http://en.wikipedia.org/wiki/Computer
http://en.wikipedia.org/wiki/Mobile_device
http://en.wikipedia.org/wiki/MP3
http://en.wikipedia.org/wiki/User_interface#Types
http://en.wikipedia.org/wiki/Display_resolutions
http://en.wikipedia.org/wiki/Video_game
http://en.wikipedia.org/wiki/Video_game
http://en.wikipedia.org/wiki/HUD_(video_gaming)
http://en.wikipedia.org/wiki/Volumetric_display
http://en.wikipedia.org/wiki/Volumetric_display
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graphical user interfaces or UIs) provide point-and-click control of software applications, 

eliminating the need to learn a language or type commands in order to run the 

application. 

MATLAB apps are self-contained MATLAB programs with GUI front ends that 

automate a task or calculation. The GUI typically contains controls such as menus, 

toolbars, buttons, and sliders. Many MATLAB products, such as Curve Fitting Toolbox, 

Signal Processing Toolbox, and Control System Toolbox, include apps with custom user 

interfaces. You can also create your own custom apps, including their corresponding UIs, 

for others to use. 

GUIDE (GUI development environment) provides tools for designing user interfaces for 

custom apps.  Using the GUIDE Layout Editor, you can graphically design your 

UI.  GUIDE then automatically generates the MATLAB code for constructing the UI, 

which you can modify to program the behavior of your app. 

In our proposed thesis we have used the GUIDE in order to establish a GUI for our signal 

processing purposes.  
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4.3 GUI output:  
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In our GUI, we have the following outputs for the user’s benefits: 

1. Load: loading a file save in .wav format and then the GUI automatically shows 

the corresponding Heart Beat and the Peak Finder Output. The GUI will also 

calculate the heart rate from the proposed algorithm and will display it at the GUI. 

 

2. Play: Once the play button is pushed, the three outputs are shown instantly, and 

the sound of the heart beat is heard during play. 

 

3. Record/Play: Recording the heart sound live and simultaneously listening to the 

heart sound with the three outputs shown. 

 

4. Stop: when Stop button is pushed, the playing heart beat sound will stop 

immediately until played again. 

 

The following GUI program built is mentioned in Appendix E. 
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5.Conclusion and Discussion:  

5.1 Conclusion:  

 From our comparative analysis and the results section, we can conclude that, 

through our proposal the accuracy of heart rate calculation increased using 

standard deviation profile. 

 When the environment is noisy, our proposal of standard deviation profile showed 

much better results for heart rate calculations than the ‘shanon’ energy profile. 

 From our proposed method, it is possible to calculate the heart beat with 

significant amount of accuracy without using any external hardware system. 

 The Hardware used for the proposed method of ours would cost approximately 

$8. 

5.2 Conclusion(Hardware): 

 Cheap/simple: costs around $8 which is quite affordable in developing 

countries. 

 User Friendly: A Digital Stethoscope does not require any training or 

guidance for usage.  

 Reliable: The device itself is highly reliable with no signs of wear. 

 Fast Analysis: Using the MATLAB GUI instant results of heart rate and heart 

beat outputs were found using this device. 
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 Environmentally friendly: The device itself does not contribute to any harm to 

the society. 

5.3 Future works:  

Our thesis has a promising future and can be used for further research in different 

aspects including:  

 Increasing the number of varied heart sound signal samples for improving the 

accuracy of the project. The more samples are used, the better will be the 

comparative analysis and a stronger backing for our proposal will exist. 

 Port our software for use in cellphones for the benefit of the society and for 

common use in households.  

 Research more on signal processing methods to make a polished algorithm for 

better results and comparative analysis.  
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Appendix A:  Computed heart rates using both Shannon Energy profile 

and Standard Deviation profile on noisy signals 

 

Subjectc

t ID 

Oxi 

Rate 

Shannon 

HR 

% 

error 

STD 

HR 

% 

error 

% 

error 

diff. 

