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Ultrasound is a widely used modality for both therapy and diagnosis in 

medicine and Biology. Currently, in the field of medical diagnosis, ultrasound is 

responsible for about one in five of all diagnostic images. This research project 

examines the applicability of strain estimation algorithms to improve the 

clinical value of tissue elasticity images. Pathological changes can be frequently 

correlated to changes in soft tissue stiffness. Despite the fact that many cancers 

often manifest themselves as stiff focal lesions, there location and shape can 

make them difficult, if not impossible, to detect during a palpation-based 

physical examination. The mechanical properties of tissue cannot be measured 
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directly using any current imaging modality. However, an ultrasound-based 

technique known as elastography has evolved over the last fifteen years which 

is capable of estimating relative strain distributions in soft tissue. Under certain 

conditions, these strain images (elastograms) can give a clear depiction of the 

underlying tissue stiffness distributions, and thus, can be used as a clinical tool 

for the detection of pathological lesions. 

 

                      

 

 

 

Conventionally elastographic techniques estimate tissue strain by tracking 

spatial features found in congruent pairs of ultrasonic echo backscattered signals 

before and after a small, quasistatic compression is applied to the tissue surface 

via the ultrasound transducer. Although this technique has shown promise from 

a clinical perspective in detecting both benign and malignant lesions of the 

breast and prostate, it is sensitive to extraneous motions that ultimately 

compromise the strain estimation procedure. To alleviate this problem, the 

applicability of strain estimation algorithms and techniques were examined. 

Both simulation and experimental (in vitro) results obtained using an 

elastographic phantom indicate that this approach holds promise to improve the 

clinical value of the images produced. Also, initial results obtained using a 

novel elastographic animal model further support the efficacy of spectral-based 

strain imaging in vivo. 
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Summary 

Medical imaging is vital to modern clinical practice, enabling clinicians to 

examine tissues inside the human body non-invasively. Its value depends on 

accuracy, resolution, and the imaged property (e.g., density). Various new 

scanning techniques are aimed at producing elasticity images related to 

mechanical properties (e.g., stiffness) to which conventional forms of 

ultrasound, X-ray and magnetic resonance imaging are insensitive. 

Elastography, palpography or strain imaging has been under development for 

almost two decades. Elasticity images are produced by estimating and analysing 

quasistatic deformations that occur between the acquisition of multiple 

ultrasound images. Likely applications include improved diagnosis of breast 

cancer (which often presents as a stiff lump), but the technique can be unreliable 

and difficult to perform. Practical imaging is based on freehand scanning, i.e., 

the ultrasound probe is moved manually over the surface of the tissue. This 

requires that elasticity images are calculated fast to provide a live display, and 

the images need to present meaningful elasticity data despite the poorly 

controlled properties of the deformations. This thesis presents technical 

developments towards clinically practical elasticity imaging. First, deformation 

estimation is examined to devise algorithms that are both computationally 

efficient and accurate. Second, the entire image formation process is considered, 

providing strain data accompanied by indications of accuracy, which are then 

appropriately scaled and displayed in elasticity images representing the value 

and reliability of elasticity data. 

 

Displacements are estimated by matching windows of radio-frequency data 

between pre- and post-deformation ultrasound frames. Robust tracking ensures 

that displacement estimates can be found by searching over small ranges  
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without introducing large errors, location estimation corrects a well-known 

amplitude modulation artifact, and a “weighted phase separation” framework 

illuminates the scope for optimizing the speed and accuracy of deformation 

estimators. 

Strain estimates derived from each estimated deformation provide a form of 

elasticity image. A method is devised for predicting the accuracy of each strain 

estimate, which is first applied for dynamic resolution selection: parameters are 

automatically modulated to produce images with fixed precision at variable 

resolution. This indicates the scope for using accuracy indicators, which are 

applied to greater practical advantage in an interface concept: Nonuniform 

normalization of strain data leads to “pseudo-strain” images. Values from 

multiple images are blended adaptively to produce a final display that is 

reliable, while indicating the level of uncertainty where data are less accurate. 

