

1

ISLAMIC UNIVERSITY OF TECHNOLOGY (IUT)

ORGANISATION OF ISLAMIC CONFERENCE (OIC)

DESIGN, CONSTRUCTION AND MANUFACTURING OF THE CONTROL

SYSTEM OF AN UNDERWATER ROBOT

A thesis submitted to the department of Mechanical and Chemical Engineering

(MCE), Islamic University of Technology (IUT), in the partial fulfillment of the

requirement for the degree of Bachelor in Science in Mechanical Engineering.

Prepared By

MD. SHAHRIAR ISLAM (091407)

Supervised by

Dr. Professor Md. Nurul Absar Chowdhury

Department of Mechanical and Chemical Engineering

Islamic University of Technology (IUT)

The Organization of Islamic Cooperation (OIC)

2

Declaration:

This is to certify that the work presented in the thesis is an outcome of the

experiment and research carried out by the author under the supervision of

Dr. Professor Md. Nurul Absar Chowdhury.

Signature of the Candidate

 Md. Shahriar Islam (Author)

Date:

Signature of the Supervisor

Dr. Professor Md. Nurul Absar Chowdhury

(Project Supervisor)

Date:

3

ACKNOWLEDGEMENT

All praises to Almighty ALLAH (Sbw) Who blessed me with potential and patience

to complete this project successfully overcoming the obstacles in the way.

 It is not sufficient to only give thanks to some people who helped and guided me

when needed and without them the thesis could never come into being successfully

in time. My gratitude and respect to my supervisor Dr. Professor Md. Nurul Absar

Chowdhury , MCE Department, Islamic University of Technology (IUT) for his

encouragement, erudite advices and extreme patience throughout the course for

establishing such a creative project. His care, concern and continuous moral

support for me are appreciated.

I am also grateful to the Head of Mechanical and Chemical Engineering Department

Dr. Md. Abdur Razzaq Akhanda for providing us with necessary funding and

supports.

Although I tried my best to complete this thesis flawlessly, I seek apology if there is

any mistake found in this report.

4

Abstract

In our time we have seen a lot of development in the design and development in

the unmanned underwater vehicle for civil and military purposes. A great array of

vehicle types and applications has been produced along with wide range of

innovative approaches for enhancing the performance of underwater robot. Key

technology advances in the relevant area include battery technology, fuel cells,

underwater communications, and propulsion system and sensor fusion. These

recent advances enable the extension of underwater robot’s flight envelop

comparable to that of manned vehicles. For undertaking longer missions, therefore

more advanced control and navigation will be required to maintain an accurate

position over larger operational envelop particularly when a close proximity to

obstacles(such as manned vehicles, pipelines and underwater structure) is

involved. In this case a sufficient good model is prerequisite of control system

design. The thesis is focused on discussion on advanced cheap design from

modeling, control and guidance perspectives. Lessons learned from recent

achievements.

5

TABLE OF CONTENTS

No. Topic Name Page

01. WHY USE UNMANNED UNDERWATER ROBOT……………………………07

02. INTRODUCTION………………………………………………………………………….08

03. BACKGROUND: SCIENCE AND TECHNOLOGY……………………………….09

 a. History of unmanned underwater development………………..09

 b. Design Philosophy …………………………………………………………….10

04. EXISTING UUV TECHNOLOGIES AND DESIGN CONSTRAINTS………….12

 a. UUV COMMUNICATION……………………………………………………..12

 b. UNMANNED UNDERWATER ROBOT COMMUNICATION……..13

05. THE INTENDED APPLICATION OF OUR UNDERWATER ROBOT…..…14

06. DESIGN OF THE UNDERWATER ROBOT………………………………………..15

6

07. CONTROL SYSTEM OF THE ROBOT……………………………………………….18

 a. System continuity………………………………………………………………19

 b. COMPONENTS……………………………………………………………………20

 c. Proteus simulation…………………………………………………………….21

 d. ARDUINO ATMEGA 2560………………………………………..…………22

 e. nrf24l01…………………………………………………………………30

 f. MOTOR SHIELD…………………………………………………………………38

 g. POWER……………………………………………………………………………..46

 h. power supply board……………………………………………….47

 08. COMMAND CENTER……………………………………………………………………50

 09. CONTROL CENTER……………………………………………………………………….51

 10. COMPUTER PROGRAM………………………………………………………………..52

 11. CONCLUSION……………………………………………………………………………….90

 Dream

 Summary

 12. BIBLIOGRAPHY…………………………………………………………………………….91

7

01. WHY USE UNMANNED UNDERWATER ROBOT

Underwater robots are useful because they can accomplish tasks that are

dangerous, uncomfortable, or tedious for humans to perform. The underwater

environment is intrinsically unfriendly to human life, with a lack of breathable

oxygen, high pressure not encountered in the atmosphere, and at times in

tolerably cold temperature such diving remains hazardous occupation where air

supply and decompression must be carefully monitored, with potentially lethal

consequences. Submarines shield the occupant from the surrounding

environment but require their own ventilation systems and buoyancy control, on

which human life depends. Aside from the intelligence that the operator provides,

and perhaps a certain sense of adventure, there is no need to include human on

board.

Danger of a manned system aside, life support systems on a submarine greatly

complicate the system design, since they must control the human temperature,

have a large pressure vessel and a breathable gas composition. The safety margin

of the design must also be much larger, given the consequence of a failure.

Another consideration is the overall effort in completing an underwater task. For

a few exploratory dives, it may not be a burden to send a trained crew. However,

keeping a near constant underwater presence, or operating a fleet of vehicles,

would require a large number of skilled operators. Some laborious task such as

fixed survey patterns, are better done by never tiring computer than humans.by

removing the human presence and giving the vehicles a degree of autonomy, the

effectiveness of the vehicles may be greatly increased, and the tedium to human

reduced.

8

02. INTRODUCTION

Underwater vehicles are all types of underwater robots which are operated with

minimum or without intervention of human operator. The phrase is used to

describe both a remotely operated vehicle (ROV) and an autonomous underwater

vehicle (AUVs).remotely operated vehicles are tele-operated robots that are

deployed primarily for underwater installation, inspection and repair tasks. They

have been used extensively in offshore industries due to their advantages over

human driver s in term s of higher safety, greater depths, longer endurance and

less demand for support equipment.in its operation, the ROV receives operation

on board a surface ship or other mooring platform through tethered cable or

acoustic link. AUVs on the other hand operate without the need of the constant

monitoring and supervision from a human operator. As such the vehicle do not

have the limiting factor in its operating range from the cable typically associated

with ROVs this enables AUVs to be used for certain types of mission such as a long

range oceanographic data collection where the use of ROVs deemed impractical.

Ura t.,AUV ‘r2d4’, its operation and roadmap for AUV development, in :Advances

in Unmanned Marine Vehicles, edited by G.N.Robert&r. Sutton(IEE control

series69)

Proposed classification of AUVs area of application into3 different categories

starting from the basic to more advanced missions:

a) Operations at a safe distance from the sea floor including observation of the

sea floor using sonar, examination of water composition, sampling of floating

creatures.

b) Inspection in close proximity to the sea floor and manmade structure such as

inspection of hydrothermal activity, creatures on the seafloor and underwater

structures.

C) Interactions with the sea floor and manmade structures, i.e. sampling of

substance on the sea floor and drilling.

Various control techniques have been proposed for UUVs BOTH IN SIMULATION

ENVIRONMENT and actual in water experiments from the year 1990 onwards.

9

03. Background: science and technology

a. History of unmanned underwater development

The conceptual design for submarine was dated back as early 1578.the first

modern UUV was constructed in the form of a self-propelled torpedo in

1868.During the year 1958 us navy instigated the cable control underwater

vehicle program as the precursor of ROV.THE use of commercial UUV was

recognized owing to primarily the onset of the offshore oil and gas major

operation. The use of AUVs in the meantime only gradually gains acceptance both

for naval and commercial sectors due to more stringent operational

requirements. The rapid development in underwater sensors, battery and other

supporting technologies, the development of AUV HAVE GAINED acceleration in

recent decades. There were more than 46 AUV models in 1999 and according to a

survey in 2004, about 240 AUVs, ranging from 10kg to 10tons in weight and

several meters to 6000 meter in operational depth, were in operation at different

sea locations in the world.

The offshore survey industry uses AUVs for detailed mapping of the sea floor,

allowing oil companies to carry out construction and maintenance of underwater

structures in the most effective manner and with mini mum disruption to the

environment. The maintenance mission typically requires a combination of sub

bottom profilers, visual sensors, and extensive onboard processing .military

application for an AUV includes the mapping of an area for mine detection

purposes and undersea resupply of foodstuff, fuel, and ammunition. Scientists

deploy AUVs to study ocean and ocean floor using INS, side scan sonar, multi

beam echo sounders, magnetometers, thermistors, and other underwater sensors

including AD©PS AND WATER QUALITY SENSORS. Contemporary AUVs with their

corresponding maximum operational depth and speed are depicted in fig 1.

10

b. DESIGN PHILOSOPHY:

For any underwater robot to be adopted into practical use, it must be more

favorable to use than comparable, existing methods of accomplishing the same

goal. Depending on the mission, these methods might be using human divers, a

sensor towed by a ship, a manned submarine or other UUVs.

One measurement of advantage is cost effectiveness. A technological

improvement only has relevance if it contributes to a more efficient way of

completing a goal, excepting circumstances where nothing else can complete that

goal. A UUV that can work twice the work of a human diver is a difficult sell to end

users if the total cost of operation is ten times that of a diver. To be cost effective,

the design must use mass-produced, commercially available components as much

as possible, and any custom parts must be optimized for manufacturing efficiency.

