

MICROWAVE OVEN CONTROLLER DESIGN

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE

REQUIREMENT FOR BACHELOR OF SCIENCE IN ELECTRICAL AND

ELECTRONICS ENGINEERING

SUPERVISED BY:

PROF.DR.MD.ASHRAFUL HOQUE

PREPARED BY:

MOHAMMAD NASER (123427)

 NAJIBULLAH (123429)

SIKANDAR ABBAS (123434)

Department of Electrical and Electronic Engineering

Islamic University of Technology (IUT)

Organization of Islamic Cooperation

Gazipur-1704, Bangladesh

September 2013

MICROWAVE OVEN CONTROLLER DESIGN

APROVED BY

This is to certify that the work presented in this thesis is an outcome of the

investigation carried out by the authors under the supervision of

prof.Dr.Md.Ashraful Hoque, Department of Electrical and Electronics

Engineering, Islamic University of Technology (Bangladesh).

 Pro.Dr.MD.Ashraful Hoque

 Department of Electrical and

Electronics Engineering

AUTHORS:

 Mohammad Naser Najibullah Sikandar Abbas

A B S T R A C T

Micro controller plays an important role in industries as well as in our day-to-day life.

They are programmable devices which are used to control working principles of technologies or

functionalities of different application that has been designed based on each and every single

instruction that has been given to the Micro controller using assembly language

(MPLAB/simulation and Proteus in our project, to design control unit if Microwave oven using

micro controller PIC16F872A), and provides desired functions and proper directions in

industries.

They are also an indispensable part of our daily lives. An average home in Australia, Asia,

Europe, Africa and America using these technology.

Microcontroller is considered as a basic device or equipment in software engineering and

programming.

The aim of this thesis is to introduce students to the modeling and designing instructions of

control unit of micro wave oven using micro controller for different operation on different

components, based on MPLAB and PROTEUS and to use computer simulation as a tool for

conducting procedures and control studies.

From reading theory the dynamic behavior and interactions that are often not readily apparent

and feasible that is why simulation can be very helpful in gaining insights to the different

behaviors.

Next to having an actual system to experiment on, simulation is often chosen by engineers to

study transient and control performance or to test conceptual designs.

MPLAB is used because of the short learning instruction that most students require to start using

it, its wide distribution, and its general-purpose nature. This will demonstrate the advantages of

using MPLAB for analyzing micro controller instructions power system steady state behavior

and its capabilities for simulating transients in power systems and power electronics, including

control system dynamic behavior.

 I

A C K N O W L E D G E M E N T

We would like to extend our sincere gratitude to our supervisor, Prof.Dr.Mohammad Ashraful

Hoque, for their assistance and guidance towards the progress of this thesis project.

Throughout the year, Prof.Dr.Mohammad Ashraful Hoque has been patiently monitoring our

progress and guided us in the right direction and offering encouragement. Obviously the progress

we had now will be uncertain without their assistance.

Special thanks must also go to the laboratory supervisor, Mr Massaod and Mr Ghulam Mostafa

for their advices and helps on the thesis project.

My special appreciation and thanks to our fellow classmates for their invaluable assistances

towards this thesis project.

Most of all, we are highly grateful to our family for their unfailing encouragement and financial

support that willingly they have given us over the years.

And also special thanks from our group mates for helping to finish successfully this thesis.

 I I

T A B L E O F T H E C O N T E N T S

A b s t r a c t I

A c k n o w l e d g e m e n t I I

C h a p t e r 1 Introduction 1

 1.1 Construction of microwave oven 2

1.1.1 Cavity 3

1.1.2 Door 4

1.1.3 Cooling fans 4

1.2 controller 5

1.3 sensors 5

1.4 How a microwave oven works? 5

1.5 Microwave generator 6

1.6 High voltage transformer 7

1.7 Magnetron 9

1.7.1 Magnetron construction and operation 9

1.7.2 Magnetron construction 9

 1.7.3 Magnetron construction - modern microwave oven 10

 1.7.4 Magnetron construction - common features 11

1.8 Interlock switches 12

1.9 Objective 13

 III

C h a p t e r 2 A s s e m b l y La n g u a g e 1 4

 2 . 1 I n t r o d u c t i o n 1 4

2 . 1 . 1 T h e b a s i c 1 4

2 . 1 . 2 A s s e m b l y l a n g u a g e 1 4

 2 . 1 . 3 R u n n i n g t h e p r o g r a m 1 5

2 . 2 A s s e m b l y l a n g u a g e e l e m e n t s 1 6
2 . 2 . 1 L a b e l s 1 7

2 . 2 . 2 I n s t r u c t i o n s 1 7

2 . 2 . 3 O p e r a n d 1 8

2 . 2 . 4 C o m m e n t s 1 8

2 . 2 . 5 D i r e c t i v e s 1 8

2 . 3 B a s i c p r o g r a m i n M P L A B 1 9

2 . 4 A d d r e s s i n g M o d e s 2 0

2 . 4 . 1 D i r e c t A d d r e s s i n g 2 0

2 . 4 . 2 I n d i r e c t A d d r e s s i n g 2 1

2 . 5 W r i t i n g t o E E P R O M M e m o r y 2 2

2 . 6 C b l o c k 2 3

2 . 7 T h e C o d e 2 4

2 . 8 L o o p i n g 2 4

2 . 9 S e t s o f i n s t r u c t i o n 2 5

Chapter 3 Controller Design 39

 3.1 Introduction 39

3.2 PIC16f876a/PIC18f252 39

 3.3 TEMPERATURE SENSOR (DS18b20) 44

 3.3.1 Operation – Measuring Temperature 44

3.4 Voltage Regulator (LM 7805) 47

3.5 LCD HD-44780 48

IV

Chapter 4 IR (Infrared) Receiver 51

4.1 IR data communication protocol 51

4.2 IR transmitters 52

4.3 IR receivers 53

4.4 Frame Timing 53

4.5 IR or Infrared Interface 54

Chapter 5 Outcomes 57

 5.1 features 57

5.2 Design snap-shot 58

Chapter 6 Conclusion 59

6.1 Advantages 60

6.2 Disadvantages 61

Appendix 61

References 87

 V

Chapter 1

 Introduction

The microwave oven is one of the great invention of the 20
th

 century- millions of homes in world

have one. A typical microwave oven uses between 500 and 1000 W of microwave energy at 2.45

GHz to heat the food. This heating is caused mainly by the vibration of the water molecules.

Thus plastic, glass, or even paper containers will heat only through conduction from the hot food.

There is little transfer of energy directly to these materials. This also means that the food does

not need to be a conductor of electricity (try heating a cup of distilled water) and that

electromagnetic induction (used elsewhere for high frequency non-contact heating) is not

involved.

What is significant about 2.45 GHz? Not that much. Water molecules are not resonant at this

frequency. A wide range of frequencies will work to heat water efficiently. 2.45 GHz was

probably chosen for a number of other reasons including not interfering with existing EM

spectrum assignments and convenience in implementation. In addition, the wavelength (about 5

inches) results in reasonable penetration of the microwave energy into the food. The 3 dB (half

power) point is about 1 inch for liquid water - half the power is absorbed in the outer 1 inch of

depth, another 1/4 of the power in the next inch, and so forth.

"Industrial ovens still often operate at 915 MHz and other frequencies near 6 GHz are also used.

Water has numerous resonances over the entire spectra range, but the lowest frequency

resonance is the rotational resonance is around 24 GHz. Other resonances occur in the millimeter

wave range through the infrared.

Since the oven chamber cavity is a good reflector of microwaves, nearly all the energy generated

by the oven is available to heat the food and heating speed is thus only dependent on the

available power and how much food is being cooked. Ignoring losses through convection, the

time to heat food is roughly proportional to its weight. Thus two cups of water will take around

twice as long to bring to a boil as one.

Heating is not (as popularly assumed) from the inside out. The penetration depth of the

microwave energy is a few cm so that the outside is cooked faster than the inside. However,

unlike a conventional oven, the microwave energy does penetrate these few cm rather than being

totally applied to the exterior of the food. The misconception may arise when sampling

something like a pie filling just out of the microwave (or conventional oven for that matter).

Since the pie can only cool from the outside, the interior filling will appear to be much hotter

than the crust and will remain that way for a long time.

 1

One very real effect that may occur with liquids is superheating. It is possible to heat a pure

liquid like water to above its boiling point if there are no centers for bubbles to form such as dust

specks or container imperfections. Such a superheated liquid may boil suddenly and violently

upon removal from the oven with dangerous consequences. This can take place in a microwave

since the heating is relatively uniform throughout the liquid. With a stovetop, heating is via

conduction from the burner or coil and there will be ample opportunity for small bubbles to form

on the bottom long before the entire volume has reached the boiling point.

Most metal objects should be excluded from a microwave oven as any sharp edges (areas of high

electric field gradient) may create sparking or arcing which at the very least is a fire hazard.

Microwave safe metal shelves will have nicely rounded corners.

A microwave oven should never be operated without anything inside as the microwave generator

then has no load - all the energy bounces around inside an a great deal is reflected back to the

source. This may cause expensive damage to the magnetron and other components.

1.1 Construction of microwave oven

Figure (1.1)

 2

1.1.1 Cavity

All cavity magnetrons consist of a hot cathode with a high (continuous or pulsed) negative

potential created by a high-voltage, direct-current power supply. The cathode is built into the

center of an evacuated, lobed, circular chamber. A magnetic field parallel to the filament is

imposed by a permanent magnet. The magnetic field causes the electrons, attracted to the

(relatively) positive outer part of the chamber, to spiral outward in a circular path, a consequence

of the Lorentz force. Spaced around the rim of the chamber are cylindrical cavities. The cavities

are open along their length and connect the common cavity space. As electrons sweep past these

openings, they induce a resonant, high-frequency radio field in the cavity, which in turn causes

the electrons to bunch into groups. (This principle of cavity resonator is very similar to blowing a

stream of air across the open top of a glass pop bottle.) A portion of the field is extracted with a

short antenna that is connected to a waveguide (a metal tube usually of rectangular cross

section). The waveguide directs the extracted RF energy to the load, which may be a cooking

chamber in a microwave oven or a high-gain antenna in the case of radar.

A cross-sectional diagram of a resonant cavity magnetron. Magnetic lines of force are parallel to

the geometric axis of this structure.

The sizes of the cavities determine the resonant frequency, and thereby the frequency of emitted

microwaves. However, the frequency is not precisely controllable. The operating frequency

varies with changes in load impedance, with changes in the supply current, and with the

temperature of the tube. This is not a problem in uses such as heating, or in some forms

of radar where the receiver can be synchronized with an imprecise magnetron frequency. Where

precise frequencies are needed, other devices such as the klystron are used.

The magnetron is a self-oscillating device requiring no external elements other than a power

supply. A well-defined threshold anode voltage must be applied before oscillation will build up;

this voltage is a function of the dimensions of the resonant cavity, and the applied magnetic field.

In pulsed applications there is a delay of several cycles before the oscillator achieves full peak

power, and the build-up of anode voltage must be coordinated with the build-up of oscillator

output.

Where there are an even number of cavities, two concentric rings can connect alternate cavity

walls to prevent inefficient modes of oscillation. This is called Pi strapping because the two

straps lock the phase difference between adjacent cavities at Pi radians (180°).

The magnetron is a fairly efficient device. In a microwave oven, for instance, a 1.1 kilowatt input

will generally create about 700 watts of microwave power, an efficiency of around 65%. (The

high-voltage and the properties of the cathode determine the power of a magnetron.) Large S

band magnetrons can produce up to 2.5 megawatts peak power with an average power of

3.75 kW. Large magnetrons can be water cooled. The magnetron remains in widespread use in

roles which require high power, but where precise frequency control is unimportant

 3

http://en.wikipedia.org/wiki/Cathode
http://en.wikipedia.org/wiki/Vacuum
http://en.wikipedia.org/wiki/Permanent_magnet
http://en.wikipedia.org/wiki/Lorentz_force
http://en.wikipedia.org/wiki/Cavity_resonator
http://en.wikipedia.org/wiki/Waveguide_(electromagnetism)
http://en.wikipedia.org/wiki/Antenna_(radio)
http://en.wikipedia.org/wiki/Cavity_resonator
http://en.wikipedia.org/wiki/Wave_impedance
http://en.wikipedia.org/wiki/Radar
http://en.wikipedia.org/wiki/Klystron
http://en.wikipedia.org/wiki/S_band
http://en.wikipedia.org/wiki/S_band

1.1.2 Door

The door of a microwave oven is carefully designed to reflect microwaves so that they can't

escape from the oven. That mesh that you see in the door isn't plastic, it's metal. Metal surfaces

reflect microwaves and, even though the mesh has holes in it to allow you to observe the food, it

acts as a perfect mirror for the microwaves. Basically, the holes are so much smaller than the

12.2-cm wavelength of the 2.45-GHz microwave that the microwave cannot propagate through

the holes. Electric currents flow through the metal mesh as the microwave hits it and those

currents re-radiate the microwave in the reflected direction. Since the holes aren't big enough to

disrupt that current flow, the mesh reflects the microwaves as effectively as a solid metal surface

would.

After plugging your oven into a standard housing socket, press start button or turn the timer. And

then switches (primary, secondary, timer) close the circuit..

Eventually the input power will be applied to turntable motor timer motor, fan motor, oven lamp

a high voltage transformer.

A high voltage of 2100 volts AC is generated in the second winging of H.V transformer. And the

voltage is doubled by H.V Capacitor & H.V Diode. The 4Kv DC voltage is applied to filament of

magnetron, then magnetron start to produce microwave.

This microwave is injected to cavity.

1.1.3 Cooling fans

Since 30 to 50 percent of the power into a microwave oven is dissipated as heat in the

Magnetron, cooling is extremely important. Always inspect the cooling fan/motor for dust and

dirt and lubricate if necessary. A couple of drops of electric motor oil or 3-in-One will go a long

way. If there are any belts, inspect for deterioration and replace if necessary.

An oven that shuts off after a few minutes of operation could have a cooling problem, a defective

over temperature thermostat, a bad magnetron, or is being operated from very high AC line

voltage increasing power to the oven.

One interesting note: Since 30 to 50 percent of the power goes out the vents in the back as heat, a

microwave oven is really only more efficient than conventional means such as a stovetop or gas

or electric oven for heating small quantities of anything. With a normal oven or stovetop, wasted

energy goes into heating the pot or oven, the air, and so on. However, this is relatively

independent of the quantity of food and may be considered to be a fixed overhead. Therefore,

there is a crossover point beyond which it is more efficient to use conventional heat than high

tech microwaves.

 4

1.2 Controller

The controller usually includes a microcomputer, though very inexpensive units may simply

have a mechanical timer (which ironically, is probably more expensive to manufacture!). The

controller runs the digital clock and cook timer; sets microwave power levels; runs the display;

and in high performance ovens, monitors the moisture or temperature sensors.

Power level in most microwave ovens is set by pulse width control of the microwave generator

usually with a cycle that lasts 10-30 seconds. For example, HIGH will be continuous on,

MEDIUM may be 10 seconds on, 10 seconds off, and LOW may be 5 seconds on, 15 seconds

off. The power ratios are not quite linear as there is a 1 to 3 second warm up period after

microwave power is switched on.

