
ISLAMIC UNIVERSITY OF TECHNOLOGY(IUT)

Department of Computer Science and Engineering

A. M. Ridwan

Student Id: 094409

Computer Science & Engineering

Islamic University of Technology

Board Bazar, Gazipur

E-mail: arifcit@iut-dhaka.edu

Faiyad Rahman

Student Id: 094423

Computer Science & Engineering

Islamic University of Technology

Board Bazar, Gazipur

E-mail: nahidcit@iut-dhaka.edu

Human Activity Recognition Using Smart
Phone Sensors

B.Sc Thesis

October, 2013

Supervisor: Md. Kamrul Hasan

Assistant Professor

Computer Science & Engineering

Islamic University of Technology

Board Bazar, Gazipur

E-mail: hasan@iut-dhaka.edu

Acknowledgement

At �rst we would like to thank our respected supervisor Md. Kamrul Hasan,
PhD, Assistant Professor,CSE Department for his guidence, supervision and
earnest support through out the whole thesis work. We thank all the teacher
of CSE department for their support and enthusiasm.

October, 2013

A. M. Ridwan

Faiyad Rahman

ii

Table of Contents

Table of Contents ii

List of Figures v

1 Introduction 1

1.1 Background 1

1.2 Keywords 2

1.3 Motivation 3

2 Literature Review 4

2.1 Install multiple inertial sensors on the body. [1, 2, 3, 4]: 4

2.2 Use one or multiple camera to do a vision-based recog-
nition [5, 6]: . 7

3 Background Study 8

3.1 Human Activity Recognition: 8

3.2 Mobile Devices and Sensors: 9

3.3 Sensor data: 9

3.4 Human Pose Recognition: 10

3.5 Classi�cation techniques: 10

3.5.1 Iterative Dichotomizer 3(ID3): 10

3.5.2 K- Nearest Neighbor: 11

3.6 Problem statement: 12

3.7 Proposed Solution Approach: 12

iii

3.7.1 Data Collection: 12

3.7.2 Detecting Falls: 16

3.7.3 Feature Extraction: 17

3.7.4 Human Activity Recognition Model 18

3.7.5 Classi�cation: 20

3.7.6 Results: 22

3.8 Source Code: 23

3.9 Application Screenshot 36

4 Conclusion 40

4.1 Conclusion . 40

iv

List of Figures

2.1 Botnet Architecture . 5

2.2 (a)Diagram of Path Observation (b)Variables to minimize for
each path . 7

3.1 . 13

3.2 . 14

3.3 . 15

3.4 . 15

3.5 . 16

3.6 . 16

3.7 . 18

3.8 . 21

3.9 . 36

3.10 . 37

3.11 . 38

3.12 . 39

v

Abstract

In this work, algorithms are developed and evaluated to detect physical
activities from data acquired using the sensors available in smart phones-
accelerometer, gyroscopes, global positioning system (GPS), carrying it in
pockets. Data was collected from 20 subjects without supervision or obser-
vation. Subjects were asked to perform a sequence of everyday tasks but not
told speci�cally where or how to do them. Mean, energy, frequency-domain
entropy, and correlation of acceleration data was calculated and several clas-
si�ers using these features were tested. Decision tree classi�ers showed the
best performance recognizing everyday activities with an overall accuracy
rate of 84%. The results show that although some activities are recognized
well with subject-independent training data, others appear to require subject-
speci�c training data. The results suggest that multiple accelerometers aid in
recognition because conjunctions in acceleration feature values can e�ectively
discriminate many activities.

Chapter 1

Introduction

1.1 Background

Providing accurate and opportune information on people's activities and be-
haviors is one of the most important and well-studied tasks in pervasive
computing. Innumerable applications can be visualized for medical, secu-
rity, entertainment, and tactical purposes. In recent years, the prominent
development of sensing devices (e.g., accelerometers, cameras, GPS, etc.)
has facilitated the process of measuring attributes related to the individu-
als and their surroundings. In addition, most sensors are nowadays equipped
with communication capabilities which allow their integration with other mo-
bile devices within Personal Area Networks (PANs) or Body Area Networks
(BANs). However, most applications require much more than simply collect-
ing measurements from variables of interest. In fact, additional challenges
for enabling context awareness involve the design of techniques to perform
data analysis and inference, as the raw data (e.g., acceleration signals or
electrocardiogram) provided by the sensors are, in many cases, useless. Even
though the �rst works in human activity recognition (HAR) date back to
the late 90's [1], there are still signi�cant research challenges within the �eld.
In this work, we concentrate on one of the most relevant ones: the imple-
mentation of a HAR system in a mobile phone. This task becomes di�cult
because of the energy and computational constraints present in the devices.
Such limitations are particularly critical for activity recognition applications
which entail high demands due to decoding, feature extraction, classi�ca-
tion, and transmission of large amounts of raw data. Furthermore, to the
best of our knowledge, available machine learning API's such as WEKA [2]
and JDM [3] are not supported by current mobile platforms. This fact ac-

1

CHAPTER 1. INTRODUCTION 2

centuates the necessity of an e�cient mobile library for evaluating machine
learning algorithms and implementing HAR systems in mobile devices. At
the same time, we foresee that a mobile HAR system will bring important
advantages and bene�ts. For instance, a HAR system running in a BAN
should substantially reduce energy expenditures, as raw data would not have
to be continuously sent to a server for processing. The system would also be-
come more robust and responsive because it would not depend on unreliable
wireless communication links, which may be unavailable or error prone; this
is particularly important for medical or military applications that require
real-time decision making. Finally, a mobile HAR system would be more
scalable since the server load would be alleviated by the locally performed
feature extraction and classi�cation computations. In this paper, we intro-
duce a mobile framework in support of real-time human activity recognition
under the Android platform -reported as best-selling smartphone platform
in 2010 by Canalys [4] - to address previously mentioned issues. A mobile
application was implemented on top of Centinela [5], a HAR system based on
acceleration and physiological signals to automatically recognize physical ac-
tivities. The application utilizes the C4.5 classi�cation algorithm as a proof
of concept. The implementation and evaluation of our framework present
the following main results and contributions:

• A library for the mobile evaluation of classi�cation algorithms (MECLA)
was successfully implemented.

