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Abstract

Internet security is an important issue in our modern life.Todays Internet se-
curity has been threatened by many malicious activities.BOTs are now recog-
nized as one of the most serious security threat.Because they are responsible
for Data theft,Dos attack,Click fraud and many more.Many Botnet detection
methods have been proposed to mitigate the threat.
In this Paper, we proposed a mechanism for detecting botnets as well as
botmaster using IP traceback mechanism.Mainly botmaster is the root of
the whole botnet system.So detection only of botnet mitigate a portion of
threat,while detection of botmaster mitigate the full.



Chapter 1

Introduction

1.1 Background

The growing reliance on the Internet has introduced numerous challenges to
the protection of the privacy, integrity and security of user data. Although
convenient, the use of Internet-based services poses a number of security
challenges. The main security threat and the main carrier of malicious activ-
ities on the Internet is malicious software, also known as malware. Malware
implements a variety of malicious and illegal activities that disrupt the use
of a compromised computer and jeopardize the security of the user's data.
Over the last decade, malicious software or malware has risen to become a
primary steric of most of the scanning, data theft, click fraud, (distributed)
denial-of-service (DOS) activities, and direct attacks, taking place across the
Internet. Among the various forms of malicious software, botnets in partic-
ular have recently distinguished themselves to be among the premier threats
to computing assets.

1.2 What is BOT,BOTNET & BOTMASTER

1.2.1 BOT:

Bot comes from the word robot, an automated system.Software application
that can run automated tasks over the Internet is called Bot.It's a computer
system or malicious software component that can be remotely controlled by
an attacker. Bots are implemented where response speed is faster than that
of humans is required.

1
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1.2.2 BOTNET:

Coordinated group of compromised host connected with command & control
channel is called Botnet.Botnet is controlled by a "botmaster" and utilized
as "restheirce" or "platform" for attacks such as distributed denial-of-service
(DDoS) attacks, and fraudulent activities such as spam, phishing, identity
theft, and information ex�ltration etc.

1.2.3 BOTMASTER:

The malicious software components are coordinated over command & control
channel by a single entity is called the botmaster.

1.3 Command & Control Channel(C&C channel)

The main carrier of botnet functionality and the de�ning characteristic of
bot malware is called Command & Controll Channel (C&C Channel).It rep-
resents a communication channel established between the botmaster and
compromised hosts.This channel is used by the attacker to issue commands
to bots and receive information from the compromised machines.The C&C
channel enables remote coordination of a large number of bots, and it intro-
duces the level of �exibility in botnet operations by creating the ability to
change and update malicious botnet code.

1.4 Botnet Architecture

On the basis of topology of the C&C network, botnets can be classi�ed as
botnets with three types of network architecture.

1. Centralized.

2. Decentralized.

3. Hybrid.

Centralized botnets have centralized C&C network architecture, where all
bots in a botnet contact one or several C&C servers owned by the same
botmaster. Centralized C&C channels can be realized using various commu-
nication protocols, such as IRC (Internet Relay Chat), HTTP and HTTPS.
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IRC-based botnets are created by deploying IRC servers or by using IRC
servers in public IRC networks. In this case, the botmaster speci�es a chat
channel on a IRC server to which bots connect to in order to receive com-
mands. This model of operation is referred to as the push model, as the
botmaster "pushes" commands to bots. HTTP-based botnets are another
common type of centralized botnets, that rely on HTTP or HTTPS trans-
fer protocol to transfer C&C messages. In contrast to bots in IRC-based
botnets, bots in HTTP-based botnets contact a theyb-based C&C server
notifying their existence with system-identifying information via HTTP or
HTTPS requests. As a response, the malicious server sends back commands
or updates via counterpart response messages. This model of operation is
referred to as the pull model, as bots have to "pull" the commands from the
centralized C&C server. The IRC-and and the HTTP-based botnets are easy
to deploy and manage, and they are very e�cient in implementing the bot-
masters' malicious agenda, due to the low latency of command messages. For
this reason, the IRC-based and the HTTP-based C&C have been widely used
for deploying botnets. Hotheyver, the main drawback of botnets with cen-
tralized network architecture is that they are vulnerable to the single point of
failure. That is, once the C&C servers have been identi�ed and disabled, the
entire botnet could be taken down. Decentralized botnets represent a class
of botnets developed with the goal of being more resilient to neutralization
techniques. Botnets with decentralized C&C infrastructure have adopted
P2P (Peer-to-Peer) communication protocols as the means of communicat-
ing within a botnet. This implies that bots belonging to the P2P botnet
form an overlay network in which the botmaster can use any of the bots
(P2P nodes) to distribute commands to other peers or to collect information
from them In these botnets, the botmaster can join and issue commands
at any place or time P2P botnets are realized either by using some of the
existing P2P transfer protocols, such as Kademlia, Bittorent and Overnet,
or by custom P2P transfer protocol. While more complex and perhaps more
costly to manage and operate compared to centralized botnets, P2P botnets
o�er high resiliency, since even if the signi�cant portion of the P2P botnet
is taken down the remaining bots may still be able to communicate with
each other and with the botmaster, thus pursuing their malicious purpose.
Hotheyver, P2P botnets have one major drawback. They cannot guaran-
tee high reliability and low latency of C&C communication, which severely
limits the overall e�ciency of orchestrating attacks. Some of the recent bot-
nets have adopted more advanced hybrid network architectures that combine
principles of centralized and decentralized C&C network architectures. This
class of botnets uses advanced hybrid P2P communication protocols that try
to combine resiliency of P2P botnets with the low latency of communication
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of centralized botnets. The hybrid botnet architecture has been investigated
by several groups of authors, such as Wang et al. and Z. Zhang et al. The
authors suggest that in order to provide both resilience and low latency of
communication hybrid botnets should be realized as networks in which bots
are interconnected in P2P fashion and organized in two distinct groups: the
group of proxy bots and the group of working bots. Working bots would
implement the malicious activity while proxy bots would provide the prop-
agation of C&C messages from and to the botmaster. Working bots would
periodically connect to the proxy bots in order to receive commands. Based
on the work presented in this topology should provide a resilience to take
down e�orts as well as improvements in latency of C&C messages comparing
to the regular P2P botnets.