However, some models use finer control, even to the point of a continuous range of power.

These are typically "inverter" models which use a more sophisticated type of power supply than

the simple high voltage transformer, capacitor, rectifier, system described below. However, there

have been some back in the 1970s that did this with a 1 second or so pulse width modulated

cycle, fast enough to have the same effect as continuous control for all practical purposes.

The operating voltages for the controller usually are derived from a step down transformer. The

controller activates the microwave generating circuitry using either a relay or triac.

1.3 Sensors

More sophisticated ovens may include various sensors. Most common are probes for temperature

and moisture. A convection oven will include a temperature sensor above the oven chamber.

Since these sensors are exposed to the food or its vapors, failures of the sensor probes themselves

are common.

1.4 How a microwave oven works?

The operation of a microwave oven is really very simple. It consists of two parts: the controller

and the microwave generator.

The controller is what times the cooking by turning the microwave energy on and off. Power

level is determined by the ratio of on time to off time in a 10-30 second cycle.

The microwave generator takes AC line power. Steps it up to a high voltage, and applies this to a

special type of vacuum tube called a magnetron - little changed from its invention during World

War II (for Radar).

 5

 Figure (1.2)

1.5 Microwave generator

This is the subsystem that converts AC line power into microwave energy. The majority of

microwave ovens use a brute force approach which consists of 5 parts: high voltage (HV)

transformer running off the AC line, HV rectifier diode, HV capacitor, magnetron, and

waveguide to oven chamber. (A few employ solid state inverter in place of the simple HV

transformer. These will be discussed later.)

The most common microwave generator consists of the following:

 High Voltage Transformer. Typically has a secondary of around 2,000 VRMS at 0.5 to 1

amp - more or less depending on the power rating of the oven. There will also be a low

voltage winding for the Magnetron filament (3.3 V at 10 A is typical).

You cannot miss this as it is the largest and heaviest component visible once the cover is

removed. There will be a pair of quick-connect terminals for the AC input, a pair of leads

for the Magnetron filament. And a single connection for the HV output. The HV return

will be fastened directly to the transformer frame and thus the chassis.

 6

These transformers are designed with as little copper as possible. The primary for 115

VAC is typically only 120 turns of thick wire - thus about 1 turn per volt input and output

(this is about 1/4th as many turns as in a "normal" power transformer. (It's usually

possible to count the primary turns by examining how it is wound - no disassembly

required!) So there would be about 3 turns for the magnetron filament and 2080 turns for

the high voltage winding for the transformer mentioned above. The reason they can get

away with so few turns is that it operates fully loaded about 90 percent of the time but is

still on the hairy edge of core saturation. The HV components are actually matched to the

HV transformer characteristics. Performance will suffer if the uF value of a replacement

HV capacitor is not close to that of the original.

There is also generally a "magnetic shunt" in the core of the transformer. This provides

some current limiting, possibly to compensate for various magnetron load conditions.

However, it's not enough to provide any reduction in the likelihood of electrocution

should you come in contact with the HV winding!

 Rectifier - usually rated 12,000 to 15,000 PRV at around 0.5 amp. Most commonly, this

will be rectangular or cylindrical, about 0.5 inch long with wire leads. Sometimes, it is a

box bolted to the chassis. One end will be electrically connected to the chassis.

 Capacitor - 0.65 to 1.2 uF at a working voltage of around 2,000 VAC. Note that this use

of 'working voltage' may be deceiving as the actual voltage on the capacitor may exceed

this value during operation. The capacitor is metal cased with quick-connect terminals on

top (one end). Always discharge the capacitor as described below before touching

anything inside once the cover is removed.

 Magnetron - the microwave producing tube includes a heated filament cathode, multiple

resonant cavities with a pair of permanent ceramic ring magnets to force the electron

beams into helical orbits, and output antenna. The magnetron is most often box shaped

with cooling fins in its midsection, the filament/HV connections on the bottom section,

and the antenna (hidden by the waveguide) on top. Sometimes, it is cylindrical in shape

but this is less common. The frequency of the microwaves is usually 2.45 GHz.

When salvaging parts from dead microwave ovens, save the HV components (transformer,

capacitor, and diode) as a group (assuming all are still good). Then, if a repair is needed to

another oven it may be better to replace all 3 both because this eliminates uncertainty if more

than 1 part failed or is marginal, and they will have been designed to have the best compatibility.

1.6 High voltage transformer

The transformer goes by several names, depending on where you are. Variable reluctance,

leakage flux, stray flux, etc. It is exactly the same construction and operating principle as a neon

transformer, some kinds of HID light ballasts and some series streetlight constant current

 7

transformers.

The core is an almost standard "E" core (or "H" core if you prefer) with one exception. The

center leg has an air gap. The windings are on the end legs of the "E" instead of the center leg.

There are two magnetic paths around the core for the field set up by the primary to travel.

Around the periphery and across the secondary and around the center leg and across the air gap.

The field that travels along the center leg does not cross the secondary and induces no voltage.

With no load applied, the bulk of the field travels the peripheral, very much lower reluctance

solid iron path, inducing full secondary voltage proportional to the turns ratio. As current flows

in the secondary, counter-MMF raises the reluctance of the peripheral path so that some of the

flux travels through the center leg. With less flux traveling around the periphery and cutting

across the secondary, the secondary voltage drops as the current remains about the same. At the

0++limit, if the secondary is shorted, the peripheral path has so much reluctance that most of the

flux travels the center leg and across the air gap. The same current as before flows through the

secondary but at zero volts.

When the dimensions of the core and gap are set up correctly, the transformer behaves as an

almost perfect constant current device. That is, the secondary voltage varies as necessary to keep

the same current flowing through a varying load. Just what the doctor ordered to keep the

magnetron happy.

The secondary current can be increased by opening up the air gap. This raises the reluctance of

that path and forces more field through the secondary leg. Closing the gap has the opposite

effect.

The center leg is often called the magnetic shunt and frequently it is a separate piece of

laminated iron stuck between the coils and TIG welded in place. It is a common trick for Tesla

Coilers to open up a neon transformer and either knock out the shunt entirely or grind it down to

open the air gap. This modification causes the transformer to output much more current than it is

designed for - for a little while, at least, The same thing works with microwave oven

transformers (MOT).

This design in a microwave oven is a vital part of keeping the magnetron anode current within

spec. The magnetron is electrically a diode. A diode that isn't emission-limited would draw

destructive current if not externally limited. With this design, the filament can be heated good

and hot for long life and not have the tube run away. The design also is vital for protecting the

magnetron from potentially damaging conditions such as operating the oven empty, arcing, etc.

It's popular to use several MOTs to build an arc welder. This works quite well specifically

because these transformers are constant-current devices - exactly the characteristic stick welding

needs. If they were conventional transformers, the first time the rod touched the work and

shorted the secondary, fault current would flow and the breaker would trip or blue smoke would

leak out. 8

Along similar lines, one can cut off the high voltage secondary and replace it with a suitable

number of turns of heavy wire, connect a bridge rectifier and have a nice constant current battery

charger. Select the turns carefully and it'll do the bulk/absorption stages of the smart 3 stage

charging algorithm.

1.7 Magnetron

1.7.1 Magnetron construction and operation

The cavity magnetron was invented by the British before World War II. It is considered by many

to be the invention most critical to the Allied victory in Europe.

The story goes that shortly after the War, a researcher at the Raytheon Corporation, Dr. Percy

Spencer, was standing near one of the high power radar units and noticed that a candy bar in his

shirt pocket had softened. In the typical 'I have to know why this happened' mentality of a true

scientist, he decided to investigate further. The Amana Radarange and the entire future

microwave oven industry were the result.

1.7.2 Magnetron construction

This is the description you will find in any textbook on radar or microwave engineering. The

original Amana Radarange and other early microwave ovens likely used this design as well.

1. A centrally located cylindrical electron emitting cathode. This is supplied with pulsed or

continuous power of many thousands of volts (negative with respect to the anode.

2. A cylindrical anode block surrounding but separate and well insulated from the cathode.

3. Multiple cylindrical resonator cavities at a fixed radius from the cathode bored in the

anode block. Channels link the cavities to the central area in which the cathode is located.

The wavelength of the microwave energy is approximately 7.94 times the diameter of the

cavities. (For the frequency of 2.45 GHz (12.4 cm) used in a microwave oven this would

result in a cavity diameter of approximately .62" (15.7 mm).

4. An antenna pickup in one of the cylindrical cavities which couples the microwave energy

to the waveguide.

5. The entire assembly is placed in a powerful magnetic field (several thousand Gauss

compared to the Earth's magnetic field of about .5 Gauss). This is usually supplied by a

permanent magnet though electromagnets have been also used. The original designs used

huge somewhat horseshoe shaped permanent magnets which were among the most

powerful of the day.

6. Cooling of the anode block must be provided by forced air, water, or oil since the

microwave generation process is only about 60 to 75 percent efficient and these are often

high power tubes (many kilowatts).

 9

1.7.3 Magnetron construction - modern microwave oven

This description is specifically for the 2M214 (which I disassembled) or similar types used in the

majority of medium-to-high power units. However, nearly all other magnetrons used in modern

domestic microwave ovens should be very similar.

The item numbers are referenced to the diagram in the section: Cross section diagram of typical

magnetron.

 This is a view looking up through the anode cylinder from the filament end of the tube. See the

text below for parts names and dimensions.

1. The filament and cathode are one in the same and made of solid tungsten wire, about

.020" (.5 mm) diameter, formed in a helix with about 8 to 12 turns, 5/32" (4 mm)

diameter and just over 3/8" (9.5 mm) in length. The cathode is coated with a material

which is good for electron emission.

Note: this coating is the only material contained in the microwave oven magnetron that

might be at all hazardous. Beryllium, a toxic metal, may be used in the form of a ceramic

of beryllium oxide (BeO) in large radar magnetrons due to its excellent heat conductivity.

But should not be present in modern domestic microwave ovens. However, see the

section: SAFETY.

The filament gets its power via a pair of high current RF chokes - a dozen or so turns of

heavy wire on a ferrite core - to prevent microwave leakage back into the filament circuit

and electronics bay of the oven. Typical filament power is 3.3 VAC at 10 A.

The cathode is supplied with a pulsating negative voltage with a peak value of up to

5,000 V.

2. The anode is a cylinder made from .062" (1.5 mm) thick copper with an inside diameter

of 1-3/8" (35 mm) and a length of about 1" (25.4 mm).

Steel plates (which probably help to shape the magnetic field, see below) and thin steel

covers (to which the filament and antenna insulators are sealed) are welded to the ends of

the cylinder.

The filament leads/supports enter through a cylindrical ceramic insulator sealed to the

bottom cover and then pass through a hole in the bottom end plate.

 10

http://www.repairfaq.org/sam/micfaq.htm#miccsectm
http://www.repairfaq.org/sam/micfaq.htm#miccsectm
http://www.repairfaq.org/sam/micsaf

3. Rather than cylindrical cavities (as you would find in most descriptions of radar

magnetrons), there are a set of 10 copper vanes .062" (1.5 mm) thick and approximately

1/2" (12.7 mm) long by 3/8" (9.5 mm) wide. These are brazed or silver soldered to the

inside wall of the cylinder facing inward leaving a 5/16" (8 mm) central area clear for the

filament/cathode.

Surrounding this space are the .062" (1.5 mm) thick edges of the 10 vanes with gaps of

approximately .04" (1 mm) between them.

Copper shorting rings at both ends near the center join alternating vanes. Thus, all the

even numbered vanes are shorted to each other and all the odd numbered vanes are

shorted to each other. Of course, all the rings are also all shorted at the outside where

they are joined to the inner wall of the cylinder.

This structure results in multiple resonant cavities which behave like sets of very high

quality low loss L-C tuned circuits with a sharp peak at 2.45 GHz. At this high frequency,

individual inductors and capacitors are not used. The inductance and capacitance are

provided by the precise configuration and spacing of the copper vanes, shorting rings,

and anode cylinder.

4. A connection is made near the middle of a single vane to act as the output power takeoff.

It passes through a hole in the top end plate, exits the tube via a cylindrical ceramic

insulator sealed to the top cover, and attaches to the pressed-on bullnose antenna cap.

5. The entire assembly is placed in a powerful magnetic field (several thousand Gauss

compared to the Earth's magnetic field of about .5 Gauss). This is provided by a pair of

ceramic ring magnets placed against the top and bottom covers of the anode cylinder. For

the 2M214, these are about 2-1/8" (54 mm) OD, 1-13/16" (46 mm) ID, 1/2" (12.7 mm)

thick.

6. A set of thin aluminum fins act as a heat sink for removing the significant amount of

wasted heat produced by the microwave generation process since it is only about 60 to 75

percent efficient. These are press fit on the magnetron anode and also in contact with the

magnetron case. There will always be a cooling fan to blow air through this assembly.

The anode and magnetron case are at ground potential and connected to the chassis.

1.7.4 Magnetron construction - common features

The following items apply to all types of magnetrons.

7. The gap between the cathode and anode, and the resonant cavities, are all in a vacuum.
8. When powered, electrons stream from the cathode to the anode. The magnetic field forces

them to travel in curved paths in bunches like the spokes of a wheel. The simplest way to

describe what happens is that the electron bunches brush against the openings of the

resonating cavities in the anode and excite microwave production in a way analogous to what

happens when you blow across the top of a Coke bottle or through a whistle.

11

9. The frequency/wavelength of the microwaves is mostly determined by the size and shape

of the resonating cavities - not by the magnetic field as is popularly thought. However,

the strength of the magnetic field does affect the threshold voltage (the minimum anode

voltage required for the magnetron to generate any microwaves), power output, and

efficiency.

WARNING: What this implies is that if the magnetron is not present or is not drawing power for

some reason - like an open filament - up to V (peak) will still be present across the capacitor

when power is removed. At the end of normal operation, some of this will likely be discharged

immediately but will not likely go below about 2,000 V due to the load since the magnetron does

not conduct at low voltages.

Other types of power supplies have been used in a few models - including high frequency

inverters - but it is hard to beat the simplicity, low cost, and reliability of the half wave doubler

configuration. See the section: High frequency inverter type HV power supplies.

There is also usually a bleeder resistor as part of the capacitor, not shown. However: do not

assume that this is sufficient to discharge the capacitor - always do this if you need to touch

anything in the microwave generator after the oven has been powered. The bleeder may be

defective and open as this does not effect operation of oven and/or the time constant may be long

- minutes. Some ovens may not have a bleeder at all.

In addition, there will likely be an over-temperature thermostat - thermal protector - somewhere

in the primary circuit, often bolted to the magnetron case. There may also be a thermal fuse or

other protector physically elsewhere but in series with the primary to the high voltage

transformer.

Other parts of the switched primary circuit include the oven interlock switches, cooling fan,

turntable motor (if any), oven light, etc.

1.8 Interlock switches

Various door interlock switches prevent inadvertent generation of microwaves unless the door is

closed completely. At least one of these will be directly in series with the transformer primary so

that a short in the relay or triac cannot accidentally turn on the microwaves with the door open.

The interlocks must be activated in the correct sequence when the door is closed or opened.