This has made it possible to produce good 2D and 3D elasticity images by 

freehand scanning. Indeed, a clinical trial has recently been set up to evaluate 

the utility of this system in various clinical scenarios. 

Keywords: medical imaging, 2D ultrasound, 3D ultrasound, elastography, 

elasticity imaging, strain imaging, deformation imaging, RF signal processing 

 

 

 

 

 

 

                                                   

 

 

 



10 | P a g e  
 

                 

 

 

 

CONTENTS 

 

 

 

 

1. Introduction................................................................................. 11 

2. Diagnostic Ultrasound Imaging.................................................. 12-13 

3. Strain Estimation......................................................................... 14-16 

4. Spectrum Analysis......................................................................   

 Theory….……………………………………….  17-21 

5. Elasticity Imaging Concept…………………………………….  21-26 

6. Concluding Remarks and Future Work………………………..   27-30 

List of Reference………………………………………………….   31 

 

 

 

 

 

 

 



11 | P a g e  
 

 

 

  

                                             Introduction 

 

Diagnostic ultrasound has become the most common medical-imaging 

modality, and it is far from stagnant as the number of clinical applications for 

ultrasound continues to grow. Ultrasound is routinely used in all clinical 

medicine specialties and in many areas of bioscience research. It is a popular 

modality because it is safe, noninvasive, portable, easy to use, relatively 

inexpensive, and displays images in real time (104). Even as a mature 

technology, advances are still being made, ranging from improvements in 

transducer design to new signal processing algorithms, including the 

introduction of new modes and applications, such as three-dimensional (3D) 

imaging. In this review, we focus on the current status of ultrasound imaging 

and the impact of new applications on the design of current and future 

ultrasound machines. We discuss the various algorithms, processing 

requirements, and challenges of the common diagnostic ultrasound modes, 

including B-mode and color flow imaging. We also discuss the processing 

challenges of several new algorithms for estimating strain and obtaining the 

strain image to detect the pictorial status more precisely. 

The tactile properties of tissue continue to represent important information for 

modern medical practitioners. Huge investment has been directed at research 

and infrastructure for breast screening programmes in developed countries. 

Irrespective of the movement towards evidence-based medicine, with great 

emphasis being placed on measuring tangible changes in medical outcomes, 

manual palpation in the clinical breast examination is still widely regarded as an 

important procedure, contributing to a lowering ofthe breast cancer mortality 

rate . On the other hand, breast cancer also exemplifies the limitations of 

subjective examinations when the tools may be inadequate. For many years it 

was assumed that training women in self-examination of their own breasts 

would achieve better medical outcomes, owing to earlier cancer detection, but 

the accumulated evidence indicates that such training programmes have only 
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one significant result: The rate of biopsies on benign lesions goes up, which 

may in fact be damaging to health. 

 

                    

 

                           DIAGNOSTIC ULTRASOUND IMAGING 

 

Figure 1 schematically illustrates the processing stages of a typical diagnostic 

ultrasound system. The ultrasound acoustic signals are generated by converting 

pulses of a 2- to 10-MHz electrical signal (known as the carrier frequency xc) 

from the transmitter into an acoustic wave using a piezoelectrictransducer.As 

the acoustic wave pulse travels through the tissue, a portion of the pulse is  

 

FIGURE 1: Block diagram of a typical diagnostic ultrasound machine. 

reflected at the interface of materials with different acoustical impedance, 

creating a returned signal that highlights features, such as tissue boundaries long 

well defined beam line. The reflected pulses are sensed by the transducer, and 

converted into radio frequency (RF) electrical signals. The transducer emits the 

acoustic pulses at a pulse repetition frequency (PRF) typically ranging from 0.5 



13 | P a g e  
 

to 20 kHz, based on the time for the pulse to travel to the maximum target depth 

and return to the transducer. 

As the acoustic wave travels through the tissue, its amplitude is attenuated. 

