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Detecting protein complexes from protein-protein interaction (PPI) network is

becoming a difficult challenge in computational biology.In the post-genome era,

databases of protein-protein interactions are growing too fast that many well estab-

lished algorithms can not perform well in analyzing these.New forms of interaction

datasets are increasingly being found where many of well known alorithms can not

be applied.

Identifying protein complexes and the way they share components appears as an

essential step in describing cellular biology on a molecular basis.Graph Theoretic

approaches are very popular in predicting protein complexes as they give a good

insight into protein interaction networks in terms of connectivity and neighbor-

hood.A novel graph decomposition method named Homogeneous Decomposition

is very well performing in predicting protein complexes.It not only shows the mem-

bers of the complexes but also can describe the relations between them.But it can

not go further in some kind of networks with different scenario.We intend to in-

vestigate these limitations and propose new descriptions refining the current ones

to overcome the limitations.
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Chapter 1

Introduction

1.1 Biological Networks

A biological network is any network that applies to biological systems. A

network is any system with sub-units that are linked into a whole, such as

species units linked into a whole food web. Biological networks provide a

mathematical analysis of connections found in ecological, evolutionary, and

physiological studies, such as neural networks.

1.1.1 Network Biology and Bioinformatics

Complex biological systems may be represented and analyzed as computable

networks. For example, ecosystems can be modeled as networks of interacting

species or a protein can be modeled as a network of amino acids. Breaking a

protein down farther, amino acids can be represented as a network of connected

atoms, such as carbon, nitrogen, and oxygen. Nodes and edges are the basic

components of a network. Nodes represent units in the network, while edges

represent the interactions between the units. Nodes can represent a wide-array of

biological units, from individual organisms to individual neurons in the

brain.Two important properties of a network are degree and betweenness.Degree

(or connectivity) is the number of edges that connect a node, while betweenness

is a measure of how central a node is in a network. Nodes with high betweenness

essentially serve as bridges between different portions of the network (i.e.

interactions must pass through this node to reach other portions of the network).

In social networks, nodes with high degree or high betweenness may play

important roles in the overall composition of a network.

1



Chapter 1. Introduction 2

Bioinformatics has increasingly shifted its focus from individual genes, proteins,

and search algorithms to large-scale networks often denoted as -omes such as

biome, interactome, genome and proteome. Such theoretical studies have

revealed that biological networks share many features with other networks such

as the Internet or social networks, e.g. their network topology.

1.1.2 Networks in Biology

1.1.2.1 Protein-protein interaction networks

Many protein-protein interactions (PPIs) in a cell form protein interaction

networks (PINs) where proteins are nodes and their interactions are edges. PINs

are the most intensely analyzed networks in biology. There are dozens of PPI

detection methods to identify such interactions. The yeast two-hybrid system is

a commonly used experimental technique for the study of binary interactions.

Recent studies have indicated conservation of molecular networks through deep

evolutionary time.Moreover, it has been discovered that proteins with high

degree of connectedness are more likely to be essential for survival than proteins

with lesser degrees.This suggests that the overall composition of the network

(not simply interactions between protein pairs) is important for the overall

functioning of an organism.

1.1.2.2 Gene regulatory networks

The activity of genes is regulated by transcription factors, proteins that typically

bind to DNA. Most transcription factors bind to multiple binding sites in a

genome.As a result, all cells have complex gene regulatory networks. For

instance, the human genome encodes on the order of 1,400 DNA-binding

transcription factors that regulate the expression of more than 20,000 human

genes.Technologies to study gene regulatory networks include ChIP-chip,

ChIP-seq, CliP-seq, and others.

1.1.2.3 Metabolic networks

The chemical compounds of a living cell are connected by biochemical reactions

which convert one compound into another. The reactions are catalyzed by

enzymes. Thus, all compounds in a cell are parts of an intricate biochemical
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network of reactions which is called metabolic network. It is possible to use

network analyses to infer how selection acts on metabolic pathways.

1.1.2.4 Signaling networks

Signals are transduced within cells or in between cells and thus form complex

signaling networks. For instance, in the MAPK/ERK pathway is transduced

from the cell surface to the cell nucleus by a series of protein-protein interactions,

phosphorylation reactions, and other events. Signaling networks typically

integrate protein-protein interaction networks, gene regulatory networks, and

metabolic networks.