Figure 1.1: Botnet Architecture

1.5 Botnet Life Cycle

Botnet operation can be addressed through the analysis of botnet life-cycle
i.e. the set of bot's functional phases observable during the botnet operation.
The detection approaches target speci?c phases of botnet life-cycle, by utiliz-
ing speci?c heuristics of botnet behavitheir within these phases. Therefore,
the understanding of the botnet life-cycle is crucial to the successful analysis
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of the existing work on botnet detection. The botnet operation divided into
three distinct phases:

1. The infection phase.

2. The communication phase

3. The Attack phase.

The �rst phase of the botnet life-cycle is the Infection phase in which vulnera-
ble computers are compromised by the bot malware, thus becoming zombies
within a speci�c botnet. Usually this phase can be further divided into
two sub-phases known as Initial Infection and Secondary Infection. During
the initial infection sub-phase computers are infected by malicious piece of
software known as a "loader". The initial infection can be realized in dif-
ferent ways, for instance, through the unwanted download of malware from
malicious websites, through the download of infected �les attached to email
messages, by propagation of malware from infected removable disks, etc. The
loader primary role is to assist in obtaining the bot malware binary. Upon
successful initial infection, the secondary infection sub-phase start, during
which the loader downloads the malware binary from an external network
location and installs in on the vulnerable machine. The bot malware binaries
can be downloaded using diverse protocols, such as FTP (File Transfer Pro-
tocol), HTTP (Hypertext Transfer Protocol) / HTTPS (Hypertext Transfer
Protocol Secure) or some of the P2P (Peer-to-Peer) transfer protocol.

The second phase of the botnet life-cycle the Communication phase. This
phase includes several botnet operational modes that entail communication
between compromised computers and C&C servers. The communication
phase covers communication devoted to receiving instructions and updates
from the botmaster, as well as the reporting on the current status of bots.
The communication covers several modes of operation: initial connection
attempts to the C&C server upon successful infection phase, connection at-
tempts by the bot after reboot of the compromised machine, periodical con-
nection attempts in order to report the status of the infected machine, as
well as the connection attempts initiated by the C&C server in order to up-
date malware code or propagate instructions to bots. The communication
between zombie and the C&C server is realized using the C&C channel that
can be implemented in di�erent ways.

The third phase of botnet life-cycle is marked as Attack phase as it includes
bot operation aimed at implementing attackers' malicious agenda. During
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attack phase zombie computer may launch DDoS attacks, start SPAM e-mail
campaigns, perform distribution of the stolen identities, deploy click-fraud,
manipulate online reputation systems and surveys, etc. In this operational
phase the bots can also implement propagation mechanism, such as scanning
for vulnerable computers or distributing malicious software. The second and
the third phase are functionally linked so they are usually altering one af-
ter another, once a vulnerable computer is successfully infected. However it
should be noted that di�erent phases within the botnet life-cycle can last
for di�erent time spans, and that the length of a speci�c phase can vary
depending on the attack campaign the bot implements.

Figure 1.2: Botnet Life Cycle

1.6 Problems with Botnet

Botnets are utilized to perform the following:

1. Distributed Denial-of-Service Attacks.

2. Spam

3. Click Fraud

4. Data Theft etc.

1.7 Why Botnet Detection is Di�cult?

Botnet C&C tra�c is di�cult to detect for the following:
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1. C&C tra�c follows normal protocol similar to normal tra�c (i.e. IRC,HTTP).

2. Potentially encrypted C&C tra�c

3. Fake benign connections

4. There may be very few bots in the monitored network

5. Tra�c volume is low.

1.8 Botnet Detection Methods

Based on bot behavior and tra�c patterns, detection approaches are two
types:

1. Network Based Detection Method.

2. Client Based Detection Method.

1.8.1 Network based detection method

Network-based detection is based on analysis of network tra�c in order to
identify presence of compromised computers. This class of detection meth-
ods detects botnets by identifying tra�c produced by botnets operating in
all three phases of botnet life-cycle. The tra�c is usually analyzed on ei-
ther packet level or low level. Flows are usually de�ned as 5-tuple consisting
of source and destination IP addresses, source and destination ports and
protocol identifer. The low level analysis can generally catch a more �nite
characteristics of botnet related communication, while the packet level anal-
ysis can provide more information on the attack vectors as it inspects the
packet payload. Additionally, as the low level analysis does not require access
to the packet payload it is less privacy evasive comparing to the packet level
analysis. Network-based detection can be classifed based on several aspects,
such as the point of implementation, the stealthiness of operation, and the
basic principles of functioning.

1.8.2 Client based detection method

Client-based detection methdot is one of the classic detection method. But
it is also used nowadays. Client-based detection method needs port address
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of the source and destination. It is very much useful while detecting peer to
peer(p2p) based botnets.

