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Abstract

Device-to-Device (D2D) communication underlaying cellular network, introduced in

LTE-Advance, is a very promising feature. Using this feature user equipments (UEs)

can communicate directly where in traditional cellular communication, all UEs need to

communicate via base station. UEs in close proximity can act as D2D pair and communi-

cate reusing the Resource Blocks (RBs) of existing cellular network infrastructure. This

D2D communication is supervised by eNodeB (Base station in LTE) and the supervising

eNodeB is also responsible for the allocation of RBs for the D2D pairs.

This thesis is concerned with the resource allocation algorithm aiming different goals like

maximize the total system capacity, minimizing total interference etc. These resource

allocation algorithm will be used by the supervising eNodeB to allocate appropriate RBs

to the D2D pairs (shared with existing cellular UE) to attain the goals satisfying certain

quality of service (QoS) requirements.

There are three approaches depending on the degree of sharing namely “One to One

Sharing”, “One to Many Sharing” and “Many to Many Sharing” approaches for “max-

imization of sum rate” and each of the existing algorithms follows one of these. This

thesis book proposes algorithm for each of the approaches and shows the comparison

analysis. Among these, algorithm for “One to One Sharing” and “One to Many Sharing”

approaches is optimal which is theoretically proved.
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Chapter 1

Introduction

1.1 Overview

D2D communication is rapidly becoming a familiar term in personal communications.

As a technology, it is becoming popular for different types of inter device applica-

tions. Therefore, spectrum requirement for D2D communication is increasing day by

day. Again user equipments (UEs) in close proximity need less amount of transmission

power in direct communication rather than communicating via eNodeB (eNB, base sta-

tion in LTE) [1], [2]. Instead of communicating in traditional manner, these UEs can

reuse appropriate RBs of existing cellular network and communicate as D2D commu-

nication which will generate minimal interference. Moreover, this technique increases

spectral efficiency and system capacity of traditional cellular network, as well as reduces

traffic load of eNB and power consumption of UEs. To enjoy these advantages D2D

communication underlaying to cellular networks is introduced in Long Term Evolution

(LTE). However, choosing ill-fitting RBs ends up in catastrophic level of interference in

the existing cellular network [3].

1.2 What is D2D Communication

D2D communication in cellular networks is defined as direct communication between

two mobile users without traversing the Base Station (BS) or core network. D2D com-

munication is generally non-transparent to the cellular network and it can occur on the

cellular spectrum (i.e. inband) or unlicensed spectrum (i.e. outband).

1
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1.3 D2D Communication Underlay to Cellular Network

D2D communication underlay to a cellular network implies the very thing that, the UEs

can reuse the existing cellular spectrum (i.e. inband) or licensed band. This feature is

enabled in LTE-Advance and it comes with some questions and challenges.

• Who will be responsible to allocate the resources to these D2D pair for reusing?

• How the D2D pair will start a communication?

• Will the primary user face any difficulties?

• What are the advantages of this feature?

Following sections contain the answers of above questions.

1.4 Traditional Cellular Communication

In traditional cellular communication, the major responsibilities are imposed on the

eNB. In normal scenario the cellular UEs exchange control information with the eNB.

The eNB and cellular UEs set their signal strength for communication depending on

these control information. Base station also allocates RBs for both uplink and downlink

communication where the cellular UE send the signal to eNB using uplink RBs and eNB

send the signal to cellular UE using downlink resources. Both caller and callee send and

receive data via eNB.

Figure 1.1: Traditional Cellular Communication
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1.5 How D2D Communication Underlay Cellular Network

works

In this scenario, D2D transmitter send a request to supervising eNodeB for allocation

of RBs along with the information of the receiver. Supervising eNB allocate RBs to

this D2D pair after running some Resource Allocation (RA) algorithm. After that eNB

sends the information of RBs to the D2D pair by the control packet. D2D pair then

communicate using allocated RBs. It should be noted that these RBs are already using

by the existing cellular network. Thus D2D pairs are sharing these RBs.

Figure 1.2: D2D Communication Underlay a Cellular Network

1.6 Benfits of D2D communication

This new mode of personal communication is also attracting the network operators as

it offers following benefits [2],[4] .

• Bit-rate Gain: As the distance between receiver and sender is decreasing for D2D

pair, bit-rate increases.

• Reuse Gain: As both D2D devices and cellular UEs simultaneously use the common

radio resources.
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• Hop Gain: As D2D communication uses a single link rather than using uplink and

downlink resources for sending and receiving devices.

• Coverage Gain: D2D communication can be possible at some place where signal

strength of eNB is too low for cellular communication.

• Energy Efficiency: D2D communication consumes less power than communicating

via eNB.

So several research works are focusing on different aspects like maximizing sum rate,

minimizing interference, management of transmission power etc.

1.7 Problem Statement

D2D pairs can communicate by reusing appropriate Resource Blocks (RBs) of the exist-

ing cellular network which increases system capacity and spectral efficiency. To utilize

this opportunities in full length, It is compulsory to use an efficient resource allocation

algorithm. It needs to minimize the interference in the system as well as increase the

system capacity. The problem can be divided into two branches:

• Sum rate maximization.

• Interference minimization while maintaining a target system sum rate.

Detailed problem formulation will be discussed in the respective chapters.

1.8 Thesis Objectives

An efficient resource allocation technique can assign suitable RBs to D2D pairs to avoid

above mentioned problem. A number of resource allocation algorithms exists in litera-

ture [5],[6],[7],[8],[9] aiming to increase system sum rate and to reduce interference level.

However, there are scopes to improve these approaches. Some approaches [5],[6],[7] do

not allow a D2D pair to share RBs of multiple cellular UEs, thus losing chances to in-

crease more system capacity. Authors in [6],[7], propose algorithms that allow to reuse

such RBs that reduces the system capacity than the traditional network. Moreover these

approaches choose sub-optimal RBs which increase less amount of system capacity. The

objective of this thesis is to design resource allocation algorithms which serve the pur-

pose of maximizing the system sum rate or minimizing the total interference introduced

maintaining a fixed system sum rate.
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1.9 Thesis Contributions

For maximization of system capacity proposed approach maintains the minimum QoS

constraint like Signal-to-Interference-plus-Noise-Ratio (SINR) for both D2D pairs and

cellular UEs. The contribution of this paper is to eradicate the shortcomings of the

existing algorithms. Our algorithm remove those D2D pair which can not increase the

system capacity from the candidate set. After that optimal bipartite matching algorithm

is used to find appropriate RBs for a D2D pair. Later remaining unassigned RBs of

cellular UEs is distributed among the D2D pairs. In this case we provide options for

both considering and not considering fair assignment of RBs to the D2D pairs.

For minimization of total introduced interference maintaining a sum rate, our approach

showed different options which gives better result than the existing algorithms.

1.10 Organization of The Thesis

The rest of the thesis is organized in the following manners. Chapter 2 canvasses prior

works related to our topic of interest. Chapter 3 discusses different aspects of system

model and channel model. Chapter 4 discusses the “Maximization of System sum rate”

policy with performance evaluation. Chapter 5 discusses the “Minimization of System

Interference” policy with performance evaluation. Finally, chapter 6 draws the conclu-

sion.



Chapter 2

Literature Review

2.1 Related Work

Numerous research works have been conducted on various resource allocation problems of

D2D communication underlaying cellular networks. An analysis of D2D communication

on both spectrum overlay and underlay of existing cellular network with ad hoc networks

is discussed in [10]. They apply a technique called successive interference cancellation

(SIC), which generates good transmission capacity. Huang et al. propose that frequency

separation of cellular network and ad hoc network overlaying cellular network would

give maximum transmission capacity rather than spatial diversity, i.e. disjoint sets of

sub-carriers are used by the ad hoc network [11]. The performance of D2D underlay

communication is analyzed in [12]. They reduce the performance degradation of existing

cellular network by controlling the transmitting power of D2D transmitters.

A greedy heuristic resource allocation algorithm is discussed in [13] where the cellular

UEs are sorted in decreasing order depending on the Channel Quality Indicator (CQI).

A D2D pair with the lowest channel gain which is not yet assigned is selected for a

cellular UE which has higher CQI if QoS constraints are maintained. However, provided

algorithm may not terminate in some cases. A cellular UE with higher CQI is coupled

with a D2D pair with the lowest channel gain can maximize the SINR of cellular UEs.

However, it is not the optimal choice for maximizing the total system capacity. Some

D2D pair might be missed out to be allocated or some D2D pairs are selected for earlier

cellular UE which might give better sum rate to cellular UEs chosen later on.

A simple local search algorithm is designed in [6] to solve the same resource allocation

problem (maximizing system sum rate while maintaining some QoS) that we are consid-

ering. The result of the greedy heuristic [13] is considered as the initial feasible solution

of this algorithm. After that, the algorithm checks whether improvement can be found

if a D2D pair choose a new cellular UE. If there is improvement and it also satisfies the

6
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minimum SINR constraints then sharing is swapped. However, the final result of the

heuristic might miss out some assignments of D2D pairs which is considered in the opti-

mal solution. These D2D pairs can also be missed out in the final assignments returned

by this local search algorithm and in practice the local optima of this algorithm can be

far away from the global solution. Moreover, as local search is an iterative improvement

technique, it might take much more time to reach the solution and cannot be very useful

in LTE networks.