1.2 Protein-Protein Interaction Networks

Proteins are involved in physical interactions with each other during two main

processes: cellular signaling and complex assembly. In the first process, an

extracellular signal or stimulus is transduced into the nucleus in order to initiate

gene transcription. Signal transduction involves ordered sequence of biochemical

reactions in which proteins activate other proteins usually by

phosphorylation.The second process involving interactions is protein complex

assembly, in which a set of proteins is assembled together to build a larger, more

complex machine. Examples for such complexes are the RNA-polymerase and

DNA-polymerase.

1.2.1 Interaction Discovery Methods

1.2.1.1 Yeast Two-Hybrid (Y2H)

The Yeast Two-Hybrid technique (Y2H) allows the detection of pair-wise protein

interactions. Y2H exploits a modular property that is typical of many eukaryotic

transcription factors. These factors can usually be decomposed into two distinct

modules: one directly binds the DNA (BD, DNA-binding domain) and the other

activates the transcription process (AD, transcriptional activating domain). The

first component, BD, is able to bind the DNA even without the presence of the

second component, AD. AD will activate transcription only if it is physically

associated to a binding domain (BD). In the two-hybrid experiment, the two test
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proteins (also referenced as the bait and the prey) are expressed as two fusion

proteins (hybrids) with a DNA-binding domain (BD and the bait) and a

transcriptional activating domain (AD and the prey respectively). Interaction

between the bait and the prey proteins is identified via the expression of a

reporter gene. A reporter gene is usually attached to another gene of interest,

and holds a characteristic which can be easily identified in case it is activated. In

the Y2H assay, LacZ is usually used as a reporter gene. Its expression causes

blue color to appear and thus imply on an interaction.

1.2.1.2 Co-Immunoprecipitation (coIP)

The development of ultra-sensitive mass spectrometric techniques for protein

identification has led to new interaction detection experimental procedures, other

than Y2H. Immunoprecipitation is a technique of precipitating a protein antigen

out of solution using an antibody that specifically binds to that particular

protein. Protein complex immunoprecipitation (coIP) works by selecting an

antibody that targets a known protein that is believed to be a member of a

larger complex of proteins. By targeting this known member with an antibody it

may become possible to pull the entire protein complex out of solution and

thereby identify unknown members of the complex. Due to the difficulty in

generating an antibody that specifically targets the known target proteins, the

tagging method has been developed. Tagging proteins involves the fusion of tags

either the 3 or the 5 ends of the protein of interest, and by that a single antibody

(with this tag as its antigen) can be used for all target proteins.

1.2.2 Why are protein-protein interactions so important?

The binding of one signaling protein to another can have a number of

consequences:

1. Such binding can serve to recruit a signaling protein to a location where it

is activated and/or where it is needed to carry out its function.

2. The binding of one protein to another can induce conformational changes

that affect activity or accessibility of additional binding domains,

permitting additional protein interactions.
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3. Imagine a cell in which, suddenly, the specific interactions between proteins

would disappear. This unfortunate cell would become deaf and blind,

paralytic and finally would disintegrate, because specific interactions are

involved in almost any physiological process.

4. The study of protein-protein interactions has provided important insights

into the functions of many of the known oncogenes, tumor suppressors, and

DNA repair proteins.

5. Pharmacogenetic research has expanded to include the study of drug

transporters, drug receptors, and drug targets.

1.3 Protein Complexes

A multiprotein complex (or protein complex) is a group of two or more

associated polypeptide chains. If the different polypeptide chains contain

different protein domain, the resulting multiprotein complex can have multiple

catalytic functions. This is distinct from a multienzyme polypeptide, in which

multiple catalytic domains are found in a single polypeptide chain.

Protein complexes are a form of quaternary structure. Proteins in a protein

complex are linked by non-covalent proteinprotein interactions, and different

protein complexes have different degrees of stability over time. These complexes

are a cornerstone of many (if not most) biological processes and together they

form various types of molecular machinery that perform a vast array of biological

functions.