1.9 Machine Learning for Botnet Detection

The basic assumption behind machine learning-based methods is that bot-
nets produce distinguishable patterns of traf?c or behaviour within the client
machine and that this patterns could be detected by employing some of the
Machine Learning Algorithms (MLA).
Machine Learning (ML), is a branch of arti�cial intelligence, that has a goal
of construction and studying of systems that can learn from data. Learn-
ing in this context implies ability to recognize complex patterns and make
quali?ed decisions based on previously seen data. The main challenge of ma-
chine learning is how to provide generalization of knowledge derived from
the limited set of previous experiences, in order to produce a useful decision
for new, previously unseen, events. To tackle this problem the ?eld of Ma-
chine Learning develops an array of algorithms that discover knowledge from
speci?c data and experience, based on sound statistical and computational
principles. Machine learning relies on concepts and results drawn from many
?elds, including statistics, arti?cial intelligence, information theory philoso-
phy, cognitive science, control theory and biology. The developed machine
learning algorithms (MLAs) are at the basis of many applications, ranging
from computer vision to language processing, forecasting, pattern recogni-
tion, games data mining, expert systems and robotics. At the same time
important advances in the machine learning theory and algo rithms have
promoted machine learning to the principal mean for discovering knowledge
from the abundance of data that is currently available in diverse application
areas. One of the emerging application areas is botnet detection that relies
on MLAs to detect the bot-related network traf?c patterns. Machine learning
algorithms can be classi?ed based on the desired outcome of the algorithm
on two main classes:

1. Supervised Learning.

2. Unsupervised Learning.

Supervised learning is the class of well-de�ned machine learning algorithms
that generate a function (i.e., model) that maps inputs to desired outputs.
These algorithms aretrained by examples of inputs and their corresponding
outputs, and then they are used to predict output for some future inputs. The
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Supervised learning is used for classi?cation of input data on some de?ned
class and for regression that predict continuous valued output.

Unsupervised learning is the class of machine learning algorithms where train-
ing data consists of a set of inputs without any corresponding target output
values. The goal in unsupervised learning problems may be to discover groups
of similar examples within the input data, where it is called clustering, to
determine the distribution of data within the input space, known as density
estimation, or to project the data from a high-dimensional space down to
two or three dimensions for the purpose of visualization.

Figure 1.3: (a)supervised learning framework,(b)unsupervised learning
framework
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Literature Survey

2.1 Rishi: Identify Bot Contaminated Hosts by

IRC Nickname Evaluation

2.1.1 Abstract

They describe a simple, yet e�ective method to detect bot-infected machines
within a given network that relies on detection of the communication channel
between bot and Command & Control server (C&C server). The presented
techniques are mainly based on passively monitoring network tra�c for un-
usual or suspicious IRC nicknames, IRC servers, and uncommon server ports.
By using n-gram analysis and a scoring system, they are able to detect bots
that use uncommon communication channels, which are commonly not de-
tected by classical intrusion detection systems. Upon detection, it is possible
to determine the IP address of the C&C server, as well as, the channels a
bot joined and the additional parameters which were set. The software Rishi
implements the mentioned features and is able to automatically generate
warning emails to report infected machines to an administrator.

Contribution

They introduce the background for their work on detecting infected machines.
This method based on n-gram analysis and a scoring system to detect infected
hosts within a given network.

10



CHAPTER 2. LITERATURE SURVEY 11

System Architecture:

Project Rishi:

Rishi, their proof-of-concept implementation, monitors captured TCP pack-
ets for the occurrence of one of the following IRC commands: NICK, JOIN,
USER, QUIT, and MODE. The parameters given with these commands are
extracted and stored to be further analyzed by the program. The analysis fo-
cuses on the nick-name they extracted, all other parameters are just stored to
collect additional information about the botnet, e.g., for tracking purposes.
Every captured packet is then further analyzed by the script, which extracts
the following information (if avail-able):

1. Time of suspicious connection.

2. IP address and port of suspected source host.

3. IP address and port of destination IRC server.

4. Channels joined.

5. Utilized nickname.

Scoring Function

After an appropriate packet has been captured and all necessary information
has been extracted, the gathered nickname is passed to an analysis function.
The analysis function implements a scoring function in order to estimate
whether or not a given suspicious host is infected with a bot or not. The
function checks for the occurrence of several criteria, like for example sus-
picious substrings, special characters, or long numbers. For each successful
test, a certain number of points is added to the overall score the particular
nickname has already received.

Regular Expression

Each nickname is tested against several regular expressions, which match
known bot names. Currently, the con�guration �le contains 52 di�erent
regular expressions to match several hundred nicknames known to be used by
bots. These regular expressions were generated by analyzing more than 4,000
di�erent bots and their corresponding nicknames. To avoid false alarms, the
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regular expression are very specialized, each matching only a few usernames.
For example the following expression:

\[[0− 9]\|[0− 9]{4, }

matches nicknames like [0|1234] and another expression matches names like
|1234. Although both regular expressions could be merged to one, they kept
them separated to be more �exible with �ne tuning. Another example is an
expression like

\[[0− 9]{1, 2}\|[A− Z]{2, 3}\|[0− 9]{4, }\]$

which matches common bot nicknames like [00|DEU|597660], [03|USA|147700],
or [0|KOR|43724] As all regular expressions are kept in a separate con�gu-
ration �le, existing ones can be easily adjusted or new ones can be added to
keep up with the ever-increasing number of bots.

If a bot matches one of the regular expressions, the �nal score is raised
by the minimum number of points needed to trigger an alarm. Thus, in their
current con�guration, another 10 points would be added.

Whitlisting

Rishi operates a dynamic whitelist, which automatically adds and removes
nicknames ac-cording to their �nal score as returned by the analysis function.
Each nickname, which receives zero points by the analysis function, is added
to the dynamic whitelist. However, if the score of a whitelisted nickname
raises above half of the points needed to trigger an alarm, it is removed from
the list. If it exceeds the threshold of 10 points, the nickname is automatically
added to the dynamic blacklist.

Blacklisting

Rishi also maintains a server blacklist for known C&C servers. If a connection
to one of those servers is established, the �nal score is raised to the minimum
number of points needed to trigger an alarm. Furthermore, if the destination
port is not within the common list of IRC ports (currently 6666 and 6667),
another point is added to the score.
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2.2 BotSni�er: Detecting Botnet Command &

Control Channels in Network Tra�c

2.2.1 Abstract

They propose an approach that uses network-based anomaly detection to
identify botnet C&C channels in a local area network without any prior
knowledge of signatures or C&C server addresses. This detection approach
can identify both the C&C servers and infected hosts in the network. Their
approach is based on the observation that, because of the pre-programmed
activities related to C&C, bots within the same botnet will likely demonstrate
spatial-temporal correlation and similarity. For example, they engage in co-
ordinated communication, propagation, and attack and fraudulent activities.
Their prototype system, BotSni�er, can capture this spatial-temporal corre-
lation in network tra�c and utilize statistical algorithms to detect botnets
with theoretical bounds on the false positive and false negative rates. They
evaluated BotSni�er using many real-world network traces. The results show
that BotSni�er can detect real-world botnets with high accuracy and has a
very low false positive rate.