Therefore, the receiver first amplifies the returned signal in proportion to depth 

or the time required for the signal to return (i.e. time-gain compensation, 

TGC).The signal’s attenuation also increases as xc is increased, limiting the 

typical ultrasound system to depths of 10–30 cm. Higher frequencies, such as 50 

MHz, are limited to a,1-cm depth, but they offer the advantage of improved 

resolution, which could be useful for applications in eye, skin, and intravascular 

imaging.  

After the RF analog signal is received and conditioned through time-gain 

compensation, it is typically sampled at a conservatively high rate (e.g. 36 MHz 

for a transducer with xc 4 7.5 MHz). The demodulator then removes the carrier 

frequency by using techniques such as quadrature demodulation to recover the 

return (echo) signal. In quadrature demodulation the received signal is 

multiplied with cos (xct) and sin (xct), which after low-pass filtering, results in 

the baseband signal of complex samples, I(t) ` jQ(t). The complex samples 

contain both the magnitude and phase information of the signal and are needed 

to detect moving objects, such as blood flow. 

The samples of the signal obtained from one acoustic pulse (i.e. onebeam) are 

called a vector. Today’s phased-array transducers can change the focal point of 

the beam as well as steer the beam by changing the timing of the firing of the 

piezoelectric elements that comprise the array. By steering these beams and 

obtaining multiple vectors in different directions along a plane (i.e. V1–V5 in 

Figure 1), a two-dimensional (2D) image can be formed. Depending on how the 

vectors are processed, the image can be simply a gray-scale image of the tissue 

boundaries (known as echo imaging or B-mode) or also have a pseudo color 

image overlaid. In addition, the spectrum of the blood velocity at a single 

location over time can be tracked (known as gated Doppler spectral estimation) 

and plotted in a spectrogram. By combining multiple slices of these 2D images, 

3D imaging is also possible for these modes. Depending on the application, 

typical frame rates can range from 5 to 30 frames per second (fps) for 2D color-

flow imaging to.50 fps for 2D B-mode imaging. 
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                                                        Strain Estimation 

 

The first signal processing task for generating a strain image is estimation of the 

deformation throughout the scan region. The inputs are pre- and post-

deformation frames of RF ultrasound data. Throughout this thesis, for 

simplicity, strain is only estimated in the axial direction. Errors in the fine 

component have previously been described as “jitter”, with errors in the bulk 

component described as “peak-hopping”; analysis characterising estimation 

performance has tended to focus on the size of fine errors. This chapter is about 

methods for correctly estimating the bulk component. Minimising fine errors is 

irrelevant unless bulk errors are rare.There is non-zero fine error in every 

displacement estimate, varying in size depending on data quality and algorithm 

performance, whereas the occurrence of bulk errors is more of a binary event: 

the local optimum selected as a displacement estimate either is or is not closer 

to the true displacement than every other local optimum that could have been 

chosen. The presence of bulk errors can be highly problematic, because they are 

amplified by later stages of signal processing, impacting disproportionately on 

strain estimates calculated using linear filters. 

All methods for deformation estimation share common structural features. An 

individual estimate of displacement relative to the ultrasound probe is calculated 

at each point on a grid covering the scan region. A window of data centered on 

the point of interest in the pre-deformation frame is compared with windows of 

equal size at shifted positions in the post-deformation frame. A match is 

identified by calculating the similarity between the windows, noting the post-

deformation window that registers the highest similarity. Finally, the 

displacement estimate is equal to the difference between the positions of the 

pre- and post-deformation windows. The displacement estimate can have both 

axial and lateral components if post-deformation windows are tested in multiple 

neighbouring columns. Otherwise, the lateral component of displacement is 

treated as zero. 
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Two features that distinguish between different displacement estimators are the 

similarity measure and the search range. The correlation coefficient between RF 

ultrasound data in pre and post-deformation windows is a popular choice of 

similarity measure used throughout this chapter. Alternatives are tested in later 

chapters. Regarding the search range, many authors favour exhaustive search, 

where the search range spans a large fraction or all of the data acquired over the 

dimension being searched.  