Interestingly, another interlock is set up to directly short the power line if it is activated in an

incorrect sequence. The interlocks are designed so that if the door is correctly aligned, they will

sequence correctly. Otherwise, a short will be put across the power line causing the fuse to blow

forcing the oven to be serviced. This makes it more difficult for an ignorant consumer to just

bypass the door interlocks should they fail or to run the oven with an open door as a room heater

- and protects the manufacturer from lawsuits. (That interlock may be known as a "dummy

 12

http://www.repairfaq.org/sam/micfaq.htm#michfinvert

switch" for obvious reasons and is often not even mentioned in the schematic/parts manifest.) Of

course, should that switch ever actually be used, not only will the fuse blow, but the switch

contacts will likely be damaged by the high initial current! This also means it probably wouldn't

be a bad idea to replace the interlock switch which might have been affected if your oven fails

with a blown fuse due to a door problem.

Failed door interlocks account for the majority of microwave oven problems - perhaps as high as

75 percent. This is not surprising considering that two of the three switches carry the full oven

current - any deterioration of the contacts results in increased resistance leading to their heating

and further deterioration. And, opening the door to interrupt a cook cycle results in arcing at the

contacts. Complete meltdowns are not unusual! If any defective door switches are found, it is

probably a good idea to replace all of them as long as the oven is already apart.

The typical door switches and their function:

 Door Sensing: Input to the microcontroller to indicate the state of the door.

 Interlock Monitor: Shorts out the AC line (and blows the main fuse) should the Primary

Interlock not open due to incorrect sequencing of the door switches or a failed switch.

 Primary Interlock: In series with the high voltage (magnetron) power supply so cuts

power when the door is open.

Note that if the Door Sensing switch should malfunction, peculiar behavior may occur (like the

fan or turntable operating at the wrong time) but should never result in microwaves being

generated with the door open.

1.9 Objective

Controller unit is an important part of the each system, to design a universal controller for
microwave oven we need to program accordingly either using assembly or C languages.
The following chapter is based on assembly programming using MPLAB.

 13

Chapter2

A s s e m b l y L a n g u a g e

2 . 1 I n t r o d u c t i o n

This is a brief introduction to assembly language. Assembly language is the most basic

programming language available for any processor. With assembly language, a programmer

works only with operations implemented directly on the physical CPU. Assembly language lacks

high-level conveniences such as variables and functions, and it is not portable between various

families of processors. Nevertheless, assembly language is the most powerful computer

programming language available, and it gives programmers the insight required to write effective

code in high-level languages. Learning assembly language is well worth the time and effort of

every serious programmer.

2 . 1 . 1 T h e B a s i c s

Before we can explore the process of writing computer programs, we have to go back to the

basics and learn exactly what a computer is and how it works. Every computer, no matter how

simple or complex, has at its heart exactly two things: a CPU and some memory. Together, these

two things are what make it possible for your computer to run programs.

On the most basic level, a computer program is nothing more than a collection of numbers stored

in memory. Different numbers tell the CPU to do different things. The CPU reads the numbers

one at a time, decodes them, and does what the numbers say. For example, if the CPU reads the

number 64 as part of a program, it will add 1 to the number stored in a special location called

AX. If the CPU reads the number 146, it will swap the number stored in AX with the number

stored in another location called BX. By combining many simple operations such these into a

program, a programmer can make the computer perform many incredible things.

As an example, here are the numbers of a simple computer program: 184, 0, 184, 142, 216, 198,

6, 158, 15, 36, 205, and 32. If you were to enter these numbers into your computer's memory and

run them under MS-DOS, you would see a dollar sign placed in the lower right hand corner of

your screen, since that is what these numbers tell the computer to do.

2 . 1 . 2 A s s e m b l y L a n g u a g e

Although the numbers of the above program make perfect sense to a computer, they are about as

clear as mud to a human. Who would have guessed that they put a dollar sign on the screen?

Clearly, entering numbers by hand is a lousy way to write a program.

 14

It doesn't have to be this way, though. A long time ago, someone came up with the idea that

computer programs could be written using words instead of numbers. A special program called

an assembler would then take the programmer's words and convert them to numbers that the

computer could understand. This new method, called writing a program in assembly language,

saved programmers thousands of hours, since they no longer had to look up hard-to-remember

numbers in the backs of programming books, but could use simple words instead.

The program above, written in assembly language, looks like this:

MOV AX, 47104
MOV DS, AX
MOV [3998], 36
INT 32

When an assembler reads this sample program, it converts each line of code into one CPU-level

instruction. This program uses two types of instructions, MOV and INT. On Intel processors,

the MOV instruction moves data around, while the INT instruction transfers processor control to

the device drivers or operating system.

The program still isn't quite clear, but it is much easier to understand than it was before. The first

instruction, MOV AX, 47104, tells the computer to copy the number 47104 into the location AX.

The next instruction, MOV DS, AX, tells the computer to copy the number in AX into the

location DS. The next instruction, MOV [3998], 36 tells the computer to put the number 36 into

memory location 3998. Finally, INT 32 exits the program by returning to the operating system.

Before we go on, I would like to explain just how this program works. Inside the CPU are a

number of locations, called registers, which can store a number. Some registers, such as AX, are

general purpose, and don't do anything special. Other registers, such as DS, control the way the

CPU works. DS just happens to be a segment register, and is used to pick which area of memory

the CPU can write to. In our program, we put the number 47104 into DS, which tells the CPU to

access the memory on the video card. The next thing our program does is to put the number 36

into location 3998 of the video card's memory. Since 36 is the code for the dollar sign, and 3998

is the memory location of the bottom right hand corner of the screen, a dollar sign shows up on

the screen a few microseconds later. Finally, our program tells the CPU to perform what is called

an interrupt. An interrupt is used to stop one program and execute another in its place. In our

case, we want interrupt 32, which ends our program and goes back to MS-DOS, or whatever

other program was used to start our program.

2 . 1 . 3 R u n n i n g t h e P r o g r a m

Let's go ahead and run this program. First, be sure to print these instructions out, since you will

need to refer to them as we go on. Next, click on your start menu, and run the program

called MS-DOS Prompt. A black screen with white text should appear. We are now in MS-DOS,

the way computers used to be 20 years ago. MS-DOS was before the days of the mouse, so you

 15

must type commands on the keyboard to make the computer do things.

First, I want you to type the word debug, and press enter. The cursor should move down a line,

and you should see the Debug prompt, which is a simple dash. We are now in a program

called Debug. Debug is a powerful utility that lets you directly access the registers and memory

of your computer for various purposes. In our case, we want to enter our program into memory

and run it, so we'll use Debug's a command, for assemble. Go ahead and type a100 now. The

cursor will move down another line, and you will see something like 1073:0100. This is the

memory location we are going to enter assembly language instructions at. The first number is the

segment, and the second number is the memory location within the segment. Your Debug

program will probably pick a different segment for your program than mine did, so don't worry if

it's different. Another thing to note is that Debug only understands hexadecimal numbers, which

are a sort of computer shorthand. Hexadecimal numbers sometimes contain letters as well as well

as digits, so if you see something like 63AF, don't worry.

Let's go ahead and enter our program now. Type each of the instructions below into Debug

exactly as they appear, and press enter after each one. When you finish entering the last

instruction, press enter twice to tell Debug that we are done entering instructions.

mov ax,B800
mov ds,ax
mov byte[0F9E],24
int 20

As you can see, I've converted all the numbers into hexadecimal, and have made a few other

changes so Debug can understand what's going on. If you make a mistake while entering the

above program, press enter twice, type a100, and start entering instructions again at the

beginning of the program.

Once you have entered the program, you can go ahead and run it. Simply type g for go and press

enter when you are ready to start the program. You should see a dollar sign in the lower right

hand corner of your screen and the words Program terminated normally. These words are put out

by Debug to let you know that the program ended normally. Congratulations! You've just entered

and run your first assembly language program!

2.2 Assembly language elements

Basic elements of assembly language are:

 Labels
 Instructions
 Operands
 Directives
 Comments

16

2.2.1 Labels

A Label is a textual designation (generally an easy-to-read word) for a line in a program, or section of a

program where the micro can jump to - or even the beginning of set of lines of a program. It can also be

used to execute program branching (such as Goto) and the program can even have a condition that

must be met for the Goto instruction to be executed. It is important for a label to start with a letter of

the alphabet or with an underline "_". The length of the label can be up to 32 characters. It is also

important that a label starts in the first column.

2.2.2 Instructions

Instructions are already defined by the use of a specific microcontroller, so it only remains for us to

follow the instructions for their use in assembly language. The way we write an instruction is also called

instruction "syntax". In the following example, we can recognize a mistake in writing because

instructions movlp and gotto do not exist for the PIC16F84

microcontroller.

 17

2.2.3 Operand

Operand is the instruction elements for the instruction are being executed. They are usually registers or

variables or constants.

2.2.4 Comments

Comment is a series of words that a programmer writes to make the program more clear and legible. It

is placed after an instruction, and must start with a semicolon ";".

2.2.5 Directives

A directive is similar to an instruction, but unlike an instruction it is independent on the microcontroller

model, and represents a characteristic of the assembly language itself. Directives are usually given

purposeful meanings via variables or registers. For example, LEVEL can be a designation for a variable in

RAM memory at address 0Dh. In this way, the variable at that address can be accessed via LEVEL

designation. This is far easier for a programmer to understand than for him to try to remember address

0Dh contains information about LEVEL.

 18

2.3 Basic program is MPLAB

There are a few things you need in every program. Might as well get them in the file now.

When entering data in the MPLAB assembler, there are three columns of interest. The columns

are separated by whitespace (tabs and space). How much whitespace is entirely up to us? We can

use a single space, or 10 tabs, really doesn‟t matter to the assembler. Personally, I like to use two

tabs. This makes the column line up without thinking much about it, and it allows a reasonable

length for identifiers.

The first column is anything that starts in column 1. The assembler assumes that this is a label

that we will reference somewhere in our program.

The second column contains the opcode. This is the thing we want the PIC to do dome thing to.

Besides instructions, there can be assembler directives. These don‟t end up as instructions in the

PIC, instead, they tell the assembler things we want it to know.

We need three directives in any program:

 LIST P=16F877A

 #INCLUDE <P16F877A.INC>

 END

It‟s also a good idea to include the configuration word. We will talk about this one in more

detail, but for now, type in the following:

<tab><tab>processor<16f876A>

<tab><tab>include<tab><tab><16f876A.inc><enter>

<tab><tab>__config<tab>_HS_OSC & _WDT_OFF & _PWRTE_ON <enter>

<tab><tab>end<enter>

The processor directive tells the assembler which type of PIC we are using. The include directive

tells the assembler to include a file which contains definitions for a number of symbols relevant

to that processor. The __config tells the processor that we will be using a crystal (_HS_OSC),

we want the watchdog timer turned off (_WDT_OFF) and we want the power-up timer

enabled (_PWRTE_ON).

Select „file->save‟ to save your work, than select to build all

„Project->Bulk All‟

We will get a new window with a bunch of junk, but the last line should say:

 19

BUILD SUCCEEDED

2.4 Addressing modes

RAM memory locations can be accessed directly or indirectly.

2.4.1 Direct Addressing

Direct Addressing is done through a 9-bit address. This address is obtained by connecting 7th bit

of direct address of an instruction with two bits (RP1, RP0) from STATUS register as is shown

on the following picture. Any access to SFR registers is an example of direct addressing.

1.

2.

3. Bsf STATUS, RP0 ;Bankl

4. movlw 0xFF ;w=0xFF

5. movwf TRISA ;address of TRISA register is taken from

6. ;instruction movwf

Figure (2.1)

 20

2.4.2 Indirect Addressing

Indirect unlike direct addressing does not take an address from an instruction but derives it from

IRP bit of STATUS and FSR registers. Addressed location is accessed via INDF register which

in fact holds the address indicated by a FSR. In other words, any instruction which uses INDF as

its register in reality accesses data indicated by a FSR register. Let's say, for instance, that one

general purpose register (GPR) at address 0Fh contains a value of 20. By writing a value of 0Fh

in FSR register we will get a register indicator at address 0Fh, and by reading from INDF

register, we will get a value of 20, which means that we have read from the first register its value

without accessing it directly (but via FSR and INDF). It appears that this type of addressing does

not have any advantages over direct addressing, but certain needs do exist during programming

which can be solved smoothly only through indirect addressing.

Figure (2.2)

Such examples include sending a set of data via serial communication, working with buffers and

indicators (which will be discussed further in a chapter with examples), or erasing a part of RAM

memory (16 locations) as in the following instance.

 21

Reading data from INDF register when the contents of FSR register is equal to zero returns the

value of zero, and writing to it results in NOP operation (no operation).

2.5 Writing to EEPROM Memory

In order to write data to EEPROM location, programmer must first write address to EEADR

register and data to EEDATA register. Only then is it useful to set WR bit which sets the whole

action in motion. WR bit will be reset, and EEIF bit set following a writing what may be used in

processing interrupts. Values 55h and AAh are the first and the second key whose disallow for

accidental writing to EEPROM to occur. These two values are written to EECON2 which serves

only that purpose, to receive these two values and thus prevent any accidental writing to

EEPROM memory. Program lines marked as 1, 2, 3, and 4 must be executed in that order in even

time intervals. Therefore, it is very important to turn off interrupts which could change the

timing needed for executing instructions. After writing, interrupts can be enabled again.

Example of the part of a program which writes data 0xEE to first location in EEPROM memory

could look something like the following:

 22

NOTE: It is recommended that WREN be turned off the whole time except when writing data to

EEPROM, so that possibility of accidental writing would be minimal. All writing to EEPROM

will automatically clear a location prior to writing a new.

2.6 Cblock

If you recall, in earlier lessons, we allocated locations in the file register for our

Various memory needs, and we assigned names to their locations with equ

statements. There‟s nothing wrong with this. But the cblock directive has a

number of advantages.

The sequence

 Cblock H'20'

 Spot1 ; First program variable

 Spot2 ; Second program variable

 endc

Is exactly the same as

 Spot1 equ H'20' ; First program variable

 Spot2 equ H'21' ; Second program variable

But has the advantage that the assembler keeps track of adding one each time we use another

location. Obviously, this isn‟t a big win for only 2 locations. But as our programs get longer,

it‟s a bigger help.

There‟s another reason we want to use this construct for allocating file register memory. If we

later decide we want to use a different PIC model, this can save us some work in modifying the

code for the new processor. For example, the PIC16F84A has file register memory starting at

H‟0C‟. If we run out of program memory and decide to move to a PIC16F628, we have more

program memory as well as file register memory, but the file register starts at H‟20‟. We may

have dozens of lines to edit if we used the equ form, and plenty of opportunity for errors. With

the cblock, we have only one directive to change.

We will continue to use equ to define manifest constants, and this convention has the additional

advantage of making our memory allocation definitions stand out from constant declarations.