2.2.2 Contribution

Their research makes several contributions:

1. First, they study two typical styles of control used in centralized botnet
C&C. The �rst is the "push" style, where commands are pushed or
sent to bots. IRC-based C&C is an example of the push style. The
second is the "pull" style, where commands are pulled or downloaded
by bots. HTTP-based C&C is an example of the pull style. Observing
the spatial-temporal correlation and similarity nature of these botnet
C&Cs, they provide a set of heuristics that distinguish C&C traf?c
from normal tra�c.

2. Second, they propose anomaly-based detection algorithms to identify
both IRC and HTTP based C&Cs in a port-independent manner. The
advantages of their algorithms include: (1) they do not require prior
knowledge of C&C servers or content signatures; (2) they are able to
detect encrypted C&C, (3) they do not require a large number of bots
to be present in the monitored network, and may even be able to detect
a botnet with just a single member in the monitored network in some
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cases, (4) they have bounded false positive and false negative rates, and
do not require a large number of C&C communication packets.

3. Third, they develop a system, BotSni�er, which is based on their pro-
posed anomaly detection algorithms and is implemented as several plu-
gins for the open-source Snort. They have evaluated BotSni�er using
real-world network traces. The results show that it has high accuracy
in detecting botnet C&Cs with a very low false positive rate.

2.2.3 BotSni�er System Architecture:

There are two main components, i.e., the monitor engine and the correla-
tion engine. The monitor engine is deployed at the perimeter of a monitored
network. It examines network tra�c, generates connection record of suspi-
cious C&C protocols, and detects activity response behavior (e.g., scanning,
spamming) and message response behavior (e.g., IRC PRIVMSG) in the
monitored network. The events observed by the monitor engine are analyzed
by the correlation engine. It performs group analysis of spatial-temporal
correlation and similarity of activity or message response behaviors of the
clients that connect to the same IRC or HTTP server. They implemented
the monitor engines as several preprocessor plugins on top of the open-source
system Snort, and implemented the correlation engine in Java. They also im-
plemented a real-time message response correlation engine (in C), which can
be integrated in the monitor engine. The monitor engines can be distributed
on several networks, and collect information to a central repository to per-
form correlation analysis. They describe each BotSni�er component in the
following sections.
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Figure 2.1: BotSni�er Architecture

2.2.4 Limitation

Evasion by misusing the whitelist. If a botmaster knows their hard whitelist,
he may attempt to misuse these white addresses.

2.3 BotMiner: Clustering Analysis of Network

Tra�c for Protocol- and Structure-Independent

Botnet Detection

2.3.1 Abstract

Botnets are now the key platform for many Internet attacks, such as spam,
distributed denial-of-service (DDoS), identity theft, and phishing. Most of
the current botnet detection approaches work only on speci�c botnet com-
mand and control (C&C) protocols (e.g., IRC) and structures (e.g., central-
ized), and can become ine�ective as botnets change their C&C techniques.
In this paper, they present a general detection framework that is independent
of botnet C&C protocol and structure, and requires no a priori knowledge
of botnets (such as captured bot binaries and hence the botnet signatures,
and C&C server names/addresses). They start from the de�nition and es-
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sential properties of botnets. They de�ne a botnet as a coordinated group
of malware instances that are controlled via C&C communication channels.
The essential properties of a botnet are that the bots communicate with
some C&C servers/peers, perform malicious activities, and do so in a similar
or correlated way. Accordingly, their detection framework clusters similar
communication tra�c and similar malicious tra�c, and performs cross clus-
ter correlation to identify the hosts that share both similar communication
patterns and similar malicious activity patterns. These hosts are thus bots
in the monitored network. They have implemented their BotMiner proto-
type system and evaluated it using many real network traces. The results
show that it can detect real-world botnets (IRC-based, HTTP-based, and
P2P botnets including Nugache and Storm worm), and has a very low false
positive rate.

2.3.2 Contribution

They develop a novel general botnet detection framework that is grounded on
the de�nition and essential properties of botnets. Their detection framework
is thus independent of botnet C&C protocol and structure, and requires no a
priori knowledge (e.g., C&C addresses/signatures) of speci�c botnets. It can
detect both centralized (e.g., IRC, HTTP) and current (and possibly future)
P2P based botnets.
They de�ne a new "aggregated communication �ow (C-�ow) record data
structure to store aggregated tra�c statistics, and design a new layered clus-
tering scheme with a set of tra�c features measured on the C-�ow records.
Their clustering scheme can accurately and ef?ciently group similar C&C
tra�c patterns.
They build a BotMiner prototype system based on their general detection
framework, and evaluate it with multiple real-world network traces including
normal tra�c and several real-world botnet traces that contain IRC, HTTP
and P2P-based botnet tra�c (including Nugache and Storm). The results
show that BotMiner has a high detection rate and a low false positive rate.