A deferred acceptance based resource allocation algorithm (DARA) is proposed in [7]

to solve the discussed problem following the stable matching algorithm presented in

[14]. Preferences for both cellular UEs and D2D pairs are calculated depending on the

location of D2D pairs and cellular UEs. On the basis of given preferences, a cellular

UE is selected to be coupled with a D2D pair share RBs. Typically a stable matching

algorithm [14] gives an optimal result to the initiator, which does not necessarily provide

the optimal results to the overall system. In this algorithm, preference is calculated on

the basis of distance between a D2D pair and a cellular UE only. But distance is not

the only factor behind better sum rate. There are other factors like transmission power,

RBs allocated to a cellular UE etc. It is assumed that a lower distance is preferred over

a higher distance. However, a cellular UE experiences more interference from a assigned

D2D pair and we encounter such observations in our simulations. So a reasonable weight

to calculate the preferences would give better result. Different scenarios is discussed in

section 4.2.

A graph based algorithm in [15], is proposed to solve a resource allocation problem

which is similar to our problem. However, they do not consider QoS requirements. They

propose to assign RBs of multiple cellular UE to a D2D pair whenever possible. The

admissibility of a D2D pair is calculated depending on the transmission range of D2D

pairs and cellular UEs [5]. In first phase of this algorithm it formulates an estimation

process of required power for both D2D pair and cellular UE. After that it adopts

the maximum weighted bipartite matching algorithm to calculate the feasible solution.

However, in this approach some D2D pairs can be considered in admissible set which

reduces the system capacity.

Huang et al. [16] propose a game theory based resource allocation mechanism where

the information about the transmission parameter is incomplete. Janis et al. [17] in-

troduce an interference aware algorithm where they propose a method for generating

local awareness of the interference between D2D pairs and cellular UEs. They also

exploit multiuser diversity of the cellular network to minimize the interference. Interfer-

ence limited area [18] for cellular UEs has been suggested where D2D devices can share

the uplink medium. On the other hand, a restricted zone is also modeled in downlink
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medium in [8]. Both find a candidate set of D2D pairs for allocation. But the allocation

of candidate D2D pairs is not optimal.



Chapter 3

System And Channel Model

3.1 System Model

We consider a cell area consisting of only one eNB, some D2D pairs and some cellular

UEs.

Figure 3.1: System Model (Uplink)

To keep the model simple, we assume that both eNB and cellular UEs are equipped with

omni-directional antenna. The eNB is in charge of allocating RBs and fixing the allowed

maximum transmission power for both cellular UEs and D2D pairs, to avoid unwanted

interference and higher gain in system capacity. In normal scenario, the number of

cellular UEs is much higher than the number of D2D pairs. Our work considers the

similar scenario that is considered in [6], [7], [13]. We consider n cellular UEs and m D2D

pairs, where n >> m. The set of cellular users is represented as C = {c1, c2, c3, ..., cn},
whereas the set of D2D pair is represented as D = {d1, d2, d3, ..., dm}. A D2D pair di ∈ D
contains a receiving device dr and a transmitting device dt.

9
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Figure 3.2: System Model (Downlink)

3.2 Channel Model

LTE network consists of both uplink (UL) and downlink (DL) resources. In our work, we

consider the sharing of DL resources which uses Orthogonal Frequency Division Multiple

Access technique[1]. In case of OFDMA, inter-cell interference can be reduced with the

help of power control and resource scheduling [19]. Thus our model only considers the

intra-cell interference. As the eNB transmits signal to cellular UEs using DL resources,

cellular UEs only experience interferences from their shared D2D transmitters whereas

D2D receivers encounter interferences from the eNB.

We consider an Urban Micro System, which follows the Rayleigh fading path loss model

[6],[7], [13]. The path loss (dB unit) equation is

PL = 36.7 log10(dist) + 22.7 + 26 log10(fc), (3.1)

where dist (meter) is the distance between transmitter and receiver and fc (GHz) is the

medium frequency. Now, the channel gain between these two devices is

Gx,y = 10−PL
x,y/10, (3.2)

where x and y are the two devices i.e. transmitter and receiver and PLx,y is the distance

dependent path loss between x and y.



Chapter 4

Sum Rate Maximization

4.1 Problem Formulation

The SINR of a receiver is the ratio between the received signal power and interference

with noise power. In a downlink interference model, the SINR value of a cellular UE

depends on the transmitting power of the eNB, channel gain between a eNB and a

cellular UE as well as the intra channel interference. Let us consider the individual

transmitting powers of an eNB, a cellular UE and a D2D device are P eNB, P c and

P d, respectively. Thermal noise which is also known as the energy of Additive White

Gaussian Noise (AWGN) introduced at the receiver end is denoted by T . As only

intra-channel interference needs to be considered, interference occurs at a cellular UE

whenever one or more D2D pairs share RBs with that cellular UE. So, the SINR of

cellular UE in DL phase [13] can be represented as

SINRDLc =
P eNBGeNB,c

T +
∑

d x
c
dP

dGdt,c
. (4.1)

where a binary variable xcd indicates whether the D2D pair d shares RBs with the cellular

UE c or not. Gdt,c implies the channel gain between the D2D transmitter and a cellular

UE. In the denominator of equation (4.1), summation refers to the total interferences

to the cellular UE c introduced by signal from all D2D pairs, sharing RBs with c. If no

D2D pair shares RBs of the cellular UE c, no intra cell interference is incurred. So the

SINR of such cellular UE is

SINRDLc0 =
P eNBGeNB,c

T
. (4.2)

11
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Similarly, the SINR at the D2D receiver [13] is

SINRDLd =

∑
c x

c
dP

dGdt,dr

T + P eNBGeNB,dr
, (4.3)

where, Gdt,dr denotes the channel gain between D2D transmitter dt and D2D receiver

dr. The summation in the numerator of the equation (4.3) indicates the total signals

incurred from a D2D pair d for different cellular UE sharing the same D2D d.

The aim of this paper is to maximize the total system sum rate contributed by all

individual cellular UEs and D2D pairs. According to Shannon’s Capacity formula, the

sum rate for a given receiver r is

R = B log2(1 + SINRr), (4.4)

where B is the bandwidth used to communicate and SINRr is the SINR at the receiver.

Suppose the sum rate contributed by an individual cellular UE and a D2D pair are RDLc

and RDLd (using one RB) respectively. Then the objective function satisfying the QoS

requirements can be formulated as

max
( C∑

c

RDLc Nc +
C∑
c

D∑
d

xcdR
DL
d Nc

)
(4.5)

subject to,

P eNBGeNB,c

T +
∑

d x
c
dP

dGdt,c
> SINRDLc,min, ∀ c ∈ C (4.6)∑

c x
c
dP

dGdt,dr

T + P eNBGeNB,dt
> SINRDLd,min, ∀ d ∈ D (4.7)

xcd = {0, 1} , ∀ c ∈ C and ∀ d ∈ D, (4.8)

where, Nc denotes the number of RBs allocated to a cellular UE c. In case of D2D pairs,

a D2D pair might share RBs with multiple cellular UEs. Double summation covers all

of them.

Several constraints need to be satisfied while sharing the RBs to maintain QoS require-

ments. Each device requires a target SINR for maintaining normal transmission rate.

SINRDLc,min and SINRDLd,min in (4.6) and (4.7) are the minimum SINR value for a cellular

UE c and a D2D pair d, respectively.
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4.1.1 Solution Approaches

Depending on the variant modes of RB sharing among the cellular UEs and D2D pairs

we present three different of approaches to maximize the objective function (4.5). For

easy reference, we name the approaches as

i. One to One Sharing,

ii. One to Many Sharing and

iii. Many to Many Sharing.

One to One Sharing implies that, one D2D pair can share RBs of only one cellular UE

provided that no other D2D pair shares the RBs of that cellular UE yet. So the objective

function needs to satisfy the following two new constraints for this category.

D∑
d

xcd 6 1 , ∀ c ∈ C (4.9)

C∑
c

xcd 6 1 , ∀ d ∈ D. (4.10)

One to Many Sharing implies that, one D2D pair can share RBs of multiple cellular UEs

provided that no other D2D pair shares the RBs of those cellular UEs. In this case the

objective function needs to satisfy constraint (4.9) but constraint (4.10) is relaxed as

follows (number of cellular UE in the system is n)

n >
C∑
c

xcd > 0 , ∀ d ∈ D (4.11)

Many to Many Sharing implies that, D2D pairs can share RBs of multiple cellular UEs

and different D2D pairs can share RBs of same cellular UE. In this case the objective

function needs to satisfy constraint (4.11) but constraint (4.9) is relaxed as follows

m >
D∑
d

xcd > 0 , ∀ c ∈ C (4.12)

Algorithms for all of these approaches are discussed in following sections. Comparison

with other algorithms is also be included in those section for better understanding.
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4.2 One to One Sharing

We translate our resource allocation problem for ”One to One sharing” approach into

a maximum weighted bipartite matching problem where each D2D pair needs to be

assigned to only one cellular UE. This assignment needs to satisfy necessary constraints.

The goal of the assignment is to attain maximum system capacity. The procedure for

this approach is discussed in 4.2.1 - 4.2.4. Simulation environment and performance

evaluation will be presented after that.

4.2.1 Candidate Selection

Sharing of RBs might decrease the system capacity in some cases due to greater in-

terference in the system. Such kind of sharing needs to be avoided to maximize the

objective function (4.5). So we should only share when shared sum rate is greater than

non-shared sum rate. Shared sum rate implies total sum rate attain by the D2D pair

and the cellular UE when they share RBs. And non-shared sum rate means the sum

rate attain by the cellular UE provided that no D2D pair share its RBs. So to be a

candidate of D2D pair d following constraint should be satisfied

Rc +Rd > Rc0 , (4.13)

where Rc0 denotes the sum rate attained by cellular UE c alone (no D2D pair shares its

RBs), Rc denotes the sum rate attained by cellular UE c (D2D d shares its RBs) and

Rd denotes the sum rate attained by D2D pair d (it uses RBs of cellular UE c).