• An application for real-time HAR was implemented in an Android cel-
lular phone. It uses MECLA and supports multiple sensing devices
integrated in a BAN.

• The evaluation shows that the system can be e�ectively deployed in
current cellular phones. Indeed, the application can run for up to 12.5
continuous hours with a response time of no more than 8% of the
window length and an overall accuracy of 92.6%.

• Di�erent users with diverse characteristics participated in training and
testing phases, assuring �exibility to support new users without the
need of re-training the system.

1.2 Keywords

Human activity recognition, Mobile devices and sensors, sensor data, Human
pose recognition, Classi�cation Algorithms

CHAPTER 1. INTRODUCTION 3

1.3 Motivation

The main motivation behind the research is to make activity recognition easy
and accurate. With the use of external sensors, desired accuracy has been
achieved. But with the rise of technology era, modern smart phones are
equipped with all the sensors one requires to detect human activity. Till now
only primary activities are recognizable using the mobile phone sensors. To
detect much more complex activities is the main goal of this research.

We chose smart phones to reduce/eliminate the use of external sensors. As
carrying external sensors is a hassle and also leads user discomfort.

Also till now all the activity recognition decisions are done in cloud based
classi�cation. We plan on creating a standalone application for the mobile
phones which will not need cloud to recognize activities.

Chapter 2

Literature Review

2.1 Install multiple inertial sensors on the body.

[1, 2, 3, 4]:

Activity Detection Approach:

Supervised Learning:

Homes and their furnishings have highly variable layouts, and individuals
perform activities in many di�erent ways. The same activity (e.g. brushing
teeth) may result in a signi�cantly di�erent sensor activation pro�le based
upon the habits, or routines of the home occupant and the layout and orga-
nization of the particular home. One approach to handling such variability
is to use supervised learning with an explicit training phase.

Probabilistic classi�cation:

Probabilistic reasoning o�ers a way to deal with ambiguous and noisy infor-
mation from multiple sensors.

Model-based vs instance-based learning:

Model-based algorithms use the training examples to construct a mathemat-
ical model of the target classi�cation function, which avoids the need to save
all examples as raw data. This could help alleviate end-user privacy concerns.

4

CHAPTER 2. LITERATURE REVIEW 5

Figure 2.1: Botnet Architecture

CHAPTER 2. LITERATURE REVIEW 6

Activity recognition system architecture:

The proposed system consists of three major components: (1) The environ-
mental state-change sensors used to collect information about use of objects
in the environment, (2) the context-aware experience sampling tool (ESM)
used by the end user to label his or her own activities, and (3) the pat-
tern recognition and classi�cation algorithms for recognizing activities after
constructing a model based on a training set.

Environmental State-Change Sensors:

Although other low-cost wireless sensing systems have been developed, no-
tably Berkeley Motes and Smart-ITS, their power and cost points still pose
a challenge for researchers interested in distributing hundreds of units in a
single home to collect synchronized data for several weeks or longer. The cost
of these devices is relatively high because they are designed as multi-purpose
sensors.
Therefore, we have designed a new set of tape-on sensors optimized to per-
form a single task at low cost: measuring change in the state of an object
in home. To achieve well-synchronized measurements, the most precise real-
time clock hardware was used in each board. Further, the signals from each
board were linearly interpolated to match the reference clock better after the
end of the study. These highly-specialized boards are 3-5 times less expen-
sive than Smart-ITS and Motes, which dramatically increases the number
that can be installed in homes working within a tight research budget. The
estimated battery life of the data collection board is one year if the external
sensor is activated an average of 10 times per day for 30 seconds.

Context-Aware Experience Sampling:

Supervised learning algorithms require training data. In the laboratory, ob-
taining annotated data is a straightforward process. Researchers can directly
observe and label activity in real-time, or later through observation of video
sequences. In the home environment, however, direct observation is pro-
hibitively time-consuming and invasive. One alternative is to use the Expe-
rience Sampling Method (ESM). When using ESM, subjects carry a personal
digital assistant (PDA) that is used as timing device to trigger self-reported
diary entries. The PDA samples (via a beep) for information. Multiple choice
questions can then be answered by the user.

CHAPTER 2. LITERATURE REVIEW 7

2.2 Use one or multiple camera to do a vision-

based recognition [5, 6]:

The goal of camera placement for optimal path observability is to position
a camera to observe the entire path of motion while maximizing the view of
the subject in the image. The �rst part of that goal, observing the entire
path, requires the camera to be far enough away from the subject that the
entire motion is captured within the camera �eld of view. The second part
of the goal, maximizing the view of the subject, requires the camera to be as
close to the subject as possible, so that the subject is as large as possible in
the image. Figure 2 depicts the reason for this. For a perspective projection
camera with a �xed �eld of view, the size of an object in an image decreases as
the distance to the object increases. In digital imaging, the area of an object
in an image corresponds to a number of pixels that measure the object. As a
result, we can de�ne observability metrics directly in terms of pixel resolution
((1) and (2)).