 23

2.7 The code

To do a subtraction, we want to initially set the C bit, so it is available to borrow from. Before

all done, set up the following code:

 ; set up a subtraction

 movlw H‟03‟

 bsf STATUS,C

 subwf Spot2,F

 movlw H‟0f‟

 subwf Spot2,F

2.8 Looping

There is another pair of increment/decrement instructions. They are incfsz and decfsz (increment

F and skip if zero, likewise for decrement). Try this (again, before alldone):

 ; Lets do a counter

 clrf Spot1

loop

 incfsz Spot1,F

 goto loop

Now, when we run this, watch what happens to the file register location Spot1. Notice that the

first time the incfsz is executed, the file register gets bumped up to one. Two more clicks of the

Step Into button and it becomes two. Now select Debugger->Animate and watch the file register.

The program runs freely, but the screen is updated after each instruction so we can watch the file

register location increment. When it wraps around to zero, the program leaves the loop (because

the incfsz instruction finally skipped the goto) and reaches our alldone loop.

 24

The incfsz instruction changes none of the status bits, but it does take action (skipping the next

instruction) when the result is zero.

2.9 SETS OF INSTRUCTION

The RISC Stands for "Reduced Instruction Set Computing, “and is pronounced "risk." It is

arguably the fastest and most efficient microprocessor technology available today. The RISC

architecture is an improvement upon the CISC (Complex Instruction Set Computing)

architecture used in the original Intel Pentium chips. In 1974, John Cocked of IBM Research was

working on making a faster version of the CISC chip and came up with a design that

significantly reduced the number of instructions need for performing computations. The new

design was not only faster than the CISC architecture, but the chips were also smaller and less

expensive to manufacture. Motorola's PowerPC chips (such as the G4 in Power Macs) are the

most widely used RISC-based chips. Intel has slowly been integrating RISC technology into its

chips, but they still are mostly CISC-based.

 ADDLW K

o Add the literal value K to register WREG and put the result back in the WREG register

o (W) + k (W)
o K is an 8-bit value: 0-255 (decimal), 00-FF (hex)

o L: literal (actual value)

Affect STATUS bits: C, DC, Z

Instruction: ADDLW 15

Before After

W=10 W=25

ADDWF f, d

o Add together contents of WREG and a file register location (SFR @ GPR).

o Put the result in the register WREG if d = 0 otherwise it is stored back in register f.

o (W) + (f) (d)

o 0 f 127, d [0, 1]

o Affect STATUS bits: C, DC, Z

25

Instruction: MOVLW 17H

 ADDWF 5H,0

Before After

W=0H W=17H

5H=0H 5H=0H

MOVF f, d

o Move the content of f register upon the status of d

o (f) (d)

o Affect bit‟Z‟ of Status register

o Instruction: MOVF FSR, 0

Before After

W=09AH W=value in FSR register

FSR=0H Z=1

ANDLW k

o Logical AND k literal with the content of WREG register & the result is placed in the

WREG register

o (W) AND k (W)

o Affect Z bit of STATUS register

Instruction: ANDLW 5FH

Before After

W=A3H W=03H

ANDWF f, d

o AND the WREG register with f register

o (W) + (f) (d)

o Affect Z bit of STATUS register

26

Instruction: ANDWF FSR, 1

Before After

W=17H

FSR=0C2H

W=17H

FSR=02H

BCF f, b

o Clear bit „b‟ in file register

o 0 (f)

o Not affect on STATUS register

Instruction: BCF STATUS, 5

Before After

STATUS=0A7H STATUS=087H

BSF f, b

o Set bit „b‟ in f register

o 1 (f)

o Not affect on STATUS register

Instruction: BSF INTCON, 7

Before After

INTCON=0BH INTCON=08BH

BTFSS f, b

o Execute the next instruction if bit „b‟ in file register „f‟ is „0‟, otherwise discard executing

next instruction

o 2-cycle instruction

o Not affect on STATUS register

27

Instruction: H BTFSS STATUS, 2

 I GOTO LOOP

 J ………

 ………

Before After

PC=address H PC=Add.j if STATUS<2>=1,

PC=Add.I if STATUS<2>=0

BTFSC f, b

o Execute the next instruction if bit „b‟ in file register „f‟ is „1‟, otherwise discard executing

next instruction

o 2-cycle instruction

o Not affect on STATUS register

Instruction: H BTFSC PORTA, 3

 I GOTO LOOP

 J ………

 ………

Before After

INTCON=0BH INTCON=08BH

CALL k

o Call subroutine

o (PC) + 1 TOS (top of stack)

o k PC<10:0>

o (PCLATCH<4:3>) PC<12:11>

o 2-cycle instruction

28

o Not affect on STATUS register

Instruction: SO CALL THEN

 ………

 ………

Before After

PC=add.SO PC=ADD.THEN;

TOS=add.SO+1

CLRF f

o Clear the content of „f‟ register

o 00h (f)

o 1 Z

Instruction: CLRF PORTA

Before After

PORTA=5AH PORTA=00H

Z=1

CLRW

o Clear the content WREG register

o 00h (W)

o 1 Z

Instruction: CLRW

o Clear the content WREG register

o 00h (W)

o 1 Z

29

Instruction: CLRW

Before After

W=5AH W=00H

Z=1

COMP f, d

o Complement the content of „f‟ register

o (f) (d)

Instruction: COMP ONE, 0

Before After

ONE=13H

W=02H

ONE=13H

W=0ECH

DECF f, d

o Decrease „f‟ register

o (f) – 1 (d)

Instruction: DECF CNT, 1

Before After

CNT=01H

Z=0

CNT=00H

Z=1

DECFSZ f, d

o Decrease „f‟ register and skip the next instruction if the result is 0; otherwise execute the

next instruction

o (f) – 1 (d), skip if result = 0

o 2-cycle instruction

30

Instruction: HERE DECFSZ CNT, 1

 GOTO HERE

 CONT ………

Before After

PC=add.HERE CNT=CNT-1

PC=add.CONT if CNT =0;

PC= add.HERE+1 if CNT0

GOTO k

o Unconditional branch

o k PC<10:0>

o (PCLATCH<4:3>) PC<12:11>

o 2-cycle instruction

Instruction: HERE GOTO THERE

 ………

 THERE ………

Before After

PC.add.

HERE

PC=add.THERE

INCF f, d

o Increase the content of „f‟ register

o (f) + 1 (d)

o d is destination

31

Instruction: INCF SATU, 1

Before After

SATU SATU=00H

Z=1

INCFSZ f, d

o Increase the content of „f‟ register and skip the next instruction if the result is 0;

otherwise execute the next instruction

o (f) + 1 (d), skip if result = 0

o 2-cycle instruction

Instruction: HERE INCFSZ CNT, 1

 GOTO loop

 CONT ………

 ……..

Before After

PC=add.HERE CNT=CNT+1

PC=add.CONT if CNT=0;

Else add.HERE

 32

IORLW k

o Inclusive OR literal „k‟ with the content of WREG register

o (W) OR k (W)

o Affect bit „Z‟ of STATUS register

Instruction: IORLW 35H

Before After

W=09AH

Z=?

W=0BFH

Z=0

IORWF f, d

o Inclusive OR the content of WREG register with f register

o (W) OR (f) (d)

o Affect bit „Z‟ of STATUS register

Instruction: IORWF RESULT, 0

Before After

RESULT=13H

W=91H

RESULT=13H

W=93H

Z=0

NOP

o No operation

Instruction: NOP

 33

RETFIE

o Return from interrupt

o TOS PC

o 1 GIE (Global Interrupt Enable)

o Not affect bit of STATUS register

Instruction: RETFIE

Before After

 PC=TOS, GTE=1

RETLW k

o Return with loading literal „k‟ onto WREG register, k (W)

o TOS PC

o Not affect on STATUS register

Instruction: RETLW 088H

Before After

W=09AH W=088H

RETURN

o Return from subroutine

o POP the TOS and load into the PC

o 2-cycle instruction

Instruction: RETURN

Before After

 PC=TOS

 34

RLF f, d

Figure (2.3)

o Rotate left f through carry

o Affect bit „C‟ of STATUS register

Instruction: RLF REG, 1

Before After

REG=1111 1111=0FFH

C=0

REG=1111 1110=0FEH

C=1

RRF f, d

Figure (2.4)

o Rotate right f through carry

o Affect bit „C‟ of STATUS register

Instruction: RRF REG, 1

Before After

REG=1111 0111 =0F7H

C=0

REG=0111 1011 =07BH

C=1

 35

SLEEP

o 00h WDT

o 0 WDT pre-scalar

o 1 TO

o 0 PD

o Affect TO & PD bits of STATUS register

Instruction: SLEEP

SUBLW k

o Subtract WREG register (2‟s complement) from literal „k‟ and put the result onto WREG

register

o k – (W) (W)

o Affect C, DC & Z bits of STATUS register

Instruction: SUBLW 02H

Before After

W=01H

C=?

Z=?

W=01H

C=1

Z=0

SUBWF f, d

o Subtract WREG register (2‟s complement) from f register

o (f) – (W) (d)

o Affect C, DC & Z bits of STATUS register

36

Instruction: SUBWF 02H, 0

Before After

W=01H

F=05H

C=?

Z=?

W=04H

F=05H

C=1

Z=0

SWAPF f, d

o Exchange the upper & lower nibbles off register

o (f<3:0) (d<7:4>), (f<7:4) (d<3:0>)

o Not affect STATUS register

Instruction: SWAPF ON, 1

Before After

ON=0F4H

W=09AH

ON=04FH

W=09AH

XORLW k

o Exclusive OR (XOR) the content of WREG register with k literal

o (W) XOR k (W)

o Store the result in WREG register

o Affect bit „Z‟ of STATUS register

Instruction: XORLW 0AFH

Before After

W=0B5H W=01AH

 37

XORWF f, d

o Exclusive OR (XOR) the content of WREG register with f register

o (W) XOR (f) (d)

o Affect bit „Z‟ of STATUS register

Instruction: XORWF REG, 1

Before After

REG=0AFH

W=0B5H

REG=01AH

W=0B5H

These instructions can help us to write code in assembly language (MPLAB) for PIC

microcontrollers. Where design a universal controller we need to use PIC 16F876A

microcontroller as a main part of control unit.

The following chapter is based on controller design for microwave oven.

 38

Chapter 3

CONTROLLER DESIGN

3.1 Introduction

The heart of the each system is control system, the control system means a system the operation

of the another system or control systems, combination of components (electrical, mechanical,

thermal or hydraulic) that act to gather to maintain actual system performance close to desired

set of performance.

Now a days technologies are advance so in place of relay or circuit breaker mostly using

microcontroller to control the operation of a system.

Our objective in this chapter is to design a control unit that can control the operation of oven

with keypad, trough out the chapter we will get some idea of main unit (microcontroller, LCD,

voltage regulator, and temperature sensor).

In the next chapter we will go through operation by IR Receiver (Remote control)

3.2 PIC16f876A/PIC18f252

The PIC16F876A/PIC18f252 is the latest products from Microchip. It features all the

components which modern microcontrollers normally have. For its low price, wide range of

application, high quality and easy availability, it is an ideal solution in applications such as: the

control of different processes in industry, machine control devices, measurement of different

values etc. Some of its main features are listed below.

 39

Figure (3.1)

 40

Key features PIC 16f876A PIC 18f252

Operating frequency DC-20MHz DC-40MHz

Resets (and delays) POR,BOR(PWRT, OST) POR, BOR , RESET INSTRUCTIONS,

STACK FULL(PWRT)OST

Flash program memory (14-

bit words)

8K 32K

Data memory(bytes) 368 1536

EEPROM data memory

(bytes)

256 256

Interrupts 15 17

I/O ports PIN (A,B,C,D,E) PIN(A,B,C,D,E)

Timers 3 4

Capture/ compare/pwm

modules

2 2

Serial communications MSSP, USART MSSP, ADDRESSABLE USART

Parallel communication PSP PSP

10-bit analog-to- digital

modules

8 INPUT CHANNELS 8 INPUT CHANNELS

Analog comparators 2 -

instruction set 35 75

 Packages 40-PIN PIDP

44-PIN PLCC

44-PIN TQFP

44-PIN QFN

28-PIN DIP

28-PIN SOCC

 41

11

10

3

4

8

9

1 2 13 14 15 16

1213141516

11

10

9

8

4

3

TTR 01 B

1221 - XW

6

7

5

+3Vdc

1

7

4 2 35 6

8 90

Infrared

(TX)

47mfd

16V
STAR

T

STO
P

pO
W

ER

C
LEAR

EZ O
N

TIM
E

M
O

R
E

U
P(+)

LESS

D
O

W
N
(-)

AU
TO

D
EFO

R
ST

C
U
STO

M

C
O

O
K

C
U
STO

M

SET

C
O

SSER
O

LE

FO
O

D

PLATE

BAKED

G
O

O
D
S

FR
ESH

VEG
ETABLE

FR
O

ZEN

EN
TR

EE

PIZZA

BEVER
AG

E

PO
TATO

PO
PC

O
R
N

C
LO

C
K

Tim
er

Enter

Figure (3.2)

We have got in here 35 keys which make it possible to do different functions by

keypad, this is attached to the microwave oven and by pressing the key we can get the

appropriate operation.

1. DISPLAY WINDOW.

2. ONE TOUCH CONTROL: This menu has been preprogrammed to cook

food automatically by one touch.

3. AUTO DEFROST: This feature provides you with the best defrosting

method for frozen foods.

4. CUSTOM COOK: This feature allows you to set and execute a frequently

used single stage program.

5. NUMBER: These used to set for time of day, cooking time, power level,

or defrost weight.

6. MORE / LESS: All pf the one touch cook and TIMED COOK can be

adjusted to cook food for a longer or shorter time.

MORE pressing MORE will add 10 seconds to the cooking time.

LESS pressing LESS will subtract 10 seconds of cooking time.

7. STOP/ CLEAR: it used to stop oven and clear all entries except time of

day. 42

8. CUSTOM SET: You can select sound on/off, clock on/off, scroll speed,

lbs/kg choice, language choice, demo on / off mode.

9. TIME: You can set the desired cooking time.

10. POWER: You can select the desired power level for cooking.

11. TIMER: You can use the timer function of your oven for purpose other

than coking.

12. CLOCK: It is used to set the time of day.

13. EZ ON: You can extend cooking time in multiplies of 1 minute by

repeatedly touching this pad during cooking.

14. START: This feature allows oven to begin functioning.

By pressing any key a signal is going to microcontroller which cases the operation microwave

oven through magnetron.

 Figure (3.3)

 43

The above a part of the controller circuit is given which shows the microcontroller with LCD for

keypad operation of microwave oven .

3.3 TEMPERATURE SENSOR (DS1820)

The DS1820 Digital Thermometer provides 9–bit temperature

readings which indicate the temperature of the device.

Information is sent to/from the DS1820 over a 1–Wire

interface, so that only one wire (and ground) needs to be

connected from a central microprocessor to a DS1820.

Power for reading, writing, and performing temperature

conversions can be derived from the data line itself with no

need for an external power source.

 Figure (3.4)

Because each DS1820 contains a unique silicon serial number, multiple DS1820s can exist on

the same 1–Wire bus. This allows for placing temperature sensors in many different places.

Applications where this feature is useful include HVAC environmental controls, sensing

temperatures inside buildings, equipment or machinery, and in process monitoring and control.