Thus A cellular UE can not be a candidate for a D2D pair to share RBs in following

cases.

i) After sharing RBs, if either the D2D pair or the cellular UE does not satisfy the

constraints (4.6) and (4.7).

ii) If sharing of RBs of the cellular UE by the D2D pair does not increase the sum

rate.

So candidate set of cellular UEs for a D2D pair d is Qd = {c | c and d can share RBs

satisfying eqs. (4.6),(4.7) and (4.13) }

4.2.2 Formation of Bipartite Graph

The bipartite graph is constructed of two disjoint sets i) set of existing cellular UEs C

and ii) set of all D2D pairs Dnew. In second set there are n−m dummy D2D pairs which
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is required for matching algorithm discussed in subsection 4.2.4. So Dnew = D∪Ddummy

where D is the set of existing D2D pairs and Ddummy is the set of all dummy D2D pairs

needed.

4.2.3 Weight Calculation

The weight of an edge is crucial to find the best matching. In our case the weight of the

edges represent the sum rate contribution of that D2D pair and cellular UE when they

shares RBs. Edges of the constructed graph can be categorized into three groups.

i) Edges between D2D pair d ∈ D and cellular UE c ∈ Qd defined in section 4.2.1.

ii) Edges between D2D pair d ∈ D and cellular UE c ∈ Q′
d, where Q

′
d = C−Qd. Here

C is the set of all cellular UEs in the system.

iii) Edges between D2D pair d ∈ Ddummy and cellular UE c ∈ C.

Any D2D pair d sharing RBs with a cellular UE c of its candidate set Qd increase the

system sum rate. So the weight of the edges in the first group is Rc + Rd as it is their

contribution to the system sum rate. On the other hand, any D2D pair d sharing RBs

with a cellular UE c ∈ Q′
d decrease the system sum rate or fails to satisfy the constraints.

Such sharing should be avoided. Again an edge with any dummy D2D pair represents

that the cellular UE is not sharing its RBs. So edges of second and third group has a

weight of Rc0 .

4.2.4 Matching Algorithm

For optimal bipartite matching algorithm we use the Hungarian algorithm [20] for maxi-

mization. Hungarian algorithm is optimal depending on the weight matrix with polyno-

mial time complexity. Though classic Hungarian algorithm is intended for minimization,

but with simple modification this can be used for maximization also. Hungarian algo-

rithm works on square weight matrix, where elements of the matrix depict the weight of

the associated row and column which is a non negative value. As we have n >> m, we

make the matrix square by adding n−m dummy D2D pairs at the time of constructing

bipartite graph in 5.3.1. The pseudo code of our algorithm is described in Algorithm 6.

We introduce an n×n matrix named S in line 2 of Algorithm 6 as the weight matrix. The

rows represent D2D pairs and columns represent cellular UEs. The matrix is populated

as discussed in 5.3.2.
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Algorithm 1 Resource Allocation Algorithm (OneToOne)

1: procedure OneToOneSharingRA(D(d1, d2, . . . , dm), C(c1, c2, . . . , cn)) . An
allocation from C(cellular UEs) to D(D2D pairs)

2: Let S[1 . . . n][1 . . . n] be a new Matrix . Si,j is the weight of the edge between di
and cj

3: Assign weight in S, as described in section 5.3.2
4: Let M [1 . . . n][1 . . . n] be a new matrix . a boolean matrix, a true value in i, j

index depicts, di is assigned to cj
5: M = Hungarian(S) . Optimal bipartite matching algorithm which will return

a boolean matrix
6: for i = 1 to m and j = 1 to n do
7: if Mi,j = TRUE and cj ∈ Qdi then
8: assign RBs of cj to di
9: end if

10: end for
11: end procedure

In line 5, the weight matrix is passed to the Hungarian algorithm for the maximum

weighted bipartite matching. This algorithm returns a boolean matrix (Mi,j) containing

assignments between cellular UEs and D2D pairs depending on the weight matrix. In

line 7, if Mi,j is true and cj is a candidate cellular UE of di then D2D pair di is assigned

the RBs of cellular UE cj . The reason of this check is that Hungarian algorithm take

decision from the weight matrix and has no idea about the candidacy of a D2D pair. So

we should check the validity of that assignment before assigning . It is to be noted that

only m rows of M is checked. Because the rest rows are for dummy D2D pairs.

Hungarian algorithm dominates the other parts of the algorithm 6 in terms of the running

time which is O(n3) [20]. So the total running time of our algorithm is also O(n3) where

n is the number cellular UEs.

We can derive the following lemmas and theorem from algorithm 6.

Lemma 1 : If Rij is the sum rate contribution of a cellular user ci and dj after they

share RBs and Ri is the sum rate of a cellular user ci without sharing of RBs, then in

an optimal solution, ci and dj can not share RBs iff Ri > Rij .

Lemma 2: If an algorithm gives an optimal solution for a weighted bipartite matching

problem then it will also give the optimal solution of the problem that we consider in

this paper. Hence, the problem can be solved in polynomial time exactly.

Theorem 1: Our algorithm gives us the optimal solution.
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4.2.5 Simulation Environment

We simulate different scenarios to evaluate the efficiency of our algorithm. We use C++

programming language to build our simulator that support the LTE system. We use

the same simulation parameters used in [13], [6], [7] (Table 4.2.5). A single cell network

is considered in our simulations. We consider two distributions of cellular UEs and

D2D pairs; i) Cellular UEs and D2D pairs are uniformly distributed in the cell area

and ii) cluster distribution model of D2D pairs discussed in [5] where the D2D pairs are

uniformly distributed in a random cluster with a maximum radius of 15 meter. Each

of the simulation results presented is an average of 20 different runs for a particular

scenario. In the next subsection, the description and the performance of different other

resource allocation (RA) algorithms compared to our algorithm is explained. To measure

the performance we assume three metrics: system sum rate, total interference introduced

and total SINR produced in the system.

Parameter Value

Cell Radius 1000 meters

Cellular Users 250

D2D pairs 10 to 250(increments of 10)

Maximum D2D pair distance 15 meters

Cellular user transmit power 20 dBm

D2D transmit power 20 dBm

eNB transmit power 46 dBm

Noise power (AWGN) −174 dBm

Carrier Frequency 1.7 GHz for LTE

SINRDLc,target Random

SINRDLd,target Random

Table 4.1: Simulation Parameters

4.2.6 Performance Evaluation

To evaluate the performance of our algorithm we compare our algorithm with some

existing algorithms that address the same issue. Among them, some selected algorithm

is discussed briefly in the following
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4.2.6.1 Greedy Heuristic Resource Allocation Algorithm (Greedy)

A greedy heuristic resource allocation algorithm is discussed in [13] where the cellular

UEs are sorted in decreasing order depending on the Channel Quality Identifier (CQI).

A D2D pair with the lowest channel gain not yet assigned is selected for a cellular UE

which has higher CQI if QoS constraints are satisfied. However, this algorithm may not

terminate in some cases. We modify that portion of the algorithm without altering the

main theme for our comparison study. A cellular UE with higher CQI is coupled with

a D2D pair with the lowest channel gain can maximize the SINRDLc (4.1). However, it

might not be an optimal choice. Some D2D pairs might be missed out to be allocated

or some D2D pairs are selected for earlier cellular UE which might give better sum rate

to cellular UEs chosen later on.

4.2.6.2 Deferred Acceptance Based Algorithm for Resource Allocation (DARA)

DARA [7] follows the stable matching algorithm presented in [14]. Preferences for both

cellular UEs and D2D pairs are calculated depending on the location of D2D pairs and

cellular UEs. Depending on the given preference, a D2D pair selects a cellular UE to

share RBs. If the preference is calculated correctly, there will be no pair of assignment

which can be swapped to get more system sum rate. In this algorithm, preference is

calculated on the basis of distance between a D2D pair and a cellular UE only. But

distance is not the only factor behind better sum rate. It is assumed that a lower

distance is preferred over a higher distance. However, a cellular UE experiences more

interference from a nearby assigned D2D pair and we encounter such observations in our

simulations. Moreover, in some cases, a cellular UE and D2D pair can be matched even

though QoS are not satisfied.

4.2.6.3 Local Search Based Resource Allocation Algorithm (LORA)

LORA [6] uses the allocation given by the greedy algorithm [13] as the initial feasible

solution. Then it swaps assignment between a pair of D2D pairs, and cellular UEs only

if the swapping improves the objective function and the constraints (4.6) and (4.7) are

satisfied. LORA can also face the similar problem encountered in the greedy algorithm

[13]. So, a particular D2D pair can be unassigned at the end of the local search algorithm.

It is very easy to find an example, where such a D2D pair can be assigned in the optimal

solution.
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Figure 4.1: Normalized system sum rate of RA algorithms for uniform distributions
(Normalized with respect to the proposed algorithm)

Figure 4.2: System interference of RA algorithms (in uniform distributions)

4.2.6.4 Weighted Bipartite Matching Algorithm

Weighted bipartite matching based algorithms are used in [5, 15] for similar resource

allocation problem in D2D communications. In our simulation and performance evalu-

ation, we also consider a similar algorithm [20].