Correlation coefficients are calculated for every integer shift along the sampled 

data to find the highest value.A single RF ultrasound frame spanning a square 

region of tissue typically consists of around 128 columns of RF ultrasound data, 

called A-lines, with several thousand RF samples along each A-line. With 

conventional beam forming the axial dimension in RF ultrasound frames is not 

only far more densely sampled than the lateral dimension, but it is also less 

likely to be affected by aliasing,has a higher centre-frequency, and higher 

bandwidth. Therefore, axial displacement estimation is far more accurate than 

lateral displacement estimation. 

Figure 2 shows an example of exhaustive search along an A-line. The 

correlation coefficient is shown for a wide range of trial displacements. The 

highest peak is near the actual displacement, but wrong peaks occur at intervals 

roughly equal to the wavelength associated with the centre frequency of the 

ultrasound signal. The correct peak happens to be the highest in this example, 

but some of the wrong peaks are almost as high. Bulk errors occur in an 

exhaustive search whenever the highest peak is wrong. 

The rate of bulk errors can be reduced by limiting the search range to include 

fewer wrong peaks. However, bulk errors can only be eliminated if the search 

range contains the correct peak, and no others sometimes a neighboring wrong 

peak is higher. Ensuring that a limited search range actually includes the correct 

peak is not trivial. “Tracking” refers to approaches in which displacement is 

estimated at different points in sequence; each search range is limited based on 

the values of displacement estimates that have already been calculated at other 

points nearby. When successful, this eliminates bulk errors. 

Tracking in ultrasonic deformation estimation is usually motivated as a means 

to fast, efficient computation. Speed is an important advantage  achieved by 

shortening the search range, which reduces the number of computations 

required. Fundamentally this is why exhaustive search is unsuitable for freehand 
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elasticity imaging. However, increased accuracy is also potentially a significant 

benefit of tracking. In some situations it might even be the main advantage. 

Tracking does not necessarily reduce the rate of bulk errors. It causes bulk 

errors whenever the correct peak lies outside the search range. The first bulk 

error may skew the search ranges for subsequent displacement estimates, 

resulting in catastrophic failure due to error propagation. 

On the other hand, strategies for robust tracking that avoid error propagation 

offer joint benefits of greater accuracy and greater speed. 

    This chapter describes and compares exhaustive search and various tracking 

strategies. Displacement estimates are calculated as integer values (number of 

samples axially and number of A-lines laterally). Results are presented in the 

form of displacement images, in which bulk errors are easy to identify by visual 

inspection. Accurate estimation of subsample displacements is considered in 

later chapters; this is separate to the issue of avoiding bulk errors. Novel 

Strategies introduced here include cross-seeding, multi-pass analysis, continuity 

checking, secure initialization, and coarse lateral tracking. 
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Figure 2: Exhaustive search in the axial direction: (a) A window of pre-

deformation RF ultrasound data is shown above the corresponding post-

deformation A-line. (b) Correlation coefficients for a large number of trial 

displacements. 

 

Spectrum Analysis 

 Theory 

An overwhelming number of formally defined mechanical properties could be 

considered in the analysis of human tissue. There is likely to be a subset of 

properties for which measurements or images would be clinically useful, and 

another subset of properties for which measurement or imaging is to some 

extent possible. The overlap is the type of property that may serve as the basis 

for successful elasticity imaging. An overview of relevant theory is presented 

framing the role of qualitative approaches to elasticity imaging. 

When analyzing ultrasound images to estimate mechanical properties, the type 

of motion required is deformation, i.e., compression, expansion, or shear. This 

is most simply described by a field of displacement data, recording tissue 

motion as a function of spatial position. A more useful description is in terms of 

strain, i.e., quantities calculated by taking spatial derivatives of the displacement 

field to remove components associated with rigid body motion (bulk translation 

and rotation) which are unrelated to mechanical properties. 

In 1D, strain is typically defined as the change in length divided by either the 

original or the final length. Definitions differ significantly when it comes to 

large strains (e.g., greater than 10%). Various definitions are suitable for 3D 

analysis, of which the most popular is also the simplest, and they converge 

when considering small deformations. 
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Figure 3: Components of 2D strain, εij , when a square (solid line) is deformed 

(dashed line): (a) Longitudinal strain (i = j) indicates shortening or lengthening 

in a particular direction. (b) Shear strain (i =/ j) indicates warping as shown. 