Table Detailed pin Description

Pin 16-pin SSOP Pin PR35 SYMBOLS Description

9 1 GND Ground

8 2 DQ Data input/output pin
for 1-wire: open drain

7 3 VDD Optional VDD pin

Using VDD to supply temperature conversion current

 44

Figure(3.5)

3.3.1 Operation – Measuring Temperature

The DS1820 measures temperature through the use of an on–board proprietary temperature

measurement technique.

The DS1820 measures temperature by counting the number of clock cycles that an oscillator

with a low temperature coefficient goes through during a gate period determined by a high

temperature coefficient oscillator.

The counter is preset with a base count that corresponds to –55°C. If the counter reaches zero

before the gate period is over, the temperature register, which is also preset to the –55°C value, is

incremented, indicating that the temperature is higher than –55°C.

At the same time, the counter is then preset with a value determined by the slope accumulator

circuitry. This circuitry is needed to compensate for the parabolic behavior of the oscillators over

temperature. The counter is then clocked again until it reaches zero. If the gate period is still not

finished, then this process repeats. The slope accumulator is used to compensate for the non–

linear behavior of the oscillators over temperature, yielding a high resolution temperature

measurement.

This is done by changing the number of counts necessary for the counter to go through for each

incremental degree in temperature. To obtain the desired resolution, therefore, both the value of

the counter and the number of counts per degree C (the value of the slope accumulator) at a

given temperature must be known. Internally, this calculation is done inside the DS1820 to

provide 0.5°C resolution. The temperature reading is provided in a 16–bit, sign–extended two‟s

complement reading. Table 1 describes the exact relationship of output data to measured

temperature. The data is transmitted serially over the 1–Wire interface. The DS1820 can measure

temperature over the range of –55°C to +125°C in 0.5°C increments. For Fahrenheit usage, a

lookup table or conversion factor must be used.

 45

Note that temperature is represented in the DS1820 in terms of a 1/2°C LSB, yielding the

following 9–bit format:

 MSB LSB

1 1 1 0 0 1 1 1 0

 = –25°C

The most significant (sign) bit is duplicated into all of the bits in the upper MSB of the two–byte

temperature register in memory. This “sign–extension” yields the 16–bit temperature readings as

shown in Table 1.

Higher resolutions may be obtained by the following procedure. First, read the temperature, and

truncate the 0.5°C bit (the LSB) from the read value. This value is TEMP_READ. The value left

in the counter may then be read. This value is the count remaining (COUNT_REMAIN) after the

gate period has ceased.

The last value needed is the number of counts per degree C (COUNT_PER_C) at that

temperature. The actual temperature may be then be calculated by the user using the following:

TEMPERATURE = TEMP_READ – 0.25 +

TEMPERATURE/DATA RELATIONSHIPS Table (3.1)

TEMPERATURE DIGITAL OUTPUT

(binary)

DIGITAL OUTPUT

(Hex)

+125°C 00000000 11111010 00FA

+25°C 00000000 00110010 0032h

+1/2°C 00000000 00000001 0001h

+0°C 00000000 00000000 0000h

–1/2°C 11111111 11111111 FFFFh

–25°C 11111111 11001110 FFCEh

–55°C 11111111 10010010 FF92h

 46

3.4 Voltage Regulator (LM7805)

The MC7805 of three terminal positive regulator are

available in the TO-220/D-PAK package and with

several fixed

output voltages, making them useful in a wide range

of applications. Each type employs internal

current limiting, thermal shut down and safe

 figure(3.6)

 operating area protection, making it essentially indestructible. If adequate heat sinking is

provided, they can deliver over 1A output current. Although designed primarily as fixed voltage

regulators, these devices can be used with external components to obtain adjustable voltages and

currents.

Absolute maximum Ratings

Electrical Characteristics (MC7805/LM7805)

(Refer to test circuit ,0°C < TJ < 125°C, IO = 500mA, VI = 10V, CI= 0.33µF, CO= 0.1µF,

unless otherwise specified)

Parameter Symbol Conditions MC7805/LM7805 unit

Min. Type Max.

Output Voltage Vo TJ =+25 oC 4.8 5.0 5.2 V

5.0mA ≤ Io ≤ 1.0A, PO ≤ 15W
VI = 7V to 20V

4.75 5.0 5.25

Line Regulation
(Note1)

Load
Regulation

(Note1)

Regline

Regload

TJ=+25 oC VO = 7V to
25V

- 4.0 100
mV

VI = 8V to
12V

- 1.6 50

TJ=+25 oC O = 5.0mA
to1.5A

- 9 100
mV

O =250mA
to

750mA

- 4 50

 47

Parameter Symbol Value Unit

input Voltage (for VO = 5V to 18V)
(for VO = 24V)

VI
VI

35
40

V
V

Thermal Resistance Junction-Cases (TO-220) RθJC 5 °C/W

Thermal Resistance Junction-Air (TO-220) RθJA 65 °C/W
Operating Temperature Range TOPR 0 ~ +125 °C

Storage Temperature Range TSTG -65 ~ +150 °C

3.5 LCD HD-44780

The HD44780U dot-matrix liquid crystal display

controller and driver LSI displays alphanumeric,

Japanese kana characters, and symbols. It can be

configured to drive a dot-matrix liquid crystal display

under the control of a 4- or 8-bit microprocessor. Since

all the functions such as display RAM, character

generator, and liquid crystal driver, required for driving

a dot-matrix liquid crystal display are internally

provided on one chip, a minimal system can be

interfaced with this controller/driver. A single HD44780U figure (3.7)

can display up to one 8-character line or two 8-character

lines.

The HD44780U has pin function compatibility with the

HD44780S which allows the user to easily replace an

LCD-II with an HD44780U. The HD44780U character

generator ROM is extended to generate 208 5 × 8 dot

character fonts and 32 5 × 10 dot character fonts for a

total of 240 different character fonts. The low power figure (3.8)

 supply (2.7V to 5.5V) of the HD44780U is suitable for any portable battery-driven product

requiring low power dissipation.

 48

Block diagram with Temperature sensor is shown below

 Figure (3.9)

The above show a part of the microwave oven circuit which consist of microcontroller, LCD,

temperature sensor, number of relays.

In the next chapter I am going to talk about IR Receiver (Remote control) design for

operation of microwave oven

 49

Chapter 4

IR (Infrared) Receiver

IR receiver is one of the latest technologies where we are using it to control the operation of TV,

Multimedia etc. IR stands for Infra-Red, and IR are part of the light spectrum beyond human

eyesight capability. So far we know that there are many different types of light spectrum around

any object in the world, physically, chemically, and among all these lights spectrum some of

them are visible and some of them are invisible and X-Ray. We will see how IR acts in light

spectrum in terms of frame timing later on.

The mediums in the wireless communication are many, but the two most popular mediums in the

wireless communication are:

1- Infrared (IR)

2- Radio Frequency (RF).

Later models have incorporated the IR receiver as an integral part of the laptop. Most modern

models no longer uses IR as this has been replace by the Bluetooth technology and then WiFi

(wireless networking). There are some laptop models that have all 3.

IR technologies are better suited for short distance, low-to-medium data throughput, and wireless

communication channels,

IR receiver has defined the standard as a wireless communication link between two devices in

which the information is transmitted using infrared light.

 Where to control the operation of microwave oven by IR receiver is a new idea that developed

by our group.

4.1 IR data communication protocol

Communication is one of the great fundamental factors of today’s technologies in the world, it

plays an important role in the industries and as well as in day-to-day of human’s life, and has

direct effect in today’s technologies. Communication is dealing to a condition to provide

facilities and the way of interaction between humans and different technologies in the world.

So far we know that, technologies have been developing, we can see a huge differences in

today’s technologies and the ones as it was at the beginning, many change has became in the

size, model, and effectiveness of usage in different areas and so on.

 So, in order to use the new technologies effectively and to have a resized model, proper

direction and communication with technologies we have tried to replace the microwave oven’s

 51

keypad with IR remote for parallel operations.

There are two most important standard electronics devices in terms of communications, these

two are:

1- IR transmitters and

2- IR receivers.

In the main time IR transmitters and IR receivers are based on different types, models and

different companies.

Initially, Sony Infrared Receiver PCVA-IR6U would be as it implies; it is an add-on device to a

laptop/computer to enable said laptop/computer to be able to receive IR (infrared) signals from

external sources such as a cell phone, another laptop or any other electronic product that has a

built-in IR transmitter.

4.2 IR transmitters

IR Transmitter is a breakout for a simple and clear infrared LED on it. These Infrared LED operates
around 940nm and work well for generic IR systems including remote control and touch-less object
sensing. Pair them with any of our IR receivers

 Figure (4.1)

 Figure (4.2) figure (4.3)

 52

4.3 IR receivers

IR receiver is a breakout board with IR detector mounting on it.IR detector is little microchips

with a photocell that are tuned to listen to infrared light at 38KHz. They are almost always used

for remote control detection – every TV and DVD player has one of these in the front to listen

for the IR signal from the clicker.

 Figure (4.4)

4.4 Frame timing

In order to communicate or we can say to

receive IR or infrared signals form a certain

sources for this case we have used IR

TOSP1738

Command and Address bits are encoded as a

600us “low” pulse followed by:

 600us “high” pulse for a logical bit zero

 1200us “high” pulse for a logical bit one

Please note that the output (“low” and “high”

levels) of a TSOP1738 is inverted in relation to

this picture.

This decoder is implemented as an “interrupt

on change” service routine running on the pin

where the TSOP1738 is connected. A hardware

timer is used as a counter to measure the time

between transitions, allowing the ISR to run for a Figure (4.5)

very short time to manipulate the timer and change

 its internal state, leaving immediately to the main loop.

 53

Every time the TSOP1738 pin changes the ISR changes its internal state according to the next

diagram:

In short, and after running several times for very

short periods, once for every time the TSOP1738 pin

flips, the SIRC ISR does the following: It waits for a

start bit and when it finds one, it goes on to decode

the Command and Address bits, by validating both

halves of the bits. The first half of each data bit is

always 600us long and the second half may be

600us is the bit is a logical 0 or 1200us if the bit is a

logical 1. After decoding all 12 Command and

Address bits, the decoder rests at the “Wait start bit”

state.

Every time an error happens, because a bit length is

out of the permitted values, the decoder aborts and

goes to the “Wait start bit” state, where it waits for

the next frame. These errors are shown in the diagram using red arrows. Figure (4.6)

4.5 IR or Infrared Interface

The two most popular mediums in the wireless arena are Infrared (IR) and Radio Frequency

(RF). IR technologies are better suited for short distance, low-to-medium data throughput, and

wireless communication channels. Two common types of IR technologies are currently in use.

These are:

1. TV Remote (TVR) and

2. IrDC (Infrared Data communication) standard protocol.

The IrDC (Infrared Data communication) has defined the standard as a wireless communication

link between two devices in which the information is transmitted using infrared light.

The IrDC standard is a set of specifications for providing a universal two-way wireless infrared

data communications, based on a practical cost, short-range point-to-point user model. The

standard defines the physical characteristics of the interface, the communications protocols that

provide for different needs, and the transmission speeds at which the infrared device

communicates. 54

The two basics of the infrared communication standards are IrDC-Data and IrDC-Control.

IrDC-Data defines the standard for the wireless, two-way infrared data transmission between

two devices and consists of a set of mandatory protocols: IrPHY (Physical), IrLAP (Link

Access), and IrLMP (Link Management).

IrDC-Control is the infrared standard that allows wireless peripherals such as keyboards,

mouse, game pads, joysticks, and other pointing devices to interact with many types of host

devices. Host devices include PCs, home appliances, game consoles, and TV/ audio devices/

Web set top boxes.

IrDC-Control is not the same as the standard TV Remote Control. IrDC-Control has its own set

of mandatory protocols: PHY (Physical), MAC (Media Access Control), and LLC (Logical Link

Control).

IrDA technology has emerged as one of the most promising wireless solutions because it offers

several compelling advantages over other types of wireless communication interfaces.

Although infrared is only applicable between two devices at a time and cannot transmit through

walls, the positive aspects of this technology are many.

Because infrared can only communicate from one device to another and because this

communication must be line-of-sight, there is no risk that someone may intentionally or

unintentionally obtain your information as it is being transferred.

IrDC infrared port module is the most mature of the wireless communications standards. These

devices include cell phones, pagers, laptops, PDAs, digital cameras, handheld scanners, and laser

printers. The IrDA standard has both support and user applications in all major operating systems

including all recent versions of Windows, Windows CE, Linux, as well as the Palm operating

systems.

 55

Part of control diagram with IR Receiver

 Figure (4.7)

The c block diagram of the control unit of the microwave oven in which operate with IR

Receiver. Where by pressing any key a signal is received by IR TOSP1738 from remote showing

the condition in LCD display and magnetron start operation.

 56

Chapter 5

Outcomes

As we thought through out the chapters now we are here to get the result of our work.

Where design of universal controller for microwave oven to satisfy the every one‟s need. Where

everyone have a microwave oven in their homes. So by facing problems where the keypad not

working or some other problems inside you don‟t need to through it out you can place this design

as a control unit for your oven.

Complete block diagram

Figure (5.1)

5.1 Features

 Use of IR Receiver is a new idea for microwave oven.

Where before never used this for microwave oven.

 Possibility to except both PIC 16 & PIC 18 microcontrollers.

We can have large program which need more than 8k byte so for that we can use 32 k

Byte as well.

 Use of temperature sensor instead of RTD. 57

 Standard protocol SIRC for IR Receiver.

 Use of Optocoupler to handle large current

 Use of 2N-2222 (NPN)Transistor this can be used for back light of LCD.

 A diode is used for safety purpose form high current

The result of out work is given below

5.2 Design snap- shot

Figure (5.2) Figure (5.3)

 Figure (5.4)

 58

Chapter 6

Conclusion

Finally we are coming across a research that we have done on our goals and project that have

been expected from concept and ideas based on Microwave Oven controller design which this

ideas and researches caused to control any kinds of functionalities or working principles that are

used in a Microwave oven to lead its different applications and purposes.

In order to do this or to control the functionalities or working principles of microwave oven we

use Microcontroller, which is a programmable device (PIC16F877A) used to be programmed

and execute the instructions that have been given or programmed by programming language such

as MPLAB which we have mentioned earlier in case of controller design in detailed form.

As it is so, thus it is applicable for any kinds of Microwave oven and so we can design a

universal keypad as well.

The study was set out to explore the concept of Microwave oven controller design and has

identified the natures, forms, principle of operations, types of Microwave ovens, according to the

reasons and diversification advantages, the type, the extent, resources required for diversification

and the role and impact of intervention on the Microwave oven economy and well-being.

The study has also thought to know whether this design towards its diversification advantages

can result in effective cost reduction or being cost effect, particularly within different kinds of

Microwave oven.

In this aims the theoretical cases for diversification therefore needs to be revisited in order

further understand the controller and designing dynamics of the designing a controller and how it

can be made more sustainable.

The sustainable framework suggests the achievement of accumulation from diversification

within the rural economy or being cost effect It is however, noted from this study that such a

benefit is not likely for most rural microwave oven with the obvious alternative of survival being

the more probable outcome of diversification.

The scale of our thesis and project is therefore extensive and multifaceted even at the local level.

To generate achievable policy, strategies and development targets with regards to diversification,

being well outcome there is need for more case studies at the local level to allow further

assessment of local dimensions of the subject. Exploring the following as future research

Strategies can facilitate the attainment of this goal.

