
ISLAMIC UNIVERSITY OF TECHNOLOGY

Extracting Landmarks with 3D
Information for Simultaneous

Localization and mapping(SLAM) using
Kinect

By:

Gazi Md. Hasnat Zahan (094403)

A.F.M. Zunaid (094424)

Supervised by:

Md. Kamrul Hasan Ph.D

Assistant Professor

Department of Computer Science and Engineering

Co-Supervised by:

Mr. Hasan Mahmud

Assistant Professor

Department of Computer Science and Engineering

A thesis submitted in partial fulfilment of the requirements

for the degree of Bachelor of Science in Computer Science and Engineering

Academic Year: 2012-2013

Department of Computer Science and Engineering

Islamic University of Technology.

A Subsidiary Organ of the Organization of Islamic Cooperation.

Dhaka, Bangladesh.

November 5, 2013

Declaration of Authorship

We, Gazi Md. Hasnat Zahan & A.F.M. Zunaid, declare that this thesis titled,’Extracting

Landmarks with 3D Information for Simultaneous Localization and mapping(SLAM)

using Kinect’ and the work presented in it are our own. We confirm that:

� This work was done wholly while in candidature for a Bachelor degree at this

University.

� Where any part of this thesis has not been submitted previously for a degree or

any other qualification at this University or any other institution, this has been

clearly stated.

� Where I have consulted the published work of others, this is always clearly at-

tributed.

Submitted By:

Gazi Md. Hasnat Zahan (094403)

A.F.M. Zunaid (094424)

i

ii

Extracting Landmarks with 3D Information for

Simultaneous Localization and mapping(SLAM)

using Kinect

Approved By:

Prof. Dr. M.A. Mottalib

Head of the Department,

Department of Computer Science and Engineering,

Islamic University of Technology.

Md. Kamrul Hasan Ph.D

Thesis Supervisor,

Assistant Professor,

Department of Computer Science and Engineering,

Islamic University of Technology.

Mr. Hasan Mahmud

Thesis Co-Supervisor,

Assistant Professor,

Department of Computer Science and Engineering,

Islamic University of Technology.

iii

Abstract:

SLAM is one of the most widely researched subfields of robotics. An intuitive

understanding of the SLAM process can be conveyed though a hypothetical ex-

ample. Consider a simple mobile robot: a set of wheels connected to a motor and

a camera, complete with actuators-physical devices for controlling the speed and

direction of the unit. Now imagine the robot being used remotely by an operator

to map inaccessible places. The actuators allow the robot to move around, and

the camera provides enough visual information for the operator to understand

where surrounding objects are and how the robot is oriented in reference to them.

What the human operator is doing is an example of SLAM (Simultaneous Local-

ization and Mapping). Determining the location of objects in the environment is

an instance of mapping, and establishing the robot position with respect to these

objects is an example of localization. The SLAM subfield of robotics attempts to

provide a way for robots to do SLAM autonomously. A solution to the SLAM

problem would allow a robot to make maps without any human assistance What

so ever. In this paper we proposed and implement a new technique to increase the

efficiency of SLAM using Kinect sensor.

Acknowledgements

Special thanks to:

Prof. Dr. M.A. Mottalib

Head of the Department

Department of Computer Science and Engineering

Special thanks to:

Md. Kamrul Hasan Ph.D

Thesis Supervisor

Assistant Professor

Department of Computer Science and Engineering

Special thanks to:

Mr. Hasan Mahmud

Thesis Co-Supervisor

Assistant Professor

Department of Computer Science and Engineering

iv

Contents

Declaration of Authorship i

Abstract iii

Acknowledgements iv

List of Figures vii

1 Introduction 1
1.1 Background 1
1.2 Application 1
1.3 History 2
1.4 Motivation 4

2 Literature Review 6
2.1 The SLAM Problem 6
2.2 The Probabilistic SLAM 7
2.3 Steps of SLAM Implementation 8
2.4 Kalman Filter 10
2.5 Kalman Filter and SLAM 11