Many protein complexes are well understood, particularly in the model organism

Saccharomyces cerevisiae (a strain of yeast). For this relatively simple organism,

the study of protein complexes is now being performed genome wide and the

elucidation of most protein complexes of the yeast is undergoing.
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Existing Methods

2.1 Individuation of Protein Complexes

A functional module is a group of cellular components, to which a specific

biological function can be attributed. Consequently, molecular interaction

networks can be organized in a set of modules of a small number of participants,

which are low in interacting with other modules. A protein complex is a group of

two or more associated proteins that interact by sharing the same biological goal.

For example, the Breast Cancer Protein 1 (BRCA1) is known to participate

inmultiple cellular processes by multiple protein complexes, such as in

association with the BARD1 protein or with the Rad50, Mre11, Nbs1 proteins .

Starting from a PPI network, complexes may be identified by searching for small

and highly interconnected regions, called cliques. Predicted complexes can

already be known, that is, their composition is known, or can denote a new

protein complex. In this case, if the experiments confirm this relation, the

algorithms can be used as predictors.

2.1.1 The Molecular Complex Detection Algorithm (MCODE)

The Molecular Complex Detection algorithm (MCODE), described in the early

work of Bader takes in input an interaction network and tries to find complexes

by building clusters. The rationale for MCODE is the separation of dense regions

based on an ad hoc defined local density. MCODE has three main stages: (i)

node weighting; (ii) complexes prediction; and (iii) post processing.

In its first stage, MCODE weights all vertices based on their local network

density. The local area in which density is calculated is delimited by an ad hoc

6
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defined subgraph structure called k-core. A k-core of a graph is the central most

densely connected subgraph with minimal degree k. Thus, the core-clustering

coefficient of a vertex v is the density of the highest k-core in the immediate

neighborhood of v. Finally, the weight of a vertex is the product of the vertex

core-clustering coefficient and the highest k-core level, kmax, of the immediate

neighborhood of the vertex.

The resulting weighted graph is given as input to the second stage. Hence, the

algorithm, starting from the highest weighted vertex, tries to span a region

visiting vertices whose weight is above a certain threshold, called the vertex

weight percentage (VWP). This stage stops when no more vertices can be added

to the complex, and it is repeated by considering the next highest weighted

network not already considered.

Finally, in the third stage, complexes are filtered when they do not contain at

least a 2-core (i.e., a k-core with k = 2), that is, a graph of minimum degree

equal to 2. The algorithm has two main options, fluff and haircut, that

determine the characteristics of this phase.

The algorithm has two modes of execution: a direct mode in which the search

starts from a given node and an undirect mode in which the seed is selected

randomly.

2.1.2 The Markov Cluster Algorithm (MCL)

The Markov Cluster algorithm (MCL) finds clusters on a graph by simulating a

stochastic flow and then analyzing its distribution. A network can be represented

as a collection of paths sharing a starting point that guides a certain number of

random walks. Observing the walks, we can see a particular behavior on the

resulting flow: when a walker reaches a highly connected region, the walker will

have small probability of getting out. In this way, considering the evolution of

the flow, walks will reside in the regions with many edges, and walks linking

highly connected regions will be more and more frequent.

So the MCL algorithm (i) simulates a collection of random walks within the

network and (ii) iteratively weakens the flow where it is weak and increases the

flow where it is strong (in the highly connected regions). This process will cause

the apparition of a cluster structure, and will end when a set of regions with flow

are separated by regions without flow.

This idea is implemented by building a stochastic matrix from the graph and

then by simulating a flow with some algebraic operations. Formally, let us
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consider a graph G and its adjacency matrix Mg, an associated Markov matrix is

defined by normalizing all columns of Mg. Each value of this matrix represents

the tendency of a node to be attracted by the other ones. Clearly, at the first

step, each node is equally attracted by its neighbors. The evolution of the

system, that is, of the flow, is computed by calculating the next power of this

matrix. For any Markov matrix, the computation of successive powers causes a

particular state in which each node is equally attracted from the others.

However, the initially dense regions behave differently during the computation of

the initial powers: nodes within dense regions are more attracted than the ones

that are in the same region. The algorithm enhances this behavior with an

operation, called ’inflation’, that changes the matrix values in order to increase

the probability of reaching a node in highly connected regions. The inflation

operation, based on an inflation parameter greater than 1, influences the cluster

structure; the greater the inflation parameter, the greater the number of clusters.