Avg. % error 

Shannon 

Avg. % 

error STD 

1 63 66 4.77 64 1.59 3.18 19.37 16.74 

2 80 80 0 80 0 0   

3 67 70 4.48 78 16.42 -11.94   

4 63 92 46.04 65 3.18 42.86   

5 83 66 20.49 102 22.9 -2.41   

6 63 66 4.77 90 42.86 -38.09   

7 95 87 8.43 85 10.53 -2.1   

8 73 67 8.22 80 9.59 -1.37   

9 71 94 32.4 63 11.27 21.13   

10 93 88 5.38 94 1.08 4.3   

11 90 61 32.23 101 12.23 20   

12 55 106 92.73 95 72.73 20   

13 95 103 8.43 90 5.27 3.16   

14 73 71 2.74 91 24.66 -21.92   
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Appendix B:  Computed heart rates using both Shannon Energy profile 

and Standard Deviation profile on signals recorded under controlled 

conditions 

 

Subjec

t ID 

Oxi 

Rate 

Shannon 

HR 

% 

erro

r 

STD 

HR 

% 

error 

% 

error 

diff. 

Avg. % error 

Shannon 

Avg. % 

error 

STD 

15 75 73 2.67 75 0 2.67 4.26 3.4 

16 62 62 0 62 0 0   

17 65 65 0 65 0 0   

18 68 70 2.95 66 2.95 0   

19 72 73 1.39 75 4.17 -2.78   

20 64 61 4.69 65 1.57 3.12   

21 67 66 1.5 67 0 1.5   

22 65 66 1.54 61 6.16 -4.62   

23 70 74 5.72 66 5.72 0   

24 80 79 1.25 79 1.25 0   

25 66 54 18.1

9 

60 9.1 9.09   

26 88 92 4.55 83 5.69 -1.14   

27 60 68 13.3

4 

57 5 8.34   

28 67 67 0 63 5.98 -5.98   

29 78 79 1.29 78 0 1.29   

30 67 61 8.96 65 2.99 5.97   
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Appendix C:  MATLAB program for heart rate computation using 

Standard Deviation profile 

clear all 
close all 

  
%% Get the list of the audio files 
files=dir(fullfile('C:','Educational','DSP_Thesis','*.wav')); 
for k=1:1; 
close all 
name=files(k).name; 
[y1, Fs, nbits] = wavread(name); 
L1=size(y1,1); 
ymid=y1(5*Fs:(L1/Fs-5)*Fs,1); 
L=size(ymid,1); 
t=(0:L-1)/Fs; 
plot(t,ymid);hold on 

  
%% STD Profile for all (S1 and S2) peaks 
resolution=.02; % window size 0.02sec 
fun= @(x) std (x); 
B1 = blkproc(ymid,[Fs*resolution 1],fun); 
Bnorm1=(B1-mean(B1))/max(B1); 
Tb=[0:size(Bnorm1,1)-1]*resolution; % multiplied by 0.02sec to convert 

to time axis 
plot(Tb,Bnorm1, '--g','LineWidth',2) 

  
 

%% Filter Section 

  
 [B,A]=cheby1(2,0.2, [10 20]/(Fs/2), 'bandpass');  
h1=dfilt.df2(B,A); 
fvtool(h1,'FrequencyScale','log'); % to see filter response 
yw=filter(h1,ymid); 
figure; spectrogram(yw) 

  
%% STD Profile for ROI extraction 
res=1; % window size 2sec 
fun= @(x) std (x); 
B2 = blkproc(ymid,[Fs*res 1],fun); 
Bnorm2=(B2-mean(B2))/max(B2); 
Tb=[1:size(Bnorm2,1)]*res; % multiplied by res to convert to time axis 
figure; 
plot(t,ymid);hold on 
plot(Tb,Bnorm2, '--r','LineWidth',2);title ('Original & Region STD'); 

hold on 
stem(Tb,Bnorm2, '--r','LineWidth',2);title ('Original & Region STD');  
xlabel('Time(s)');ylabel('Normalized amplitude'); 

  
S=std(Bnorm2); 
M=mean(Bnorm2); 
plot ([Tb(1) Tb(end)], [0.1 0.1], ':g','LineWidth',2); %[S+M S+M] 
plot ([Tb(1) Tb(end)], [-0.1 -0.1], ':g','LineWidth',2);%[-S+M -S+M] 
plot ([Tb(1) Tb(end)], [S+M S+M], ':g','LineWidth',2); %[S+M S+M] 
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plot ([Tb(1) Tb(end)], [-S+M -S+M], ':g','LineWidth',2);%[-S+M -S+M] 