The study has offered an evaluative perspective on an important development due to our certain

goal and the concepts of project, policy program, and was conducted by microcontroller for

controlling the designing the Microwave oven and its application through sampling farm

 59

Controller design and finally results in a universal keypad as well.

As a direct consequence of this methodology, the study encountered a number of limitations,

which need to be considered.

In order to reach to achievable results and to have outcomes that are resulted from this study or

our project and thesis and have been identified towards its different application, there were two

or more important factors or standard topics were necessary to be discussed and needed to be

considered as essential and major parts in overall the project they are such as assembly language

microcontroller, IR receiver or Infra Red receiver and its data communication protocol and some

other parameters that have been considered in this study which they are related to the ideas or

our research that we have been dealing with it(Microwave oven controller design).

Each and every one of these topics has been discussed in detail specially the things which were

important to our goal in order to lead us to our desired objectives with real and applicable

outcomes.

In case of controller, in order to control the operation of microwave oven or its functionalities we

have used microcontroller PIC16F877A / PIC16F876A, obviously we know that microcontroller

have different type, size, forms and numbers, it varies according to its applications, functions,

number of instructions and so on. Therefore we have used microcontroller PIC16F877A /

PIC16F876A, because it matches to application of our project (microwave oven controller design

universal keypad).

In this study we have discussed microcontroller in detail in the previous chapter.

In case of programming ,so far we know that microcontrollers are programmable device used to

in programming to execute different instructions ,this instructions that have been given to the

microcontroller by programmable language ,although there are different programmable

languages like high level language such us java ,PHP , C , C++ and so on, we have used

assembly language because it‟s easy to write different instructions easily ,in this issues assembly

language has been instructed and written in MPLAB according to the characteristics of

microcontroller which has different ports ,addresses ,memories and so on .

And finally basically the main focus was on the change (objective, goals resulted from our

project the concept of microwave oven controller design) which have been developed in our

project (the change or objective is to replace microwave ovens keypad and use remote controller

instead of keypad), due to this issue the changes or objectives is towards the following

advantages:

6.1 Advantages:
Remote controller
1-cost effect (economy)

2-tacking less space rather than microwave oven keypad

3-ease of installation rather than microwave oven keypad

 60

6.2 Disadvantages
1-for activation of microwave oven we have to take the remote controller exact and directly to

the target.

Appendix

;***

 LIST P=PIC18F252, F=INHX32, C=160, R=DEC, X=ON

 #INCLUDE P18F252.INC

 __CONFIG _CONFIG1H, _OSCS_ON_1H & _XT_OSC_1H ; EXTERNAL CLOCK

ON OSC1 & OSC2

 __CONFIG _CONFIG2H, _WDT_OFF_2H ;WATCHDOG TIMER

DISABLED.

 __CONFIG _CONFIG2L, _BOR_OFF_2L & _PWRT_ON_2L ; BROWN 2.0V, NO

POWER-UP TIMER

 __CONFIG _CONFIG3H, _CCP2MX_OFF_3H

 __CONFIG _CONFIG4L, _STVR_OFF_4L & _LVP_OFF_4L & _DEBUG_OFF_4L

; __CONFIG _CONFIG5L, _CP0_OFF_5L & _CP1_OFF_5L & _CP2_OFF_5L &

_CP3_OFF_5L ; ALL PROTECTION OFF

; ERRORLEVEL 0,-302,-306,-307 ;

;***

;80 BYTES ON BANK0 ACCESS ALLOWED DULY BANK SET BIT

 CBLOCK 0X000 ; START OF RAM ADDRESSES USED IN PROGRAM

 LCD_TMP

 LCD_CHAR ;

 ADDR ;

 TOFFS

 FLAGS ;

 RS_VALUE ;

 DEL0

 DEL1

 DEL2

 INCHAR

 DELAYCOUNTER_INNER

 DELAYCOUNTER_OUTER

 DELAYCOUNTER_FREQ

 COUNT1

 COUNTA

 COUNTB 61

 TMP0

 DUMMY1

 DUMMY2

 R0

 R1

 R2

 L_BYTE

 H_BYTE

 TEMP1

 TEMP2

 TEMP3

 H

 L

 TEMP

 RD_TEMP_LSB

 RD_TEMP_MSB

 RES_BIT

;---

 WREG_TEMP ;to save WREG during interrupt

 STATUS_TEMP ;to save STATUS during interrupt

 BSR_TEMP ;to save BSR during interrupt

 FSR1H_TEMP ;to save FSR0H during interrupt

 FSR1L_TEMP ;to save FSR0L during interrupt

 FSR0H_TEMP ;to save FSR0H during interrupt

 FSR0L_TEMP ;to save FSR0L during interrupt

 BCD

 DT_POINTER

 LSB_RELD_ON

 MODE_FLAG

 RMT_CODE

 RMT_CMND

 RMT_ADDR

 RMT_CMND_N

 RMT_ADDR_N

 IR_TIMER

 IR_BIT_CNTR

 IR_FLAGS

;XX

 ENDC

;***

DS_TRIS EQU TRISB ;

DS_PORT EQU PORTB ;

 62

DS_BIT EQU .0 ;

;***

#DEFINE E PORTC,3 ;

#DEFINE RS PORTC,0 ;

#DEFINE BEEP PORTA,2 ; DS 1820 ATTACHED HERE

#DEFINE REMOTE PORTB,1 ;10h is the family

code of d

;***

CLK = .4 ;

SCRFLAFMASK = B'11111100' ;

;***

; =================LCD

EQUATES==

;***

SET_8B EQU 0X30 ; SET 8 BIT DATA (FOR INITIALISATION)

SET_4B_1L EQU 0X20 ; SET 4 BIT DATA, 1 LINES

SET_4B_2L EQU 0X28 ; SET 4 BIT DATA, 2 LINES

DISP_ON EQU 0X0C ; DISPLAY ON, CURSOR OFF, BLINK OFF

CLR_DISP EQU 0X01 ; CLEAR DISPLAY

ENTRY_INC EQU 0X06 ; ENTRY MODE INCREMENT, NO SHIFT

DD_RAM_ADDR EQU 0X80 ; LEAST SIGNIFICANT 7 BITS ARE FOR ADDRESS

;;==

; =================0NE WIRE COMMANDS AND

EQUATES====================================

;***

START_CONV EQU 0X44 ; SET 8 BIT DATA (FOR INITIALISATION)

COPY_SCRATCH EQU 0X48 ; SET 4 BIT DATA, 1 LINES

READ_SCRATCH EQU 0XBE ; SET 4 BIT DATA, 1 LINES

WRITE_SCRATCH EQU 0X4E ; SET 4 BIT DATA, 2 LINES

RECALL_PSUPPLY EQU 0XB4 ; SET 4 BIT DATA, 1 LINES

RECALL_SCRATCH EQU 0XB8 ; SET 4 BIT DATA, 1 LINES

 63

ALARM_SEARCH EQU 0XEC ; SET 4 BIT DATA, 1 LINES

READ_ROM EQU 0X33 ; CLEAR DISPLAY

MATCH_ROM EQU 0X55 ; ENTRY MODE INCREMENT, NO SHIFT

SKIP_ROM EQU 0XCC ; LEAST SIGNIFICANT 7 BITS ARE FOR ADDRESS

SEARCH_ROM EQU 0XF0 ; DISPLAY ON, CURSOR OFF, BLINK OFF

;===

;************USED SONY IR DECODER ROUTINE**************;

;XXX

 CONSTANT SIRC_ON_T = .183 ; 182 ALSO TWNK MODE(D)

 CONSTANT SIRC_OFF_T = .195 ; 182 ALSO TWNK MODE(D)

 CONSTANT IR_SPACE = .220 ; FOR DIS BANK IN SOLID MODE

 CONSTANT HI_P_T = .2 ; FOR DIS BANK IN SOLID

MODE

;XX

BLNK MODE(D)

 CONSTANT IR_RD_ON = .1 ; FOR DIS BANK IN SOLID MODE

 CONSTANT IR_REPEAT = .2 ; FOR DIS BANK IN SOLID MODE

 CONSTANT NEW_BYTE = .3 ; FOR DIS BANK IN SOLID MODE

 CONSTANT IR_ERROR = .4 ; FOR DIS BANK IN SOLID MODE

 ;XXX

PAUSE MACRO DLYF ;

 MOVLW (DLYF / 5) - 1 ;

 MOVWF TMP0 ;

 CALL DLY5N ;

 ENDM ;

;===

; MACRO FOR DS1820

;===

DQLOW MACRO ;

 BCF DS_PORT,DS_BIT ; DQ BIT READY

 BCF DS_TRIS,DS_BIT ; SET DQ TO OUTPUT

 64

ENDM ;

;===

DQHIZ MACRO ;

 BSF DS_TRIS,DS_BIT ; SET DQ TO INPUT

 ENDM ;

;===

;*************MACRO TO MOVE A LITTERAL BYTE TO A FILE REG**********;

;XX

MOVLF MACRO LITERAL,DEST ;MACRO STATEMENT AND EXPRESSION

 ;

 MOVLW LITERAL ;MOVE THE VALUE IN W FIRST ;

 MOVWF DEST ;PLACE THE VALUE IN DESTINATION FILE ;

 ENDM ;END OF MACRO ---------------------------------;

;===

 ORG 0X000 ;START VECTOR

; CLRF STATUS ; ENSURE WE ARE AT BANK 0

; CLRF PCLATH ; ENSURE PAGE BITS ARE CLEARED (BEFORE

GOTO XX)

 NOP

 GOTO MAIN_PROG ;GOTO INITIALIZATION OF PROGRAM

;===

 ORG 0X008 ;HIGH PRIORITY INTERRUPT VECTOR

 GOTO PULL_RAM ;HIGH PRIORITY INTERRUPT VECTOR

;===

 ORG 0X018 ;LOW PRIORITY INTERRUPT VECTOR

;XX

PULL_RAM

 MOVFF STATUS,STATUS_TEMP ;SAVE STATUS REGISTER

 MOVFF WREG,WREG_TEMP ;SAVE WORKING

REGISTER

 MOVFF BSR,BSR_TEMP ;SAVE BSR REGISTER

 MOVFF FSR0H,FSR0H_TEMP ;SAVE FSR0H REGISTER

 MOVFF FSR0L,FSR0L_TEMP ;SAVE FSR0L REGISTER

 65

 MOVFF FSR1H,FSR1H_TEMP ;SAVE FSR0H REGISTER

 MOVFF FSR1L,FSR1L_TEMP ;SAVE FSR0L REGISTER

;===

 BTFSC INTCON,TMR0IF ; CHECKING TMR0 OVER FLOW

INT

 GOTO TIME_JUKAR ; IF YES GOTO TIME COUNTER

SER

 BTFSC INTCON3,INT1IF

 GOTO UPDT_RMT_CODE

 GOTO POINT_RETURN

;XX

;THE SUBROUTINE TO COUNT THE DOWN TIMER DEFINED BY THE USER

INTERFAC

; THE CLOCK FREQUENCY IS 4.00 MHZ AND PRESCALER IS DEFINED FOR 1:2 F

;XX

TIME_JUKAR ; CALLING LINE FOR THE TIMER ROUTINE

 GOTO POINT_RETURN ; RETURN FROM INTERRUPT

;****************************SIRC REMOTE CODE**********************;

;XX

UPDT_RMT_CODE

 BTFSC REMOTE

 GOTO ERR_RMT_CODE

 CALL ACQR_LO_T

 BTFSC IR_FLAGS,IR_ERROR

 GOTO ERR_RMT_CODE ;ERR_RMT_CODE

;***

VALIDATE_START

 MOVLW .4

 SUBWF IR_TIMER,W

 BTFSS STATUS,C

 GOTO INVALID_START ;ERR_RMT_CODE

; MOVLW .5

; SUBWF IR_TIMER,W

; BTFSC STATUS,C

; GOTO INVALID_START ;ERR_RMT_CODE

;***

 66

VALID_START

 CALL ACQR_HI_T

 BTFSC IR_FLAGS,IR_ERROR

 GOTO ERR_RMT_CODE ;ERR_RMT_CODE

 BSF IR_FLAGS,STRT_PASS

 CLRF RMT_CMND_N

 CLRF RMT_ADDR_N

;XX

;****************************SIRC REMOTE CODE**********************;

;XX

INIT_IR_CMD_READ

 MOVLF .7,IR_BIT_CNTR

;***

READ_CMND_BITS

 CALL ACQR_LO_T

 BTFSC IR_FLAGS,IR_ERROR

 GOTO ERR_RMT_CODE

 CALL ACQR_HI_T

 BTFSC IR_FLAGS,IR_ERROR

 GOTO ERR_RMT_CODE

CMND_BIT_OK

 MOVF IR_TIMER,W

 ANDLW 0X02

 ADDLW 0XFF

 RRCF RMT_CMND_N,F

 DECFSZ IR_BIT_CNTR,F

 GOTO READ_CMND_BITS

 RRNCF RMT_CMND_N,F

;***

READ_IR_ADDR_BYTE

 MOVLF .5,IR_BIT_CNTR

;***

READ_ADDR_BITS

 CALL ACQR_LO_T

 BTFSC IR_FLAGS,IR_ERROR

 GOTO ERR_RMT_CODE

 MOVF IR_BIT_CNTR,W

 XORLW 0X01

 BTFSC STATUS,Z

 GOTO JUMP_HI_TEST

 CALL ACQR_HI_T

 BTFSC IR_FLAGS,IR_ERROR

 GOTO ERR_RMT_CODE

JUMP_HI_TEST

 67

MOVF IR_TIMER,W

 ANDLW 0X02

 ADDLW 0XFF

 RRCF RMT_ADDR_N,F

 DECFSZ IR_BIT_CNTR,F

 GOTO READ_ADDR_BITS

;***

FOUND_FRESH_BYTE

 RRNCF RMT_ADDR_N,F

 RRNCF RMT_ADDR_N,F

 RRNCF RMT_ADDR_N,F

;***

 MOVFF RMT_ADDR_N,RMT_ADDR

 MOVFF RMT_CMND_N,RMT_CMND

 BSF IR_FLAGS,NEW_BYTE

 GOTO POINT_RETURN

;***

INVALID_START

 BCF IR_FLAGS,STRT_PASS

;***

ERR_RMT_CODE

 BSF IR_FLAGS,IR_ERROR

 BCF IR_FLAGS,NEW_BYTE

;***

POINT_RETURN

 CLRF T1CON

 BCF INTCON3,INT1IF

 MOVFF FSR1L_TEMP,FSR1L ;RESTORE FSR0L REGISTER

 MOVFF FSR1H_TEMP,FSR1H ;RESTORE FSR0H REGISTER

 MOVFF FSR0L_TEMP,FSR0L ;RESTORE FSR0L REGISTER

 MOVFF FSR0H_TEMP,FSR0H ;RESTORE FSR0H REGISTER

 MOVFF BSR_TEMP,BSR ;RESTORE BSR REGISTER

 MOVFF WREG_TEMP,WREG ;RESTORE WORKING

REGISTER

 MOVFF STATUS_TEMP,STATUS ;RESTORE STATUS REGISTER

 RETFIE ; ENSURE WE ARE AT BANK 0

 68

;XX

MAIN_PROG

;XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

 CALL INIT_PORT ;INITIALIZING I/O PORTS

 CALL INIT_LCD ; INITIAL LCD

 CALL LCD_CLR ;

;===

LCD_DIAGNOSTIC

; CALL LCD_CLR ;

; MOVLW .5

 CALL LCD_LINE1

 MOVLW 'W'

 CALL DATA2LCD

 MOVLW 'E'

 CALL DATA2LCD

 MOVLW 'L'

 CALL DATA2LCD

 MOVLW 'C'

 CALL DATA2LCD

 MOVLW 'O'

 CALL DATA2LCD

 MOVLW 'M'

 CALL DATA2LCD

 MOVLW 'E'

 CALL DATA2LCD

;***

INIT_DS18B20_TMP1

 CALL DS_RESET ; CALLING DS_18B20 BUS RESET TO INIT NEW ROM

CMN

;...