In simulation graphs, our algorithm is named as “proposed”.

4.2.6.5 Result Comparisons and Explanation

In case of One to One Sharing approach we compare our proposed algorithm with Greedy

[13], LORA[6], DARA[7] and normal Bipartite matching[5]. Figures 5.5 and 4.3 represent

the total system sum rate returned by RA algorithms. To get a comparative view, we

normalize all results with respect to the system sum rate of our proposed algorithm.
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Figure 4.3: Normalized system sum rate of RA algorithms for cluster distributions
(Normalized with respect to the proposed algorithm)

Figure 4.4: System interference of RA algorithms (in cluster distributions)

Figure 5.5 shows the comparison result for the scenario where D2D pairs are distributed

uniformly while Figure 4.3 represents the comparison result for the cluster distributions

as discussed in [5].

Simulation results show that our algorithm outperforms other algorithms in terms of

the system sum rate and differences get significant with the increased number of D2D

pairs for a fixed number of cellular UEs. LORA always performs better than the greedy

approach as it uses greedy heuristic as the initial feasible solution and then tries to

improve result. On the other hand, bipartite matching performs better than LORA.

However, all the three algorithms do not consider the possibility of decreasing the sum

rate by assigning a D2D pair to a cellular UE. So, if we ignore this possibility then the

weighted bipartite matching always outperforms other algorithms as our results confirm.

Weighted bipartite matching algorithm always gives us the optimal assignment for the

given weight. But the algorithm should not select such assignments which will produce



Chapter 4. Sum Rate Maximization 21

negative contribution. We consider this scenario in our algorithm in the process of can-

didate selection described in 4.2.1 and then use weighted bipartite matching algorithm.

We also find that DARA performs the worst among all algorithms as it uses the in-

creasing order of proximity in assigning preferences for both cellular UEs and D2D pairs

which causes a lot of interference and system sum rate gets affected.

Figures 4.2 and 4.4 indicate the comparison of performances in terms of the interference

introduced in the system due to sharing of RBs. Our proposed algorithm introduces

the minimum interference among all other algorithms as depicted in the figures. Again

DARA performs worst and all other algorithms (LORA, greedy and bipartite) introduce

similar interference.

We also find that our algorithm returns the best total SINR for both shared and non-

shared cellular device after the assignments. On the other hand, all the other algorithms

produce similar total SINR at a D2D pairs. From (4.3), it is certain that interference is

introduced at a D2D pair only by eNB and signal strength is dependent on the distance

between the transmitter and receiver of a D2D pair. Thus, SINR at the D2D pairs should

be similar (small differences are there due to the fact that the number of assigned D2D

pairs can be different in these algorithms) if the number of assigned D2D is same.

Our algorithm assigns fewer number of D2D pairs compared to other algorithms as

assigning those D2D pairs can cause the degradation of the system sum rate. According

to the original problem definition [13],[7],[6] our goal is to maximize the system sum

rate by adding as many D2D pairs as possible. So, we should not add those D2D pairs

which can not find any such cellular UE with whom it can share RBs and the sharing

results in an improved system sum rate. If any network provider wants to maximize

assignments of D2D pairs even compromising the system sum rate then it becomes a

different optimization problem and the solution of that problem can be investigated

differently which is not the scope of this paper.

4.2.6.6 LP Solver

We convert this problem (One to One Sharing approach) into a linear problem and solve

it with Gurobi. The result of the LP solver is same as the result of proposed algorithm.

This is on evidence that proposed algorithm indeed provides an optimal solution.

4.3 One to Many Sharing

In this approach one D2D pair can share RBs of multiple cellular UEs but different

D2D pairs cannot share the RBs of same cellular UE. For this mode of sharing sum rate
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increased drastically as a D2D pair can reuse more RBs.

Figure 4.5: Examle scenario explaining fairness

This model creates two kind of solution. They are

i. Unfair Assignment and

ii. Fair Assignment.

We discuss both approaches in following subsections. For better understanding we use

an example scenario showed in figure 4.5. There are two D2D pairs d1 and d2 and three

cellular UE c1, c2 and c3. d1 is nearer to cellular UEs c1, c2 and c3 than d2. Assume

that if d2 share RBs of any cellular UE it will increase the system capacity more than if

d1 shares. Thus for one to many case scenario, if d2 shares RBs of all cellular UEs, the

system sum rate will be the highest. But it will deprive d1 from communication.

If an RA algorithm ensures that, all D2D pairs, having non empty candidate set [see

paragraph 4.2.1], will be allocated RBs then we term this as fair assignment. On the

other hand, if the RA algorithm does not depend on this criteria then we term this as

unfair assignment. Solution for both approach needs candidate selection method and

calculation of weight of the edges discussed in section 4.2.

4.3.1 Unfair Assignment

In this approach, as single D2D pair can share RBs of multiple cellu6lar UEs, the highest

weight needs to be selected for sharing each time. If Rbs of any cellular UE is shared

then that cellular UE should be removed from all other D2D pairs’ candidate set.
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Algorithm 2 Resource Allocation Algorithm (OneToMany)

1: procedure OneToManySharingRA(D(d1, d2, . . . , dm), C(c1, c2, . . . , cn), TY PE)
. An allocation from C(cellular UEs) to D(D2D pairs)

2: Create candidate set of all dj ∈ D, form graph and calculate the weight of all
edges

. Using the same method from 4.2

3: if TY PE == FAIR then
4: OneToOneSharingRA(D,C)

. Using Hungarian Algorithm minimum constraint is satisfied

5: Remove all the assigned cellular UE from candidate sets
6: end if
7: for i = 1 to n do
8: if ci is not yet shared by any D2D pair then
9: Find dj such that the edge between dj and ci has the highest weight

10: assign RBs of ci to dj
11: Remove cellular UE ci from all D2D pairs’ candidate set
12: end if
13: end for
14: end procedure

Algorithm 7 is the proposed One to Many Sharing algorithm. At first the candidate

set of all D2D pairs is calculated in line 2. This candidate set represents the feasible

cellular UEs one D2D pair might share RBs with. As well as in the same line weight

is calculated for this sharing. As unfair approach does not care about the access rate

of D2D pair in the medium, to maximize the system capacity highest weight is selected

for every cellular UE in line 9. To maintain the constraint (4.9), assigned cellular UE is

removed from candidate set of all D2D pairs in line 11. Though it is a greedy approach

it is the optimal solution for this approach.

For unfair assignment the algorithm do not need to execute Hungarian algorithm. So

the run time of the algorithm 7 becomes O(mn) for unfair assignment. Where m is the

number of D2D pairs and n is the number of cellular UEs in the system.

4.3.2 Fair Assignment

For this approach, all D2D pairs with non empty candidate set must be assigned RBs

of at least one cellular UE. To ensure fairness we take the help from One to One RA

method. Using Hungarian algorithm we choose the optimal one to one correspondence.

After that we adopt the greedy approach to maximize the system capacity discussed in

4.3.1.

In algorithm 7 an argument named TY PE is passed along with the set of cellular UEs

C and set of D2D pairs D. If the TY PE is FAIR then it gets a special treatment in

line 3 where algorithm 6 i.e. OneToOneSharingRA(D,C) is executed in line 4 to



Chapter 4. Sum Rate Maximization 24

get the optimal sharing. It ensures that each D2D pair with non-empty candidate set is

getting RBs. In line 5 the assigned cellular UEs are removed from all candidate sets to

maintain the constraint (4.9). After that greedy approach discussed in 4.3.1 is executed

to distribute the RBs of remaining cellular UEs among the D2D pairs.

Fair assignment approach needs to execute the Hungarian algorithm in line 4 and it

dominates in term of running time. So for fair assignment approach the run time of

algorithm 7 is O(n3).

4.3.3 Performance Evaluation

CORAL algorithm [18] tries to solve the maximization problem with this approach. We

discuss the key points of CORAL algorithm in the next subsection. Later we discuss

that how our algorithm performs better than the existing algorithm with the simulation

result. We use same simulation environment discussed in section 5.4.

4.3.3.1 Capacity Oriented Resource Allocation Algorithm (CORAL)

CORAL algorithm [18] introduces the concept Capacity Oriented Restricted Region

(CORE) where sharing of RBs gain negative system capacity. This CORE region is

used to calculate the candidate set. CORAL algorithm has two phases. First phase

finds out the highest ratio of channel gain of a cellular UE with the base station to the

channel gain of a D2D pair with that cellular UE and assigns that D2D pair with the

cellular UE. After assigning all the D2D second phase starts where remaining unshared

cellular UEs are distributed among the D2D pairs for further capacity gain. It selects

the lowest channel gain of D2D pair with any cellular UE and assign the RBs of that

cellular UE to the D2D pair.

CORAL algorithm selects cellular UE for sharing RBs depending on the channel gain.

But system capacity does not depend on the channel gain solely. It also depends on

the transmission power, position of the receiver with respect to other transmitters using

same RBs. In first phase CORAL selects the optimal cellular UE for each D2D pair and

similarly in second phase it choose the optimal D2D pair for the remaining unshared

cellular UEs. So it is observable that CORAL does not give overall optimal or best

result rather it is a greedy approach.