11

The total cost of operation involves not just the vehicle, but the support

equipment used to operate it. AUUV might itself be relatively small and

inexpensive, but if it require a large support vessel with a crane for deployment,

the operation cost will high. Consumable elements that must be replaced after

every mission, such as primary batteries, are also unfavorable for this reason.

Ideally, a UUV could be lifted and transported by hand, and deployed by setting it

off the side of a dock or ship, without special equipment.

Simplicity is an important virtue in almost any design.it reduces cost if there are

few parts to be made and fewer features for each part. It also makes assembly

and maintenance simpler if there are fewer steps in each procedure. Perhaps

most importantly, the fragility of a system increases as the number of

independent parts increases, and the space of potential failure grows. Thoughtful

minimization at the outset of the design saves much cost, production, assembly,

and repair throughout the rest of the project.

At a minimum it should be possible to add a payload, both on exterior of the

vehicle and inside a dry pressure housing, without undue reconfiguration of the

vehicle. To meet this need, the design should have substantial dry payload space,

extra penetrators to pass wiring through the pressure housing, and a frame that

can be fitted with clamps or brackets for external payloads.

Finally, operating the vehicle should be made as simple as possible. If turning on

and deploying the vehicle requires a team of engineers and programmers, the

number of practical application is quite limited. However, if the interface is

simplified to be more like that of a remote control toy, any technician with basic

computer skills can be trained to run it within a few hours. This makes

widespread, cost effective adoption of the UUV possible.

12

04. EXISTING UUV TECHNOLOGIES AND DESIGN CONSTRAINTS

 a. UUV COMMUNICATION

For many applications, accurate navigation information is essential. For example,

measurement of water quality is not useful to a scientist without the locations of

the samples. Searching or mapping an area is very difficult without being able to

navigate. While solutions to underwater navigation exists, they constitute a large

part of the expense of the vehicle.

At the water’s surface, it is possible to use GPS for inexpensive, highly accurate

position data. Commercial GPS receivers are presently in the range of costs, and

provide absolute position, worldwide to within 1m or so. For most purposes, this

accuracy in navigation is more than adequate. However, since GPS radio

frequency signals do not carry through water, submerged navigation becomes a

separate and challenging problem.

Other submerged navigation system recreate a system like GPS under the water,

using acoustic rather than electromagnetic waves. Transducers may be

permanently mounted to know locations the sea floor, or deployed on buoys or

ships with GPS, to act position references. With a transducer mounted on the

vehicle, many navigation schemes are possible, such as exploiting time delays

from multiple sources, as long base line (LBL) navigation. Alternately, it can be

done using delay and phase information, as ultra-short base line (USBL)

navigation systems. These systems provide an absolute reference, and remove

the drift in measurements from dead reckoning. The accuracy of acoustic

navigation system can be as good as meter over a range of kilometers, under ideal

conditions. However, the cost is high. Also, they may require a support ship to

stay nearby, or the set up and removal of beacons, inconveniencing operation.

Acoustic navigation systems are also strongly affected by the characteristics of the

environment.

ROV navigation is often as informal as the operator navigating by visual

landmarks, or rough dead reckoning using a compass and estimated vehicle

speed. Navigation typical of AUVs has also been done with ROVs, including DVL

and acoustic based systems.

13

Because the state of art underwater navigation systems are expensive, and have

inherent accuracy limitations, they suggest a possibility for an improved system

design.

 b. UNMANNED UNDERWATER ROBOT COMMUNICATION

Communication between the operator and the UUV is necessary for control of the

vehicle, initiating preprogrammed missions or behaviors, monitoring the vehicles’

progress and relaying accurate data. The challenges posed by communication are

a significant part of the cost and complexity of the UUV system design and may

impose limitation on how the UUV may be operated.

ROV use a tethered to enable live, high bandwidth communication. Sending high

definition video is a common capability of electronic or fiber optic tethers.

However, a tether between the operator and vehicle adds operational difficulty.

The vehicle must operate close to shore, or a support vessel must be moved with

ROVs the drag force on the tether becomes prohibitive at some point.

A common untethered approach is to use radio communication when the UUV is

at the surface to retrieve data from the last mission, and queue up the next one.

Radio communication saves the difficulty of retrieving and deploying the vehicle

but does not work when submerged. Thus it cannot be used to change the course

of the vehicle during a mission, or to give feedback on the mission’s progress.

The state of the art in untethered UUV communication is through acoustic

modems. With transducers at the operator and vehicle sides, data may be

acoustically transmitted during the mission. While acoustic modems are common

and proven to be useful, and can have a range of kilometers, they have

limitations. First, the cost is high for an inexpensive UUV, typically at around

$15000 FOR A PAIR OF MODEMS. Also the bandwidth is low compared to radio or

tethered communication, limited by the distance that high frequency sound can

travel in water. A typical data rate might be in the hundreds or thousands of bits

per second, which is enough to send high level command or small amount of

sensory data, but not video, streaming sonar images, or other high bandwidth

applications.

14

05. THE INTENDED APPLICATION OF OUR UNDERWATER ROBOT

 To Collect sample water from lake, pond, river to study the mixture and
combination of water deep under water.

 To transport necessary liquid under water for certain application.
 To help develop the navigation under water.

Besides educational purposes, a UUV with video recording and space for water

quality sensors has many scientific uses. Presently many surveys of bottom type,

biological data, and water quality are done by tedious means. Reef biology

researchers describe taking a boat to various locations by GPS free-diving once

anchored, and then logging observations on a waterproof clipboard.

The robot can have harbor security applications. Inspecting the sides of ships hulls

is a well-suited tasks to its vertically tethered configuration. The operator can be

indoor on shore, not chasing the robot on boat, and can move between multiple

ships searching the bottom of harbor is also a well suited task, as is necessary

when vessels engaged in smuggling ditch their cargo from the underside when

confronted.

Search in shallow water is another suitable application. Presently, searching a

pond or lake is a time consuming task, employing skilled divers, or towed side

scan sonar. If the water is murky, divers may only see a small region at a time, and

have difficulty navigating. Without knowing what has been searched, it is hard to

know when to stop searching. In cold water, a search entails much discomfort.

While sonar can cover a greater area, and can be easy to deploy, it cannot image

all objects, and can show many artifacts.

15

06. DESIGN OF THE UNDERWATER ROBOT:

 Figure : underwater robot’s main body with internal structure 1

 Figure : underwater robot’s main body with internal structure 2

16

 Figure : underwater robot’s main body with internal structure 3

 Figure: underwater robot’s main body with driving propeller

17

 Figure: underwater robot’s main body with two directional propeller

Background of the design:

The design idea of the robot came through studying different operational

submarines around the world among them USS VIRGINIA, USS FLORIDA put real

impression on this project.

18

07. CONTROL SYSTEM OF THE ROBOT

 4 MOTORS

 1 DRIVING MOTOR

 2 DIRECTION CONTROL MOTOR

 1 MOTOR TO MOVE UP

 2 PUMP

 1 PUMP TO COLLECT WATER IN ONE COMPARTMENT

 1 PUMP TO HELP DIVING

 2 SECTIONS of the control system

 1. Command center

 2. Command receive and control section.

 2 MICROCONTROLLER

1 microcontroller to process and send the command through a wireless transfer

module and another microcontroller will receive the command by a receiver

module and will process the command to control accordingly.

19

a. System continuity

transmittermicrocontrollerswitch

Motor&pumpMicrocontroller receiver

20

b. COMPONENTS

 2 ARDUINO ATMEGA 2560

 3 MOTOR SHIELD

 SPEED CONTRLO AND ON-OFF SWITCH

 Nrf MODULE (transfer and receiver)

 LEPO BATTERY (lithium ion battery)

 4 MOTORS

 2 PUMPS

Previously used system

21

c. Proteus simulation

Overview

The main theme of the Proteus 8 release is integration. Development has

therefore been focused on taking the various discrete parts of an electronic

design and coupling them together to achieve a better workflow. In order to

achieve this, three major architectural changes were necessary; a unified

application framework, a common database and a live netlist.

22

Common Database & Live Netlisting

The common database and live netlisting features provide system wide access to

the properties of the parts and the connectivity between them. Features like

pinswap, gateswap and annotation are both automatic and bi-directional

between schematic and PCB and connectivity changes on the schematic can be

automatically reflected in any other module (BOM, Design Explorer, ARES).

These features also lay the foundation for a number of development projects such

as design snippets which we plan to bring forth during the lifetime of Proteus 8.

Proteus 8 stores the design (DSN), layout (LYT) and common database in a single

project file (PDSPRJ).

d. ARDUINO ATMEGA 2560

23

Arduino is an open-source electronics prototyping platform based on flexible,

easy-to-use hardware and software. It's intended for artists, designers, hobbyists,

and anyone interested in creating interactive objects or environments.

Specifications

Operating Voltage 5V

Input Voltage (recommended) 7-12 V

Digital I/O Pins 54 (of which 15 provide

 PWM output)

Analog Input Pins 16

Flash Memory 256 KB

SRAM8 KB

EEPROM 4 KB

Clock Speed 16 MHz

Overview

The Arduino Mega 2560 is a microcontroller board based on the ATmega2560. It

has 54 digital input/output pins (of which 15 can be used as PWM outputs), 16

analog inputs, 4 UARTs (hardware serial ports), a 16 MHz crystal oscillator, a USB

connection, a power jack, an ICSP header, and a reset button. It contains

everything needed to support the microcontroller; simply connect it to a

computer with a USB cable or power it with a AC-to-DC adapter or battery to get

started. The Mega is compatible with most shields designed for the Arduino

Duemilanove or Diecimila.

The Mega 2560 is an update to the Arduino Mega, which it replaces.

24

The Mega2560 differs from all preceding boards in that it does not use the FTDI

USB-to-serial driver chip. Instead, it features the ATmega16U2 (ATmega8U2 in the

revision 1 and revision 2 boards) programmed as a USB-to-serial converter.