 MOVLW SKIP_ROM ; MATCH ROM COMMAND TO DS

 CALL DS_WRITE_BYTE ; MEM. FUNC. CMND TO WRITE A SINGLE BYTE

;...

 MOVLW START_CONV ; ROM COMMAND TO START

TEMPCONVERTION

 CALL DS_WRITE_BYTE ; MEM. FUNC. CMND TO WRITE A SINGLE BYTE

 69

;...

; PAUSE .10 ;TESTED OK WITH 16F876A @ 4 MHz

;...

 PAUSE .10

;...

 CALL DS_RESET ; CALLING DS_18B20 BUS RESET 2 INIT NEW ROM

CMND

;...

 MOVLW SKIP_ROM ; MATCH ROM COMMAND TO DS

 CALL DS_WRITE_BYTE ; MEM. FUNC. CMND TO WRITE A SINGLE BYTE

;...

 MOVLW READ_SCRATCH ; ROM COMMAND TO READ SCRATC PAD

DATA

 CALL DS_WRITE_BYTE ; MEM. FUNC. CMND TO WRITE A SINGLE BYTE

;...

 CALL DS_READ_BYTE ; READ 8-BIT TMP_LSB DATA FROM SCRATCH PAD

; MOVWF L_BYTE

 MOVWF RD_TEMP_LSB

 CALL DS_READ_BYTE ; READ 8-BIT TMP_MSB DATA FROM SCRATCH

PAD

; CLRF H_BYTE

 MOVWF RD_TEMP_MSB

 CALL MAKE_VALUE

;...

;...

PROCEED

 CLRF H_BYTE

 MOVFF RD_TEMP_LSB,L_BYTE

 CALL B2_BCD

;...

 MOVLW .6 ; SETTING LCD MESSAGE POSITION

 CALL LCD_LINE2W ; SETTING LCD LINE POSITION

 CALL DISPLAY_TEMP ;

 MAKE_VALUE

; GOTO LCD_DIAGNOSTIC

 70

 CLRF IR_FLAGS

 CLRF RMT_CMND

 CLRF RMT_ADDR

 CLRF IR_TIMER

 CLRF RMT_CMND_N

 CLRF RMT_ADDR_N

 CLRF INTCON1

 CLRF INTCON2

 CLRF INTCON3

CHK_MIN_HI

 BSF IR_FLAGS,NEW_BYTE

 BSF INTCON3,INT1IE

 BSF INTCON,GIE

;###

 CALL LCD_CLR ;

;XXX

STNBY_LOOP

; MOVLW .5

 CALL LCD_LINE1

 BTFSC IR_FLAGS,STRT_PASS

 GOTO START_VALID

;***

START_IN_VALID

 MOVLW '0'

 CALL DATA2LCD

 GOTO PRODUCE_BIT11

;***

START_VALID

 MOVLW '1'

 CALL DATA2LCD

;***

;!!!

PRODUCE_BIT11

 CLRF TEMP3

 MOVF RMT_ADDR,W

 ANDLW B'00010000'

 ADDLW 0XFF

 RLCF TEMP3,F

 MOVF TEMP3,W

 71

ADDLW 0X30

 CALL DATA2LCD

;***

;!!!

PRODUCE_BIT10

 CLRF TEMP3

 MOVF RMT_ADDR,W

 ANDLW B'00001000'

 ADDLW 0XFF

 RLCF TEMP3,F

 MOVF TEMP3,W

 ADDLW 0X30

 CALL DATA2LCD

;***

;!!!

PRODUCE_BIT9

 CLRF TEMP3

 MOVF RMT_ADDR,W

 ANDLW B'00000100'

 ADDLW 0XFF

 RLCF TEMP3,F

 MOVF TEMP3,W

 ADDLW 0X30

 CALL DATA2LCD

;***

;!!!

PRODUCE_BIT8

 CLRF TEMP3

 MOVF RMT_ADDR,W

 ANDLW B'00000010'

 ADDLW 0XFF

 RLCF TEMP3,F

 MOVF TEMP3,W

 ADDLW 0X30

 CALL DATA2LCD

;***

;!!!

PRODUCE_BIT7

 CLRF TEMP3

 MOVF RMT_ADDR,W

 ANDLW B'00000001'

 ADDLW 0XFF

 RLCF TEMP3,F

 MOVF TEMP3,W

 72

ADDLW 0X30

 CALL DATA2LCD

;***

;!!!

PRODUCE_BIT6

 CLRF TEMP3

 MOVF RMT_CMND,W

 ANDLW B'01000000'

 ADDLW 0XFF

 RLCF TEMP3,F

 MOVF TEMP3,W

 ADDLW 0X30

 CALL DATA2LCD

;***

;!!!

PRODUCE_BIT5

 CLRF TEMP3

 MOVF RMT_CMND,W

 ANDLW B'00100000'

 ADDLW 0XFF

 RLCF TEMP3,F

 MOVF TEMP3,W

 ADDLW 0X30

 CALL DATA2LCD

;***

;!!!

PRODUCE_BIT4

 CLRF TEMP3

 MOVF RMT_CMND,W

 ANDLW B'00010000'

 ADDLW 0XFF

 RLCF TEMP3,F

 MOVF TEMP3,W

 ADDLW 0X30

 CALL DATA2LCD

;***

;!!!

PRODUCE_BIT3

 CLRF TEMP3

 MOVF RMT_CMND,W

 ANDLW B'00001000'

 ADDLW 0XFF

 RLCF TEMP3,F

 MOVF TEMP3,W

 73

ADDLW 0X30

 CALL DATA2LCD

;***

;!!!

PRODUCE_BIT2

 CLRF TEMP3

 MOVF RMT_CMND,W

 ANDLW B'00000100'

 ADDLW 0XFF

 RLCF TEMP3,F

 MOVF TEMP3,W

 ADDLW 0X30

 CALL DATA2LCD

;***

;!!!

PRODUCE_BIT1

 CLRF TEMP3

 MOVF RMT_CMND,W

 ANDLW B'00000010'

 ADDLW 0XFF

 RLCF TEMP3,F

 MOVF TEMP3,W

 ADDLW 0X30

 CALL DATA2LCD

;***

;!!!

PRODUCE_BIT0

 CLRF TEMP3

 MOVF RMT_CMND,W

 ANDLW B'00000001'

 ADDLW 0XFF

 RLCF TEMP3,F

 MOVF TEMP3,W

 ADDLW 0X30

 CALL DATA2LCD

;**

;!!!

OUT_PUT

 BTFSS IR_FLAGS,NEW_BYTE

 GOTO OUT_PUT

 GOTO STNBY_LOOP

;XX

; LCD ROUTINE TUNED FOR OSC @ 04 XT CONFIG : OSC_XT

;****************** RUTINES USED BY LCD

 74

FACTIONS***************************

;===

LCD_LINE1 ;CAALING LINE OF LCD LINE1

 MOVLW 0X80 ;MOVE TO 1ST ROW, FIRST COLUMN

 MOVWF ADDR ;SEETING ADDRESS

 CALL SET_ADDR ;SEETING ADDRESS

 RETLW 0X00 ;END OF LCD LINE 1 ROUTINE

;===

LCD_LINE2 ;CAALING LINE OF LCD LINE2

 MOVLW 0XC0 ;MOVE TO 1ST ROW, FIRST COLUMN

 MOVWF ADDR ;SEETING ADDRESS

 CALL SET_ADDR ;SEETING ADDRESS

 RETLW 0X00 ;END OF LCD LINE 2 ROUTINE

;===

LCD_LINE3 ;CAALING LINE OF LCD LINE1

 MOVLW 0X94 ;MOVE TO 1ST ROW, FIRST COLUMN

 MOVWF ADDR ;SEETING ADDRESS

 CALL SET_ADDR ;SEETING ADDRESS

 RETLW 0X00 ;END OF LCD LINE 1 ROUTINE

;===

LCD_LINE4 ;CAALING LINE OF LCD LINE2

 MOVLW 0XD4 ;MOVE TO 1ST ROW, FIRST COLUMN

 MOVWF ADDR ;SEETING ADDRESS

 CALL SET_ADDR ;SEETING ADDRESS

 RETLW 0X00 ;END OF LCD LINE 2 ROUTINE

;==

LCD_CLR ;CAALING LINE OF LCD CLR

 MOVLW 0X01 ;CLEAR DISPLAY

 MOVWF ADDR ;SEETING ADDRESS

 CALL SET_ADDR ;SEETING ADDRESS

 RETLW 0X00 ;END OF LCD CLR ROUTINE

;===

LCD_LINE1W ;CAALING LINE OF LCD LINE1W

 ADDLW 0X80 ;MOVE TO 1ST ROW, COLUMN W

 MOVWF ADDR ;SEETING ADDRESS

 CALL SET_ADDR ;SEETING ADDRESS

 RETLW 0X00 ;END OF LCD LINE1 W ROUTINE

;===

LCD_LINE2W ;CAALING LINE OF LCD LINE2W

 ADDLW 0XC0 ;MOVE TO 2ND ROW, COLUMN W

 MOVWF ADDR ;SEETING ADDRESS

 CALL SET_ADDR ;SEETING ADDRESS

 RETLW 0X00 ;END OF LCD LINE2 W ROUTINE

;===

 75

LCD_LINE3W ;CAALING LINE OF LCD LINE1W

 ADDLW 0X94 ;MOVE TO 1ST ROW, COLUMN W

 MOVWF ADDR ;SEETING ADDRESS

 CALL SET_ADDR ;SEETING ADDRESS

 RETLW 0X00 ;END OF LCD LINE1 W ROUTINE

;===

LCD_LINE4W ;CAALING LINE OF LCD LINE1W

 ADDLW 0XD4 ;MOVE TO 1ST ROW, COLUMN W

 MOVWF ADDR ;SEETING ADDRESS

 CALL SET_ADDR ;SEENG ADDRESS

 RETLW 0X00 ;END OF LCD LINE1 W ROUTINE

;===

_RESET ;CAALING LINE OF LCD RESET

 MOVLW SET_8B ; LCD INIT INSTRUCTION (FIRST)

 MOVWF PORTC ; SEND TO LCD VIA RB7..RB0

 BSF E ; SET THE LCD E LINE HIGH,

 CALL DEL05

 BCF E ;

 RETURN ; END OF RESET ROUTINE

;===

;********************** LCD INITIALIZATION ROUTINE ***********************

;===

INIT_LCD ;CALLING LINE OF LCD INITIALIZATION

 CLRF PORTC ;CLEARING PORT VALUES IF ANY

 CALL _RESET ; RESET LCD

 CALL _RESET ; RESET LCD

 CALL _RESET ; RESET LCD

 MOVLW SET_4B_1L ; 4-BIT MODE INSTRUCTION

 MOVWF PORTC ; SEND TO LCD VIA RB7..RB0

 BSF E ; SET E HIGH,

 CALL D160US

 BCF E ; AND THEN CLEAR E

 MOVLW SET_4B_2L ; 1/16 DUTY CYCLE, 5X8 MATRIX

 CALL CMND2LCD ; SEND COMMAND IN W TO LCD

 MOVLW CLR_DISP ; CLEAR AND RESET CURSOR

 CALL CMND2LCD ; SEND COMMAND IN W TO LCD

 MOVLW DISP_ON ; DISPLAY ON, CURSOR AND BLINK OFF

 CALL CMND2LCD ; SEND COMMAND IN W TO LCD

 MOVLW ENTRY_INC ; SET CURSOR TO MOVE RIGHT, NO SHIFT

 CALL CMND2LCD ; SEND COMMAND IN W TO LCD

 MOVLW DD_RAM_ADDR ; CLEAR AND RESET CURSOR

 76

 CALL CMND2LCD ; SEND COMMAND IN W TO LCD

 RETURN ;END OF INITIALIZATION

;===

SET_ADDR ; CALLING LINE TO SET APPROPRIATE LCD DATA ADDRESS

 BCF E ; FIX POSITION ON LCD

 BCF RS ; SEND COMMAND

 MOVF ADDR,W ; SELECT ADDRESS FOR SENDING DATA TO

LCD

 CALL CMND2LCD ;

 BSF RS ;

 RETURN ;

;===

CMND2LCD ; CALLING LINE OF COMMAND 2 LCD

 MOVWF LCD_CHAR ; SAVE BYTE TO WRITE TO LCD

 CLRF RS_VALUE ; REMEMBER TO CLEAR RS (CLEAR RS_VALUE)

 BCF RS ;

 NOP ; VERY SHORT DELAY

 GOTO WRITE2LCD ; GO TO COMMON CODE

;=== DATA2LCD

 ;CALLING LINE OF DATA 2 LCD

 MOVWF LCD_CHAR ; SAVE BYTE TO WRITE TO LCD

 BSF RS_VALUE,0 ; REMEMBER TO SET RS (SET BIT 0 OF RS_VALUE)

 BSF RS ;

 NOP ; VERY SHORT DELAY

 NOP ; VERY SHORT DELAY

;=== WRITE2LCD ;

CALLING LINE FOR WRITE ON LCD

 CALL DEL50

 CLRF PORTC ; CLEAR ALL OF PORT B (INPUTS AND OUTPUTS)

 MOVLW 0X00 ; SET UP TO ENABLE PORTB DATA PINS

 MOVWF TRISC ; ALL PINS (RB7..RB0) ARE BACK TO OUTPUTS

 BCF RS ; GUESS RS SHOULD BE CLEAR

 77

 BTFSC RS_VALUE,0 ; SHOULD RS BE CLEAR? (IS BIT 0 == 0?)