  
Br= find (Bnorm2 >= -0.1 & Bnorm2 <= 0.1); 
D=diff (Br); % to find a continuous ROI 
OnesRatio= length (find (D==1))/length (Br); %check tif there are 

enough continuous regions (i.e. 1s) 
if OnesRatio >= 0.4             
            fprintf ('Calculating Heart-Rate...WAIT\n') 
else 
    fprintf ('Please Take AGAIN');name 
    continue 
end 
SetOnes = findstr(D', [1 1 1 1]); 
for p=1:length (SetOnes) 
    extractPTS1= SetOnes (p); 
    tst(p)=extractPTS1; 
    extractPTS2= extractPTS1+5; 
    ExtMat (p,:)= yw (extractPTS1*Fs:extractPTS2*Fs); % extracting from 

YW as the whole signal is filtered 
    ExtMat1 (p,:)= ymid (extractPTS1*Fs:extractPTS2*Fs); 
 

subplot(3,2,p);plot((extractPTS1*Fs:extractPTS2*Fs)/Fs,ExtMat1(p,:));xl

abel('Time(s)'); 
     

subplot(3,2,p);plot((extractPTS1*Fs:extractPTS2*Fs)/Fs,ExtMat(p,:));xla

bel('Time(s)'); 
end 

  
%% STD Profile 
for h= 1: size (ExtMat,1) 
yext= ExtMat (h,:)'; 
res=0.02; % window size 0.02sec 
fun= @(x) std (x); 
B = blkproc(yext,[Fs*res 1],fun); 
Bnorm=(B-mean(B))/max(B); 
Tb=[1:size(Bnorm,1)]*res; % multiplied by 0.02sec to convert to time 

axis 

  
figure; 
plot(tst(h)+((1:length(yext))/Fs),yext) 
hold on; 
plot(tst(h)+Tb,Bnorm, '--g','LineWidth',2);title ('Extracted & STD') 
hold on; 

  
[r,c]=peakfinder(Bnorm,(max(Bnorm)-min(Bnorm))/4,0.4,1); 
plot(Tb+tst(h),Bnorm,'g'); 
stem((r*res)+tst(h), c,'r','Marker', '*'); title('STD & Peaks') 
legend('Filtered signal','STD Profile','Peak') 

  
%% Extra peak removal 
II=1; 
tlmt=10; 
while II<length(r); 
    if (r(II+1)-r(II))<=tlmt; 
        if c(II)>c(II+1); 
            c(II+1)=NaN; 



51 

 

            c = c(~isnan(c)); 
            r(II+1)=NaN; 
            r = r(~isnan(r)); 
        else 
            r(II)=0; 
            c(II)=0; 
            II=II+1; 
        end 
    else 
        II=II+1; 
    end 
end 
r(r==0)=NaN; 
r = r(~isnan(r)); 
c(c==0)=NaN; 
c = c(~isnan(c)); 
figure;plot(tst(h)+((1:length(yext))/Fs),yext);hold 

on;plot(Tb+tst(h),Bnorm,'g'); hold on; stem(r*res+tst(h), 

c,'r','Marker', '*'); title('STD & Peaks') 

  
%% HR calculation 
J=diff(r); 
Hr(h)=60/(mean(J)*res); 
figure; 
stem(r, c,'r','Marker', '*'); hold on; plot(Tb+tst,Bnorm);title ('Peak 

detection') 
end 
Hr(find(Hr<=20 | Hr>=120))=NaN; %removing all heartrates lower than 55 

and higher than 120 
Hr = Hr(~isnan(Hr)); 
STDHR(k)=mean(Hr); 
names{k}=name; 

  
end 

  
k;      %no. of files read 
names 
HR 
STDHR 
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Appendix D:  MATLAB program for heart rate computation using 

Shannon energy profile 

 

clear all 
close all 

  
%% Get the list of the audio files 
files=dir(fullfile('C:','Educational','DSP_Thesis','*.wav')); 
for k=1:1; 

  
name=files(k).name; 
[y1, Fs, nbits] = wavread(name); 
L1=size(y1,1); 
ymid=y1(5*Fs:(L1/Fs-5)*Fs,1); % deleting first 5 and last 5 second 
L=size(ymid,1); 
t=(0:L-1)/Fs;  
plot(t,ymid);hold on 

  