Power

The Arduino Mega can be powered via the USB connection or with an external

power supply. The power source is selected automatically.

External (non-USB) power can come either from an AC-to-DC adapter (wall-wart)

or battery. The adapter can be connected by plugging a 2.1mm center-positive

plug into the board's power jack. Leads from a battery can be inserted in the Gnd

and Vin pin headers of the POWER connector.

The board can operate on an external supply of 6 to 20 volts. If supplied with less

than 7V, however, the 5V pin may supply less than five volts and the board may

be unstable. If using more than 12V, the voltage regulator may overheat and

damage the board. The recommended range is 7 to 12 volts.

The power pins are as follows:

 VIN. The input voltage to the Arduino board when it's using an external

power source (as opposed to 5 volts from the USB connection or other

regulated power source). You can supply voltage through this pin, or, if

supplying voltage via the power jack, access it through this pin.

• 5V. This pin outputs a regulated 5V from the regulator on the board. The

board can be supplied with power either from the DC power jack (7 - 12V), the

USB connector (5V), or the VIN pin of the board (7-12V). Supplying voltage via the

5V or 3.3V pins bypasses the regulator, and can damage your board. We don't

advise it.

• 3V3. A 3.3 volt supply generated by the on-board regulator. Maximum

current draw is 50 mA.

• GND. Ground pins.

• IOREF. This pin on the Arduino board provides the voltage reference with

which the microcontroller operates. A properly configured shield can read the

25

IOREF pin voltage and select the appropriate power source or enable voltage

translators on the outputs for working with the 5V or 3.3V.

Memory

The ATmega2560 has 256 KB of flash memory for storing code (of which 8 KB is

used for the bootloader), 8 KB of SRAM and 4 KB of EEPROM (which can be read

and written with the EEPROM library).

Input and Output

Each of the 54 digital pins on the Mega can be used as an input or output, using

pinMode (), digitalWrite(), and digitalRead () functions. They operate at 5 volts.

Each pin can provide or receive a maximum of 40 mA and has an internal pull-up

resistor (disconnected by default) of 20-50 kOhms. In addition, some pins have

specialized functions:

 Serial: 0 (RX) and 1 (TX); Serial 1: 19 (RX) and 18 (TX); Serial 2: 17 (RX) and

16 (TX); Serial 3: 15 (RX) and 14 (TX). Used to receive (RX) and transmit (TX)

TTL serial data. Pins 0 and 1 are also connected to the corresponding pins of

the ATmega16U2 USB-to-TTL Serial chip.

 External Interrupts: 2 (interrupt 0), 3 (interrupt 1), 18 (interrupt 5), 19

(interrupt 4), 20 (interrupt 3), and 21 (interrupt 2). These pins can be

configured to trigger an interrupt on a low value, a rising or falling edge, or

a change in value.

 PWM: 2 to 13 and 44 to 46. Provide 8-bit PWM output with the

analogWrite() function.

 SPI: 50 (MISO), 51 (MOSI), 52 (SCK), 53 (SS). These pins support SPI

communication using the SPI library. The SPI pins are also broken out on

the ICSP header, which is physically compatible with the Uno, Duemilanove

and Diecimila.

26

 LED: 13. There is a built-in LED connected to digital pin 13. When the pin is

HIGH value, the LED is on, when the pin is LOW, it's off.

 TWI: 20 (SDA) and 21 (SCL). Support TWI communication using the Wire

library. Note that these pins are not in the same location as the TWI pins on

the Duemilanove or Diecimila.

The Mega2560 has 16 analog inputs, each of which provide 10 bits of resolution

(i.e. 1024 different values). By default they measure from ground to 5 volts,

though is it possible to change the upper end of their range using the AREF pin

and analogReference() function.

There are a couple of other pins on the board:

 AREF. Reference voltage for the analog inputs. Used with

analogReference().

 Reset. Bring this line LOW to reset the microcontroller. Typically used to

add a reset button to shields which block the one on the board.

Communication

The Arduino Mega2560 has a number of facilities for communicating with a

computer, another Arduino, or other microcontrollers. The ATmega2560 provides

four hardware UARTs for TTL (5V) serial communication. An ATmega16U2

(ATmega 8U2 on the revision 1 and revision 2 boards) on the board channels one

of these over USB and provides a virtual com port to software on the computer

(Windows machines will need a .inf file, but OSX and Linux machines will

recognize the board as a COM port automatically. The Arduino software includes

a serial monitor which allows simple textual data to be sent to and from the

board. The RX and TX LEDs on the board will flash when data is being transmitted

27

via the ATmega8U2/ATmega16U2 chip and USB connection to the computer (but

not for serial communication on pins 0 and 1).

A SoftwareSerial library allows for serial communication on any of the

Mega2560's digital pins.

The ATmega2560 also supports TWI and SPI communication. The Arduino

software includes a Wire library to simplify use of the TWI bus.

Programming

The Arduino Mega can be programmed with the Arduino software.

The ATmega2560 on the Arduino Mega comes preburned with a bootloader that

allows you to upload new code to it without the use of an external hardware

programmer. It communicates using the original STK500 protocol (reference, C

header files).

You can also bypass the bootloader and program the microcontroller through the

ICSP (In-Circuit Serial Programming) header.

The ATmega16U2 (or 8U2 in the rev1 and rev2 boards) firmware source code is

available in the Arduino repository. The ATmega16U2/8U2 is loaded with a DFU

bootloader, which can be activated by:

 On Rev1 boards: connecting the solder jumper on the back of the board

(near the map of Italy) and then resetting the 8U2.

 On Rev2 or later boards: there is a resistor that pulling the 8U2/16U2 HWB

line to ground, making it easier to put into DFU mode. You can then use

Atmel's FLIP software (Windows) or the DFU programmer (Mac OS X and

Linux) to load a new firmware. Or you can use the ISP header with an

external programmer (overwriting the DFU bootloader).

28

Automatic (Software) Reset

Rather than requiring a physical press of the reset button before an upload, the

Arduino Mega2560 is designed in a way that allows it to be reset by software

running on a connected computer. One of the hardware flow control lines (DTR)

of the ATmega8U2 is connected to the reset line of the ATmega2560 via a 100

nanofarad capacitor. When this line is asserted (taken low), the reset line drops

long enough to reset the chip. The Arduino software uses this capability to allow

you to upload code by simply pressing the upload button in the Arduino

environment. This means that the bootloader can have a shorter timeout, as the

lowering of DTR can be well-coordinated with the start of the upload.

This setup has other implications. When the Mega2560 is connected to either a

computer running Mac OS X or Linux, it resets each time a connection is made to

it from software (via USB). For the following half-second or so, the bootloader is

running on the Mega2560. While it is programmed to ignore malformed data (i.e.

anything besides an upload of new code), it will intercept the first few bytes of

data sent to the board after a connection is opened. If a sketch running on the

board receives one-time configuration or other data when it first starts, make

sure that the software with which it communicates waits a second after opening

the connection and before sending this data.

The Mega2560 contains a trace that can be cut to disable the auto-reset. The

pads on either side of the trace can be soldered together to re-enable it. It's

labeled "RESET-EN". You may also be able to disable the auto-reset by connecting

a 110 ohm resistor from 5V to the reset line.

USB Overcurrent Protection

The Arduino Mega2560 has a resettable polyfuse that protects your computer's

USB ports from shorts and overcurrent. Although most computers provide their

own internal protection, the fuse provides an extra layer of protection. If more

than 500 mA is applied to the USB port, the fuse will automatically break the

connection until the short or overload is removed.

29

Physical Characteristics and Shield Compatibility

The maximum length and width of the Mega2560 PCB are 4 and 2.1 inches

respectively, with the USB connector and power jack extending beyond the

former dimension. Three screw holes allow the board to be attached to a surface

or case. Note that the distance between digital pins 7 and 8 is 160 mil (0.16"), not

an even multiple of the 100 mil spacing of the other pins.

The Mega2560 is designed to be compatible with most shields designed for the

Uno, Diecimila or Duemilanove. Digital pins 0 to 13 (and the adjacent AREF and

GND pins), analog inputs 0 to 5, the power header, and ICSP header are all in

equivalent locations. Further the main UART (serial port) is located on the same

pins (0 and 1), as are external interrupts 0 and 1 (pins 2 and 3 respectively). SPI is

available through the ICSP header on both the Mega2560 and Duemilanove /

Diecimila.

30

e. NRF24L01:

 Features

Features of the nRF24L01 include:

•Radio

>worldwide 2.4GHz ISM band operation

>126 RF channels

>Common RX and TX pins

>GFSK modulation

>1 and 2Mbps air data rate

>1MHz non-overlapping channel spacing at 1Mbps

>2MHz non-overlapping channel spacing at 2Mbps

31

•Transmitter

>Programmable output power: 0, -6, -12 or -18dBm

>11.3mA at 0dBm output power

•Receiver

>Integrated channel filters

>12.3mA at 2Mbps

>82dBm sensitivity at 2Mbps

>-85dBm sensitivity at 1Mbps

>Programmable LNA gain

•RF Synthesizer

>Fully integrated synthesizer

>No external loop filer, VCO varactor diode or resonator

>Accepts low cost ±60ppm 16MHz crystal

•Enhanced ShockBurst™

>1 to 32 bytes dynamic payload length

>Automatic packet handling

>Auto packet transaction handling

>6 data pipe MultiCeiver™ for 1:6 star networks

32

•Power Management

>Integrated voltage regulator

>1.9 to 3.6V supply range

>Idle modes with fast start-up times for advanced power management

>22uA Standby-I mode, 900nA power down mode

>Max 1.5ms start-up from power down mode

>Max 130us start-up from standby-I mode

•Host Interface

>4-pin hardware SPI

>Max 8Mbps

>3 separate 32 bytes TX and RX FIFOs

>5V tolerant inputs

•Compact 20-pin 4x4mm QFN package

33

Introduction of nRF24L01

The nRF24L01 is a single chip 2.4GHz transceiver with an embedded baseband

protocol engine (Enhanced ShockBurst™), designed for ultra-low power wireless

applications. The nRF24L01 is designed for operation in the world wide ISM

frequency band at 2.400 - 2.4835GHz. An MCU (microcontroller) and very few

external passive components are needed to design a radio system with the

nRF24L01.The nRF24L01 is configured and operated through a Serial Peripheral

Interface (SPI.) Through this inter-face the register map is available. The register

map contains all configuration registers in the nRF24L01 and is accessible in all

operation modes of the chip.