4.3.3.2 Result Comparisons and Explanation

In case of One to Many Sharing approach we compare our proposed algorithm with

CORAL algorithm [8] mainly. We modified some existing One to One Sharing algorithms
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Figure 4.6: Normalized system sum rate of RA algorithms (One to Many Sharing)for
uniform distributions (Normalized with respect to the unfair onetomany algorithm)

Figure 4.7: System interference of RA algorithms (One to Many Sharing)(in uniform
distributions)

to find out their performance in this approach. The modification is to run the One to

One Sharing algorithm multiple time. After each run the assigned cellular UE is removed

from the list and the new list is passed to the next run as input. We use variants of DARA

by taking different factors into account. We make the preference matrix depending on

the weight described in CORAL.

Figures 4.6 and 4.8 represent the total system sum rate returned by RA algorithms in

One to Many Sharing approach. To get a comparative view, we normalize all the results

with respect to the system sum rate of our proposed “unfair One to Many Sharing”

algorithm. Figure 4.6 shows comparison results for the uniform distribution of the D2D

pairs whereas figure 4.8 represents the comparison result for the cluster distribution.

Figures suggest that “unfair One to Many Sharing” algorithm produces the highest

sum rate as discussed in 4.3.1. However the access rate of D2D pairs might be very
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Figure 4.8: Normalized system sum rate of RA algorithms (One to Many Sharing)
for cluster distributions (Normalized with respect to the unfair One to Many Sharing

algorithm)

Figure 4.9: System interference of RA algorithms (One to Many Sharing)(in cluster
distributions)

low. Just below this curve the curve of the “fair One to Many Sharing” algorithm is

residing. In some cases there are downward spikes in this curve. The reason is that in

those random cases, for fair assignment, some D2D pairs are allocated which reduces the

system sum rate. We run multiple time DARA with higher distance higher preference.

We use the weight discussed in CORAL to make the preference matrix as well and run

DARA algorithm with that matrix. It performs better than that with the distance based

preference matrix. The reason is that in case of CORAL weight we only assign whenever

the cellular UE is in the candidate set of the D2D pair as discussed in 4.2.1.

Figures 4.7 and 4.9 show the interference introduced by different RA algorithm for One

to Many Sharing along with our proposed algorithms.
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4.3.3.3 Access Rate

Figure 4.10: Access Rate (One to Many Sharing)

The access rate of D2D pairs in the system is different for fair and unfair assignment

approach. Figure 4.10 depicts the access rate of the D2D pairs in the system where

we can find that access rate of fair allocation is higher than unfair allocation and the

difference gets significant with the increasing number of D2D pairs. It is to be noted

that fair allocation does not allocate all the D2D pairs in the system. Rather it allocates

all possible D2D pairs which increase the system sum rate.

4.3.3.4 LP Solver

We convert this problem (one to many unfair) into a linear problem and solve it with

Gurobi. The result of the LP solver is same as the result of proposed algorithms. This

is the evidence that our algorithm is indeed an optimal solution.

4.4 Many to Many Sharing

In “Many to Many Sharing” approach one D2D pair is allowed to share resources of

multiple cellular UEs as well as different D2D pairs are allowed to share RBs of same

cellular UE. This section mainly discusses an improved version of Graph Coloring Based

Resource Allocation Algorithm (GOAL) discussed in [9]. We use same setup and graph

formulation of GOAL algorithm. The graph formulation, neighbor construction, weight

calculation and revised algorithm are discussed in the following subsections. The criti-

cal scenario is discussed after that where the revised algorithm improves the objective

function. The revised algorithm is named as Multiple Allocation D2D (MAD) in the

rest of the paper.
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4.4.1 Graph Formulation

MAD resource allocation algorithm is devised on the basis of graph coloring approach.

In this approach, vertex of a graph represents a D2D pair and edge represents that the

connecting vertices are neighbor to each other. There might be significant amount of

interference among the neighbors if they use same RBs. So the neighboring D2D pairs

should not share RBs of same Cellular UE.

The cellular UEs are assumed to have different colors. D2D pairs very near to a cellular

UE should not share the RBs as it creates huge interference to that cellular UE. Thus

each vertex has its own candidate color set based on the distance of cellular UEs with

respect to the D2D pair representing the vertex.

So a vertex can choose a color from it’s candidate color set. After assigning the color,

all the neighbors of that vertex need to remove the color from their candidate color set.

Our goal is to assign all the colors to the vertices until candidate color sets of all D2D

pairs are empty and to achieve maximum system sum rate.

Let us consider a graph G = (V,E), where Vj ∈ V represents a D2D pair and ej,k ∈ E
implies Vj and Vk are neighbor to each other and they cannot share same RBs. Figure

4.11 represents the system model for Many to Many Sharing where vertices d1, d2, d3

and d4 represent the D2D pairs. Edge e1,2 implies that d1 and d2 cannot share same

RBs and similarly e2,3 means d2 and d3 cannot share same RBs. c1, c2, c3 represent

three cellular UEs. From the figure 4.11 we can see that d1 and d2 has c1, c2 and c3 in

their candidate color set. Similarly d3 has c1 and c2 and so on.

Figure 4.11: System Model for Many to Many Sharing
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4.4.2 Neighbor Construction

GOAL algorithm introduce a term Interference Negligible Distance (INS) which dictates

neighbor of a D2D. If two or more D2D transmitters using same RBs are very close

to one of their receiver then that D2D receiver will face huge interference from those

transmitters. It lowers the SINR at that D2D pair resulting lower system sum rate. This

closeness is defined by INS. If the distance is above the INS then it is assumed that those

D2D pairs can share same RBs without causing high interference to each other. There

is an edge between D2D pairs if their distance is smaller than INS. INS is assumed to

be fixed value in GOAL algorithm. MAD algorithm also follows this approach.

4.4.3 Candidate Color Set Formation

Another term named as SINR limited Area (SLA) is introduced in GOAL algorithm

to form the candidate color set of each D2D pair. If a D2D pair close to a cellular UE

shares RBs then cellular UE might face severe interference. To avoid this kind of sharing

SLA is coined. So a D2D pair will not have a cellular UE in its candidate color set, if it

resides in the SLA of the cellular UE. SLA for cellular UE ci is an area where the SINR

at ci is smaller than a minimum accpetable SINR. GOAL algorithm defines SLA by

the following equation

SINRi =
P eNBGeNB,ci

P dGdt,ci
≤ SINRmin (4.14)

The denominator is the interference introduced by a D2D transmitter dt at cellular UE ci.

From the equation it is evident that GOAL algorithm does not consider the interference

from multiple D2D pairs. It is possible to select multiple D2D pairs residing in the

corner of SLA area, which will reduce the SINR at the cellular UE. MAD algorithm

also follows this approach but checks the constraints before assignment to satisfy the

constraints.

4.4.4 Weight Calculation

GOAL algorithm puts a label to each vertex for each color. They use correlation degree

in calculating the label. Correlation degree of a vertex j for color i is the number of

neighboring vertices having the same color in their candidate set. Label is calculated

using the following equation

Lij =
log2(1 + SINRi) + log2(1 + SINRj)

ρij + 1
, (4.15)
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where SINRi indicates the SINR at cellular UE ci, SINRj indicates the SINR at

D2D pair dj and ρij is the correlation degree.

However MAD algorithm does not use this label. Rather a revised label of the vertex j

for color i is defined by following equations

Wi,j = RDLci +RDLdj (4.16)

Lrevisedi,j =

Xj∑
h

Wi,h −Wi,j , (4.17)

where Xj is the set of neighboring D2D pairs of dj . This label implies the total loss the

system incurs if it chooses dj for the color i.

4.4.5 MAD Algorithm

MAD algorithm uses the same idea of neighbor construction, candidate color set forma-

tion of GOAL algorithm. The key differences are in weight calculation and assigning

colors to the vertices.

Algorithm 3 Resource Allocation Algorithm (ManyToMany )

1: procedure ManyToManySharingRA(D(d1, d2, . . . , dm), C(c1, c2, . . . , cn)) . An
allocation from C(cellular UEs) to D(D2D pairs)

2: create candidate color set for every D2D pair in the system
. It follows the procedure from 4.4.3

3: create neighboring set of each D2D pair . It follows the procedure from 4.4.2
4: for each ci ∈ C do
5: Let N(n1, n2, . . . , nk) ∈ D containing ci as candidate color set
6: Let W [1..k], S[1..k] and M [1..k] be three new Matrices
7: for each nj ∈ N do
8: Mj = Li,j . Label is calculated using equation (4.17)
9: end for

10: while N is not empty do
11: Let Mq is the lowest value . Choosing the lowest loss from the labels
12: if D2D pair dq shares RBs of cellular UE ci does not break the constraint

(4.6) and (4.7) then
13: assign color i to vertex q . assigning RBs of ci to dq for sharing
14: Remove color i from the vertex q and all the vertex neighboring to q
15: else
16: Remove color i from the vertex q
17: end if
18: end while
19: end for
20: end procedure
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In this approach, at first candidate color set for all D2D pairs are calculated in line 2

and the neighbors of all D2D pairs are calculated in line 3. This neighbor set is not

changed throughout the algorithm, but the candidate color set of a D2D pair is updated

in each cycle.

In line 4-19 a color is assigned to a suitable vertex. In line 8 label for each vertex Mj is

calculated depending on the equation (4.17).

In line 11 the lowest label is selected for assignment but before assigning checking is

done in line 12. Reason behind this checking is that, SLA and INS area could not

give certainty about these constraints. Because SLA region does not consider multiple

allocation in (4.14), and INS region is a fixed value set by the system administrator

manually. So it can also break the constraints. If the constraints are satisfied, the color

is assigned to the vertex in line 13 and the color is removed from all the neighboring

vertices in line 14. But if the constraints does not hold then it is removed only from the

selected assigned vertices.