 

Throughout this thesis, “strain” means elements from Cauchy’s strain tensor: 

                         εij = ½(∂ui/∂xj + ∂uj/∂xi)                        i, j = 1, 2, 3, (1.1) 

where ui is displacement in direction i, and xj is pre-deformation position in 

direction j. The different meanings of longitudinal and shear strain are indicated 

in Figure 3.Strain arises due to changes in the stress field (force per unit area) 

within the tissue, which in turn follows changes in forces acting internally or on 

boundaries, called “mechanical excitation”.  

The tissue may be squashed by a compression plate, vibrated from its surface, 

struck on the surface by a small mass, or palpated internally by radiation force. 

The resulting stress field comprises  

(1) an isotropic/hydrostatic component causing change in volume (change in 

pressure), and  
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(2) anisotropic components causing change of shape (shear stresses and 

anisotropic components of longitudinal stresses). Elements from the 3D stress 

tensor are labeled in Figure 4. 

 

 

Fig 4: Elements from the 3D stress tensor labelled on an infinitesimally small 

cube. 

 

In order to estimate mechanical properties, measurements or estimates of 

deformation must be combined with prior knowledge, estimates, or reasonable 

assumptions regarding mechanical excitation. In theory, deformation and 

excitation are linked via constitutive equations dependent on mechanical 

properties of the tissue. For example, the theory of linear elasticity based on 

Hooke’s law has been developed extensively by mathematicians neering, 

physicists and engineers.  

It has proven useful for analysing the properties of man-made structures such as 

buildings and machines. Much of the behaviour of common engineering 

materials, such as steel and timber, is actually poorly described by linear 

elasticity, but the theory is valuable because engineers are familiar with 

situations in which it applies relatively accurately. The usual application for 
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constitutive equations is to calculate deformation given knowledge of 

mechanical excitation and material properties: the “forward problem”. 

Working in reverse, it is sometimes possible to calculate the values that must 

apply regarding material properties given that a known mechanical excitation 

causes a known (measured) deformation: the “inverse problem”. This can often 

be solved, but inverse problems are more difficult than forward problems. If a 

technique is required for producing quantitative images of a specific mechanical 

property by solving an inverse problem, one of the associated challenges is the 

need for accurate deformation measurements, which is considered at length 

throughout this thesis. Realistically, computational cost is also a significant 

issue, i.e., the time required to produce each image, and the amount of 

computing power that must be built into the ultrasound scanner. Both 

considerations apply similarly with regard to producing images that are only 

qualitatively related to mechanical properties. 

Quantitative imaging presents three other fundamental challenges:  

(1) Complexity: This is perhaps the greatest obstacle. The mechanical behavior 

of tissue is not accurately described by simple, convenient models.  

(2) Computational stability: As the number of parameters in a model 

increases, the chance of a unique solution being available diminishes, and the 

quantity of data required for achieving acceptably low error increases 

dramatically.  

(3) Unknown boundary conditions: Elasticity imaging is usually based on 

scanning a limited region of tissue, spanning a small volume (3D scans not 

encompassing the entire human body) or a slice (2D scans). This causes 

problems, because some approaches to quantitative analysis only produce 

correct solutions if the mechanical properties are known all over the boundary. 
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Elasticity imaging concepts 

The following review is not exhaustive, but it should serve as sufficient context 

for judging the significance of the approach pursued in this thesis. The main 

ultrasonic concepts are summarized, and differences are highlighted. 

Quasistatic: 

The basic scanning procedure consists of  

(1) recording a “pre-deformation” ultrasound image of unloaded tissue,  

(2) applying a load, and  

(3) recording a “post-deformation” ultrasound image.  