The embedded baseband protocol engine (Enhanced ShockBurst™) is based on

packet communication and supports various modes from manual operation to

advanced autonomous protocol operation. Internal FIFOs ensure a smooth data

flow between the radio front end and the system’s MCU. Enhanced Shock-Burst

™ reduces system cost by handling all the high-speed link layer operations.

The radio front end uses GFSK modulation. It has user configurable parameters

like frequency channel, output power and air data rate.

The air data rate supported by the nRF24L01 is configurable to 2Mbps. The high

air data rate combined with two power saving modes makes the nRF24L01 very

suitable for ultra-low power designs. Internal voltage regulators ensure a high

Power Supply Rejection Ratio (PSRR) and a wide power supply range.

Radio Control

This chapter describes the different modes the nRF24L01 radio transceiver can

operate in and the param-eters used to control the radio.The nRF24L01 has a

built-in state machine that controls the transitions between the different

operating modes of the chip. The state machine takes input from user defined

register values and internal signals.

34

Operational Modes

The nRF24L01 can be configured in four main modes of operation. This section

describes these modes.

1 State diagram

The nRF24L01 is undefined until the VDD becomes 1.9V or higher. When this

happens nRF24L01 enters the Power on reset state where it remains in reset until

it enters the Power Down mode. Even when the nRF24L01 enters Power Down

mode the MCU can control the chip through the SPI and the Chip Enable (CE) pin.

Three types of states are used in the state diagram. “Recommended operating

mode” is a state that is used during normal operation. “Possible operating

mode” is a state that is allowed to use, but it is not used during normal

operation. “Transition state” is a time limited state used during startup of the

oscillator and settling of the PLL.

2 Power down Mode

In power down mode nRF24L01 is disabled with minimal current consumption. In

power down mode all the register values available from the SPI are maintained

and the SPI can be activated.

 3 Standby Modes

By setting the PWR_UP bit in the CONFIG register to 1, the device enters standby-I

mode. Standby-I mode is used to minimize average current consumption while

maintaining short start up times. In this mode part of the crystal oscillator is

active. This is the mode the nRF24L01 returns to from TX or RX mode when CE is

set low.

35

In standby-II mode extra clock buffers are active compared to standby-I mode and

much more current is used compared to standby-I mode. Standby-II occurs when

CE is held high on a PTX device with empty TX FIFO. If a new packet is uploaded to

the TX FIFO, the PLL starts and the packet is transmitted

The register values are maintained during standby modes and the SPI may be

activated. For startup time

3 RX mode

The RX mode is an active mode where the nRF24L01 radio is a receiver. To enter

this mode, the

nRF24L01 must have the PWR_UP bit set high, PRIM_RX bit set high and the CE

pin set high.In this mode the receiver demodulates the signals from the RF

channel, constantly presenting the demod-ulated data to the baseband protocol

engine. The baseband protocol engine constantly searches for a valid packet. If a

valid packet is found (by a matching address and a valid CRC) the payload of the

packet is presented in a vacant slot in the RX FIFO. If the RX FIFO is full, the

received packet is discarded.

The nRF24L01 remains in RX mode until the MCU configures it to standby-I mode

or power down mode. If the automatic protocol features (Enhanced ShockBurst™)

in the baseband protocol engine are enabled, the nRF24L01 can enter other

modes in order to execute the protocol.

In RX mode a carrier detect signal is avaliable. The carrier detect is a signal that is

set high when a RF sig-nal is detected inside the receiving frequency channel. The

signal must be FSK modulated for a secure detection. Other signals can also be

detected. The Carrier Detect (CD) is set high when an RF signal is detected in RX

mode, otherwise CD is low. The internal CD signal is filtered before presented to

CD register.

36

 5 TX mode

The TX mode is an active mode where the nRF24L01 transmits a packet. To enter

this mode, the nRF24L01 must have the PWR_UP bit set high, PRIM_RX bit set

low, a payload in the TX FIFO and, a high pulse on the CE for more than 10µs.

The nRF24L01 stays in TX mode until it finishes transmitting a current packet.

If CE= 0 nRF24L01 returns to standby-I mode.

If CE= 1, the next action is determined by the status of the TX FIFO. If the TX FIFO

is not empty the nRF24L01 remains in TX mode, transmitting the next packet. If

the TX FIFO is empty the nRF24L01 goes into standby-II mode.The nRF24L01

transmitter PLL operates in open loop when in TX mode. It is important to never

keep the nRF24L01 in TX mode for more than 4ms at a time. If the auto retransmit

is enabled, the nRF24L01 is never in TX mode long enough to disobey this rule.

 Figure :the example of tx rx combination

This simplified figure explains the combination of tx rx module, and how interact.

37

DATA TRANSFER

 Figure: a way of showing the use of float for the robot

FLOAT:

The float provides buoyancy to maintain tension on the cable, a dry housing for

the radio, and mounts the antenna, GPS, and on/off switch. It will made of 6’’ PVC

sewage pipe, which is inexpensive, pressure resistant and can survive

considerable impact.

The bottom of the pipe will be sealed with a machined PVC sealed cap which is

permanently jointed with the solvent. It has a threaded feature to mount the

tether whip, a stainless steel welded part which connects to the tether. It also

passes the tether conductors through a penetrator, and into the float housing. On

the inside, it has tapped holes to mount a plate which attaches the radio.

38

f. MOTOR SHIELD:

The L298 Motor Driver Kit allows the user to safely interface two DC Motors to a

host microcontroller using only 4 control lines. The motor driver isolates the host

and controls continuous currents of up to 2 Amps per motor (4 Amps total). Short

peaks (spikes) up to 3 Amps per motor can be tolerated without damage. While

ideally suited for use with a microcontroller, the kit may also be used with just

about any form of 0-5 Volt signal (i.e. manual switches, TTL logic gâtes, relayes

etc.).

39

Assembling the Board

Assembly of the kit is straight forward; the silkscreen (white printing on the circuit

board) shows where each component belongs and its orientation. Make sure you

install each diode so that the white ring on the diode is aligned with the white bar

on the diode symbol on the silkscreen. The diodes are sometimes a tight fit in

their holes and you might find a pair of small pliers useful in installing them.

This kit now comes with a 78L05 +5 Volt voltage regulator. The regulator takes

power from the Motor Battery terminals and steps it down to +5 Volts for the

logic circuits of the L298N chip (this assumes that your Motor Battery voltage is at

least 6 Volts). If you are using a Motor Battery that is less than 6 Volts, the 78L05

will not be able to supply the necessary +5 volts to the L298. In this case, you will

need to supply this voltage to the Logic Battery terminals yourself (if you do this,

do not install the 78L05 and remove it if it is already installed). If you have doubts,

measure the voltage across the Logic Battery terminals while both motors are

running -there should be a minimum of +4.5 Volts. If there is less, the L298N may

behave erratically.

The 0.01uF tantalum capacitors (marked “103”) are used to suppress transients

(spikes).

The kit includes 2 black terminal blocks. These terminal blocks provide an easy

and convenient way to connect to the L298 kit; simply ‘poke’ a solid wire into

the terminal holes to make a connection. If you want a more permanent

connection, you can choose not to install the terminal blocks and solder your

control lines directly to the board.

40

About Motor Current

Motors are inductive devices; they draw much more current at startup than when

they are running at a steady speed. Before connecting any motor to the L298 you

should know a few things about the motor:

- What voltage it is designed to work at

- How much current it draws when running (unloaded)

- How much current it draws at stall.

 The “stall current” is the current the motor draws when you stop (stall) the

output shaft (if you can). Stalling a motor is very hard on the motor and can burn

open the motor windings and ruin the motor. If you want to test for stall current,

grab the output shaft with your hand while measuring the current drawn. As the

motor approaches stall, the current will climb.

 The L298N can safely handle 2 Amps of continuous current for each motor. Short

surges up to 3 Amps as the motor starts can be tolerated. A heat sink would be a

good idea in situations that see the current surge above 2 Amps.

Connecting the Motors

A DC motor has 2 terminals on it. If you take the positive and negative leads from

a power source (battery, power supply etc.) and connect them to the terminals of

the motor, the motor will spin in one direction. If you swap the connections, the

motor will spin in the opposite direction.

You will want to wire your motors to the L298 board in such a way that the motor

spins in the direction you call ‘forward’ when the Fwd line is activated and ‘

reverse’ when the Back line activated.

When connecting the motors to the circuit board, use as thick a wire as is

practical. The thicker the wire, the less the voltage drop and the more power is

41

delivered to the motor. We recommend a minimum of 18 gauge stranded wire.

Solid wire is fine, but will break if flexed too often.

Solder the Positive and negative motor leads for the ‘left’ motor to Motor Left

+ and - solder pads. Repeat for the ‘right’ motor.

Connect the + and - leads from your motor battery to the Motor Battery + and -

solder pads -again, use as thick a wire as it practical.

A Note on ‘Motor Battery’ Voltages: There is a 1.4V drop associated with the

L298. This means that if your motor runs on 12 VDC, you should use a 13.4 VDC

supply in order to get full power to the motor.