Figure 2.2: (a)Diagram of Path Observation (b)Variables to minimize for
each path

Chapter 3

Background Study

3.1 Human Activity Recognition:

Sensor-based activity recognition integrates the emerging area of sensor net-
works with novel data mining and machine learning techniques to model a
wide range of human activities. Mobile devices (e.g. smart phones) provide
su�cient sensor data and calculation power to enable physical activity recog-
nition to provide an estimation of the energy consumption during everyday
life. Sensor-based activity recognition researchers believe that by empow-
ering ubiquitous computers and sensors to monitor the behavior of agents
these computers will be better suited to act on our behalf. Approaches to
activity recognition are through logic and reasoning, Probabilistic reasoning,
WI FI based activity recognition, Data mining approach. Logic-based ap-
proaches keep track of all logically consistent explanations of the observed
actions. Thus, all possible and consistent plans or goals must be consid-
ered. Kautz provided a formal theory of plan recognition. He described plan
recognition as a logical inference process of circumscription. All actions,
plans are uniformly referred to as goals, and a recognizer's knowledge is rep-
resented by a set of �rst-order statements called event hierarchy encoded in
�rst-order logic, which de�nes abstraction, decomposition and functional re-
lationships between types of events. Probability theory and statistical learn-
ing models are more recently applied in activity recognition to reason about
actions, plans and goals. When activity recognition is performed indoors and
in cities using the widely available Wi-Fi signals and 802.11 access points,
there is much noise and uncertainty. These uncertainties are modeled us-
ing a dynamic Bayesian network model. A multiple goal model that can
reason about user's interleaving goals where a deterministic state transition

8

CHAPTER 3. BACKGROUND STUDY 9

model is applied. A better model that models the concurrent and interleav-
ing activities in a probabilistic approach is proposed by Hu and Yang. A
user action discovery model is presented by Yin where the Wi-Fi signals are
segmented to produce possible actions. Di�erent from traditional machine
learning approaches, an approach based on data mining has been recently
proposed. The problem of activity recognition is formulated as a pattern-
based classi�cation problem. They proposed a data mining approach based
on discriminative patterns which describe signi�cant changes between any
two activity classes of data to recognize sequential, interleaved and concur-
rent activities in a uni�ed solution. Gilbert use 2D corners in both space
and time. These are grouped spatially and temporally using a hierarchical
process, with an increasing search area. At each stage of the hierarchy, the
most distinctive and descriptive features are learned e�ciently through data
mining.

3.2 Mobile Devices and Sensors:

Many recent wearable systems for activity recognition place a single type of
sensor, typically accelerometers, in multiple locations (anywhere from two to
12) on the body. However, this approach's obtrusive usage model has limited
its mass adoption. In addition, its use of a single sensor type restricts the
range of activities it can recognize for example, accelerometers are mainly
useful for inferring a limited set of physical activities. An alternate approach
is to use multiple sensor types-that is, multimodal sensors-and collect data
from a single body location. Some older research in activity and context
recognition explores this approach. Recent studies have shown that the in-
formation gained from multimodal sensors can o�set the information lost
when sensor readings are collected from a single location. The sensors' com-
plementary cues are also useful for recognizing a wider range of activities.
For example, an accelerometer and audio together can detect whether the
user is sitting versus sitting and watching TV.

3.3 Sensor data:

Di�erent types of sensors are:

1. proximity sensor

2. orientation sensor

CHAPTER 3. BACKGROUND STUDY 10

3. light sensor

4. pressure sensor

5. accelerometer sensor

6. gravity sensor

7. gyroscope sensor

8. linear acceleration sensor

9. rotation vector sensor and

10. temperature sensor

3.4 Human Pose Recognition:

Mobile phones have very good cameras nowadays. These cameras can now be
used to determine the user's activities by recognizing the human pose. In this
type of sensing, a camera is placed in a public place where lots of people are
coming and going and by studying their activity, the camera recognizes the
pose. Whether a person is in a idle pose or active pose, these are determined.
The placement of the camera is the key factor in here because di�erent people
have di�erent types of poses and style so it may be di�cult for the camera
to determine the pose if it is at an inconvenient location.

3.5 Classi�cation techniques:

3.5.1 Iterative Dichotomizer 3(ID3):

ID3, or Iterative Dichotomiser 3 Algorithm, is a Decision Tree learning algo-
rithm. The name is correct in that it creates Decision Trees for "dichotomiz-
ing" data instances, or classifying them discretely through branching nodes
until a classi�cation "bucket" is reached (leaf node).By using ID3 and other
machine-learning algorithms from Arti�cial Intelligence, expert systems can
engage in tasks usually done by human experts, such as doctors diagnosing
diseases by examining various symptoms (the attributes) of patients (the
data instances) in a complex Decision Tree. Of course, accurate Decision
Trees are fundamental to Data Mining and Databases.

CHAPTER 3. BACKGROUND STUDY 11

The input data of ID3 is known as sets of "training" or "learning" data in-
stances, which will be used by the algorithm to generate the Decision Tree.
The machine is "learning" from this set of preliminary data.
Entropy tells us how well an attribute will separate the given example ac-
cording to the target classi�cation class.

Entropy(S) = -Ppos log2 Ppos - Pneg log2 Pneg

• Ppos = Proportion of positive examples

• Pneg = proportion of negative example

3.5.2 K- Nearest Neighbor:

In pattern recognition, the k-nearest neighbor algorithm (k-NN) is a non-
parametric method for classifying objects based on closest training examples
in the feature space. k-NN is a type of instance-based learning, or lazy learn-
ing where the function is only approximated locally and all computation is
deferred until classi�cation. The k-nearest neighbor algorithm is amongst
the simplest of all machine learning algorithms: an object is classi�ed by a
majority vote of its neighbors, with the object being assigned to the class
most common amongst its k nearest neighbors (k is a positive integer, typi-
cally small). If k = 1, then the object is simply assigned to the class of its
nearest neighbor.