The deformation between pre- and post-deformation ultrasound frames is 

estimated by a suitable signal processing technique, and analyzed to produce an 

elasticity image. That abstract covers numerous related techniques. Loading can 

be applied at a quasistatic rate by various means. For example, research into 

intravascular elasticity imaging exploits physiological excitation: artery walls 

deform because of the change in blood pressure over the cardiac cycle. The 

loading has a frequency of approximately 1 Hz, which seems suitable for 

quasistatic analysis. In other tissues, quasistatic deformation arises due to 

breathing. Many investigations have been performed using motion of the 

ultrasound probe as the source of quasistatic mechanical excitation. Tissue 

compresses when the probe is pushed firmly against the surface, and relaxes 

when the probe is held lightly (Figure 5). Suppose that motion of the ultrasound 

probe causes a uniform change in the axial component of longitudinal stress. 
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Strain at each point in the image is then inversely proportional to Young’s 

modulus if the behavior is isotropic linear-elastic. The stress field is usually 

nonuniform, so strain data are ambiguous, but strain imaging is the simplest 

way of displaying quasistatic deformation data to provide a visual indication of 

variation in mechanical properties. Techniques exploiting probe movement for 

mechanical excitation divide into two subcategories. Automated scanning 

requires extra hardware, whereas freehand scanning is the usual technique 

employed in conventional sonography. The choice of scanning technique has 

significant consequences. Automated scanning entails mounting an ultrasound 

probe on a mechanical actuator to deform tissue by means of a carefully defined 

movement at the surface. For example, tissue can be compressed by translating 

the probe precisely 1 mm in the axial direction. The main advantage is that a 

certain probe movement is repeatable, especially if it is known to lead to good 

elasticity images in a particular application. Furthermore, the reliable 

acquisition of suitable pre- and post-deformation ultrasound data means that 

computations for producing an elasticity image can be performed off-line. This 

might buy time for elaborate computational methods to maximize the quality of 

the elasticity images. Equally, the need for correct prior knowledge of a suitable 

probe movement is potentially a disadvantage. The best movement for 

quasistatic elasticity imaging is likely to vary from one patient to the next. 

Automated scanning is cumbersome compared to the freehand approach that 

clinicians are accustomed to. Usually the sonographer holds an ultrasound probe 

in his or her hand and moves it manually over the patient’s skin to produce 

images of accessible tissue from whichever angle proves to be the most 

informative. 
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Figure 5: The principle behind quasistatic elasticity imaging. 

(a) Inhomogeneous tissue is modelled as a set of springs, where different spring 

constants represent variation in Young’s modulus. Bold springs are three times 

stiffer than the rest. An ultrasound image records the pre-deformation state of 

the tissue.  

(b) Tissue deforms when the ultrasound probe is pressed firmly against the 

surface, and a post-deformation ultrasound image is recorded. The deformation 

here is exaggerated for illustrative purposes (25% compressive strain). It is 

likely that smaller deformations (strain on the order of 1%) are more appropriate 

when examining human tissue.  

(c) Tissue displacement relative to the ultrasound probe is estimated by 

analyzing the ultrasound images, and strain is calculated by differentiation. If 

the stress throughout the tissue is uniform (as in this example), strain is 

inversely proportional to the spring constant, so the strain in bold springs is 

three times lower than elsewhere.  

(d) Variation in the spring constant is revealed by setting pixel intensities 

according to the strain values. 

There is inevitably some variation in the pressure applied through the probe 

between consecutive ultrasound frames in a freehand scan, which is a source of 

continuous mechanical excitation. The freehand scanning approach is hugely 
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appealing, because it can potentially be implemented on conventional 

ultrasound machines with minimal modification to the hardware and scanning 

procedure. Elasticity imaging could be made available as a display option to 

switch on whenever required during routine sonography. Such a development 

might resemble the previous adoption of Doppler techniques for measuring 

blood flow, which has rapidly become an indispensable adjunct to conventional 

ultrasound imaging . 