 BSF RS ; NO, SET RS

 NOP ; VERY SHORT DELAY

 NOP ; VERY SHORT DELAY

; TRANSFER MOST SIGNIFICANT NIBBLE (XXXX PORTION OF XXXXYYYY)

 MOVLW 0X0F ; SET UP MASK

 ANDWF PORTC,F ; CLEAR OLD RB7..RB4

 MOVF LCD_CHAR,W ; PUT BYTE OF DATA INTO W

 ANDLW 0XF0 ; MASK TO GIVE XXXX0000 IN W

 IORWF PORTC,F ; SEND TO RB7..RB4 WITHOUT CHANGING RB3..RB0

 BSF E ; PULSE THE E LINE HIGH,

 NOP ; VERY SHORT DELAY

 NOP ; VERY SHORT DELAY

 BCF E ; AND DROP IT AGAIN

; TRANSFER LEAST SIGNIFICANT NIBBLE (YYYY PORTION OF XXXXYYYY)

 MOVLW 0X0F ; SET UP MASK

 ANDWF PORTC,F ; CLEAR OLD RB7..RB4

 SWAPF LCD_CHAR,W ; MOVE LS NIBBLE OF DATA TO MS POSITION IN W

 ANDLW 0XF0 ; MASK TO GIVE YYYY0000 IN W

 IORWF PORTC,F ; SEND TO RB7..RB4 WITHOUT CHANGING RB3..RB0

 BSF E ; PULSE THE E LINE HIGH,

 NOP ; VERY SHORT DELAY

 NOP ; VERY SHORT DELAY

 BCF E ; AND DROP IT AGAIN

 NOP ; VERY SHORT DELAY

 NOP ; VERY SHORT DELAY

 RETURN ;

;===

;**************SETPORT I/O OF PIC16F876A****************************

;XXX

XXXXXXXXXXXXXX

;********** ALL THROUGH INDIRECT ADDRESSING ARE USED

;***

INIT_PORT ; INITIALIZING CALLING LINE FOR 16F877A

;***

 78

;SETTING ADC (ADCON1)===

PORT_DIGITAL ;SETTING UP ADC PORT CONFIGURATIONS

; MOVLW B'00000110' ;

 (1<<PCFG

; MOVWF ADCON1 ;DIRECTING ADCON1 REG,

;***

SETTING_PORTA ;===

 MOVLW B'00000000' ;RA0 , RA1 OPTIONAL ANALOG ALL OTHER

D

 MOVWF TRISA ;

;***

SETTING_PORTB ;===

 MOVLW B'00000000' ;RB0 , RA1 OPTIONAL ANALOG ALL OTHER

D

 MOVWF TRISB ;

;***

SETTING_PORTC ;===

 MOVLW B'00000000' ;RB0 , RA1 OPTIONAL ANALOG ALL OTHER

D

 MOVWF TRISC ;

;***

 RETURN ;

;XX

DLY5N:

 NOP

; NOP

 DECFSZ TMP0,F

 GOTO DLY5N

 RETURN

;XX

; DELAY ROUTINES...

D160US ;

 CLRF COUNT1 ;

 BSF COUNT1, 5 ; DELAY 160 USECS

 79

 BSF COUNT1, 4 ;

DLOOP

 DECFSZ COUNT1, F ;

 GOTO DLOOP ;

 RETURN ;

DEL255

 MOVLW 0XFF ; DELAY 255 MS

 GOTO D0 ;

DEL200

 MOVLW D'255' ; DELAY 200MS

 GOTO D0 ;

DEL100

 MOVLW D'200' ; DELAY 100MS

 GOTO D0 ;

DEL50

 MOVLW D'100' ; DELAY 50MS

 GOTO D0 ;

DEL20

 MOVLW D'40' ; DELAY 20MS

 GOTO D0 ;

DEL05

 MOVLW 0X10 ; DELAY 5.000 MS (4 MHZ CLOCK)

 GOTO D0 ;

DEL01

 MOVLW 0X05 ; DELAY 1.000 MS (4 MHZ CLOCK)

D0

 MOVWF COUNT1 ;

D1

 MOVLW 0XC7 ; DELAY 1MS

 MOVWF COUNTA ;

 MOVLW 0X04 ;

 MOVWF COUNTB ;

DEL_0

 DECFSZ COUNTA,F ;

 GOTO $+2 ;

 DECFSZ COUNTB,F ;

 GOTO DEL_0 ;

 DECFSZ COUNT1,F ;

 GOTO D1 ;

 RETLW 0X00 ;

 80

;XX

; RESET DS1820 *

;***

DS_RESET

 DQLOW

;***

; PAUSE .250 ;TESTED OK WITH 16F876A @ 4 MHz

;***

 PAUSE .480

 DQHIZ

;***

; PAUSE .20 ;TESTED OK WITH 16F876A @ 4 MHz

;***

 PAUSE .60 ;TESTED OK WITH 16F876A @ 4 MHz

 MOVFF DS_PORT,W

 ANDLW 0X01 ; USE RA0 ONLY

 BANKSEL DUMMY1

 MOVWF DUMMY1

;***

; PAUSE .20 ;TESTED OK WITH 16F876A @ 4 MHz

;***

 PAUSE .80 ;TESTED OK WITH 16F876A @ 4 MHz

 MOVFF DUMMY1,W ; RESPONSE IN W REGISTER

 RETURN

;***

; SEND DATA TO DS1820 (8 BIT) *

;***

DS_WRITE_BYTE

 BANKSEL DUMMY1

 MOVWF DUMMY2 ; TRANSMISSION DATA

 MOVLW 0X08 ; PREPARE 8-BIT COUNTER FOR

SENDING DATA

 MOVWF DUMMY1

DS_WRITE_BIT

 DQLOW

 NOP ;

 RRCF DUMMY2,F ; ROTATE DATA TO CARRY FLAG

 BTFSC STATUS,C ; TEST CARRY FLAG

 BSF DS_PORT,DS_BIT ; IF CARRY FLAG = "1" , SET DQ TO

HIGH

;***; PAUSE

 .10 ;TESTED OK WITH 16F876A @ 4 MHz

;***

 81

PAUSE .80 ;TESTED OK WITH 16F876A @ 4 MHz

 DQHIZ

 DECFSZ DUMMY1,F ; 8 TIMES ?

 GOTO DS_WRITE_BIT ; NO, SEND AGAIN

 RETURN

;***

; RECIEVE DATA FROM DS1820 (11 BIT TO IGNORE RESOLUTION BIT*

;***

DS_READ_BYTE

 MOVLF 0X08,DUMMY1 ; RECIEVE 8-BIT DATA

DS_READ_BIT

 DQLOW ; MACRO OF DQ PIN TO LOW,

THIS IS START BIT

 NOP ; 10 MICROSECOND DELAY

 NOP

 DQHIZ ; BACK TO HIGH FOR

RECEIVING

 NOP

 MOVF DS_PORT,W ; READ DATA

 ANDLW 0X01 ; GET DATA BIT 0 ONLY

 ADDLW 0XFF ; MOVE DATA BIT 0 2 CARRY FLAG

WITH ADD METHOD

 BANKSEL DUMMY1

 RRCF DUMMY2,F ; MOVE DATA BIT 0 TO DUMMY BIT 7

;***

; PAUSE .5 ;TESTED OK WITH 16F876A @ 4 MHz

;***

 PAUSE .65 ;TESTED OK WITH 16F876A @ 4

MHz

 DECFSZ DUMMY1,F ; LOOP 8 TIMES

 GOTO DS_READ_BIT ; READ AGAIN

 MOVF DUMMY2,W ; SAVE DATA TO W REGISTER

 RETURN

;***

DISPLAY_TEMP

 MOVF R1,W

 CALL CONV_BCD_ASCII

 MOVF H,W

 CALL DATA2LCD

 MOVF L,W

 CALL DATA2LCD

 MOVF R2,W

 CALL CONV_BCD_ASCII

 MOVF H,W

 82

CALL DATA2LCD

 MOVF L,W

 CALL DATA2LCD

 MOVLW '.' ;

 CALL DATA2LCD

 MOVF RES_BIT,W

CLRF H_BYTE

 MOVFF RES_BIT,L_BYTE

 CALL B2_BCD

 MOVF R2,W

 CALL CONV_BCD_ASCII

 MOVF H,W

 CALL DATA2LCD

 MOVF L,W

 CALL DATA2LCD

 MOVLW 0XDF

 CALL DATA2LCD

 RETURN

;XX

;******************16 BIT BINARY TO 5 DIGIT BCD********************;

;XX

B2_BCD

 BCF STATUS,C ; CLEAR THE CARRY BIT

 MOVLW .16

 MOVWF COUNT1

 CLRF R0

 CLRF R1

 CLRF R2

;***

LOOP16

 RLCF L_BYTE, F

 RLCF H_BYTE, F

 RLCF R2, F

 RLCF R1, F

 RLCF R0, F

 DECFSZ COUNT1, F

 83

GOTO ADJDEC

 RETLW 0

;***

ADJDEC

 MOVLW R2

 MOVWF FSR1L

 CALL ADJBCD

 MOVLW R1

 MOVWF FSR1L

 CALL ADJBCD

 MOVLW R0

 MOVWF FSR1L

 CALL ADJBCD

 GOTO LOOP16

;***

ADJBCD

 MOVF INDF1,W

 ADDLW 0X03

 MOVWF TEMP1

 BTFSC TEMP1,3 ; TEST IF RESULT > 7

 MOVWF INDF1

 MOVF INDF1,W

 ADDLW 0X30

 MOVWF TEMP1

 BTFSC TEMP1,7 ; TEST IF RESULT > 7

 MOVWF INDF1 ; SAVE AS MSD

 RETLW 0

;XX

;**************MATH ROUTINE BCD TO ASCII CONVERSION*****************

;XX

CONV_BCD_ASCII ;CALLING LINE OF BCD TO ASCII

 MOVWF TEMP ;GETTING BCD NUMBER IN TEMP REGISTER

 SWAPF TEMP,W ;SWAPPING NIBBLES OF TEMP BYTE

 ANDLW B'00001111' ;MASKING HIGH NIBLE ONLY

 ADDLW 0X30 ;MAKING THE VALUE 2 ASCII BY ADDING

0X30

 MOVWF H ;STORING HIGH NIBLE ASCII VALUE

 MOVF TEMP,W ;TAKING LOWER NIBBLE

 84

ANDLW B'00001111' ;MASKING LOWER NIBBLE ONLY

 ADDLW 0X30 ;MAKING THE VALUE 2 ASCII BY ADDING

0X30

 MOVWF L ;STORING LOW NIBLE ASCII VALUE

 RETURN ;RETURN LINE FOR BCD 2 ASCII SUBROUTINE

;XX

MAKE_VALUE

 CLRF RES_BIT

 MOVF RD_TEMP_LSB,W

 ANDLW B'00001111'

 MOVWF RES_BIT

 RRCF RD_TEMP_MSB,F

 RRCF RD_TEMP_LSB,F

 RRCF RD_TEMP_MSB,F

 RRCF RD_TEMP_LSB,F

 RRCF RD_TEMP_MSB,F

 RRCF RD_TEMP_LSB,F

 RRCF RD_TEMP_MSB,F

 RRCF RD_TEMP_LSB,F

RESU_

 MOVLW 0X7F

 ANDWF RD_TEMP_LSB,F

 RETURN

RES_TABLE

 ADDWF PCL,F

 RETLW '0'

 RETLW '1'

 RETLW '1'

 RETLW '2'

 RETLW '2'

 RETLW '3'

 RETLW '3'

 RETLW '4'

 RETLW '5'

 RETLW '6'

 RETLW '6'

 RETLW '7'

 RETLW '8'

 84

RETLW '8'

 RETLW '9'

 RETLW '9'

;***

ACQR_LO_T

;***

 CLRF IR_TIMER

 BCF PIR1,TMR1IF

 BSF IR_FLAGS,IR_ERROR

 MOVLW B'00111000'

 MOVWF T1CON

 BSF T1CON,0

INIT_LENGTH_LO

;!!!

 SETF TMR1H ;ADJUSTING VALUUE FOR T=600 MICRO

SECS ;

 MOVLF SIRC_ON_T,TMR1L ;ADJUSTING VALUUE FOR T=600 MICRO

SECS ;

;!!!

IR_STIL_LO

 BTFSC PIR1,TMR1IF

 GOTO UPDT_IR_LEN_LO

 BTFSS REMOTE

 GOTO IR_STIL_LO

;**;

IR_RTN_LO_2_HI

 BCF T1CON,0

 BCF PIR1,TMR1IF

 MOVF IR_TIMER,W

 BTFSC STATUS,Z

 RETURN

 BCF IR_FLAGS,IR_ERROR

 RETURN

;***

UPDT_IR_LEN_LO

 INCF IR_TIMER,F

 BCF PIR1,TMR1IF

 GOTO INIT_LENGTH_LO

;***

;**;

;***

 85

ACQR_HI_T

;***

 CLRF TEMP2

 BCF PIR1,TMR1IF

 BSF IR_FLAGS,IR_ERROR

 MOVLW B'00111000'

 MOVWF T1CON

 BSF T1CON,0

INIT_LENGTH_HI

;!!!

 SETF TMR1H ;ADJUSTING VALUUE FOR T=600 MICRO

SECS ;

 MOVLF SIRC_OFF_T,TMR1L;ADJUSTING VALUUE FOR T=600 MICRO

SECS ;

;!!!

IR_STIL_HI

 BTFSC PIR1,TMR1IF

 GOTO UPDT_IR_LEN_HI

 BTFSC REMOTE

 GOTO IR_STIL_HI

;***

IR_RTN_HI_2_LO

 BCF T1CON,0

 BCF PIR1,TMR1IF

 MOVF TEMP2,W

 BTFSC STATUS,Z

 RETURN

 BCF IR_FLAGS,IR_ERROR

 RETURN

;***

UPDT_IR_LEN_HI

 INCF TEMP2,F

 BCF PIR1,TMR1IF

 GOTO INIT_LENGTH_HI

;**

 END

 86

References

1. Microwave oven service manual “Gold star”
2. http://hyperphysics.phy-astr.gsu.edu/hbase/waves/magnetron.html

3. http://en.wikipedia.org/wiki/Cavity_magnetron

4. http://www.howeverythingworks.org/page1.php?QNum=1579

5. http://www.microtechfactoryservice.com/mag_test.html

6. http://scripts.mit.edu/~zong/wpress/?p=231

7. http://www.circuitstoday.com/pn-junction-diode-characteristics

8. https://www.google.com.bd/search?q=lm7805&biw=1366&bih=681&tbm=isch&tbo=u&

source=univ&sa=X&ei=pBsyUpbRMcfjrAfGp4DgCg&sqi=2&ved=0CDcQsAQ

9. http://www.acsu.buffalo.edu/~wie/applet/students/jiawang/pn.html

10. http://www.thefreedictionary.com/control+system

11. http://encyclopedia2.thefreedictionary.com/Control+systems

12. http://www.toolingu.com/definition-450260-75024-timer-timing-bit.html

13. http://www.softpedia.com/progScreenshots/Proteus-PCB-Design-Screenshot-

216146.html

14. http://www.swansontec.com/sprogram.html

15. http://www.islavici.ro/cursuri/conducere%20sist%20cu%20calculatorul/PICbook/3_chapt

er.htm

 87

http://hyperphysics.phy-astr.gsu.edu/hbase/waves/magnetron.html
http://en.wikipedia.org/wiki/Cavity_magnetron
http://www.howeverythingworks.org/page1.php?QNum=1579
http://www.microtechfactoryservice.com/mag_test.html
http://scripts.mit.edu/~zong/wpress/?p=231
http://www.softpedia.com/progScreenshots/Proteus-PCB-Design-Screenshot-216146.html
http://www.softpedia.com/progScreenshots/Proteus-PCB-Design-Screenshot-216146.html
http://www.swansontec.com/sprogram.html