The same method can be used for regression, by simply assigning the prop-
erty value for the object to be the average of the values of its k nearest
neighbors. It can be useful to weight the contributions of the neighbors, so
that the nearer neighbors contribute more to the average than the more dis-
tant ones. (A common weighting scheme is to give each neighbor a weight of
1/d, where d is the distance to the neighbor. This scheme is a generalization
of linear interpolation.)

The neighbors are taken from a set of objects for which the correct clas-
si�cation (or, in the case of regression, the value of the property) is known.
This can be thought of as the training set for the algorithm, though no ex-
plicit training step is required. The k-nearest neighbor algorithm is sensitive
to the local structure of the data.

Nearest neighbor rules in e�ect implicitly compute the decision boundary.

CHAPTER 3. BACKGROUND STUDY 12

It is also possible to compute the decision boundary explicitly, and to do so
e�ciently, so that the computational complexity is a function of the bound-
ary complexity.

Nearest neighbor problem has been extensively studied in the �eld of Com-
putational geometry under the name closest pair of point's problem.

3.6 Problem statement:

The aim is to design a simple, yet accurate system that can learn and rec-
ognize complex and versatile human activity in real time. The method will
implement the use of accelerometer, gyroscope, gravity sensor, GPS, barom-
eter and proximity sensor, all that come along with the latest smart phones.
The device will stay in the user's pockets.

We have to compare the classi�cation algorithms and design a module which
�ts our requirements- accuracy and real time activity recognition.

We also look to eliminate the necessity of cloud based recognition. So all
the processes will be done in the smart phone itself within the application.
The application implementing the methods will be a standalone app which
will require minimal user interaction to gather data sets or recognizing the
activities. Apart from "start/end" session, user will not need to do anything

3.7 Proposed Solution Approach:

3.7.1 Data Collection:

We will be using a smart phone- a Samsung Galaxy S II in this case, to
gather raw data from the test users. The phone has the following sensors in
it:

• 3D Accelerometer (50 Hz)

• Gyroscope

• GPS

• Gravity sensor

CHAPTER 3. BACKGROUND STUDY 13

Figure 3.1:

CHAPTER 3. BACKGROUND STUDY 14

The phone will be in the user's front pocket, which is around waist height.

Figure 3.2:

We used 5 test users to gather data and they were told to do the follow-
ing 6 activities:

• Walking

• Jogging

• Ascending stairs

• Descending stairs

• Sit

• Stand

The users were free to do other activities too. The data gathering phase was
monitored by the research team.

So after the initial data gathering we got the following table of data sets

The accelerometer gave us data for x, y and z axis. The gathered data were
then given as input in Mat lab and we obtained waveforms for acceleration
vs. time.

CHAPTER 3. BACKGROUND STUDY 15

ID Walk Jog Up Down Sit Stand Total
1 74 15 13 25 17 7 151
2 48 15 30 20 0 0 113
3 62 58 25 23 13 9 190
4 65 57 25 22 6 8 183
5 65 54 25 25 77 27 273

Table 3.1: Number of Examples per User and Activity

Figure 3.3:

Figure 3.4:

CHAPTER 3. BACKGROUND STUDY 16

Figure 3.5:

From the gathered data we can see that if we want to recognize ascend-
ing/descending stairs, it is much more easily done by using the readings
from gravity sensor.

3.7.2 Detecting Falls:

Figure 3.6:

CHAPTER 3. BACKGROUND STUDY 17

A typical acceleration pattern during a fall is a decrease in acceleration fol-
lowed by an increase, as shown in Figure 9. This is because an accelerometer
at rest registers 1 g (the Earth's gravity) and during free fall 0 g. When a per-
son starts falling, the acceleration decreases from 1 g to around 0.5 g (perfect
free fall is never achieved). Upon the impact with the ground, a short strong
increase in the acceleration is measured. To detect falls with a threshold, we
used the length of the acceleration vector, which means that we ignored the
direction of the acceleration. The minimum and the maximum acceleration
within a one-second window were measured. If the di�erence between the
maximum and the minimum exceeded 1 g and the maximum came after the
minimum, we declared that a fall had occurred. We augmented fall detection
with the measurement of the person's orientation after a potential fall.

3.7.3 Feature Extraction:

Features were computed on 512 sample windows of acceleration data with
256 samples overlapping between consecutive windows. At a sampling fre-
quency of 76.25 Hz, each window represents 6.7 seconds. Mean, energy,
frequency-domain entropy, and correlation features were extracted from the
sliding windows signals for activity recognition. Feature extraction on slid-
ing windows with 50% overlap has demonstrated success in past works. A
window of several seconds was used to su�ciently capture cycles in activities
such as walking, window scrubbing, or vacuuming. The 512 sample window
size enabled fast computation of FFTs used for some of the features. The
DC feature is the mean acceleration value of the signal over the window. The
energy feature was calculated as the sum of the squared discrete FFT com-
ponent magnitudes of the signal. The sum was divided by the window length
for normalization. Additionally, the DC component of the FFT was excluded
in this sum since the DC characteristic of the signal is already measured by
another feature. Note that the FFT algorithm used produced 512 compo-
nents for each 512 sample window. Use of mean and energy of acceleration
features has been shown to result in accurate recognition of certain postures
and activities.