Compared to automated scanning, the deformation in a freehand scan is 

uncontrolled and unpredictable. Clinicians may be unable to perform prescribed 

probe movements accurately on a very fine scale. Therefore, freehand 

deformations may often be too small or too large for inferring mechanical 

properties, or the type of deformation may simply be unsuitable. Figure 5 shows 

a compression in which the probe is translated axially. Freehand scanning is 

bound to throw up more complicated movements, such as rotation about the 

elevational axis. Some freehand strain images must inevitably be less 

informative than automated strain images. On the other hand, a sequence of 

freehand strain images can test a range of deformations, so the best freehand 

images may be more informative than the best automated strain images. 

Furthermore, the variation within a sequence of freehand deformations could 

increase the reliability of inferences relating to mechanical properties. 

 

The value of a strain image sequence must depend on the sonographer’s 

scanning technique, which determines the deformation sequence. A live (real-

time) strain display is likely to enhance the benefits of freehand scanning 

significantly by providing continuous feedback, so the sonographer can adjust 

his or her scanning technique towards whatever seems to work best. Live strain 

displays have been demonstrated in the past with frame rates similar to 

conventional ultrasound imaging (some tens of Hz). However, joint 

requirements for accuracy and speed place pressure on hardware and algorithm 

design. 

Whether by automated or freehand scanning, quasistatic elasticity imaging may 

depict in fine detail the geometry of regions distinguished by their mechanical 

properties. The fundamental limit on resolution is the same as that of the 

ultrasound images from which the deformation estimates are derived. However, 

the usefulness of the images will depend on how accurately deformation can be 
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estimated using ultrasound, and how closely inferences based on the 

deformation estimates can be made to correspond to quantitative mechanical 

properties of the tissue such as Young’s modulus. 

The first point is critical, because raw displacement estimates are spatially 

differentiated when calculating strain or inferring mechanical properties, which 

tends to amplify noise. The signal strength can be increased by applying larger 

deformations, but very large deformations are unlikely to be desirable. Aside 

from the basic issue of patient comfort, the response is more nonlinear, and 

hence more difficult to interpret, as discussed earlier. Anyway, large 

deformations may not improve the signal-to-noise ratio, because an increase in 

the “deformation signal” causes greater de-correlation between successive 

ultrasound frames, which in turn increases the level of estimation noise. This 

topic is considered in detail throughout this thesis. The feasibility of accurately 

estimating tissue deformation using ultrasound data is a basic premise behind 

this work, although there may be no simple means of ensuring that all 

deformation estimates are sufficiently accurate. 

On the second point, while nonuniformity in the stress field means that strain 

images along the lines of Figure 5 are not equivalent to Young’s modulus 

images, can strain data be converted into Young’s modulus images? The inverse 

problem is already greatly simplified by the assumption of isotropic, 

incompressible, linear-elastic behaviour introduced . Accepting the approximate 

nature of this analysis, it is possible to evaluate Young’s moduli throughout the 

scan region if the stresses or Young’s moduli are known at all points over the 

scan boundary. Several researchers have attempted to produce quantitative 

images on this basis, but unknown boundary conditions are a significant 

obstacle. It is (probably) impossible to measure all of the boundary stresses, so 

assumptions are needed regarding boundary values of Young’s modulus. It has 

been suggested that images of relative Young’s modulus can be produced by 

assuming uniformity over the boundary, but dramatic errors can occur if the 

assumption of uniformity is incorrect. The selection of appropriate prior 

assumptions is emphasised in model-based approaches, which may be more 

successful for specificwell-constrained tasks. 

Challenges associated with the inverse problem should not impede simpler 

approaches to quasistatic elasticity imaging. Strain images represent useful 

information despite variation in stress. Boundaries in accurate strain images 

usually correspond to boundaries with respect to mechanical properties, 
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although the size of differences in strain does not match the the size of 

differences in Young’s modulus. Strain images cannot justify quantitative 

statements such as, “Young’s modulus in the lesion is 2.5 times higher than in 

the background,” but it may often be reasonable to make qualitative 

observations such as, “The round lesion (diameter of 3 mm) is much stiffer than 

the background.” 