Operation

Control is accomplished by grounding the control pin(s) for the desired

function/motor. This is usually done by putting a logic LOW (i.e. 0V or ground) on

an output pin of your host microcontroller, which is in turn connected to the

appropriate control connection (Fwd, Back, Enable).

Fwd

To make a motor move forward, ground the ‘Fwd’ connection on the

appropriate connector (left / right). To stop, un-ground the connection.

The photo below shows how both motors would be made to go

‘forward’.

42

Back (Reverse)

To drive the motor in reverse, ground the appropriate Back connection.

To stop, unground the connection.

Gnd

Gnd is a ground connection. The L298 Controller board and your control circuit

must share the same gound.

Enable

The Enable connection is an active LOW connection that is pulled HIGH for you on

the circuit board. Ground this connection to disable a motor. Note: While

disabled, commands from the host microcontroller (grounding/un-grounding the

control connections) will have no effect on that motor. Disabling a motor shuts-

down the L298’s internal circuits, putting it into a low current consumption

mode (for that channel). When both channels are disabled, the motor controller

will consume approx. 10 mA

43

Pulse-Width Modulation (PWM)

Pulse-Width Modulation is a method of controlling the speed of a motor by

turning the power on and off at varying speeds. If you have a 12 Volt motor and

turn it on 50% of the time and turn it off 50% of the time (switching it at several

KHz) then the effective voltage you are applying to the motor is 6 Volts. As the

voltage to the motor varies, so does its’ speed.

It should be noted that the L298 Kit was not intended for high-speed PWM

operation. The diodes in the kits are general purpose rectifier diodes intended for

60 Hz operation. If you want to experiment with PWM and you don’t get the kind

of results you want, try exchanging the diodes for ‘fast recovery Schottky’ models.

Heat Sinks

The L298 has internal thermal protection circuitry that shuts down the chip if it

becomes too hot (when you try to draw too much current). If you find this

happening, you should add some kind of heat sink to the L298. A simple heat sink

can be made from a piece of scrap aluminum by cutting as big a piece as you have

room for and drilling a 1/8” hole into it (for a bolt to hold it to the L298). If

available, a thin smear of thermal compound (white, greasy stuff, available at

Radio Shack) on the back of the L298’s metal tab (i.e. between it and the heat

sink) will maximize heat dissipation. Of course, you should always make sure that

air can circulate freely around the L298 and it’s heatsink.

NOTE: If a motor behaves erratically i.e. turning on and off rapidly, it is likely the

L298 senses that it is being overloaded. This usually means that you are drawing

too much current. Either add a heat sink to the L298 and/or reduce the current

being drawn.

44

Caution: The L298’s heat sink (the metal tab) is at ground potential. Do not allow

any ground-referenced voltage source to touch it or any heat sink connected to it,

or you will cause a short.

H-Bridge Theory

Figure 1 shows the basic schematic for a typical H-Bridge along with it’s truth

table. In order to make a motor turn, we need to apply a voltage to it. We do this

by turning certain NPN transistors on. By looking at the truth table, we can see

that in order to make a motor go forward

(NOTE: ‘Forward and ‘Reverse’ are arbitrary directions for purposes of illustration.

In your application, forward and reverse will be determined by how the motors

are mounted with respect to each other and the polarity of the voltage) we must

turn on Q1 and Q4. This puts the Motor Battery Positive on the left side of the

motor (through Q1) and grounds the other side of the motor (through Q4).

45

To go in the opposite direction, we must turn off these transistors and turn on Q2

and Q3. Now, the Motor Battery Positive will be on the right side of the motor

(through Q3) and ground is on the left (through Q2). You have now reversed the

polarity of the motor’s supply voltage and the motor will spin in the opposite

direction.

You will notice that each time a motor is turned on, current passes through 2 NPN

transistors. Each transistor has (approximately) 0.7 Volt drop across it, so the

motor will see about 1.4 Volts LESS than the Motor Battery Voltage across it’s

terminals. This means that if you have a 12 Volt motor, and you want it to receive

maximum power, you should use a 13.4 Volt battery.

Also notice that if transistors Q1 and Q2 (or Q3 and Q4) were turned on, that you

would make a short circuit across the battery. For this reason, the L298N has

internal logic that prevents this from happening.

Specifications

Max supply voltage: 46 V

Max current (per channel): 2 A (DC); Non-repetitive (t=100 uS): 3A;

Repetitive (80% on, 20% off, ton=10 ms): 2.5 A

Total Power Dissipation: 25W

Controls 2 DC Motors up to 2 Amps each

Forward, Reverse, Stop

Runs on 6 to 35 Volts DC

Fully Isolates Motor Electricals from Microcontroller

46

g. POWER:

47

 h. Power supply board

FEATURES

• 3.3V, 5V, 12V, and Adjustable Output Versions

• Adjustable Version Output Voltage Range,

 1.2V to 37V ±4% Max Over Line and Load

 Conditions

• Available in TO-220 and TO-263 Packages

• Ensured 3A Output Load Current

• Input Voltage Range Up to 40V

• Requires Only 4 External Components

• Excellent Line and Load Regulation

48

 Specifications

• 150 kHz Fixed Frequency Internal Oscillator

• TTL Shutdown Capability

• Low Power Standby Mode, IQ Typically 80 μA

• High Efficiency

• Uses Readily Available Standard Inductors

• Thermal Shutdown and Current Limit Protection

APPLICATIONS

• Simple High-Efficiency Step-Down (Buck) Regulator

• On-Card Switching Regulators

• Positive to Negative Converter

DESCRIPTION

The LM2596 series of regulators are monolithic integrated circuits that provide all

the active functions for a step-down (buck) switching regulator, capable of driving

a 3A load with excellent line and load regulation. These devices are available in

fixed output voltages of 3.3V, 5V, 12V, and an adjustable output version.

Requiring a minimum number of external components, these regulators are

simple to use and include internal frequency compensation , and a fixed-

frequency oscillator.

The LM2596 series operates at a switching frequency of 150 kHz thus allowing

smaller sized filter components than what would be needed with lower frequency

switching regulators. Available in a standard 5-lead TO-220 package with several

different lead bend options, and a 5-lead TO-263 surface mount package.

49

A standard series of inductors are available from several different manufacturers

optimized for use with the LM2596 series. This feature greatly simplifies the

design of switch-mode power supplies.

Other features include an ensured ±4% tolerance on output voltage under

specified input voltage and output load conditions, and ±15% on the oscillator

frequency. External shutdown is included, featuring typically 80 μA standby

current. Self-protection features include a two stage frequency reducing current

limit for the output switch and an over temperature shutdown for complete

protection under fault conditions.

50

08. COMMAND CENTER

 Figure: the command section assembled

As explained earlier the command section consists of several switches, arduino

and the transmitter.

51

09. CONTROL CENTER

 Figure: control section assembled

The control section contains power source, power converter, arduino, receiver

module and one motor controller for the simplified view.

52

10. COMPUTER PROGRAM

tx

 #include <SPI.h>

 #include "nRF24L01.h"

 #include "RF24.h"

 // Hardware configuration

 // Set up nRF24L01 radio on SPI bus plus pins 9 & 10

 RF24 radio(9,10);

 ///its pipes to be opened for talk to each other

 boolean state[7]={1,1,1,1,1,1,1};

 int pins[7]={2,3,4,5,6,7,A0};

 boolean pins_state[7]={1,1,1,1,1,1,1};

 void setup()

 {

 Serial.begin(57600);

53

 radio.begin();

 radio.setRetries(15,15);

 radio.openWritingPipe(0xF0F0F0F022LL);

 radio.openReadingPipe(1,0xF0F0F0F011LL);

 // This code will only run once, after each powerup or reset of the board

 for(int i=0;i<7;i++)

 { pinMode(pins[i],INPUT);

 digitalWrite(pins[i],HIGH);//internal pullup resistors on....

 }

 }

 void button_read()

 {

 for(int i=0;i<7;i++)

 {

 digitalRead(pins[i]);

 if (digitalRead(pins[i])==LOW)

 { pins_state[i]=0;

 }

 else

 pins_state[i]=1;

54

 // Serial.print(pins_state[i]);

 // Serial.print("");

 }

 //Serial.println();

 }

 void loop()

 { radio.stopListening();///stop receiving while transmitting

 byte dataToBeSent=0;

 boolean diff=false;

 button_read();

 for(int i=0;i<7;i++)

 { if (state[i]!=pins_state[i])

 diff=true;

 state[i]=pins_state[i];

 }

 if (diff)

 {

 byte data=221;

55

 if (state[0]==1 && state[1]==1 && state[2]==1 && state[3]==1 &&

state[4]==1 && state[5]==1&& state[6]==1){ dataToBeSent=221;

radio.write("",8);radio.write(&data

,8);radio.write(&dataToBeSent,8);Serial.println("button pushed out");}//all

off

 if (state[0]==0 && state[1]==1 && state[2]==1 && state[3]==1 &&

state[4]==1 && state[5]==1&& state[6]==1){ dataToBeSent=222;

radio.write("",8);radio.write(&data ,8);radio.write(&dataToBeSent,8);