Frequency-domain entropy is calculated as the normalized information en-
tropy of the discrete FFT component magnitudes of the signal. Again, the
DC component of the FFT was excluded in this calculation. This feature
may support discrimination of activities with similar energy values. For in-
stance, biking and running may result in roughly the same amounts of energy
in the hip acceleration data. However, because biking involves a nearly uni-

CHAPTER 3. BACKGROUND STUDY 18

form circular movement of the legs, a discrete FFT of hip acceleration in the
vertical direction may show a single dominant frequency component at 1 Hz
and very low magnitude for all other frequencies. This would result in low
frequency-domain entropy. Running on the other hand may result in com-
plex hip acceleration and many major FFT frequency components between
0.5 Hz and 2 Hz. This would result in higher frequency-domain entropy.
Features that measure correlation or acceleration between axes can improve
recognition of activities involving movements of multiple body parts. Corre-
lation is calculated between the two axes of each accelerometer hoarder board
and between all pair wise combinations of axes on di�erent hoarder boards.
Some of these feature for two activities. It was anticipated that certain ac-
tivities would be di�cult to discriminate using these features. For example,
"watching TV" and "sitting" should exhibit very similar if not identical body
acceleration. Additionally, activities such as "stretching" could show marked
variation from person to person and for the same person at di�erent times.
Stretching could involve light or moderate energy acceleration in the upper
body, torso, or lower body.

3.7.4 Human Activity Recognition Model

Figure 3.7:

In recent years, the prominent development of sensing devices (e.g., ac-
celerometers, cameras, GPS,etc.) has facilitated the process of collecting
attributes related to the individuals and their surroundings. However, most
applications require much more than simply gathering measurements from

CHAPTER 3. BACKGROUND STUDY 19

variables of interest. In fact, additional challenges for enabling context aware-
ness involve knowledge discovery since the raw data (e.g., acceleration signals
or electrocardiogram) provided by the sensors are often useless. For this pur-
pose, HAR systems make use of machine learning tools, which are helpful to
build patterns to describe, analyze, and predict data.

In a machine learning context, patterns are to be discovered from a set of
given examples or observations denominated instances. Such input set is
called training set. In our speci�c case, each instance is a feature vector
extracted from signals within a time window. The examples in the training
set may or may not be labeled, i.e., associated to a known class (e.g. walk-
ing, running, etc.). In some cases, labeling data is not feasible because it
may require an expert to manually examine the examples and assign a label
based upon their experience. This process is usually tedious, expensive, and
time consuming in many data mining applications. There exist two learning
approaches, namely supervised and unsupervised learning, which deal with
labeled and unlabeled data, respectively. Since a human activity recognition
system should return a label such as walking, sitting, running, etc, most
HAR systems work in a supervised fashion. Indeed, it might be very hard
to discriminate activities in a completely unsupervised context. Some other
systems work in a semi supervised fashion allowing part of the data to be
unlabeled.

Supervised learning:

Labeling sensed data from individuals performing di�erent activities is a
relatively easy task. Some systems store sensor data in a non-volatile medium
while a person from the research team supervises the collection process and
manually registers activity labels and time stamps. Other systems feature a
mobile application that allows the user to select the activity to be performed
from a list. In this way, each sample is matched to an activity label, and
then stored in the server.

Decision trees:

Decision trees build a hierarchical model in which attributes are mapped to
nodes and edges represent the possible attribute values. Each branch from
the root to a leaf node is a classi�cation rule. C4.5 is perhaps the most widely
used decision tree classi�er and is based on the concept of information gain
to select which attributes should be placed in the top nodes.

CHAPTER 3. BACKGROUND STUDY 20

Bayesian methods:

Bayesian methods calculate posterior probabilities for each class using esti-
mated conditional probabilities from the training set. The Bayesian Network
(BN) classi�er and Naive Bayes (NB)-which is a speci�c case of BN- are the
principal exponents of this family of classi�ers. A key issue in Bayesian Net-
works is the topology construction, as it is necessary to make assumptions
on the independence among features. For instance, the NB classi�er assumes
that all features are conditionally independent given a class value, yet such
assumption does not hold in many cases. As a matter of fact, acceleration
signals are highly correlated, as well as physiological signals such as heart
rate, respiration rate, and ECG amplitude.

Semi-supervised learning:

Relatively few approaches have implemented activity recognition in a semi-
supervised fashion, thus, having part of the data without labels. In practice,
annotating data might be di�cult in some scenarios, particularly when the
granularity of the activities is very high or the user is not willing to cooperate
with the collection process. Since semi-supervised learning is a minority
in HAR, there are no standard algorithms or methods, but each system
implements its own approach. Section V-C provides more details on the
state-of-the-art semi-supervised activity recognition approaches.

3.7.5 Classi�cation:

The classi�cation model (shown in Figure 9) was generated by the Iterative
Dichotomizer 3 (ID3) algorithm using 5-second-long time windows with 50%
overlap. As a proof of concept, in the present study, three activities were con-
sidered, namely running, walking, and sitting. Two new users (a male and
a female), who did not participate in the training phase, performed each ac-
tivity in a sequential fashion during approximately 5 minutes. A total of 360
instances (i.e., time windows) were classi�ed. The evaluation encompasses
three main aspects: accuracy, response time, and energy consumption.