4.4.6 Critical Scenario

In this subsection a critical scenario is discussed (shown in figure 4.12) where MAD

algorithm performs better than GOAL algorithm. Let us consider, a cellular UE has

three candidate D2D pairs d1, d2 and d3 where d1 has d2 as neighbor, d2 has both d1

and d3 as neighbor and d3 has d2 as neighbor. For that cellular UE, weights of d1, d2

and d3 are a, 19a
14 and b and assume that a+ b < 19a

14 . In GOAL algorithm, it chooses d1

at the very beginning as it gives the maximum value according to their equation. Later

it chooses d3 and total gain is a+ b. But in case of MAD, it will choose d2 at first as it

gives the lowest in M and gain is 19a
14 which is greater than a+ b.

Figure 4.12: An Example of Critical Scenario in Many to Many Sharing

4.4.7 Performance Evaluation

We evaluate MAD algorithm by comparing with the GOAL algorithm. In normal sce-

nario both algorithm give same result but GOAL algorithm could break constraints or

give lower sum rate in some cases as discussed in subsection 4.4.6.
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Figure 4.13: Comparison of the three approaches in terms of system sum rate for
uniform distributions

Figure 4.14: Comparison of the three approaches in terms of system sum rate for
uniform distributions

In subsection 4.4.1, 4.4.2, 4.4.3 and 4.4.4 we have discussed the key points of the GOAL

algorithm. GOAL algorithm differs from MAD at the time of selecting D2D pairs for

a color when it calculates the label (4.15) and choose the highest label for assignment.

However it does not check any constraints before this assignment. As discussed in

earlier MAD algorithm rectifies some issues of graph coloring algorithm. MAD algorithm

performs better in some critical scenario showed earlier with explanation. However we

strongly discourage to follow the Many to Many Sharing approach to maximize the

system sum rate. An error-nous allocation might produce a large interference in the

cellular network, as multiple D2D pair is using RBs of same cellular UE.
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Figure 4.15: Comparison of the three approaches in terms of system sum rate for
cluster distributions

Figure 4.16: Comparison of the three approaches in terms of system sum rate for
cluster distributions

4.5 Comparison among the Three Approaches

Figures 4.13 and 4.15 depicts the comparison of sum rate among the three approaches

and figures 4.14 and 4.16 depicts comparison among th three approaches in terms of

interference introduced. As expected the system sum rate and introduced interference

of Many to Many Sharing approach is higher.

Summarizing above simulation results, we can conclude that our proposed algorithms

returns the best overall system sum rate and the lowest total interference while satisfying

the constraints in all approaches.
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Interference Minimization

5.1 Problem Formulation

The goal of this paper is to minimize the interference due to resource sharing while

maintaining a system sum rate demand. Let us consider the transmission power of a

cellular UE ci, D2D transmitter dtj and eNB are P ci , P d
t
j and P eNB respectively. We

also consider T as the thermal noise at the receiver end, also known as the energy of

Additive White Gaussian Noise and xi,j is a binary variable which indicates whether a

D2D pair dj shares RBs with a cellular UE ci or not. It is noted that only one D2D

pair can reuse the RBs of a cellular UE. Signal to Interference plus Noise Ratio (SINR)

at the eNB in uplink phase while communicating with a cellular UE ci (provided that

D2D pair dj is reusing the same RBs) is [21]

γeNB,ci,dj =
P ciGci,eNB

T + P djGd
t
j ,eNB

(5.1)

where Gd
t
j ,eNB implies channel gain between the D2D transmitter dtj and eNB, Gci,eNB

implies the channel gain between the eNB and cellular UE ci. If no D2D pair reuses the

RBs, the equation (5.1) can be rewritten as

γeNB,ci,0 =
P ciGci,eNB

T
(5.2)

where the co-channel interference is zero because no D2D pair is sharing that resource.

Similarly the SINR at D2D receiver reusing uplink resources is

γdj ,ci =
P djGd

t
j ,d

r
j

T + P ciGci,d
r
j

(5.3)

34
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where Gd
t
j ,d

r
j denotes the channel gain between D2D transmitter dtj and D2D receiver

drj . Hence the total interference originates in the system due to sharing of resources by

cellular UE ci and D2D pair dj is

Ici,dj = P d
t
jGd

t
j ,eNB + P ciGci,d

r
j . (5.4)

According to Shannon’s capacity formula, sum rate contributed by cellular UE ci (pro-

vided that D2D pair dj is sharing the resources) can be represented as

Sci,dj = B log2(1 + γeNB,ci,dj ) +B log2(1 + γdj ,ci) (5.5)

where γeNB,ci,dj indicates the SINR at eNB while communicating with cellular UE ci and

γdj ,ci indicates the SINR at D2D receiver drj while communicating with D2D transmitter

dtj and B is the bandwidth of the channel. It is noted that if no D2D pair reuses the

RBs of cellular UE ci, then the equation (5.5) can be written as

Sci,0 = B log2(1 + γeNB,ci,0). (5.6)

So, the total system sum rate can be expressed as [13]

Z =
n∑
i=1

m∑
j=1

(
xi,jSci,dj + (1− xi,j)Sci,0

)
. (5.7)

If we assume R as the target system sum rate then the objective function can be formu-

lated as

minimize
n∑
i=1

m∑
j=1

xi,jIci,dj (5.8)

subject to,

Z > R (5.9)

n∑
i=1

xi,j 6 1 ; ∀ dj ∈ D (5.10)

xi,j ∈ {0, 1} ; ∀ ci ∈ C and ∀ dj ∈ D. (5.11)

Sharing RBs of a single cellular UEs with more than one D2D pairs generate higher inter-

ference and sharing RBs of different cellular UEs by a single D2D pair makes the system

complex. So in our proposed system multiple sharing is avoided. Constraint (5.10)

implies a cellular UE can share RBs with maximum one D2D pair. A D2D pair can

share RBs with one or no cellular UE. Depending on this case, we present two types

of approaches to minimize the objective function (5.8). If a D2D pair must share RBs
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of one and only cellular UE, then we define it as Fair Assignment resource alloca-

tion (FARA). It ensures the “fairness” property (same as TAFIRA). So, the following

constraint is needed to add to the objective function for this category.

m∑
j=1

xi,j = 1 ; ∀ ci ∈ C (5.12)

In some cases, sharing RBs between a D2D pair and a cellular UE can also decrease

the system sum rate [8]. A cellular UE ci should not share RBs with a D2D pair, dj

if Sci,dj < Sci,0, which concludes that a D2D pair shares RBs of maximum one cellular

UE. We define it as Restricted Assignment resource allocation (RARA). In this

case, the following constraint is needed to add to the objective function.

m∑
j=1

xi,j 6 1 ; ∀ ci ∈ C (5.13)

In this paper, we propose resource allocation algorithms for both the two approaches.

So, our proposed problem is to minimize the total interference (5.8) while maintaining

constraints (5.9)-(5.11) with additional constraint (5.12) for fair assignment and con-

straint (5.13) for restricted assignment.

5.2 Existing Algorithms

There are two existing algorithms TAFIRA [22] and MIKIRA [21] that consider the

same problem formulation as we consider in this paper. MIKIRA uses the 0-1 minimum

knapsack algorithm to allocate D2D pairs to available cellular UEs.

Theorem 5.1: In the worst case, MIKIRA provides an infeasible solution.

Proof : MIKIRA considers the interference of cellular UE (ci) and a D2D pair (dj) as

an item (Ici,dj ) to be placed in the knapsack. If the solution of the minimum knapsack

algorithm has the item Ici,dj , then according to MIKIRA, ci and dj share RBs. MIKIRA

does not prevent of having two items, Ici,dj and Ici,dk (where dj and dk are two D2D pairs

and ci is a cellular UE) in the final solution and same is true for Ici,dj and Ick,dj (where

cj and ck are two cellular UEs and dj is a D2D pair). Thus, MIKIRA fails to provide

the guarantee of maintaining constraints 5.11 and 5.10 of the optimization problem that

we consider. Figure 5.1 represents such a scenario where MIKIRA assigns both d1 and
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d2 to c1 as Ic1,d1 and Ic1,d2 are the two items which have minimum interference value.

We can find a class of such bad examples in practice.

TAFIRA minimizes the interference while achieving the system sum rate demand by

allocating all D2D pairs to the available cellular UEs. It is a two-phase auction based

fair approach that satisfies sum rate demand while minimizing interference. In Phase-

I, TAFIRA creates a bidding pool with all cellular UEs and a set of bidders with all

D2D pairs. Each bidder has a greedy choice to bid for the cellular UE that produces

minimum interference calculated from (5.4). Once all D2D pairs are allocated to cellular

UEs, the algorithm calculates the total system sum rate according to the allocation. If

the calculated system sum rate satisfies the sum rate demand according to (5.9), then

TAFIRA terminates and reports the allocation as the final result. But if the demand is

not satisfied in Phase-I, TAFIRA goes to Phase-II with the allocation formed in Phase-I

where it releases a D2D pair and allocates it to any of the unallocated cellular UEs

only if it improves the system sum rate. If TAFIRA fails to meet the sum rate demand

in Phase-II, it reports that the allocation satisfying sum rate demand is not possible.

Though TAFIRA can provide good solutions in average cases, the performance of the

algorithm can be unbounded in the worst cases. Moreover, TAFIRA can return no

solution even when it exists.

Theorem 5.2: The performance of the TAFIRA, in the worst case, is unbounded.