2.3.3 BotMiner Architecture

The architecture of BotMiner detection system, which consists of ?ve main
components:

1. C-plane monitor
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2. A-plane monitor

3. C-plane clustering module

4. A-plane clustering module

5. Cross-plane correlator.

The two tra�c monitors in C-plane and A-plane can be deployed at the
edge of the network examining tra�c between internal and external net-
works. They run in parallel and monitor the network tra�c. The C-plane
monitor is responsible for logging network �ows in a format suitable for ef-
�cient storage and further analysis, and the A-plane monitor is responsible
for detecting suspicious activities (e.g., scanning, spamming, and exploit at-
tempts). The C-plane clustering and A-plane clustering components process
the logs generated by the C-plane and A-plane monitors, respectively. Both
modules extract a number of features from the raw logs and apply clustering
algorithms in order to �nd groups of machines that show very similar commu-
nication (in the C-plane) and activity (in the A-plane) patterns. Finally, the
cross-plane correlator combines the results of the C-plane and A-plane clus-
tering and makes a �nal decision on which machines are possibly members
of a botnet. In an ideal situation, the tra�c monitors should be distributed
on the Internet, and the monitor logs are reported to a central repository for
clustering and cross-plane analysis.

Figure 2.2: BotMiner Architecture
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2.3.4 Limitations and Potential Solutions

Like any intrusion/anomaly detection system, BotMiner is not perfect or
complete. It is likely that once adversaries know their detection framework
and implementation, they might ?nd some ways to evade detection, e.g., by
evading the C-plane and A-plane monitoring and clustering, or the cross-
plane correlation analysis. They now address these limitations and discuss
possible solutions.

2.4 JACKSTRAWS: Picking Command and Con-

trol Connections from Bot Tra�c

2.4.1 Abstract

A distinguishing characteristic of bots is their ability to establish a command
and control (C&C) channel. The typical approach to build detection models
for C&C tra�c and to identify C&C endpoints (IP addresses and domains
of C&C servers) is to execute a bot in a controlled environment and mon-
itor its outgoing network connections. Using the bot tra�c, one can then
craft signatures that match C&C connections or blacklist the IP addresses
or domains that the packets are sent to. Unfortunately, this process is not as
easy as it seems. For example, bots often open a large number of additional
connections to legitimate sites (to perform click fraud or query for the cur-
rent time), and bots can deliberately produce "noise" - bogus connections
that make the analysis more dif?cult. Thus, before one can build a model
for C&C tra�c or blacklist IP addresses and domains, one �rst has to pick
the C&C connections among all the network tra�c that a bot produces.

In this paper, they present JACKSTRAWS, a system that accurately identi-
�es C&C connections. To this end, they leverage host-based information that
provides insights into which data is sent over each network connection as well
as the ways in which a bot processes the information that it receives. More
precisely, they associate with each network connection a behavior graph that
captures the system calls that lead to this connection, as well as the sys-
tem calls that operate on data that is returned. By using machine learning
techniques and a training set of graphs that are associated with known C&C
connections, they automatically extract and generalize graph templates that
capture the core of di�erent types of C&C activity. Later, they use these
C&C templates to match against behavior graphs produced by other bots.
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Their results show that JACKSTRAWS can accurately detect C&C connec-
tions, even for novel bot families that were not used for template generation.

2.4.2 Contribution

The contributions of this paper are the following:

1. They present a novel approach to identify C&C communication in the
large pool of network connections that modern bots open. Their ap-
proach leverages host-based information and associates models, which
are based on system call graphs, with the data that is exchanged over
network connections.

2. They present a novel technique that generalizes system call graphs
to capture the "essence" of, or the core activities related to, C&C
communication. This generalization step extends previous work on
system call graphs, and provides interesting insights into the purpose
of C&C tra�c.

3. They implemented these techniques in a tool called JACKSTRAWS
and evaluated it on 130,635 connections produced by more than 37
thousands malware samples. Their results show that the generated
templates detect known C&C tra�c with high accuracy, and less than
0.2% false positives over harmless tra�c. Moreover, they found 9,464
previously unknown C&C connections, improving the coverage of hand-
crafted network signatures by 60%.

2.4.3 System Model Architecture

They provide an overview of the actual implementation of JACKSTRAWS
and explain the di�erent analysis steps in greater details.

Environment Analysis

They use the dynamic malware analysis environment Anubis as the basis for
their implementation, and implemented several extensions according to their
needs. Note that the general approach and the concepts outlined in this paper
are independent of the actual analysis environment; they could have also used
BitBlaze, Ether, orany other dynamic malware analysis environment.
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Behavior Graph Generation

When the sample and all of its child processes have terminated, or after a
�xed timeout (currently set to 4 minutes), JACKSTRAWS saves all moni-
tored system calls, network-related data, and tainting information into a log
�le. Unlike previous work that used behavior graphs for distinguishing be-
tween malicious and legitimate programs, they use these graphs to determine
the purpose of network connections (and to detect C&C tra�c). Thus, they
are not interested in the entire activity of the malware program. Instead,
they only focus on actions related to network tra�c. Next they Label the
graph and Simplify the behavior graph.

Graph Mining

The �rst step when generating C&C templates is graph mining. More pre-
cisely, the goal is to mine frequent sub-graphs that are only present in the
malicious set. They process graphs through following:

• Frequent subgraph mining.

• Subgraph maximization

• Graph sets di�erence

Figure 2.3: Mining Process

Graph Clustering

Using as input the frequent, malicious subgraphs produced by the previous
mining step, the purpose of this step is to �nd clusters of similar graphs. The
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graph mining step produces di�erent graphs that represent di�erent types of
behaviors. They now need to cluster these graphs to �nd groups, where each
group shares a common core of activities (system calls) typical of a particular
behavior. Graph clustering is used for this purpose; generated clusters are
later used to create generalized templates covering the graphs they contain.