  
%% STD Profile for all (S1 and S2) peaks 
resolution=.02; % window size 0.02sec 
fun= @(x) std (x); 
B1 = blkproc(ymid,[Fs*resolution 1],fun); 
Bnorm1=(B1-mean(B1))/max(B1); 
Tb=[0:size(Bnorm1,1)-1]*resolution; % multiplied by 0.02sec to convert 

to time axis 
plot(Tb,Bnorm1, '--g','LineWidth',2) 

 
%% Filter Section 

  
[B,A]=cheby1(2,0.2, [3 300]/(Fs/2), 'bandpass');  
h1=dfilt.df2(B,A); 
fvtool(h1,'FrequencyScale','log'); % to see filter response 
yw=filter(h1,ymid); 
figure; spectrogram(yw) 

  
%% STD Profile for ROI extraction 
res=0.5; % window size 2sec 
fun= @(x) std (x); 
B2 = blkproc(ymid,[Fs*res 1],fun); 
Bnorm2=(B2-mean(B2))/max(B2); 
Tb=[1:size(Bnorm2,1)]*res; % multiplied by res to convert to time axis 
figure 
plot(t,ymid);hold on 
plot(Tb,Bnorm2, '--r','LineWidth',2);title ('Original & Region STD'); 

hold on 
stem(Tb,Bnorm2, '--r','LineWidth',2);title ('Original & Region STD'); 

hold on 

  
S=std(Bnorm2); 
M=mean(Bnorm2); 



53 

 

plot ([Tb(1) Tb(end)], [0.1 0.1], ':k','LineWidth',2); %[0.1= arbitary 

STD value] 
plot ([Tb(1) Tb(end)], [-0.1 -0.1], ':k','LineWidth',2);%[-0.1= 

arbitary STD value] 
plot ([Tb(1) Tb(end)], [S+M S+M], ':g','LineWidth',2); %[S+M S+M] 
plot ([Tb(1) Tb(end)], [-S-M -S-M], ':g','LineWidth',2);%[-S+M -S+M] 

  
%% envelope detection_Shannon METHOD 

  
yext=yw; % DO NOT TAKE ymid for energy calculation, it gives NaN 
N=length(yext); 
windowRes=0.02; 
Ns=(Fs*windowRes); % number of samples per window 
Nw= floor((N/Ns)*2); % number of windows 

  
i=1; 
for c= 1:Nw 
    x=yext(i:i+Ns/2-1,1); 
    Es(c)= -sum((x.^2) .* log (x.^2))/(Ns/2); % Energy calculation 
    i=i+Ns/2; 
end 

  
n=1; 
for j=1:length(Es) 
    if j==length(Es), break, end 
    Es1(j)= sum(Es(n:n+1))/2; 
    n=n+1; 
end 

  
P= (Es1-mean(Es1,2))/std(Es1); 
Tp=[1:size(Es1,2)]*0.01; 
figure 
plot(t,ymid, 'b');hold on 
plot(Tp,P, '--r','LineWidth',0.5) 
close all 
%% Peak finder 
[r,c]=peakfinder(P,(max(Bnorm1)-min(Bnorm1))/.4, 2,1); 
figure 
stem(r, c,'r','Marker', '*'); hold on; plot(P);title ('Peak detection') 

  
Dp=diff(r); % to get S1-S2 interval in terms of P points 
funsum= @(x) sum (x);  
Dnew= blkproc (Dp, [1 2],funsum); % adding smaller and bigger gap= gap 

between S1 and S2 
Fr=find (Dnew>=55 & Dnew<=120); % maxHR=120 to minHR=40 % finding 

locations of bigger gaps 
DelN=Dnew (Fr).* windowRes * Fs ./2; % to get S1-S2 interval in terms 

of signal points 
heartRate (k)= mean(60*Fs./DelN) % Average HR calculated from all 

intervals= hr of that segment 

  
names {k}= name; 
HRinfo = {heartRate , names}; 
load OxiHR 
error=heartRate -OxiHR(1:size(heartRate ,1)); 
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close all 
end 

 

 