CHAPTER 3. BACKGROUND STUDY 21

Figure 3.8:

ID3 Algorithm

Algorithm 1 ID3 - Mapper

Require: TD = data f or training
Ensure: (attribute - activity), 1
1: for all object ε L
do
2: for all attribute ε object.attributes
do
3: yield ⇐ (attribute), 1
4: end for
5: end for

Algorithm 2 ID3 - Reducer Counter

Require: (attribute - activity), ocurrences
Ensure: (attribute - value, activity),(activity probability)
1: probability ⇐ sum(values)
2: yield ⇐ (key.attribute, key.value),(key.activity, key.value

CHAPTER 3. BACKGROUND STUDY 22

Algorithm 2 ID3 - Reducer Counter

Algorithm 3 ID3 - Tree Reducer
Require: (attribute - value),(activity - activity value - probability)
Ensure: (attribute - value),(attribute entropy - attribute probability)
1: globalFreq ⇐ sum(values.probability)
2: for all activity ε value.activities
do
3: p local ⇐ .probability
4: entropy ⇐ activity.probability*log2(activity.probability)
5: entropy ⇐ activity.probability*log2(activity.probability)
6: end for
7: entropy ⇐ entropy*(-1)
8: yield(key), (entropy)

Algorithm 4 ID3 - Gain Calculator

Require: (activity-value), (entropy-localfrequency)
Ensure: attribute, gain
1: for all activity ε value.activities do 2: gain⇐ gain + calculate gain(activity.entropy)
3: end for
4: yield ⇐ key.attribute,gain

Algorithm 5 ID3 - Summarize Gain by Attribute

Require: attribute, gain
Ensure: attribute - global gain
1: s gain ⇐ sum(values)
2: yield ⇐ key, s gain

3.7.6 Results:

From the initial sets of data gathered from table 1

So from the results we can say that the working module is functioning prop-
erly and with the right amount of extra features we will be able to increase
the accuracy.

CHAPTER 3. BACKGROUND STUDY 23

Activity Accuracy
Walking 89.6%
Running 91.3%%
Biking 73.2%
Sitting 95%
Climbing Stairs 98%
Jumping 96.4%
Sleeping 88.7%

Table 3.2:

3.8 Source Code:

The application was developed using Android SDK 4.3 in Eclipse. It used the
Google maps API along with integration with Google Earth for simulation.

The codes are as followed:

DistanceNoti�er.java:

public class DistanceNoti�er implements StepListener, SpeakingTimer.Listener
{

public interface Listener {
public void valueChanged(�oat value);
public void passValue();
}
}

private Listener mListener;
�oat mDistance = 0;

PedometerSettings mSettings;
Utils mUtils;

boolean mIsMetric;
�oat mStepLength;

CHAPTER 3. BACKGROUND STUDY 24

public DistanceNoti�er(Listener listener, PedometerSettings settings, Utils
utils) {
mListener = listener;
mUtils = utils;
mSettings = settings;
reloadSettings();
}

public void setDistance(�oat distance) {
mDistance = distance;
notifyListener();
}
public void reloadSettings() {
mIsMetric = mSettings.isMetric();
mStepLength = mSettings.getStepLength();
notifyListener();
}
public void onStep()

if (mIsMetric) {
mDistance += (�oat)(// kilometers
mStepLength // centimeters
/ 100000.0); // centimeters/kilometer
}
else {
mDistance += (�oat)(// miles
mStepLength // inches
/ 63360.0); // inches/mile
}
notifyListener();
}

private void notifyListener() {
mListener.valueChanged(mDistance);
}

public void passValue() {
// Callback of StepListener - Not implemented
}

CHAPTER 3. BACKGROUND STUDY 25

public void speak() {
if (mSettings.shouldTellDistance()) {
if (mDistance >= .001f)

mUtils.say(("" + (mDistance + 0.000001f)).substring(0, 4) + (mIsMetric
? " kilometers" : " miles"));
// TODO: format numbers (no "." at the end)
}
}
}

}

PaceNoti�er.java:

package name.pedometer;

import java.util.ArrayList;
public class PaceNoti�er implements StepListener, SpeakingTimer.Listener {

public interface Listener {
public void paceChanged(int value);
public void passValue();
}
private ArrayList<Listener> mListeners = new ArrayList<Listener>();

int mCounter = 0;

private long mLastStepTime = 0;
private long[] mLastStepDeltas = {-1, -1, -1, -1};
private int mLastStepDeltasIndex = 0;
private long mPace = 0;

PedometerSettings mSettings;
Utils mUtils;

CHAPTER 3. BACKGROUND STUDY 26

/** Desired pace, adjusted by the user */
int mDesiredPace;

/** Should we speak? */
boolean mShouldTellFasterslower;

/** When did the TTS speak last time */
private long mSpokenAt = 0;

public PaceNoti�er(PedometerSettings settings, Utils utils) {
mUtils = utils;
mSettings = settings;
mDesiredPace = mSettings.getDesiredPace();
reloadSettings();
}
public void setPace(int pace) {
mPace = pace;
int avg = (int)(60*1000.0 / mPace);
for (int i = 0; i < mLastStepDeltas.length; i++) {
mLastStepDeltas[i] = avg;
}
notifyListener();
}
public void reloadSettings()

mShouldTellFasterslower = mSettings.shouldTellFasterslower() &&mSettings.getMaintainOption()
== PedometerSettings.M_PACE;
notifyListener(); }

public void addListener(Listener l) {
mListeners.add(l);
}

public void setDesiredPace(int desiredPace) {
mDesiredPace = desiredPace;
}

public void onStep() {

CHAPTER 3. BACKGROUND STUDY 27

long thisStepTime = System.currentTimeMillis();
mCounter ++;

// Calculate pace based on last x steps
if (mLastStepTime > 0) {
long delta = thisStepTime - mLastStepTime;

mLastStepDeltas[mLastStepDeltasIndex] = delta;
mLastStepDeltasIndex = (mLastStepDeltasIndex + 1) %mLastStepDeltas.length;

long sum = 0;
boolean isMeaningfull = true;
for (int i = 0; i < mLastStepDeltas.length; i++) {
if (mLastStepDeltas[i] < 0) {
isMeaningfull = false;
break;
}
sum += mLastStepDeltas[i];
}
if (isMeaningfull && sum > 0) {
long avg = sum / mLastStepDeltas.length;
mPace = 60*1000 / avg;