Serial.println("button 2 pushed");}///front

 if (state[1]==0 && state[0]==1 && state[2]==1 && state[3]==1 &&

state[4]==1 && state[5]==1&& state[6]==1){ dataToBeSent=223;

radio.write("",8);radio.write(&data

,8);radio.write(&dataToBeSent,8);Serial.println("button 3 pushed");}///back

 if (state[2]==0 && state[0]==1 && state[1]==1 && state[3]==1 &&

state[4]==1 && state[5]==1&& state[6]==1){

dataToBeSent=224;radio.write("",8);radio.write(&data ,8);

radio.write(&dataToBeSent,8);Serial.println("button 4 pushed");}//left

 if (state[3]==0 && state[1]==1 && state[2]==1 && state[0]==1 &&

state[4]==1 && state[5]==1&& state[6]==1){

dataToBeSent=225;radio.write("",8);radio.write(&data ,8);

radio.write(&dataToBeSent,8);Serial.println("button 5 pushed");}//right

 if (state[4]==0 && state[1]==1 && state[2]==1 && state[3]==1 &&

state[0]==1 && state[5]==1&& state[6]==1){dataToBeSent=226;

radio.write("",8);radio.write(&data ,8);radio.write(&dataToBeSent,8);

Serial.println("button 6 pushed");}//pump1

 if (state[5]==0 && state[1]==1 && state[2]==1 && state[3]==1 &&

state[4]==1 && state[0]==1&& state[6]==1){ dataToBeSent=227;

radio.write("",8);radio.write(&data

,8);radio.write(&dataToBeSent,8);Serial.println("button 7

pushed");}//pump2

 if (state[6]==0 && state[1]==1 && state[2]==1 && state[3]==1 &&

state[4]==1 && state[5]==1&& state[0]==1){dataToBeSent=228;

56

radio.write("",8);radio.write(&data

,8);radio.write(&dataToBeSent,8);Serial.println("button a0

pushed");}//diving

 ///////////// 2 sswitches activation

 ///f plus r

 if (state[0]==0 && state[3]==0 && state[1]==1 && state[2]==1 &&

state[4]==1 && state[5]==1&& state[6]==1){ dataToBeSent=229;

radio.write("",8);radio.write(&dataToBeSent,8); Serial.println("");}

 //f +p1

 if (state[0]==0 && state[4]==0 && state[2]==1 && state[3]==1 &&

state[1]==1 && state[5]==1&& state[6]==1){ dataToBeSent=230;

radio.write("",8);radio.write(&dataToBeSent,8); Serial.println("");}

 //f +p2

 if (state[0]==0 && state[5]==0 && state[2]==1 && state[3]==1 &&

state[4]==1 && state[1]==1&& state[6]==1){ dataToBeSent=231;

radio.write("",8);radio.write(&dataToBeSent,8); Serial.println("");}///front

 //f + bottom

 if (state[0]==0 && state[6]==0 && state[2]==1 && state[3]==1 &&

state[4]==1 && state[5]==1&& state[1]==1){ dataToBeSent=232;

radio.write("",8);radio.write(&dataToBeSent,8); Serial.println("");}///front

 //f + l

 if (state[0]==0 && state[2]==0 && state[1]==1 && state[3]==1 &&

state[4]==1 && state[5]==1&& state[6]==1){ dataToBeSent=233;

radio.write("",8);radio.write(&dataToBeSent,8); Serial.println("");}///front

 //rr+ r

57

 if (state[1]==0 && state[3]==0 && state[2]==1 && state[0]==1 &&

state[4]==1 && state[5]==1&& state[6]==1){ dataToBeSent=234;

radio.write("",8);radio.write(&dataToBeSent,8); Serial.println("");}

 /////rr+ p1

 if (state[1]==0 && state[4]==0 && state[2]==1 && state[3]==1 &&

state[0]==1 && state[5]==1&& state[6]==1){ dataToBeSent=235;

radio.write("",8);radio.write(&dataToBeSent,8); Serial.println("");}

 ///r +p2

 if (state[1]==0 && state[5]==0 && state[2]==1 && state[3]==1 &&

state[4]==1 && state[0]==1&& state[6]==1){ dataToBeSent=236;

radio.write("",8);radio.write(&dataToBeSent,8); Serial.println("");}

 ///r + bottom

 if (state[1]==0 && state[6]==0 && state[2]==1 && state[3]==1 &&

state[4]==1 && state[5]==1&& state[0]==1){ dataToBeSent=237;

radio.write("",8);radio.write(&dataToBeSent,8); Serial.println("");}

 ///r+l

 if (state[1]==0 && state[2]==0 && state[0]==1 && state[3]==1 &&

state[4]==1 && state[5]==1&& state[6]==1){ dataToBeSent=238;

radio.write("",8);radio.write(&dataToBeSent,8); Serial.println("");}

 //l+ r

 if (state[2]==0 && state[3]==0 && state[0]==1 && state[1]==1 &&

state[4]==1 && state[5]==1&& state[6]==1){ dataToBeSent=239;

radio.write("",8);radio.write(&dataToBeSent,8); Serial.println("");}

 ///l +p1

 if (state[2]==0 && state[4]==0 && state[0]==1 && state[3]==1 &&

state[1]==1 && state[5]==1&& state[6]==1){ dataToBeSent=240;

radio.write("",8);radio.write(&dataToBeSent,8); Serial.println("");}

58

 ///l +p2

 if (state[2]==0 && state[5]==0 && state[0]==1 && state[3]==1 &&

state[4]==1 && state[1]==1&& state[6]==1){ dataToBeSent=241;

radio.write("",8);radio.write(&dataToBeSent,8); Serial.println("");}

 ///l+ bottom

 if (state[2]==0 && state[6]==0 && state[0]==1 && state[3]==1 &&

state[4]==1 && state[5]==1&& state[1]==1){ dataToBeSent=242;

radio.write("",8);radio.write(&dataToBeSent,8); Serial.println("");}

 // r+p1

 if (state[3]==0 && state[4]==0 && state[2]==1 && state[0]==1 &&

state[1]==1 && state[5]==1&& state[6]==1){ dataToBeSent=243;

radio.write("",8);radio.write(&dataToBeSent,8); Serial.println("");}

 //R+ p2

 if (state[3]==0 && state[5]==0 && state[2]==1 && state[0]==1 &&

state[4]==1 && state[1]==1&& state[6]==1){ dataToBeSent=244;

radio.write("",8);radio.write(&dataToBeSent,8); Serial.println("");}

 // r+bottom

 if (state[3]==0 && state[6]==0 && state[2]==1 && state[0]==1 &&

state[4]==1 && state[5]==1&& state[1]==1){ dataToBeSent=245;

radio.write("",8);radio.write(&dataToBeSent,8); Serial.println("");}

 //p1+p2

59

 if (state[4]==0 && state[5]==0 && state[2]==1 && state[3]==1 &&

state[0]==1 && state[1]==1&& state[6]==1){ dataToBeSent=246;

radio.write("",8);radio.write(&dataToBeSent,8); Serial.println("");}

 //p1+bottom

 if (state[4]==0 && state[6]==0 && state[2]==1 && state[3]==1 &&

state[0]==1 && state[5]==1&& state[1]==1){ dataToBeSent=247;

radio.write("",8);radio.write(&dataToBeSent,8); Serial.println("");}

 //p2+ bottom

 if (state[5]==0 && state[6]==0 && state[2]==1 && state[3]==1 &&

state[4]==1 && state[0]==1&& state[1]==1){ dataToBeSent=248;

radio.write("",8);radio.write(&dataToBeSent,8); Serial.println("");}

 ///////////////////////////////for three button push////

 ///Reverse+l+r8

 if (state[1]==0 && state[2]==0 && state[3]==0 && state[0]==1 &&

state[4]==1 && state[5]==1&& state[6]==1){ dataToBeSent=249;

radio.write("",8);radio.write(&dataToBeSent,8); Serial.println("");}

 ///l+r+bottom

 if (state[2]==0 && state[3]==0 && state[6]==0 && state[0]==1 &&

state[4]==1 && state[5]==1&& state[1]==1){ dataToBeSent=250;

radio.write("",8);radio.write(&dataToBeSent,8); Serial.println("");}

60

 ///r8+bottom+pump1

 if (state[3]==0 && state[4]==0 && state[6]==0 && state[2]==1 &&

state[5]==1 && state[1]==1&& state[0]==1){ dataToBeSent=251;

radio.write("",8); radio.write("",8);radio.write(&dataToBeSent,8);

Serial.println("");}

 ///r8+bottom+pump2

 if (state[3]==0 && state[6]==0 && state[5]==0 && state[2]==1 &&

state[4]==1 && state[0]==1&& state[1]==1){ dataToBeSent=252;

radio.write("",8);radio.write(&dataToBeSent,16); Serial.println("");}

 ///bottom+pump1+pump2

 if (state[6]==0 && state[4]==0 && state[5]==0 && state[2]==1 &&

state[0]==1 && state[1]==1&& state[3]==1){ dataToBeSent=253;

radio.write("",8);radio.write(&dataToBeSent,8); Serial.println("");}

 ///forward+left+r8

 if (state[0]==0 && state[2]==0 && state[3]==0 && state[1]==1 &&

state[4]==1 && state[5]==1&& state[6]==1){ dataToBeSent=254;

radio.write("",8);radio.write(&dataToBeSent,8); Serial.println("");}

 ///left bottom pump 2 and pump 1 code has not been coded;