Proof : Consider figure 5.2 where an edge between a cellular UEs (ci) and a D2D pair

(dj) represents the interference (Ici,dj ) introduced if dj is shared with ci (M is a very

large positive number, ε is a very small positive number and Ic1,d1 is the smallest item

among all). Now if we consider the target sum rate R, as 0 (any sum rate suffices as

long as we can minimize the total interference) then TAFIRA returns the total minimum

interference as M + Ic1,d1 (by sharing c1 with d1 and c2 with d2) whereas the optimal

solution is 2(Ic1,d1 + ε) (by sharing c1 with d2 and c2 with d1). So the performance ratio

of TAFIRA is unbounded (depends on the value of M).

Theorem 5.3: TAFIRA can return no solution for the problem even when it exists.

Proof : Consider a similar example in figure 5.3. This graph also represents the system

sum rates (sum rate contributions by any ci and dj due to sharing). It is to be noted

that, sum rate does not only depends on the interference (5.1). Now, for this instance,

TAFIRA gives total interference 2× Ic1,d1 , (by sharing c1 with d1 and c2 with d2) with

total sum rate 2× Sc1,d1 , at the end of Phase-I of the algorithm. However, if the target

sum rate (R) is 2(Sc1,d1 + ε), this solution is not feasible at the end of Phase-I. Even in

Phase-II, the algorithm can not improve the system sum rate from 2 × Sc1,d1 . Hence,

TAFIRA can not provide any solution for this instance. However, there exists a solution

(optimal) which shares c1 with d2 and c2 with d1 (total interference is 2(Ic1,d1 + ε) and

the total sum rate is exactly the same as target sum rate which is 2(Sc1,d1 + ε)).
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Figure 5.1: An infeasible solution by MIKIRA

Figure 5.2: An unbounded solution by TAFIRA

5.3 Interference Minimization Resource Allocation Algo-

rithm

We translate our resource allocation problem into a weighted bipartite matching prob-

lem. We propose resource allocation algorithms for both Fair Assignment and Restricted

assignment. Formation of bipartite graph, calculation of the weight of edge between

bipartite graph and two resource allocation algorithms are discussed in the following

subsections.
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Figure 5.3: A failed case of TAFIRA

5.3.1 Formation of Bipartite Graph

The bipartite graph is constituted of two disjoint sets i) set of existing cellular UEs C

and ii) set of D2D pairs Dnew. In second set there are n−m dummy D2D pairs which is

required for matching algorithm discussed in subsection 5.3.3. So Dnew = D ∪Ddummy

where D is the set of existing D2D pairs and Ddummy contains all dummy D2D pairs

needed.

5.3.2 Weight Calculation

We consider cellular UEs C(c1, c2, . . . , cn) and D2D pairs D(d1, d2, . . . , dm) as the two

sets of vertices of the matching problem where the edges between ci and dj represent

the interferences and sum rate introduced due to the sharing of RBs between ci and dj .

The weight of the edge is crucial to find the best matching. Initially, we run Hungarian

algorithm [20] to find out the possible minimum total system interference amd possible

maximum system sum rate by sharing RBs among a set of cellular UEs C(c1, c2, . . . , cn)

and a set of D2D pairs D(d1, d2, . . . , dm).

We introduce a n× n matrix Y in algorithm 4, the input weight matrix for Hungarian

algorithm (which represents the edges) where the rows are cellular UEs and columns

are D2D pairs. As Hungarian algorithm deals with only square matrix, we add (n−m)

dummy D2D pairs in the weight matrix. In line 2-18, we calculate the value of weight

matrix Y . In case of FARA algorithm, First m columns of Y holds the interference

caused by ci and dj if they share RBs with each other and we assigned infinity(∞)

to the remaining (n −m) dummy D2D pairs in line 16 as we do not want them to be
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matched in the final solution. But in case of RARA algorithm, if (5.13) is not satisfied

by any ci and dj then we assigned infinity(∞) to that edge as we also do not want

them to be matched in the final solution.

Similarly, in algorithm 5 for sum rate maximization we need to calculate the input

weight matrix for Hungarian algorithm (which represents the edges) where the rows

are cellular UEs and columns are D2D pairs. A n × n matrix X is introduced for this

matching algorithm. Here, in case of FARA algorithm, weight for first m columns is

the system sum rate contributed by ci and dj if they share RBs with each other and for

remaining (n−m) dummy D2D pairs, the weight is calculated from (5.6) which ensures

that dummy D2D pairs do not affect the selection of actual D2D pairs. On the other

hand, for RARA algorithm, if (5.13) is not satisfied by any ci and dj then we assigned

the value calculated from (5.6) to that edge as we also do not want them to be matched

in the final solution.

Algorithm 4 Interference Weight Calculation

1: procedure Interference(C,D, Y,Algo) . An allocation from C to D, Y is the
interference matrix, Algo is the algorithm name

2: for all i = 1 . . . n and j = 1 . . . n do
3: if j ≤ m then . using (5.5) and (5.6)
4: if Algo = RARA then
5: if Sci,dj > Sci,0 then
6: Yi,j = Ici,dj . interference calculated from (??)
7: else
8: Yi,j =∞
9: end if

10: else
11: if Algo = FARA then
12: Yi,j = Ici,dj
13: end if
14: end if
15: else
16: Yi,j =∞ . As we do not want to allocate this pair
17: end if
18: end for
19: end procedure

5.3.3 Resource allocation algorithm

We translate our resource allocation problem for fair assignment approach into a weighted

bipartite matching problem where each D2D pair needs to be assigned to one and only

one cellular UE. The goal of the assignment is to attain minimum interference with

maintaining a target system sum rate.



Chapter 5. Interference Minimization 41

Algorithm 5 Sum Rate Weight Calculation

1: procedure Sumrate(C,D,X,Algo) . An allocation from C to D, X is the
interference matrix, Algo is the algorithm name

2: for all i = 1 . . . n and j = 1 . . . n do
3: if j ≤ m then . using (5.5) and (5.6)
4: if Algo = RARA then
5: if Sci,dj > Sci,0 then
6: Xi,j = Sci,dj . interference calculated from (??)
7: else
8: Xi,j = Sci,0
9: end if

10: else
11: if Algo = FARA then
12: Yi,j = Sci,dj
13: end if
14: end if
15: else
16: Xi,j = Sci,0 . As we do not want to allocate this pair
17: end if
18: end for
19: end procedure

Algorithm 6 Weighted Bipartite Matching (Phase-I)

1: procedure PHASE-I(C(c1, c2, . . . , cn), D(d1, d2, . . . , dm), R,Algo) . An allocation
from C to D, R is the target system sum rate

2: Let X[n][n], Y [n][n] be two new weight Matrices . Xi,j , Yi,j is the sum rate and
interference respectively when dj shares RBs of ci

3: Interference(C,D,Y,Algo)
4: HungarianMin(Y )
5: Calculate Z from (5.7) using HungarianMin(Y )
6: if Z > R then
7: Allocate RBs of ci to dj for all TRUE value of Mi,j

8: Return Current Allocation. . Optimal solution
9: else . Phase-I failed

10: Sumrate(C,D,X,Algo)
11: if R > HungarianMax(X) then
12: Allocation satisfying R is not possible.
13: else
14: Allocate RBs of ci to dj using HungarianMax(X)
15: Go to Local Search (Phase-II)
16: end if
17: end if
18: end procedure
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We reduce the above optimization problem into a weighted bipartite matching problem

where D2D pairs are assigned to cellular UEs. We pass the algorithm name Algo to

our resource allocation algorithm that determines the execution of FARA or RARA

algorithm. The difference between these two algorithm is only in weight calculation

where algorithm 4 and 5 calculates the weights based on the algorithm name. In Phase-

I, we find the minimum weight bipartite matching among cellular UEs and D2D pairs. If

we find that the solution of the minimum bipartite algorithm meets the demand system

sum rate then our algorithm is the optimal one. However, if the target sun rate (R) is

not met then we use maximum bipartite matching algorithm to find out the possible

maximum system sum rate of the system [23]. If the maximum possible system sum rate

is less than the demand system sum rate then we can say that there exists no solution

(demand sum rate is not achievable) for the problem. However, if we find that demand

system sum rate can be achievable, then we calculate the total system interference from

the assignment of the cellular users and D2D pairs returned by the maximum bipartite

matching. Though maximum bipartite matching produces maximum system sum rate,

but the total system interference calculated from this solution may not be the optimal

one (maximum sum rate does not always imply the minimum interference). However, it

is definitely a candidate (feasible) solution of our problem. So we consider this solution

as an initial feasible solution of the local search algorithm (which is the Phase-II of

our algorithm) and try to decrease the total system interference while maintaining the

demand sum rate. The following subsections describe and analyze FARA.

5.3.3.1 Assignment Phase (Phase-I)

Initially, we run Hungarian algorithm [20] to find out the possible minimum total system

interference by sharing RBs among a set of cellular UEs C(c1, c2, . . . , cn) and a set of D2D

pairs D(d1, d2, . . . , dm). In the Hungarian algorithm, we only consider the minimization

of the interference. We consider C and D as the two sets of vertices of the matching

problem where the edges between ci and dj represent the interferences, Ici,dj introduced

due to the sharing of RBs between ci and dj . We introduce a n × n matrix Y in line

2, the input weight matrix for Hungarian algorithm (which represents the edges) where

the rows are cellular UEs and columns are D2D pairs. We calculate the value of Y using

algorithm 4 and weights are assigned based on the algorithm name. The Hungarian

algorithm returns a boolean matrix (Mi,j) containing assignments between cellular UEs

and D2D pairs. We calculate the system sum rate currSum based on these assignments

from the equation (5.7). If the system sum rate meets the target sum rate R, then we

can consider this allocation as the optimal allocation of our problem (line 6). However,

if the result of this minimization bipartite matching fails to met the target sum rate then

we find the possible maximum system sum rate for the instance of the problem (using

the maximum bipartite matching algorithm) to check whether there exist a solution or
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not. Please note that, we can do this checking at the start of the algorithm. However,

we prefer this step later as we use the result of this step in the Phase-II of the algorithm.