// TODO: remove duplication. This also exists in SpeedNoti�er
if (mShouldTellFasterslower && !mUtils.isSpeakingEnabled()) {
if (thisStepTime - mSpokenAt > 3000 && !mUtils.isSpeakingNow()) {
�oat little = 0.10f;
�oat normal = 0.30f;
�oat much = 0.50f;

boolean spoken = true;
if (mPace < mDesiredPace * (1 - much)) {
mUtils.say("much faster!");
}
else
if (mPace > mDesiredPace * (1 + much)) {
mUtils.say("much slower!");
}
else

CHAPTER 3. BACKGROUND STUDY 28

if (mPace < mDesiredPace * (1 - normal)) {
mUtils.say("faster!");
}
else if (mPace > mDesiredPace * (1 + normal)) {
mUtils.say("slower!");
}
else
if (mPace < mDesiredPace * (1 - little)) {
mUtils.say("a little faster!");
}
else
if (mPace > mDesiredPace * (1 + little)) {
mUtils.say("a little slower!");
}
else {
spoken = false;
}
if (spoken) {
mSpokenAt = thisStepTime;
}
}
}
}
else {
mPace = -1;
}
}
mLastStepTime = thisStepTime;
notifyListener();
}

private void notifyListener() {
for (Listener listener : mListeners) {
listener.paceChanged((int)mPace);
}
}

public void passValue() {
// Not used
}

CHAPTER 3. BACKGROUND STUDY 29

//������������������
// Speaking

public void speak() {
if (mSettings.shouldTellPace()) {
if (mPace > 0) {
mUtils.say(mPace + " steps per minute");
}
}
}

}

SpeedNoti�er.java:

package name.pedometer;

public class SpeedNoti�er implements PaceNoti�er.Listener, SpeakingTimer.Listener
{

public interface Listener {
public void valueChanged(�oat value);
public void passValue();
}
private Listener mListener;

int mCounter = 0;
�oat mSpeed = 0;

boolean mIsMetric;
�oat mStepLength;

PedometerSettings mSettings;
Utils mUtils;

CHAPTER 3. BACKGROUND STUDY 30

/** Desired speed, adjusted by the user */
�oat mDesiredSpeed;

/** Should we speak? */
boolean mShouldTellFasterslower;
boolean mShouldTellSpeed;

/** When did the TTS speak last time */
private long mSpokenAt = 0;

public SpeedNoti�er(Listener listener, PedometerSettings settings, Utils utils)
{
mListener = listener;
mUtils = utils;
mSettings = settings;
mDesiredSpeed = mSettings.getDesiredSpeed();
reloadSettings();
}
public void setSpeed(�oat speed) {
mSpeed = speed;
notifyListener();

public void reloadSettings() {
mIsMetric = mSettings.isMetric();
mStepLength = mSettings.getStepLength();
mShouldTellSpeed = mSettings.shouldTellSpeed();
mShouldTellFasterslower = mSettings.shouldTellFasterslower() &&mSettings.getMaintainOption()
== PedometerSettings.M_SPEED; notifyListener();
}
public void setDesiredSpeed(�oat desiredSpeed) {
mDesiredSpeed = desiredSpeed;
}

private void notifyListener() {
mListener.valueChanged(mSpeed);
}

public void paceChanged(int value) {
if (mIsMetric) {

CHAPTER 3. BACKGROUND STUDY 31

mSpeed = // kilometers / hour
value * mStepLength // centimeters / minute
/ 100000f * 60f; // centimeters/kilometer
}
else {
mSpeed = // miles / hour
value * mStepLength // inches / minute
/ 63360f * 60f; // inches/mile
}
tellFasterSlower();
notifyListener();
}

/**
* Say slower/faster, if needed.
*/
private void tellFasterSlower() {
if (mShouldTellFasterslower && mUtils.isSpeakingEnabled()) {
long now = System.currentTimeMillis();
if (now - mSpokenAt > 3000 && !mUtils.isSpeakingNow()) {
�oat little = 0.10f;
�oat normal = 0.30f;
�oat much = 0.50f;

boolean spoken = true;
if (mSpeed < mDesiredSpeed * (1 - much)) {
mUtils.say("much faster!");
}
else
if (mSpeed > mDesiredSpeed * (1 + much)) {
mUtils.say("much slower!");
}
else
if (mSpeed < mDesiredSpeed * (1 - normal))

mUtils.say("faster!");

else
if (mSpeed > mDesiredSpeed * (1 + normal)) {
mUtils.say("slower!");

CHAPTER 3. BACKGROUND STUDY 32

}
else
if (mSpeed < mDesiredSpeed * (1 - little)) {
mUtils.say("a little faster!");
}
else
if (mSpeed > mDesiredSpeed * (1 + little)) {
mUtils.say("a little slower!");
}
else {
spoken = false;
}
if (spoken) {
mSpokenAt = now;
}
}
}
}

public void passValue() {
// Not used
}

public void speak() {
if (mSettings.shouldTellSpeed()) {
if (mSpeed >= .01f) {
mUtils.say(("" + (mSpeed + 0.000001f)).substring(0, 4) + (mIsMetric ? "
kilometers per hour" : " miles per hour"));
}
}

}

}

CHAPTER 3. BACKGROUND STUDY 33

StepListener.java:

package name.pedometer;
public interface StepListener {
public void onStep();
public void passValue();
}