3 Problem 13

4 Proposed Methodology 14
4.1 Our Approach 14
4.2 Why Kinect 14
4.3 Implmentation 16
4.4 Kinds of Landmarks we used in our implementation 17
4.5 Image Capturing Procedure 18
4.6 Obtaining the Heights 18

5 Evaluation and Future Work 26
5.1 Evaluation 26
5.2 Future Work 27

v

Contents vi

6 Conclusion 28

7 Simulation Code 30

8 Reference 35

List of Figures

4.1 Architecture of our proposed SLAM 15
4.2 Kinect . 16
4.3 Circle . 18
4.4 Triangle . 19
4.5 Rectangle . 20
4.6 Graphical user interface made in visual studio 20
4.7 1 . 21
4.8 2 . 21
4.9 3 . 22
4.10 4 . 22
4.11 5 . 23
4.12 6 . 23
4.13 7 . 24
4.14 8 . 24

5.1 result table with single landmark 26
5.2 result table with 2 landmarks . 26
5.3 result table with 3 landmarks . 27

vii

Dedicated to our parents.. . .

viii

Chapter 1

Introduction

1.1 Background

SLAM is one of the most widely researched subfields of robotics. An intuitive

understanding of the SLAM process can be conveyed though a hypothetical

example. Consider a simple mobile robot: a set of wheels connected to a motor

and a camera, complete with actuators-physical devices for controlling the speed

and direction of the unit. Now imagine the robot being used remotely by an

operator to map inaccessible places. The actuators allow the robot to move

around, and the camera provides enough visual information for the operator to

understand where surrounding objects are and how the robot is oriented in

reference to them. What the human operator is doing is an example of SLAM

(Simultaneous Localization and Mapping). Determining the location of objects

in the environment is an instance of mapping, and establishing the robot position

with respect to these objects is an example of localization. The SLAM subfield of

robotics attempts to provide a way for robots to do SLAM autonomously. A

solution to the SLAM problem would allow a robot to make maps without any

human assistance What so ever.

1.2 Application

If a solution to the SLAM problem could be found, it would open the door to

innumerable mapping possibilities where human assistance is cumbersome or

impossible. Maps could be made in areas which are dangerous or inaccessible to

humans such as deep-sea environments or unstable structures. A solution to

1

Chapter 1. Introduction 2

SLAM would obviate outside localization methods like GPS or man-made

beacons. It would make robot navigation possible in places like damaged (or

undamaged) space stations and other planets. Even in locations where GPS or

beacons are available, a solution to the SLAM problem would be invaluable.

GPS is currently only accurate to within about one half of a 6 meter, which is

often more than enough to be the difference between successful mapping and

getting stuck. Placing man-made beacons is expensive in terms of time and

money; in situations where beacons are an option, simply mapping by hand is

almost always more practical.