 /////////////////////////////////////for four buttons

 ///rev+lft +r8+bottom

61

 if (state[1]==0 && state[2]==0 && state[3]==0 && state[6]==0 &&

state[4]==1 && state[5]==1&& state[0]==1){ dataToBeSent=255;

radio.write("",8);radio.write(&dataToBeSent,8); Serial.println("");}

 ///left+r8+bottom+pump1

 if (state[2]==0 && state[3]==0 && state[6]==0 && state[4]==0 &&

state[0]==1 && state[1]==1&& state[5]==1){ dataToBeSent=256;

radio.write("",8);radio.write(&dataToBeSent,8); Serial.println("");}

 /////1 r8+bottom+pump1+pump2

 if (state[3]==0 && state[6]==0 && state[4]==0 && state[5]==0 &&

state[1]==1 && state[2]==1&& state[0]==1){ dataToBeSent=257;

radio.write("",16);radio.write(&dataToBeSent,8); Serial.println("");}

 ///2 front+left+right+bottom

 if (state[0]==0 && state[2]==0 && state[3]==0 && state[6]==0 &&

state[1]==1 && state[4]==1&& state[5]==1){ dataToBeSent=258;

radio.write("",8);radio.write(&dataToBeSent,8); Serial.println("");}

 ///3 left+r8+bottom+pump2

 if (state[2]==0 && state[3]==0 && state[6]==0 && state[5]==0 &&

state[0]==1 && state[1]==1&& state[4]==1){ dataToBeSent=259;

radio.write("",8);radio.write(&dataToBeSent,8); Serial.println("");}

62

 ///4 left+bottom+p1+p2

 if (state[2]==0 && state[6]==0 && state[4]==0 && state[5]==0 &&

state[0]==1 && state[1]==1&& state[3]==1){ dataToBeSent=260;

radio.write("",8);radio.write(&dataToBeSent,8); Serial.println("");}

 /////////////////////////////////for five buttons

 /// 5 rev+left+R8+bottom+p1

 if (state[1]==0 && state[2]==0 && state[3]==0 && state[6]==0 &&

state[4]==0 && state[0]==1&& state[5]==1){ dataToBeSent=261;

radio.write("",8);radio.write(&dataToBeSent,8); Serial.println("");}

 ///forard+left+r8+bottom+p1

 if (state[0]==0 && state[2]==0 && state[3]==0 && state[6]==0 &&

state[4]==0 && state[1]==1&& state[5]==1){ dataToBeSent=262;

radio.write("",8);radio.write(&dataToBeSent,8); Serial.println("");}

 ///rev+left+r8+bottom+p2

 if (state[1]==0 && state[2]==0 && state[3]==0 && state[6]==0 &&

state[5]==0 && state[0]==1&& state[4]==1){ dataToBeSent=263;

radio.write("",8);radio.write(&dataToBeSent,8); Serial.println("");}

 ///forward+left+r8+bottom+p2

63

 if (state[0]==0 && state[2]==0 && state[3]==0 && state[6]==0 &&

state[5]==0 && state[1]==1&& state[4]==1){ dataToBeSent=264;

radio.write("",8);radio.write(&dataToBeSent,8); Serial.println("");}

 ///left+r8+bottom+p1+p2

 if (state[2]==0 && state[3]==0 && state[6]==0 && state[4]==0 &&

state[5]==0 && state[0]==1&& state[1]==1){ dataToBeSent=265;

radio.write("",8);radio.write(&dataToBeSent,8); Serial.println("");}

 ///////////////////////////////////for six buttons

 ///forward+left+r8+bottom+p1+p2

 if (state[0]==0 && state[2]==0 && state[3]==0 && state[6]==0 &&

state[4]==0 && state[5]==0&& state[1]==1){ dataToBeSent=266;

radio.write("",8);radio.write(&dataToBeSent,8); Serial.println("");}

 ///reverse+left+r8+bottom+p1+p2

 if (state[1]==0 && state[2]==0 && state[3]==0 && state[6]==0 &&

state[4]==0 && state[5]==0&& state[0]==1){ dataToBeSent=267;

radio.write("",8);radio.write(&dataToBeSent,8); Serial.println("");}

 for(int i=0;i<7;i++){

 // Serial.println("button pusshed");

64

 Serial.print(state[i]);

 Serial.print("");

 }

 Serial.println();

 }

 delay(50);

 }

 Rx

 #include <SPI.h>

 #include "nRF24L01.h"

 #include "RF24.h"

 // Hardware configuration

 // Set up nRF24L01 radio on SPI bus plus pins 9 & 10

 RF24 radio(49,53);

 void setup()

 {

 // This code will only run once, after each powerup or reset of the board

65

 radio.begin();

 radio.setRetries(15,15);

 radio.openWritingPipe(0xF0F0F0F011LL);

 radio.openReadingPipe(1,0xF0F0F0F022LL);

 radio.startListening();

 pinMode(13,OUTPUT);

 //////////////////////////////////motor controller 1

 Serial.begin(57600);

 pinMode(22,OUTPUT);//ind

 pinMode(24,OUTPUT);//inc

 pinMode(26,OUTPUT);//inb

 pinMode(28,OUTPUT); //ina

 pinMode(3,OUTPUT); ////for motor1

 pinMode(4,OUTPUT); ///for motor2

 pinMode(A0,INPUT);////input speed from pot1

 pinMode(A1,INPUT);////input speed from pot2

 ///////////////////////////////motor

controller 2

 pinMode(30,OUTPUT);//ind

 pinMode(32,OUTPUT);//inc

66

 pinMode(34,OUTPUT);//inb

 pinMode(36,OUTPUT); //ina

 pinMode(6,OUTPUT); ////for motor1 ena

 pinMode(5,OUTPUT); ///for motor2 enb

 ///////////////////////////////motor

controller 2

 pinMode(31,OUTPUT);//ind

 pinMode(33,OUTPUT);//inc

 pinMode(35,OUTPUT);//inb

 pinMode(37,OUTPUT); //ina

 pinMode(7,OUTPUT); ////for motor1 ena

 pinMode(8,OUTPUT); ///for motor2 enb

 }

 void pot1(int speedmotor1)

 {

 }

 void pot2(int speedmotor2)

 {

67

 }

 ////////////////////////motor1 and moto2

 void motor1(int INc,int INd,int speed){

 digitalWrite(24,INc);

 digitalWrite(22,INd);

 analogWrite(3,speed);

 };

 void motor2(int INa,int INb,int speed){

 digitalWrite(28,INa);

 digitalWrite(26,INb);

 analogWrite(4,speed);

 };

 /////////////brake motor1 and 2

 void brakeMotor1(int INc,int INd,int speed)

 {

 digitalWrite(24,INc);

 digitalWrite(22,INd);

 analogWrite(3,speed);

68

 }

 void brakeMotor2(int INa,int INb,int speed)

 {

 digitalWrite(28,INa);

 digitalWrite(26,INb);

 analogWrite(4,speed);

 }

 //motor3

 void motor3(int INa,int INb,int speed){

 digitalWrite(36,INa);

 digitalWrite(34,INb);

 analogWrite(6,speed);

 };

 void brakeMotor3(int INc,int INd,int speed)

 {

 digitalWrite(36,INc);

 digitalWrite(34,INd);

 analogWrite(6,speed);

 }

 ///motor4

 void motor4(int INc,int INd,int speed){

 digitalWrite(32,INc);

69

 digitalWrite(30,INd);

 analogWrite(5,speed);

 };

 void brakeMotor4(int INc,int INd,int speed)

 {

 digitalWrite(34,INc);

 digitalWrite(30,INd);

 analogWrite(5,speed);

 }

 ///////////////////////motor5 and motor 6

 void motor5(int INc,int INd,int speed){

 digitalWrite(33,INc);

 digitalWrite(31,INd);

 analogWrite(8,speed);

 };

 void motor6(int INa,int INb,int speed){

 digitalWrite(37,INa);

70

 digitalWrite(35,INb);

 analogWrite(7,speed);

 };

 /////////////motor5 and motor 6

 void brakeMotor5(int INc,int INd,int speed)

 {

 digitalWrite(33,INc);

 digitalWrite(31,INd);

 analogWrite(8,speed);

 }

 void brakeMotor6(int INa,int INb,int speed)

 {

 digitalWrite(37,INa);

 digitalWrite(35,INb);

 analogWrite(7,speed);

 }

 void blinky()

 {

 for (int f=0;f<10;f++)

 {digitalWrite(13,HIGH); delay(20);digitalWrite(13,LOW);

 }

 }

71

 void loop()

 {

 byte receivedData ;

 int value;

 bool dataAvailable = radio.available();

 if(dataAvailable==true)

 {

 bool done = false;

 while (!done) //Loop until the read buffer is being complitely read

 { //

 radio.read(&receivedData,16);

 if (receivedData>0){ value=receivedData;

Serial.println(value); } // blinky; }

 switch(value){

 case 221:

 motor1(0,0,0);

 motor2(0,0,0);

 motor3(0,0,0);

 motor4(0,0,0);

72

 motor5(0,0,0);

 motor6(0,0,0);

 Serial.println(".all brake");

 delay(200);

 break;

 case 222://front

 motor1(1,0,255);

 Serial.println("front");

 delay(200);

 break;

 case 223://back

 motor1(0,1,255);

 Serial.println("back");

 delay(200);

 break;

 case 224://left

 motor2(1,0,255);

 Serial.println("left");

 delay(200);

 break;

 case 225://right

 motor3(1,0,255);

 Serial.println("r8");

 delay(200);

73

 break;

 case 226://p1

 motor5(1,0,255);

 Serial.println("pump1");

 delay(200);

 break;

 case 227://p2

 motor6(1,0,255);

 Serial.println("pump2");

 delay(200);

 break;

 case 228://bottom

 motor4(1,0,255);

 Serial.println("bottom");

 delay(200);

 break;

 ////////////////////////////two button press

74

 case 229: //f +r

 motor1(1,0,255);

 motor3(1,0,255);

 Serial.println("f +r");

 delay(200);

 break;

 case 230:///f +p1

 motor1(1,0,255);

 motor5(1,0,255);

 Serial.println("f +p1");

 delay(200);

 break;

 case 231://f+p2

 motor1(1,0,255);

 motor6(1,0,255);

 Serial.println("f+p2");

 delay(200);

 break;

 case 232://f+bottom

 motor1(1,0,255);

 motor4(1,0,255);

75

 Serial.println("f+bottom");

 delay(200);

 break;

 case 233://f + l

 motor1(1,0,255);

 motor2(1,0,255);