Unlike the classical algorithms, the MCL does not suppose a defined cluster

structure, that is, a fixed number of clusters.

Currently, MCL is implemented for Linux platforms and is freely available on the

Internet.

2.1.3 Complex Prediction via Clustering

The work of Altaf-Ul-Amin presents another approach for finding complexes that

is also based on the clustering of an interaction network. The rationale for the

algorithm is the building of a cluster as a dense region embedded into a sparse

region. The algorithm is organized logically in five major steps: (i) initialization;

(ii) termination check; (iii) selection of a starting node; (iv) cluster growth; and

(v) output.

In the first step the algorithm takes as input an undirected graph and initializes

its main variables: cluster density, cluster property, and cluster ID. The

algorithm calculates the minimum value of density for each generated cluster,

that is, the ratio of the number of edges present in the cluster and the maximum

possible number of edges in the cluster. The cluster property cpn,k of any node

n, with respect to any cluster k of density dk and size Nk , is the ratio between

(i) the total number of edges between the node n and each of the nodes of the

cluster and (ii) the product between the density and the size of the cluster dk.

The cluster identifier (ID) k is initialized to 1.
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In the second step the algorithm verifies the termination conditions, and if the

graph has no edges, the algorithm will end.

Conversely, if the termination check fails, the algorithm enters the third step,

namely selection of starting node, selecting a node as a starting point to build a

new cluster.

Hence, in the fourth step, namely, cluster growth, the algorithm adds nodes to

the cluster chosen from the neighbors of the starting node. Neighbors are labeled

in priority in order to guide the cluster formation.

Finally, when a cluster is generated, it is removed from the graph and the cluster

ID k is incremented.

The algorithm is polynomial, and its complexity in the worst case is O(N3),

where N is the number of nodes. This complexity is due to the cost of sorting

clusters.

2.1.4 Complex Prediction via Restricted Neighborhod Search Clustering (RNSC)

The algorithm tries to find complexes by clustering protein interaction networks

and filtering the generated clusters. In this scenario, clustering the network

corresponds to its decomposition into different subsets of nodes inducing dense

subgraphs. The algorithm, after an initial random clustering, uses the Restricted

Neighborhood Search (RNSC), a cost-based local search algorithm based on the

tabu heuristic.

The RNSC assigns a cost to each partition of nodes, and hence searches this

space. The algorithm uses two cost functions, an integer-valued cost function

(known as nave function) and a real-valued function (called a scaled function).

The first function acts as a fast preprocessor and the second one assigns a more

sophisticated cost on the initial network clustering, which can be random or

userdefined.

Finally, the generated clusters are filtered. Small clusters are discarded for two

reasons: (i) small known complexes generally have low density in known PPI

networks; and (ii) the overlapping of a small predicted complex and a true

complex has more probability of occuring by chance.

Hence, predicted clusters are matched to a known biological complex if the

predicted cluster is entirely contained in the complex, or if it overlaps a large

proportion of the complex.
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2.1.5 Complex Identification through Chordal Graphs

The methods presented so far reside on the interpretation of a complex as a

particular region in the graph, and this region is defined on the basis of an ad

hoc density measure. These regions can be interpreted as functional modules of

the graph, that is, a set of components interacting for targeting a specific goal.

The translation of such a concept in a graph property is the rationale for

different approaches.

These groups are represented by a particular clique (both maximal or defined ad

hoc) on the graph. The proposed method is based on a possible decomposition

for a chordal graph called a clique tree representation. Although not every PPI

network is represented by a chordal graph, the authors developed a framework

that generalizes this representation. The developed algorithm builds a so-called

’Tree of Complexes’ whose nodes are complexes.

2.2 Limitations of these algorithms

All of the above mentioned methods for predicting protein complexes have the

following common limitations:

1. They are based on the idea of finding dense subgraphs however, they differ

in the definition of a dense subgraph and the procedure to cluster the nodes

into dense subgraphs. In order to achieve a breakthrough, we need a deeper

understanding of the proteins within these complexes.

2. They are unable to detect complexes which contain few proteins or few

interactions.