 

To date, strain imaging has been the approach in almost every clinical trial of 

quasistatic elasticity imaging. In one instance, data were acquired by automated 

scanning, but freehand scanning has been tested more frequently with a focus 

on breast and prostate examinations. Successful strain images are sometimes 

better than conventional ultrasound for identifying tumours. Malignancy and 

different types of cancer may be distinguishable on the basis of either strain 

contrast or (perhaps more likely) differences in geometrical appearance between 

conventional ultrasound and strain images. Reports conclude unanimously that 

strain imaging could potentially be a useful clinical tool, but none has yet 

demonstrated a conclusive case for adoption into routine clinical practice. The 

issue of stress variation and boundary conditions seems not to be a major 

drawback, because the qualitative information is still useful. The question of 

how to produce accurate images is more of a problem, because strain images 

continue to be unreliable . The presence of many bad images makes 

interpretation difficult and laborious for sonographers, who are typically 

required to inspect sequences of stored strain images by eye to select those that 

are informative. This thesis contributes towards improving the reliability of 

strain images. 
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Concluding remarks and Future Works 

 

Project summary 

In this research project, novel elastographic algorithms and techniques were 

developed and evaluated with the objective of improving the clinical value of 

the resultant tissue elasticity images. Conventionally elastographic techniques 

estimate tissue strain by tracking spatial features found in congruent pairs of 

ultrasonic echo backscattered signals before and after a small, quasistatic 

compression is applied to the tissue surface via the ultrasound transducer.  

Although this technique has shown promise from a clinical perspective, it is 

sensitive to extraneous motions (i.e., decorrelation noise) that ultimately 

compromise the strain estimation procedure.  

 To alleviate degradation in the strain estimation procedure associated with 

decorrelation noise sources this research project examined the applicability of 

spectral elastographic techniques. Firstly, a 1-D spectral elastographic 

simulation was introduced and utilized to analyze the tradeoffs associated with 

spectral elastography. Specifically, it was demonstrated using simulated Strain 

Filters that increases in the transducer center frequency and/or bandwidth results 

in a corresponding increase in the SNRe, strain imaging sensitivity and dynamic 

range. It was also illustrated that by increasing the underlying spatial window 

length used to compute the spectral estimates that a corresponding improvement 

in the strain estimation process may be obtained. The effect of spectral density 

on strain estimation performance was also evaluated and it was determined that 

by increasing the spectral density,a corresponding improvement in the strain 

estimation procedure results. 

 

For our thesis purpose we created the MATLAB toolbox(Fig:).And in this 

toolbox we use different algorithms which will help the physicians to diagnosis  

more accurately as these algorithms accumulated at the same place.So they can 

use it more quickly and effectively than before. 
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Figure 6: Graphical User Interface using MATLAB toolbox 

 

 

Algorithms accumulated here are given below: 

1. Adaptive Stretching 

2. Uniform Stretching 

3. Gradient(No Stretching) 

4. Least Square Stretching 

5. Least Square Uniform Stretching 

6. Least Square Uniform Stretching-2 

7. Least Square Correlation Maximum 

8. Least Square Correlation Maximum Uniform Stretching 

9. Variable Stretching 

10.  Least Square Variable Stretching 

11.  Smooth Spline(No Stretching) 

12. Smooth Spline Uniform Stretching 
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Different results found using different algorithms: 

 

For Uniform Stretching:  

 

 
 

 

For Gradient: It is the most primitive one.It is less time consuming.But 

for this case the quality of image is not satisfactory. 
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For Adaptive Stretching: It is time consuming but quality of the image 

is better than gradient algorithm. 

 

 
 

 

Future Work: 

 

1. Real time Ultra sound: 

   

In this context we will work on real time ultra sound image. In case of 

emergency the signal can be received by e-mail also. So our toolbox 

should be designed so to extract the messages from the emailed signal. 

 

2. To make some work about Ultrasound frequency: 

 

When we are studying on ultrasound then we came to know that for 

deeper region we can’t use the high frequency ultrasound. Due to this 

reason the resolution of the image is not satisfactory. So we want to work 

on this to improve the quality of image for deeper region. 

 

2. Can we use RF signal instead of US signal? 

 

To make sure, we have to compare the frequency of RF signal with the 

range of ultrasound used normally. 
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