Appendix E:  MATLAB program for GRAPHICAL USER 

INTERFACE (GUI) 

function varargout = Heart_rate(varargin) 
% HEART_RATE M-file for Heart_rate.fig 
%      HEART_RATE, by itself, creates a new HEART_RATE or raises the 

existing 
%      singleton*. 
% 
%      H = HEART_RATE returns the handle to a new HEART_RATE or the 

handle to 
%      the existing singleton*. 
% 
%      HEART_RATE('CALLBACK',hObject,eventData,handles,...) calls the 

local 
%      function named CALLBACK in HEART_RATE.M with the given input 

arguments. 
% 
%      HEART_RATE('Property','Value',...) creates a new HEART_RATE or 

raises the 
%      existing singleton*.  Starting from the left, property value 

pairs are 
%      applied to the GUI before Heart_rate_OpeningFcn gets called.  An 
%      unrecognized property name or invalid value makes property 

application 
%      stop.  All inputs are passed to Heart_rate_OpeningFcn via 

varargin. 
% 
%      *See GUI Options on GUIDE's Tools menu.  Choose "GUI allows only 

one 
%      instance to run (singleton)". 
% 
% See also: GUIDE, GUIDATA, GUIHANDLES 

  
% Edit the above text to modify the response to help Heart_rate 

  
% Last Modified by GUIDE v2.5 09-Nov-2012 01:54:30 

  
% Begin initialization code - DO NOT EDIT 
gui_Singleton = 1; 
gui_State = struct('gui_Name',       mfilename, ... 
                   'gui_Singleton',  gui_Singleton, ... 
                   'gui_OpeningFcn', @Heart_rate_OpeningFcn, ... 
                   'gui_OutputFcn',  @Heart_rate_OutputFcn, ... 
                   'gui_LayoutFcn',  [] , ... 
                   'gui_Callback',   []); 
if nargin && ischar(varargin{1}) 
    gui_State.gui_Callback = str2func(varargin{1}); 
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end 

  
if nargout 
    [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:}); 
else 
    gui_mainfcn(gui_State, varargin{:}); 
end 
% End initialization code - DO NOT EDIT 

  

  
% --- Executes just before Heart_rate is made visible. 
function Heart_rate_OpeningFcn(hObject, eventdata, handles, varargin) 
% This function has no output args, see OutputFcn. 
% hObject    handle to figure 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
% varargin   command line arguments to Heart_rate (see VARARGIN) 

  
% Choose default command line output for Heart_rate 
handles.output = hObject; 

  
% Update handles structure 
guidata(hObject, handles); 

  
% UIWAIT makes Heart_rate wait for user response (see UIRESUME) 
% uiwait(handles.figure1); 

  

  
% --- Outputs from this function are returned to the command line. 
function varargout = Heart_rate_OutputFcn(hObject, eventdata, handles)  
% varargout  cell array for returning output args (see VARARGOUT); 
% hObject    handle to figure 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 

  
% Get default command line output from handles structure 
varargout{1} = handles.output; 

  

  
% --- Executes on button press in pushbutton1. 
function pushbutton1_Callback(hObject, eventdata, handles) 
% hObject    handle to pushbutton1 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
[filename1, pathname1] = uigetfile('*.wav','select a wave file to 

load'); 

  
global fs 
global nbits 
global y 
global z 

  
nbits=8; 
fs=11025; 
[y,fs,nbits]=wavread([pathname1 filename1]); 
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%sound(y); 
z= audioplayer(y,fs) 

  

  

  
a=wavread([pathname1 filename1]); 
plot(handles.Heart_rate,a); 

  
% low pass filter to discard high-freq components 
[B,A]=cheby1(2,0.2, 200/(fs/2), 'low');  
h1=dfilt.df2(B,A); 
% fvtool(h1,'FrequencyScale','log'); % to see filter response 
yw=filter(h1,y); 
% Nrm=(yw.^2)/max(yw.^2); % normalization 
Nrm=yw/max(abs(yw)); % normalization 

  

  

  
%% envelope detection_Shannon METHOD 
N=length(Nrm); 
window=0.02; 
Ns=(fs*window); % number of samples per window 
Nw= floor((N/Ns)*2);  

  
% fun1=@(x) -sum ((x.^2) .* log (x.^2))/(Ns/2); % Energy calculation 
% B1 = blkproc(Nrm,[Ns/2 1],fun1); 
% fun2= @(x) mean (x); 
% B2 = blkproc(B1,[2 1],fun2); 

  
i=1; 
for c= 1:Nw 
    x=Nrm(i:i+Ns/2-1,1); 
    Es(c)= -sum((x.^2) .* log (x.^2))/(Ns/2); % Energy calculation 
    i=i+Ns/2; 
end 

  

  
n=1; 
for j=1:length(Es) 
    if j==length(Es), break, end 
    Es1(j)= sum(Es(n:n+1))/2; 
    n=n+1; 
end 