3. They have not incorporated biological knowledge such as structural or

evolutionarily relationships between proteins within the complexes.

4. The datasets applied to these problems have been derived from

highthroughput experiments, which, in the case of PPI, are known to have

both high false-positive and high false-negative rates.

Almost all of these limitations can be solved by applying Homogeneous

Decomposition Method.



Chapter 3

Modular and Homogeneous

Decomposition

3.1 Modular Decomposition

Under the modular decomposition model, a module M is a graph inside the given

graph G so that all the vertices in M have exactly the same neighbors outside M

(let us call that the neighborhood property). The aim of the modular

decomposition is to decompose a graph into non-trivial modules (at least two),

and then to iterate the decomposition process on the resulting modules until all

modules are made of one vertex (such modules are the leaves of the

decomposition tree). Thus, the children of each node in the modular

decomposition tree are its modules, whether they are internal vertices or leaves.

Figure 4b shows one decomposition of G in Figure 1a into modules. Module β

may be furtherly decomposed into modules with vertex sets 4,6 and 9, while all

the other modules have only trivial decompositions into 1-vertex modules (i.e.

leaves).

When a graph is broken up into modules, one must be able to build the graph

again using only its modules and a logical rule (otherwise the decomposition

looses information). The logical rule is stored in the node of the tree

corresponding to the graph as a character with values 0, 1 or P as follows (see

Fig. 2a for illustration):

• 0 means that G is the union of all its modules, without any edge joining

vertices from different modules. In this case, G is a 0-graph (or 0-module)

11
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Figure 3.1: (a) Example graph G and (b) its decompositions into modules α, 1, β, 5
and γ.

and its corresponding node is a 0-node. Modules α and β in Figure 1b are

0-modules.

• 1 means that G is the join of all its modules, obtained by adding an edge

between every pair of vertices from two different modules. In this case, G is

a 1-graph (or 1-module) and its corresponding node is a 1-node. Module γ

of G and module δ with vertex set 4,6 of β are 1-modules.

• P means that G is obtained from its modules by performing, between any

pair of modules, either a union or a join, according to the characteristic

graph C(G), whose vertices correspond to the modules, and whose edges

correspond to the join operations. In this case, G is a P-graph (or

P-module) and its corresponding node is a P-node. The whole graph G in

Figure 1a is a P-module with modules α,1, β,5, γ (Fig. 1b), which have to

be combined together according to the characteristic graph C(G) in Figure

2b to build G again. Notice here that the characteristic graph of G is

obtained by shrinking in G each module into a single vertex.

Figure 3.2: The modular decomposition tree of the example graph G (a) and the
characteristic graph C(G) associated to the root (b), which is a P-node.
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3.2 Homogeneous Decomposition

The main drawback of the modular decomposition is its unability to further

decompose the characteristic graphs associated to the P-modules. The

homogeneous decomposition partially solves this problem by identifying

P-modules with a specific structure, for which a further decomposition is

proposed. It is not meant to replace the decomposition into modules but to

refine it, once the modules have been computed and the characteristic graph has

been built. The homogeneous decomposition offers, therefore, an obvious

qualitative improvement to the modular decomposition, which is described here

in an intuitive manner and is illustrated in examples.

A graph G furtherly decomposable by an homogeneous decomposition is called a

W-graph (or W-module) which has the wheel structure depicted in Figure 3a.

Such a module has a characteristic graph (Fig. 3b) made of a hub (which is a

clique) and of a set of single vertices around the hub that have neighbors in the

hub but are not joined to each other. The h-modules of a W-module are the

graphs (which are also cliques) made of a single vertex and all its neighbors in

the hub. Note that h-modules do not have the neighborhood property as other

modules do. These notions are illustrated on the example graph G in Figure 4a

and 4b.

Figure 3.3: (a) Wheel structure of a graph. (b) Characteristic graph with emphasized
hub and single vertices.The dotted circle simply highlights the wheel structure, it does

not indicate edges.