Figure 2.4: Clustering and Generalization Process

A crucial component for every clustering algorithm is the proper choice of
a similarity measure that computes the distances between graphs. In their
system, the similarity measure between two graphs is based on their non-
induced, maximum common subgraph (mcs). The similarity measure is de-
�ned as:

d(G1, G2) = 2 ∗ |edges(mcs(G1, G2))|/|edges(G1)|+ |edges(G2)|

Graph Generalization and Templating

Based on the clusters of similar graphs, the �nal step in their template gener-
ation process is graph generalization. The goal of the generalization process
is to construct a template graph that abstracts from the individual graphs
within a cluster. Intuitively, they would expect that a template contains a
core of nodes, which are common to all graphs in a cluster. In addition, to
capture small di�erences between these graphs, there will be optional nodes
attached to the core. The generalization algorithm computes the weighted
minimal common supergraph (WMCS) of all the graphs within a given clus-
ter.
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Template Matching

The previous steps leveraged machine learning techniques and sets of known
malicious and benign graphs to produce a number of C&C templates. These
templates are graphs that represent host-based activity that is related to
command and control tra�c. To �nd the C&C connections for a new mal-
ware sample, this sample is �rst executed in the sandbox, and their system
extracts its behavior graphs. Then, they match all C&C templates against
the behavior graphs. Whenever a match is found, the corresponding con-
nection is detected as command and control tra�c, and they can extract its
endpoints (IPs and domains)

Limitations

They aim at analyzing malicious software, which is a hard task in itself. An
attacker can use di�erent techniques to Interfere with the analysis environ-
ment which is of concern for them, such as unnecessary system calls, nodes
etc.

2.5 BotFinder: Finding Bots in Network Traf-

�c without Deep Packet Inspection

2.5.1 Abstract

Present BOTFINDER, a novel system that detects infected hosts in a net-
work using only high-level properties of the bot's network tra�c. BOTFINDER
does not rely on content analysis. Instead, it uses machine learning to identify
the key features of command-and-control communication, based on observing
tra�c that bots produce in a controlled environment. Using these features,
BOTFINDER creates models that can be deployed at network egress points
to identify infected hosts.

2.5.2 Contribution

This paper makes the following contributions:

1. They observe that C&C tra�c of di�erent bot families exhibits reg-
ularities (both in terms of traf?c properties and timing) that can be
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leveraged for network-based detection of bot-infected hosts. Being in-
dependent of packet payloads, their detection approach can handle en-
crypted or obfuscated tra�c.

2. They present BOTFINDER, a learning-based approach that automati-
cally generates bot detection models. To this end, they run bot binaries
in a controlled environment and record their tra�c. Using this data,
they build models of characteristic network tra�c features.

3. They develop a prototype of BOTFINDER, and they show that the
system is able to operate on high-performance networks with hundreds
of thousands of active hosts and Gigabit throughput in real time. They
apply BOTFINDER to real tra�c traces and demonstrate its high de-
tection rate and low false positive rate. Additionally, they show that
BOTFINDER outperforms existing bot detection systems and discuss
how BOTFINDER handles certain evasion strategies by adaptive at-
tackers.

2.5.3 System Architecture

BOTFINDER detects malware infections in network tra�c by comparing
statistical features of the tra�c to previously-observed bot activity. There-
fore, BOTFINDER operates in two phases: a training phase and a detection
phase. During the training phase, their system learns the statistical prop-
erties that are characteristic of the command and control tra�c of di�erent
bot families. Then, BOTFINDER uses these statistical properties to create
models that can identify similar tra�c. In the detection phase, the mod-
els are applied to the tra�c under investigation. This allows BOTFINDER
to identify potential bot infections in the network, even when the bots use
encrypted C&C communication.

Input Data Processing

The input for BOTFINDER is either a tra�c capture or NetFlow data.
During the training phase, malware samples are executed in a controlled
environment, and all network tra�c is recorded. In this step, it is important
to correctly classify the malware samples so that di�erent samples of the
same malware family are analyzed together.
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Figure 2.5: General Architecture of BotFinder
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Flow Reassembly

If NetFlow data is available, BOTFINDER directly imports it; otherwise,
they reassemble �ows from captured packet data. For each connection prop-
erties such as start and end times, the number of bytes transferred in total,
and the number of packets is extracted. As a �nal result of this reassem-
bly step, their system yields aggregated data similar to NetFlow, which is
the industry standard for tra�c monitoring and IP tra�c collection. For all
further processing steps, BOTFINDER only operates on these aggregated,
content-agnostic data.

Trace Extraction

Traces are an important concept in BOTFINDER: A trace T is a sequence
of chronologically-ordered �ows between two network endpoints. To obtain
meaningful statistical data, they require at least a minimal number of con-
nections j Tj min (typically between 10 and 50) in a trace T. This minimal
length requirement is consistent with the fact that command-and-control
tra�c consists of multiple connection.

Figure 2.6: Traces with di�erent statistical behaviour

Feature Extraction

After trace generation, BOTFINDER processes each trace to extract relevant
statistical features for subsequent trace classi�cation. They focus on the
following 5 features:
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1. The average time interval between the start times of two sub sequent
�ows in the trace.

2. The average duration of connections.

3. The average number of source bytes per �ow.

4. The average number of destination bytes per �ow.

5. The Fast Fourier Transformation (FFT).

Model Creation

They create models via clustering of the 5 features: average time, average du-
ration, average source bytes, average destination bytes, and the FFT. They
process the dataset for each feature separately, as they observed malware
behavior with non-correlated features. As an example of such behavior, two
versions of a bot might connect to di�erent versions of C&C servers C1 and
C2 and transfer di�erent amounts of bytes, depending of their version. Nev-
ertheless, these two bot versions might still follow the same communication
periodicity pattern.

Model Matching(Detection)

Now in the detection face they check the botnet tra�c with the model clus-
ters. If the clusters model matches then it detects and raises an alarm.