 Serial.println("f + l");

 delay(200);

 break;

 case 234://rr+r

 motor1(0,1,255);

 motor3(1,0,255);

 Serial.println("//rr+r1");

 delay(200);

 break;

 case 235://rr+p1

 motor1(0,1,255);

 motor5(1,0,255);

 Serial.println(".//rr+p1");

 delay(200);

 break;

76

 case 236://rr+P2

 motor1(0,1,255);

 motor6(1,0,255);

 Serial.println("//rr+P2");

 delay(200);

 break;

 case 237://RR+ bottom

 motor1(0,1,255);

 motor4(1,0,255);

 Serial.println("//RR+ bottom");

 delay(200);

 break;

 case 238://r+l

 motor1(0,1,255);

 motor2(1,0,255);

 Serial.println("//r+l1");

 delay(200);

 break;

 case 239://l+r

 motor2(1,0,255);

77

 motor3(1,0,255);

 Serial.println("//l+r");

 delay(200);

 break;

 case 240://l+p1

 motor2(1,0,255);

 motor5(1,0,255);

 Serial.println("...//l+p1");

 delay(200);

 break;

 case 241://l +p2

 motor2(1,0,255);

 motor6(1,0,255);

 Serial.println("//l +p2");

 delay(200);

 break;

 case 242://l+bottom

 motor2(1,0,255);

 motor4(1,0,255);

 Serial.println("../l+bottom");

 delay(200);

78

 break;

 case 243://r+p1

 motor3(1,0,255);

 motor5(1,0,255);

 Serial.println("r+p1");

 delay(200);

 break;

 case 244://l+bottom

 motor3(1,0,255);

 motor6(1,0,255);

 //Serial.println("l+bottom");

 delay(200);

 break;

 case 245://r+bottom

 motor3(1,0,255);

 motor4(1,0,255);

 Serial.println("./r+bottom");

 delay(200);

 break;

 case 246://p1+p2

79

 motor5(1,0,255);

 motor6(1,0,255);

 Serial.println(".p1+p2");

 delay(200);

 break;

 case 247://p1+bottom

 motor5(1,0,255);

 motor4(1,0,255);

 Serial.println("./p1+bottom");

 delay(200);

 break;

 case 248://p2+bottom

 motor6(1,0,255);

 motor4(1,0,255);

 Serial.println("p2+bottom");

 delay(200);

 break;

 //////////////three buttons push

 case 249://///Reverse+l+r8

 motor1(0,1,255);

 motor2(1,0,255);

80

 motor3(1,0,255);

 Serial.println("Reverse+l+r8");

 delay(200);

 break;

 case 250://///l+r8+bottom

 motor2(1,0,255);

 motor3(1,0,255);

 motor4(1,0,255);

 Serial.println("l+r8+bottom");

 delay(200);

 break;

 case 251://///r8+bottom+pump1

 motor3(1,0,255);

 motor4(1,0,255);

 motor5(1,0,255);

 Serial.println(".r8+bottom+pump1");

 delay(200);

 break;

81

 case 252://///r8+bottom+pump2

 motor3(1,0,255);

 motor4(1,0,255);

 motor6(1,0,255);

 Serial.println("r8+bottom+pump2");

 delay(200);

 break;

 case 253://///bottom+p1+p2

 motor4(1,0,255);

 motor5(1,0,255);

 motor6(1,0,255);

 Serial.println("bottom+p1+p2");

 delay(200);

 break;

 case 254://///f+l+r8

82

 motor1(1,0,255);

 motor2(1,0,255);

 motor3(1,0,255);

 Serial.println("f+l+r8");

 delay(200);

 break;

 ///////////////////////////////////for four buttons

 case 255://reverse+left+r8+bottom

 motor1(0,1,255);

 motor2(1,0,255);

 motor3(1,0,255);

 motor4(1,0,255);

 Serial.println("Rreverse+left+r8+bottom");

 delay(200);

 break;

 case 256://left+r8+bottom+pump1

 motor2(1,0,255);

83

 motor3(1,0,255);

 motor4(1,0,255);

 motor5(1,0,255);

 Serial.println("left+r8+bottom+pump1");

 delay(200);

 break;

 case 1://r8+bottom+pump1+pump2

 motor3(1,0,255);

 motor4(1,0,255);

 motor5(1,0,255);

 motor6(1,0,255);

 Serial.println("r8+bottom+pump1+pump2");

 delay(200);

 break;

 case 2://front+left+r8+bottom

 motor1(1,0,255);

 motor2(1,0,255);

 motor3(1,0,255);

 motor4(1,0,255);

 Serial.println("lfront+left+r8+bottom");

84

 delay(200);

 break;

 case 3://left+r8+bottom+pump2

 motor2(1,0,255);

 motor3(1,0,255);

 motor4(1,0,255);

 motor6(1,0,255);

 Serial.println("left+r8+bottom+pump2");

 delay(200);

 break;

 case 4://left+bottom+pump1+pump2

 motor2(1,0,255);

 motor4(1,0,255);

 motor5(1,0,255);

 motor6(1,0,255);

 Serial.println("left+bottom+pump1+pump2");

 delay(200);

 break;

85

 ///////////////////////////////////for five buttons

 case 5://reverse+left+r8+bottom+p1

 motor1(0,1,255);

 motor2(1,0,255);

 motor3(1,0,255);

 motor4(1,0,255);

 motor5(1,0,255);

 Serial.println("reverse+left+r8+bottom+p1");

 delay(200);

 break;

 case 6://forward+left+r8+bottom+p1

 motor1(1,0,255);

 motor2(1,0,255);

 motor3(1,0,255);

 motor4(1,0,255);

 motor5(1,0,255);

 Serial.println("forward+left+r8+bottom+p1");

 delay(200);

 break;

86

 case 7://reverse+left+r8+bottom+p2

 motor1(0,1,255);

 motor2(1,0,255);

 motor3(1,0,255);

 motor4(1,0,255);

 motor6(1,0,255);

 Serial.println("reverse+left+r8+bottom+p2");

 delay(200);

 break;

 case 8://forward+left+r8+bottom+p2

 motor1(1,0,255);

 motor2(1,0,255);

 motor3(1,0,255);

 motor4(1,0,255);

 motor6(1,0,255);

 Serial.println("forward+left+r8+bottom+p2");

 delay(200);

 break;

 case 9://left+r8+bottom+p1+p2

 motor2(1,0,255);

87

 motor3(1,0,255);

 motor4(1,0,255);

 motor5(1,0,255);

 motor6(1,0,255);

 Serial.println("left+r8+bottom+p1+p2");

 delay(200);

 break;

 ///for six buttons

 case 10://forward+left+r8+bottom+p1+p2

 motor1(1,0,255);

 motor2(1,0,255);

 motor3(1,0,255);

 motor4(1,0,255);

 motor5(1,0,255);

 motor6(1,0,255);

 Serial.println("forward+left+r8+bottom+p1+p2");

 delay(200);

 break;

 case 11://reverse+left+r8+bottom+p1+p2

 motor1(0,1,255);

 motor2(1,0,255);

88

 motor3(1,0,255);

 motor4(1,0,255);

 motor5(1,0,255);

 motor6(1,0,255);

 Serial.println("reverse+left+r8+bottom+p1+p2");

 delay(200);

 break;

 default:

 brakeMotor1(0,0,255);

 brakeMotor2(0,0,255);

 brakeMotor3(0,0,255);

 brakeMotor4(0,0,255);

 brakeMotor5(0,0,255);

 brakeMotor6(0,0,255);

 Serial.println("nothing ");

 }

 delay(20);

 }

89

 }

 //default:

 }

90

CONCLUSION:

Next dream:

We started research and development of a demonstration long range vehicle to

cruise. It is important to improve many elemental technologies such as navigation

system and so on to achieve this aim figure shows a concept image of

concentrating these elemental technologies to next generation vehicle.

 Figure: The Next Generation Autonomous Underwater Vehicles

Summary:

The present study confers recent progress in the technology for unmanned

underwater vehicle from the modeling, control and guidance perspectives. The

survey of the contemporary AUVs is briefly presented. Dynamics of an unmanned

underwater vehicle or robot is important of modeling in the control synthesis. A

model based low level controller is presented. The major trends in underwater

robotics are discussed: autonomous system, robotics, and multi UUV system.

Future challenges for advancing underwater robotics technology will be pivoted

on finding accurate, robust yet affordable navigation technology for longer

mission, exploration of biomimetic principles for viable products and

development of formal model and analysis tool to synthesize collaborative

underwater robotics behavior.

91

12. BIBLIOGRAPHY :

1. Tadahiro Hyakudome Japan Agency for Marine-Earth Science and

Technology (JAMSTEC), Japan ‘Design of Autonomous Underwater

Vehicle’

2. Kristensen, J. et al. (1998). “Hugin

an untethered underwater vehicle for seabed surveying,”OCEANS ’98, C

onf. Proc. Vol.1 pp.118‐123.

3. Mellingham, J. G. et al. (1993). “Demonstration of a high-

performance, low‐cost autonomous underwater vehicle,” MITSG 93‐28.

4. Bradley, A. M. et al. (2000). “Extending the Endurance of an Operational S

cientific AUV using Lithium-

ion Batteries,” Proc. of Unmanned Underwater Vehicle Showcase (UUV

S) 2000.

5. Stokey, R. P. et al. (2005). “Development of the REMUS

600 autonomous underwater vehicle,” OCEANS 2005

Proc. of MTS/IEEE, Vol.2 pp. 1301‐1304.

6. Ura t.,AUV ‘r2d4’, its operation and roadmap for AUV development, in

:Advances in Unmanned Marine Vehicles, edited by G.N.Robert&r.

Sutton(IEE control series69)

7. Dylan Owen. ‘design ,construction and operation of an unmanned

underwater vehicle’

8. www.arduino.com