In line 11, our algorithm solves the maximum bipartite matching problem which gives us

the optimal system sum rate. Similarly, a n×n matrix X is introduced for this matching

algorithm. We calculate the value of X using algorithm 5 and weights are assigned based

on the algorithm name. The boolean matrix (Ni,j) contains the optimal assignments

between cellular UEs and D2D pairs considering the system sum rate and we calculate

the total system sum rate from equation (5.7) by using these assignments. If the target

sum rate is greater than calculated optimal system sum rate, then we can confirm that

there exists no solution for the current instance of our allocation problem (line 11).

However, if the target sum rate is lower than or equal to the calculated sum rate then

we consider current allocation as a candidate solution. Phase-II of our algorithm is a

local search technique, that takes this initial feasible solution and tries to decrease the

total interference iteratively until it reaches the local optima.

Algorithm 7 Local Search (Phase-II)

1: procedure FARA-II
2: while improve do
3: for each pair (ci, cj) ∈ C where i 6= j do
4: di and dj are D2D pairs assigned with ci and cj receptively
5: if Ici,dj + Icj ,di < Ici,di + Icj ,dj and Sci,dj + Scj ,di > R then . Swapping
6: remove RBs of ci from di and assign those RBs to dj
7: remove RBs of cj from dj and assign those RBs to di
8: end if
9: end for

10: end while
11: Return Current Allocation.
12: end procedure

5.3.3.2 Improvement Phase (Phase-II)

The goal of Phase-II is to minimize the interference while keeping the sum rate above

the target sum rate R. We consider any two cellular users, ci and cj , where ci and cj are

sharing RB’s with D2D pairs di and dj respectively and try to swap these allocations

whether it can minimize the interference (line 5). We also have to make sure that the

target system sum rate is still maintained after this swapping. So if we can improve

the solution with this swapping while maintaining the target sum rate, then we assign

RBs of ci to dj and cj to di and continue these steps until we find no such pair that can

improve the solution.
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5.3.4 Complexity Analysis

The running time of the Phase-I of FARA is dominated by the Hungarian algorithm

which is O(n3) [20] (n is the total cellular UEs). If the total interference returned by

the Phase-I of the algorithm is W , then the running time of the Phase-II of FARA is

O(n∗m∗W ) (where m is the total D2D pairs). So, the overall running time of FARA is

O(max(n3, n ∗m ∗W )) which is pseudo-polynomial in the worst case. However, we can

get an (1− ε) approximate solution for any local search algorithm (in our case phase-II

) in time that is a polynomial in the input size and 1
ε .

5.4 Simulation Environment

We implemented the algorithms by extending NS3 (network simulator) [ns3] that sup-

ports D2D communication underlaying the LTE system. The simulation parameters are

given in Table 4.2.5. Every simulation result is an average of 20 different runs for a

particular scenario. The confidence interval of the mean of our experiments are quite

narrow.

5.5 Performance Evaluation

We consider two existing algorithms, TAFIRA [22] and MIKIRA [21] to compare the

performance of FARA. MIKIRA uses the 0-1 minimum knapsack algorithm to allocate

D2D pairs to available cellular UEs and considers the interference of cellular UE (ci)

and a D2D pair (dj) as an item (Ici,dj ) to be placed in the knapsack. If the solution of

the minimum knapsack algorithm has the item Ici,dj , then according to MIKIRA, ci and

dj share RBs. MIKIRA does not prevent of having two items, Ici,dj and Ici,dk (where dj

and dk are two D2D pairs and ci is a cellular UE) in the final solution and same is true

for Ici,dj and Ick,dj (where cj and ck are two cellular UEs and dj is a D2D pair). Thus,

MIKIRA fails to provide the guarantee of maintaining 5.11 and 5.10 of the optimization

problem that we consider.

TAFIRA minimizes the interference while achieving the system sum rate demand by

allocating all D2D pairs to the available cellular UEs. It is a two-phase auction based

fair approach that satisfies sum rate demand while minimizing interference. In Phase-

I, TAFIRA creates a bidding pool with all cellular UEs and a set of bidders with all

D2D pairs. Each bidder has a greedy choice to bid for the cellular UE that produces

minimum interference calculated from (5.4). Once all D2D pairs are allocated to cellular

UEs, the algorithm calculates the total system sum rate according to the allocation. If
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the calculated system sum rate satisfies the sum rate demand according to (5.9), then

TAFIRA terminates and reports the allocation as the final result. But if the demand is

not satisfied in Phase-I, TAFIRA goes to Phase-II with the allocation formed in Phase-I

where it releases a D2D pair and allocates it to any of the unallocated cellular UEs

only if it improves the system sum rate. If TAFIRA fails to meet the sum rate demand

in Phase-II, it reports that the allocation satisfying sum rate demand is not possible.

Though TAFIRA can provide good solutions in average cases, the performance of the

algorithm can be unbounded in the worst cases. Moreover, TAFIRA can return no

solution even when it exists.

Though we prove that both TAFIRA and MIKIRA fail to provide solutions in several

cases, we try to compare the results of our algorithm with TAFIRA through various

simulations. We skip discussing the results of MIKIRA as we find that MIKIRA fails

in most of the simulations. We consider a single cell network in our simulation. All

the cellular UEs and D2D pairs are uniformly distributed in the cellular region and one

eNB is placed in the center. The distance between transmitter and receiver of a D2D

pair is confined within 15 meters to provide active D2D communication [22]. Other

parameters of our simulation environment are the same as mentioned in [21, 22]. We

consider various target sum rate. The lower bound of the target sum rate is the sum

rate contributions of the channel users without sharing RBs with any D2D pairs. The

upper bound of the target sum rate of a system can be found from [23].

Figure 5.4 represents the comparison of the total system interference due to sharing of

RBs. RARA and FARA algorithm produces less amount of interference than TAFIRA.

In RARA algorithm, we do not consider those D2D pairs which decreases system sum

rate and RARA algorithm produces less amount of interference than FARA algorithm.

We also find the optimal solution of the problem (implementing integer linear program

in “Gurobi” [gur]) and find that RARA is either optimal or very close to the optimal.

Figure 5.4 also depicts those cases where TAFIRA fails (shown as × in the graph) to

produce a feasible solution even if such solutions exist. From the figure 5.5, it is clear that

our algorithm outperforms TAFIRA in terms of system sum rate. Moreover, TAFIRA

fails to achieve target sum rate in many cases, whereas our algorithm gives solutions in

those cases too. The difference in the system sum rate gets higher with the increased

number of D2D pairs for the fixed number of cellular UEs. Figure 5.6 indicates the

total interference at D2D receivers. It shows that our proposed algorithms introduces

significantly less interference at D2D receivers. From the results, we can conclude that

our proposed algorithms (FARA & RARA) returns very close to the optimal interference

by satisfying the sum rate demand. In addition, our algorithms return better system sum

rate than TAFIRA while introducing less amount of total system interference. Unlike

TAFIRA, our algorithms guarantee a solution if such solution exists. Moreover, our
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Figure 5.4: Comparison of total system interference

Figure 5.5: Comparison of normalized system sum rate

algorithms cause less interference than TAFIRA at D2D receivers. In all cases, RARA

algorithm outperforms FARA algorithm because of the restriction of choosing D2D pairs

(5.13). In summary, we can conclude that our proposed algorithms outperforms existing

algorithms in terms of system interference while satisfying system sum rate demand.

5.6 Theorem

We can derive the following lemma and theorems from our both FARA and RARA

algorithm.

Lemma 5.1: In case of RARA algorithm, a cellular UE ci should not share RBs with a

D2D pair, dj if Sci,dj < Sci,0. (equations (5.5) and (5.6))
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Figure 5.6: Interference at the D2D receivers

Figure 5.7: Number of shared D2D pairs

Lemma 5.1: The minimum bipartite matching (considering interference as edge weight)

between cellular UEs and D2D pairs provides the lower bound of our minimization

problem (equation 5.8).

Theorem 5.3: If the solution of the minimum bipartite matching satisfies the target

sum rate then our algorithm is optimal.

Theorem 5.4: Total interference never increases in the phase-II (Local Search) while

maintaining the target sum rate.

Theorem 5.5: Our algorithm always finds a solution if it exists.



Chapter 6

Conclusion

Sharing RBs of an existing cellular network with D2D pairs can increase the capacity

of the system. For maximization of system capacity we propose an algorithm which

removes nonviable D2D pairs and matches D2D pairs with cellular users that share

RBs while maintaining QoS constraints. Our algorithm returns the optimal sum rate,

introduces minimum interference in the network satisfying all constraints. Allowing

multiple assignment increases the system sum rate. We shows two variants of multiple

assignment, in one case access rate of D2D pair is totally ignored and in another keeping

the access rate moderate maximization of sum rate is performed. For minimization of

introduced interference, we propose two types of approach. In one we do not care about

the access rate and in other case we give access to each D2D pair.

48
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