  
P= (Es1-mean(Es1,2))/std(Es1); 
 [r,c]=peakfinder(P,(max(P)-min(P))/4, 0.02,1); 
% figure 
% stem(r, c,'r','Marker', '*');  
% hold on;  
%  
% title ('Peak detection') 

  
%%heartrate calculation 
%intervals 
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I=1; 
K=1; 
L=1; 
f=0; 
g=0; 
%J=1; 
for I=1:(numel(r))-1;    
J(I)=r(I+1)-r(I);   %calculating intervals between successive peaks and 

storing in matrix 'J' 
end 

  
%systolics using mean partitioning 
for I=1:numel(J); 
if J(I)< mean(J)    %calculating mean of interval matrix J and all 

intervals that lie below the mean are considered systolic periods, 

these periods are stored in matrix 'f' 
f(K)=J(I); 
K=K+1; 
end 
end 

  
%diastolics using mean partitioning 
for I=1:numel(J); 
if J(I)> mean(J)    %same is done to obtain the diastolic periods 
g(L)=J(I); 
L=L+1; 
end 
end 

  
%filtering abnormal values 
meanf=mean(f); 
stdf=std(f); 

  
for I=1:numel(f); 
while f(I) == NaN; 
I=I+1; 
end 
if f(I) < meanf - stdf || f(I) > meanf + stdf; 
f(I) = NaN; % all values outside 1 std of mean of 'f' is converted to 

NaNs 
end 
end 

  
f = f(~isnan(f));   % all NaN's omitted from matrix 'f' 

  
meang=mean(g); 
stdg=std(g); 

  
for I=1:numel(g); 
while g(I) == NaN; 
I=I+1; 
end 
if g(I) < meang - stdg || g(I) > meang + stdg; 
g(I) = NaN; % all values outside 1 std of mean of 'g' is converted to 

NaNs 
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end 
end 

  
g = g(~isnan(g));   % all NaN's omitted from matrix 'g' 

  
t=(mean(f)+mean(g))*window; 
hr=(60*2)/t 

  
plot(handles.Peak_finder,P); 
%plot(P); 

  

  
%left=y(:,1);           % Left channel  
%right=y(:,2);          % Right channel  
%subplot(2,1,1), plot((1:length(left))/fs, left,'linewidth',2),grid on; 
%title('LEFT Channel') 
%subplot(2,1,2), plot((1:length(right))/fs, right,'linewidth',2),grid 

on; 
%title('RIGHT Channel')% handles    structure with handles and user 

data (see GUIDATA) 

  

  
% Create string for output that we can send to the text control. 
text5 = sprintf('Heart_rate = %.4f', hr);  
% Now, send the string to the control called txtInfo 
set(handles.text5, 'String', text5); 

  

  
% --- Executes on button press in pushbutton2. 
function pushbutton2_Callback(hObject, eventdata, handles) 
% hObject    handle to pushbutton2 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 

  
global y1 
global x 
global fs 
global z 

  
s2=get(handles.pushbutton2,'Value'); 
if s2==1 
play(z)   
else  
stop(z) 
end 
% --- Executes on button press in pushbutton3. 
function pushbutton3_Callback(hObject, eventdata, handles) 
% hObject    handle to pushbutton3 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 

  
% Create string for output that we can send to the text control. 
txtInfo = sprintf('Heart_rate = %.4f', hr);  
% Now, send the string to the control called txtInfo 
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set(handles.txtInfo, 'String', txtInfo); 

  

  

  

  

  

  
% --- Executes on button press in pushbutton6. 
function pushbutton6_Callback(hObject, eventdata, handles) 
% hObject    handle to pushbutton6 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
global fs 
global nbits 
global y 
global z 
fs = 11025; 
t = wavrecord(15*fs,fs,'int16'); 
wavwrite(y,fs,'new')  
wavplay(t)  

  

  
% nbits=8; 
% fs=11025; 
% [y,fs,nbits]=wavread(t); 
% %sound(y); 
% z= audioplayer(y,fs) 

  

  

  
a=wavread('new'); 
plot(handles.Heart_rate,a); 