2.6 BotMosaic: Collaborative Watermark for

Botnet Traceback

2.6.1 Abstract

They study the problem of �nding a botmaster who is controlling a botnet.
Botmasters will typically use several stepping stones to connect to the botnet
to disguise their true location. While there has been a lot of work on detect-
ing stepping stones, it has focused on interactive stepping stones that follow a
di�erent pattern of communication than botnets. Thus a di�erent approach
is necessary. They develop a new network �ow watermarking scheme, called
BotMosaic. The scheme works by capturing multiple bots within a honeynet
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and then inserting a watermark onto the communication stream of each bot
towards the botmaster. By creating a collaborative watermark that is spread
across several bot communication streams, it is possible to overcome the par-
ticular nature of botnet command-and-control communication that renders
other watermarking techniques ine�ective. Given a su�cient collection of
trapped bots, the botmaster's connection can be detected with very low false
error rates. BotMosaic detection is low-cost so it can be easily deployed by
ISPs and enterprises to help address the botnet problem. It can also be used
to locate internal hosts that are part of the botnet, i.e., bots, and also inter-
nal compromised machines being used as botnet stepping stones, providing
an additional incentive for incremental deployment.

2.6.2 Contribution

Their approach is to capture a collection of bots inside a honeynet. They then
insert a collaborative watermark that is spread across the communication
stream of the entire collection of captured bots. Each stream is minimally
modi?ed, but as the streams are aggregated on the way to the botmaster, the
combined watermark becomes visible. The watermark can be detected at a
very low cost by detectors deployed at ISPs and enterprise border routers.
Their watermark can also be used to locate stepping stones-compromised
computers used by botmasters-as well as infected bot machines within a net-
work. As such, there is added incentive for incremental deployment.

They analyze their scheme using simulations and experiments on Planet-
Lab. They �nd that they can achieve a high rate of detection with few false
positives using a watermark applied to small number of captured/imitated
bots in the network, and the resulting detection time of about a minute.

2.6.3 System Architecture

Their aim is to design a watermark-based approach for the botnet trace
back problems in an IRC-based botnet, i.e., tracing back a botmaster, de-
tecting bots and botnet-related stepping stones. The work is di�erent from
similar watermarks in being collaborative by using multiple rogue bots for
watermark insertion, which makes it specialized for the problem of botnet
watermarking. Rogue bots are the bots collected/imitated and controlled by
the watermarking system, as opposed to real bots. Multiple rogue bots allow
them to spread the watermark power over a larger number of communica-
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tions, compensating for the small amount of communication each individual
bot performs with the botmaster. BotMosaic adopts an intervalbased de-
sign used in other watermarks to provide robustness to packet losses, delays,
and reordering as well as cha� introduced by the traf?c of the other bots in
the botnet. To obtain a large number of rogue bots, they propose using a
darknet operation together with a honeynet framework. A network telescope
can be used to route a large segment of the dark address space to a cluster
of honeypot machines. The machines themselves can use virtualization to
appear as a large number of hosts with various system con?gurations. Over
time, they can expect that a number of the virtual honeypot machines will be
compromised and start hosting bots that participate in a botnet. It may also
be possible to deliberately infect other machines to increase the number of
rogue bots. They then insert a watermark in a coordinated fashion into the
communications of all of the rogue bots. This allows them to insert a much
stronger signal into the encrypted communication link back towards the bot-
master/bots that is detectable even if these communications are mixed with
tra�c from other, real bots. The last component of their architecture is a se-
ries of detectors deployed around the Internet. The detectors maintain loose
time synchronization with the watermarkers and use interval-based detection
to account for packet delays, drops, or reordering.

Figure 2.7: Botmosaic watermarking traceback scheme
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2.7 BotHunter: Detecting Malware Infection

through IDS-Driven Dialog Correlation

2.7.1 Abstract

They present a new kind of network perimeter monitoring strategy, which
focuses on recognizing the infection and coordination dialog that occurs dur-
ing a successful mal-ware infection. BotHunter is an application designed
to track the two-way communication �ows between inter-nal assets and ex-
ternal entities, developing an evidence trail of data exchanges that match
a state-based infection sequence model. BotHunter consists of a correlation
engine that is driven by three malware-focused network packet sensors, each
charged with detecting speci�c stages of the malware infection process, in-
cluding inbound scanning, exploit usage, egg downloading, outbound bot
coordination dialog, and outbound attack propagation. The BotHunter cor-
relator then ties together the dialog trail of inbound intrusion alarms with
those outbound communication patterns that are highly indicative of suc-
cessful local host infection. When a sequence of evidence is found to match
BotHunter's infection di-alog model, a consolidated report is produced to
capture all the relevant events and event sources that played a role during
the infection process. We refer to this analytical strategy of matching the
dialog �ows between internal assets and the broader Internet as dialogbased
correlation, and contrast this strategy to other intrusion detection and alert
correlation methods. We present our experimental results using BotHunter
in both virtual and live testing environments, and discuss our Internet release
of the BotHunter prototype. BotHunter is made available both for opera-
tional use and to help stimulate research in understanding the life cycle of
malware infections.

2.7.2 System Architecture

BotHunter System Architecture is given below:

Now they turn their attention to the design of a passive monitoring system
capable of recognizing the bidirectional warning signs of local host infections,
and correlating this evidence against our dialog infection model. Our sys-
tem, referred to as BotHunter, is composed of a trio of IDS components that
monitor in- and out-bound tra�c �ows, coupled with our dialog correlation
engine that produces consolidated pictures of successful bot infections. We
envision BotHunter to be located at the boundary of a network, providing



CHAPTER 2. LITERATURE SURVEY 30

Figure 2.8: BotHunter System Architecture

it a vantage point to observe the network communication �ows that occur
between the network's internal hosts and the Internet. Their IDS detection
capabilities are composed on top of the open source release of Snort. We
take full advantage of Snort's signature engine, incorporating an extensive
set of malware-speci�c signatures that we developed internally or compiled
from the highly active Snort community. The signature engine enables us
to produce dialog warnings for inbound exploit usage, egg downloading, and
C&C patterns. In addition, they have developed two custom plugins that
complement the Snort signature engine's ability to produce certain dialog
warnings. Note that they refer to the various IDS alarms as dialog warnings
because we do not intend the individual alerts to be processed by administra-
tors in search of bot or worm activity. Rather, they use the alerts produced
by our sensors as input to drive a bot dialog correlation analysis, the results
of which are intended to capture and report the actors and evidence trail of
a complete bot infection sequence
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Motivation

3.1 Motivation

In this chapter we discuss about our motivation. Today's life is very much
depending upon network and internet. Our many important documents we
keep in our computerized system. Malicious attackers try to hack our system
to get our valuable information. Most of the organizations are now depend-
ing upon computing based system. Their works and all the documents from
the past till present time are kept in a computerized system. So the security
of that system is very much important.