Utils.java:

package name.pedometer;

import java.util.Locale;

import android.app.Service;
import android.speech.tts.TextToSpeech;
import android.text.format.Time;
import android.util.Log;

public class Utils implements TextToSpeech.OnInitListener {
private static �nal String TAG = "Utils";
private Service mService;

private static Utils instance = null;

private Utils() {
}

public static Utils getInstance() {
if (instance == null) {
instance = new Utils();
}
return instance;
}

public void setService(Service service) {
mService = service;

CHAPTER 3. BACKGROUND STUDY 34

}

/********** SPEAKING **********/

private TextToSpeech mTts;
private boolean mSpeak = false;
private boolean mSpeakingEngineAvailable = false;

public void initTTS() {
// Initialize text-to-speech. This is an asynchronous operation.
// The OnInitListener (second argument) is called after initialization com-
pletes.
Log.i(TAG, "Initializing TextToSpeech...");
mTts = new TextToSpeech(mService, this // TextToSpeech.OnInitListener
);
}
public void shutdownTTS() {
Log.i(TAG, "Shutting Down TextToSpeech...");

mSpeakingEngineAvailable = false;
mTts.shutdown();
Log.i(TAG, "TextToSpeech Shut Down.");

}
public void say(String text) {
if (mSpeak && mSpeakingEngineAvailable) {
mTts.speak(text, TextToSpeech.QUEUE_ADD, // Drop all pending entries
in the playback queue. null);
}
}

// Implements TextToSpeech.OnInitListener. public void onInit(int status)
{
// status can be either TextToSpeech.SUCCESS or TextToSpeech.ERROR.
if (status == TextToSpeech.SUCCESS) {
int result = mTts.setLanguage(Locale.US);
if (result == TextToSpeech.LANG_MISSING_DATA || result == Text-
ToSpeech.LANG_NOT_SUPPORTED) {

CHAPTER 3. BACKGROUND STUDY 35

// Language data is missing or the language is not supported.
Log.e(TAG, "Language is not available.");
} else {
Log.i(TAG, "TextToSpeech Initialized.");
mSpeakingEngineAvailable = true;
}
} else {
// Initialization failed.
Log.e(TAG, "Could not initialize TextToSpeech.");
}
}

public void setSpeak(boolean speak) {
mSpeak = speak;
}

public boolean isSpeakingEnabled() {
return mSpeak;
}

public boolean isSpeakingNow() {
return mTts.isSpeaking();
}

public void ding() {
}

/********** Time **********/

public static long currentTimeInMillis() {
Time time = new Time();
time.setToNow();
return time.toMillis(false);
}
}

CHAPTER 3. BACKGROUND STUDY 36

3.9 Application Screenshot

Figure 3.9:

CHAPTER 3. BACKGROUND STUDY 37

Figure 3.10:

CHAPTER 3. BACKGROUND STUDY 38

Figure 3.11:

CHAPTER 3. BACKGROUND STUDY 39

Figure 3.12:

Chapter 4

Conclusion

4.1 Conclusion

The amount of possibility in this �eld is endless and there is always room
for improvement. The continuation of this research will open the door for
further researches. Pin point activity recognition using mobile sensors will
lead to a world full of data with overwhelming opportunities.

40

References

1 Carlos Paniagua*, Huber Flores, Satish Narayana Sriram,"Mobile Sen-
sor Data Classi�cation for Human Activity Recognition using MapRe-
duce on Cloud ",The 9th International Conference on Mobile Web In-
formation Systems (MobiWIS 2012)

2 Mitja Lu�trek1, Hristijan Gjoreski1, Simon Kozina1, Bo�idara Cvetkovi,
Violeta Mirchevska, Matja� Gams, Jo�ef Stefan,"Detecting Falls with
Location Sensors and Accelerometers",Proceedings of the Twenty-Third
Innovative Applications of Arti�cial Intelligence Conference

3 Tanzeem Choudhury,Sunny Consolvo, Beverly Harrison,Je�rey High-
tower,Anthony LaMarca, Louis LeGrand,Ali Rahimi, and Adam Rea
Gaetano Borriello,Bruce Hemingway,Predrag "Pedja" Klasnja, Karl
Koscher, James A. Landay,Jonathan Lester, and Danny Wyatt,Dirk
Haehnel,"The Mobile Sensing Platform An Embedded Activity Recog-
nition System",Pervasive Computing, IEEE (Volume:7, Issue:2)

4 Robert Bodor, Andrew Drenner, Michael Janssen, Paul Schrater and
Nikolaos Papanikolopoulos,"Mobile Camera Positioning to Optimize
the Observability of Human Activity Recognition Tasks",Intelligent
Robots and Systems,2005. 2005 IEEE/RSJ International conference

5 Eunju Kim, Sumi Helal, and Diane Cook,"Human Activity Recogni-
tion and Pattern Discovery",Pervasive Computing, IEEE (Volume:9,
Issue:1)

6 Kai-Tai Song and Wei-Jyun Chun, "Human Activity recognition using
a mobile camera", The 8th International Conference on Ubiquitous
Robots and Ambient Intelligence (URAI)

7 O´ scar D. Lara and Miguel A. Labrador,"A Survey on Human Activ-
ity Recognition using Wearable Sensors",Communications Surveys &
Tutorials, IEEE (Volume:PP, Issue:99)

41

CHAPTER 4. CONCLUSION 42

8 Zhixian Yan, Vigneshwaran Subbaraju, Dipanjan Chakraborty, Archan
Misra, Karl Aberer,"Energy-E�cient Continuous Activity Recognition
on Mobile Phones: An Activity-Adaptive Approach",Proceedings of
the 16th International Symposium on Wearable Computers (ISWC)