  
% low pass filter to discard high-freq components 
[B,A]=cheby1(2,0.2, 200/(fs/2), 'low');  
h1=dfilt.df2(B,A); 
% fvtool(h1,'FrequencyScale','log'); % to see filter response 
yw=filter(h1,y); 
% Nrm=(yw.^2)/max(yw.^2); % normalization 
Nrm=yw/max(abs(yw)); % normalization 

  

  

  
%% envelope detection_Shannon METHOD 
N=length(Nrm); 
window=0.02; 
Ns=(fs*window); % number of samples per window 
Nw= floor((N/Ns)*2);  

  
% fun1=@(x) -sum ((x.^2) .* log (x.^2))/(Ns/2); % Energy calculation 
% B1 = blkproc(Nrm,[Ns/2 1],fun1); 
% fun2= @(x) mean (x); 
% B2 = blkproc(B1,[2 1],fun2); 
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i=1; 
for c= 1:Nw 
    x=Nrm(i:i+Ns/2-1,1); 
    Es(c)= -sum((x.^2) .* log (x.^2))/(Ns/2); % Energy calculation 
    i=i+Ns/2; 
end 

  

  
n=1; 
for j=1:length(Es) 
    if j==length(Es), break, end 
    Es1(j)= sum(Es(n:n+1))/2; 
    n=n+1; 
end 

  
P= (Es1-mean(Es1,2))/std(Es1); 
[r,c]=peakfinder(P,(max(P)-min(P))/4, 0.02,1); 
% figure 
% stem(r, c,'r','Marker', '*');  
% hold on;  
%  
% title ('Peak detection') 

  
%%heartrate calculation 
%intervals 
I=1; 
K=1; 
L=1; 
f=0; 
g=0; 
%J=1; 
for I=1:(numel(r))-1;    
J(I)=r(I+1)-r(I);   %calculating intervals between successive peaks and 

storing in matrix 'J' 
end 

  
%systolics using mean partitioning 
for I=1:numel(J); 
if J(I)< mean(J)    %calculating mean of interval matrix J and all 

intervals that lie below the mean are considered systolic periods, 

these periods are stored in matrix 'f' 
f(K)=J(I); 
K=K+1; 
end 
end 

  
%diastolics using mean partitioning 
for I=1:numel(J); 
if J(I)> mean(J)    %same is done to obtain the diastolic periods 
g(L)=J(I); 
L=L+1; 
end 
end 
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%filtering abnormal values 
meanf=mean(f); 
stdf=std(f); 

  
for I=1:numel(f); 
while f(I) == NaN; 
I=I+1; 
end 
if f(I) < meanf - stdf || f(I) > meanf + stdf; 
f(I) = NaN; % all values outside 1 std of mean of 'f' is converted to 

NaNs 
end 
end 

  
f = f(~isnan(f));   % all NaN's omitted from matrix 'f' 

  
meang=mean(g); 
stdg=std(g); 

  
for I=1:numel(g); 
while g(I) == NaN; 
I=I+1; 
end 
if g(I) < meang - stdg || g(I) > meang + stdg; 
g(I) = NaN; % all values outside 1 std of mean of 'g' is converted to 

NaNs 
end 
end 

  
g = g(~isnan(g));   % all NaN's omitted from matrix 'g' 

  
t=(mean(f)+mean(g))*window; 
hr=(60*2)/t 

  
plot(handles.Peak_finder,P); 

  
% Create string for output that we can send to the text control. 
text5 = sprintf('Heart_rate = %.4f', hr);  
% Now, send the string to the control called txtInfo 
set(handles.text5, 'String', text5); 

  

  

  

  

  

  

  

  

  
% --- Executes on button press in pushbutton8. 
function pushbutton8_Callback(hObject, eventdata, handles) 
% hObject    handle to pushbutton8 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
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% handles    structure with handles and user data (see GUIDATA) 
global y 
global fs 
global z 
stop (z) 

  

  

  

  

  

  

  
function edit1_Callback(hObject, eventdata, handles) 
% hObject    handle to edit1 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 

  
% Hints: get(hObject,'String') returns contents of edit1 as text 
%        str2double(get(hObject,'String')) returns contents of edit1 as 

a double 

  

  
% --- Executes during object creation, after setting all properties. 
function edit1_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to edit1 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns 

called 

  
% Hint: edit controls usually have a white background on Windows. 
%     See ISPC and COMPUTER. 

  
if ispc && isequal(get(hObject,'BackgroundColor'), 

get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 

 

 

 

 

 

 

 

 