Network is a very available medium for data communication. For transfer-
ring data, �le sharing, voice mail, video conference all are network commu-
nication. Malicious attackers �nd out many systems for attack the network
system for malicious reasons. The most e�cient, and arguably, most rele-
vant kind of such malware are bots. The malicious software components are
coordinated over a command and control (C&C) channel by a single entity
called the botmaster and form a botnet to carry out a number of di�erent
criminal activities. Consequently, defenses against malware infections are a
high priority, and the identi�cation of infected machines is the �rst step to
purge the Internet of bots.

Many security measures have been invented to detect the botnet. Accord-
ing to the nature of botnet the researchers �nd out Di�erent detection ap-
proaches. For detecting the botnet they proposed many algorithm and take
di�erent features. But none of them have mentioned any feasibility of mini-
mal su�cient features.
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So we try to �nd out the most feasible features. We did a serve and found
14 unique feature lists from 30 research papers. We will �nd out the most
minimal su�cient features among them by appropriate mechanism.

Again among all the research papers most of the approach is for detect-
ing the infected host and the botnet.BotMosaic is about �nding BotMaster
but it use honetnet and watermarking approach which is not good enough
to detect botmaster as well as botnet. They need 10-15% rough bot for ef-
fectiveness. They also need to establish the system before attack occurs.

There are many models using machine learning approach and anomaly based
detection method, which main concern is about botnet detection. Although
BotMosaic is a very primary approach for BotMaster detection it has many
defects.

There is no e�ective approach for detecting botnet as well as botmaster.
If we only concern about botnet then the botmaster can again attack the
system or another. So we need to �nd out the botnet as well as the botmas-
ter.
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Our Proposal

4.1 Proposed Model

Our main proposal is to make such a model which can detect the botnet as
well as the BotMaster. Our proposed model has 4 phases:

1. Feature Ranking

2. Training Phase

3. Botnet Detection Phase

4. BotMaster Detection Phase

We found a list of unique feature. Ranking them we will �nd out the best
minimal su�cient features. The list is given below:

• Flow Duration

• Average time interval between the start time of two subsequence

• Average no of source and destination bytes

• Average packet length

• Maximum initial congestion window

• Flow protocol

• Time of packet arrival
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• Percentage of packets pushed in �ow

• Payload size

• Tra�c frequency

• Ratio of incoming packets over outgoing packets

• Number of connections

• Average bits per second for �ow

For the training phase and botnet detecting face we will use e�ective machine
learning algorithm based on our features.

The last phase is for detecting the Botmaster. For this we will use a IP
traceback approach.

4.2 IP Traceback

The goal of IP Traceback is to trace the path of an IP packet to its origin.
Two main kinds of IP traceback techniques:

1. Packet marking

2. Packet logging

4.3 Our System Architecture

Our Proposed System Model is given below:
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Figure 4.1: BotEliminator System Architecture

4.3.1 Feature Ranking Phase

4.3.2 Machine Learning for Training Model Phase

Train Model

Botnet Detection

4.3.3 Botmaster Detection Phase

4.4 IP Traceback for Botmaster Detection
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Figure 4.2: Botmaster Detection using IP Traceback Approach
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Problems Encountered

5.1 Problems we Faced

• We found some existing codes for detecting Botnet, but we failed to
compile them properly.

• We try to detect botmaster for IRC based server as well as HTTP based
server.

• It is quiet impossible for us to detect HTTP based server because we
need many bot at a time.

• Botmaster keep their identity secret and also some cases they connect
with the C&C server for a short period of time.

• Most of the works we have study so far is not completely detect the
botnet as well as the botmaster and also bot the IRC based and HTTP
based server.

• Hybrid con�guration for the C&C server is now becoming very danger-
ous.

• There are too many methods used by the botmaster to make them
secret.
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Scopes of Work

6.1 Scopes of Work

• In future there is a scope for detecting the whole bot network including
Botmaster

• Hybrid botnet is becoming more and more dangerous so it need to be
solved

• IP trace back approach is currently used for IRC based model but not
for HTTP based model

• The features used for detecting botnet need to be summarized
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Conclusion

Botnet detection is a relatively new and a very challenging research area.
Botnet detection based on machine learning has been the subject of inter-
est of the research community resulting in the numerous detection methods
that are based on di�erent botnet heuristics, that target di�erent types of
botnets using diverse machine learning algorithms and that consequently pro-
vide varying performances of detection. We presented BotEliminator, a novel
malware detection system that is based on statistical network �ow analysis.
After a fully-automated, non supervised training phase on known bot fami-
lies, BotEliminator creates models based on the clustered statistical features
of command and control communication. BotEliminator is able to operate on
fully-encrypted tra�c, raising the bar for malware authors. BotEliminator is
also the �rst example of �nding Botmaster with accurate botnet detection.
We hope that our Internet release will enable the community to extend and
maintain this capability while inspiring new research directions. Our ongo-
ing work involves improving the detection accuracy of BotEliminator and
its resilience to evasion, and performing more evaluation and deploying Bot-
Sni�er in the real world. We are also developing a next generation detection
system that is independent of the protocol and network structure used for
botnet Command and Control channel. We want to make sure the perfect
and minimal features for detecting botnet using machine learning technique
and a very easy and appropriate approach for detecting botmaster. BotE-
liminator is not an established approach but we hope in future it will add a
very important role for �nding botnet as well as botmaster.
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