The homogeneous decomposition introduces two new logical rules in the

decomposition tree (Fig. 4c), described by characters Wand H used to label

internal nodes:

• W means that the graph G is obtained from its modules (stored as

children) and its h-modules (stored as a specific child which is an H-node)

by recovering a wheel structure. This happens when G is a W-graph (or

W-module) and in this case its corresponding node is called a W-node.
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Graph G in Figure 1a is a W-module whose corresponding W-node is

shown in Figure 4c.

• H means that the internal node stores the h-modules of its father, which is

necessarily a W-module, in the following form: each h-module is stored in a

child labeled by a vertex set whose first element is the single vertex

identifying the h-module and the other elements are its neighbors in the

hub. In this case, the node is called an H-node. Although this is not

necessary, in our figures and so as to simplify explanations, the vertex set of

the hub labels the H-node. The h-modules of the characteristic graph C(G)

of the example graph G, identified in Figure 4b, are stored in the H-node in

Figure 4c.

Figure 3.4: (a) Wheel structure of G. (b) Characteristic graph C(G) with hub (in
gray) and its three h-modules. (c) Homogeneous tree of G.

3.3 Limitations of Homogeneous Decomposition

Some drawbacks that weve found regarding homogeneous decomposition are

discussed as follows:

3.3.1 Multiple Hub

In some extended scenarios of protein interaction networks there may be multiple

potential hubs.Homogeneous Decomposition can not describe this scenario.An

illustration is shown below:
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Figure 3.5: A theoretical character graph C(G) with two potential hubs(encircled).

3.3.2 Wheel Structure

In some scenarios, there are nodes connected to the attachment nodes but not to

the hub nodes.Homogeneous Decomposition can not describe this scenario. An

illustration is given below:

Figure 3.6: A theoretical wheel structure where extra node is connected to an attach-
ment node.

3.3.3 Sub-complexes

Homogeneous Decomposition can identify subcomplexes in a protein coplex and

interactions between them. But it can not relate the properties of

sub-complexes(functionally and spatially more homogeneous, enriched with

essential proteins etc.) by its interaction description.
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Figure 3.7: Character graph after all modular decomposition in protein complexes.
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Our Proposal

4.1 Multiple Hub

Our conceptual proposal is All potential hubs will form a single hub together

where each of the potential hubs will be connected to atleast one of other hubs.

That means there will be atleast one path available from between every potential

hubs. An illustration is given below:

Figure 4.1: A theoretical representation of our first proposal.

4.2 Wheel Structure

Nodes connected to the hub node through any attachment node will be in the

same complexes where the attachment nodes are members of that complex.An

illustration is given below:

17
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Figure 4.2: A theoretical representation of our second proposal.

4.3 Sub-complexes

Homogeneous Decomposition can identify subcomplexes in a protein complex

and interactions between them.But it can not relate the biological counterpart of

sub-complexes by its interaction description.The biological significance of protein

subcomplexes recently investigated experimentally are:

• SCs are functionally and spatially more homogeneous than complete

protein complexes.

• The abundance of subcomplex proteins is less variable than the abundance

of other proteins.

• SCs are enriched with essential and synthetic lethal proteins.

• Mutations in SC-proteins have higher fitness effects than mutations in other

proteins.

Figure 4.3: A theoretical representation of our third proposal.

Among these the first property is exploited to propose functions for so far

unknown proteins of S.cerevisiae.

We want to investigate within protein complexes to relate the biological

functions of sub-complexes with the properties of their corresponding

interactions between them in the homogeneous tree.
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4.4 Applications of our extensions

4.4.1 A Theoretical Network

Figure 4.4: Character graph C(G) of our theoretical protein interaction network.

Figure 4.5: Wheel structure of the above characteristic graph.

Figure 4.6: Homogeneous tree of previous characteristic graph by applying our ex-
tensions.

4.4.2 A Protein Complex
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Figure 4.7: A protein complex extracted from PIN of Yeast by experimental methods.

Figure 4.8: Identical tree of both Modular and Homogeneous Decomposition.

Figure 4.9: Homogeneous tree of previous complex by applying our extensions.
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Future Work

We could not implement our proposed extensions due to shortage of time and

resources. In near future, we wish to implement these proposals in Perl and

check the performance with protein interaction databases and compare it with

the performance of Homogeneous Decomposition. Also we wish to further dig

into the interpretation of biological relations between protein sub-complexes

through our extensions.

21
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