1.3 History

The genesis of the probabilistic SLAM problem occurred at the 1986 IEEE

Robotics and Automation Conference held in San Francisco. This was a time

when probabilistic methods were only just beginning to be introduced into both

robotics and AI. A number of researchers had been looking at applying

estimation-theoretic methods to mapping and localization problems; these

included Peter Cheeseman, Jim Crowley, and Hugh Durrant-Whyte. Over the

course of the conference many paper table cloths and napkins were filled with

long discussions about consistent mapping. Along the way, Raja Chatila, Oliver

Faugeras, Randal Smith and others also made useful contributions to the

conversation. The result of this conversation was a recognition that consistent

probabilistic mapping was a fundamental problem in robotics with major

conceptual and computational issues that needed to be addressed. Over the next

few years a number of key papers were produced. Work by Smith and Cheesman

[3] and Durrant-Whyte [3] established a statistical basis for describing

relationships between landmarks and manipulating geometric uncertainty. A key

element of this work was to show that there must be a high degree of correlation

between estimates of the location of different landmarks in a map and that

indeed these correlations would grow with successive observations. At the same

time Ayache and Faugeras [1] were undertaking early work in visual navigation,

Crowley [9] and Chatila and Laumond [6] in sonar-based navigation of mobile

robots using Kalman filter-type algorithms. These two strands of research had

much in common and resulted soon after in the landmark paper by Smith, Self

and Cheeseman [3]. This paper showed that as a mobile robot moves through an

unknown environment taking relative observations of landmarks, the estimates of

these landmarks are all necessarily correlated with each other because of the

Chapter 1. Introduction 3

common error in estimated vehicle location [1]. The implication of this was

profound: A consistent full solution to the combined localization and mapping

problem would require a joint state composed of the vehicle pose and every

landmark position, to be updated following each landmark observation. In turn,

this would require the estimator to employ a huge state vector (of order the

number of landmarks maintained in the map) with computation scaling as the

square of the number of landmarks.

Crucially, this work did not look at the convergence properties of the map or its

steady-state behavior. Indeed, it was widely assumed at the time that the

estimated map errors would not converge and would instead exhibit a random

walk behavior with unbounded error growth. Thus, given the computational

complexity of the mapping problem and without knowledge of the convergence

behavior of the map, researchers instead focused on a series of approximations to

the consistent mapping problem solution which assumed or even forced the

correlations between landmarks to be minimized or eliminated so reducing the

full filter to a series of decoupled landmark to vehicle filters ([1], [2] for example).

Also for these reasons, theoretical work on the combined localization and

mapping problem came to a temporary halt, with work often focused on either

mapping or localization as separate problems. The conceptual break-through

came with the realization that the combined mapping and localization problem,

once formulated as a single estimation problem, was actually convergent. Most

importantly, it was recognized that the correlations between landmarks, that

most researchers had tried to minimize, were actually the critical part of the

problem and that, on the contrary, the more these correlations grew, the better

the solution. The structure of the SLAM problem, the convergence result and

the coining of the acronym ‘SLAM’ was first presented in a mobile robotics

survey paper presented at the 1995 International Symposium on Robotics

Research [3]. The essential theory on convergence and many of the initial results

were developed by Csorba [11], [10]. Several groups already working on mapping

and localization, notably at MIT [12], Zaragoza [5], [4], the ACFR at Sydney [2],

[5] and others [7], [13], began working in earnest on SLAM1 applications in

indoor, outdoor and sub-sea environments. At this time, work focused on

improving computational efficiency and addressing issues in data association or

‘loop closure’. The 1999 International Symposium on Robotics Research

(ISRR’99) [23] was an important meeting point where the first SLAM session

was held and where a degree of convergence between the Kalman-filter based

SLAM methods and the probabilistic localization and mapping methods

introduced by Thrun [6] was achieved. The 2000 IEEE ICRA Workshop on

Chapter 1. Introduction 4

SLAM attracted fifteen researchers and focused on issues such as algorithmic

complexity, data association and implementation challenges. The following

SLAM workshop at the 2002 ICRA attracted 150 researchers with a broad range

of interests and applications. The 2002 SLAM summer school hosted by Henrik

Christiansen at KTH in Stockholm attracted all the 1 Also called Concurrent

Mapping and Localization (CML) at this time. key researchers together with

some 50 PhD students from around the world and was a tremendous success in

building the field. Interest in SLAM has grown exponentially in recent years, and

workshops continue to be held at both ICRA and IROS. The SLAM summer

school ran in 2004 in Tolouse and will run at Oxford in 2006.

1.4 Motivation

Situations arise where it is desirable to have exploratory robots navigate

environments that may be previously uncharted, too dangerous for living beings,

or for which GPS data is unavailable. There are many ways to program robotic

navigation, some better than others. Common obstacle avoidance algorithms,

such as wall-following or Vector Field Histogram (VFH) algorithms, concentrate

on immediate navigation but do not attempt to learn more about the

environment. One algorithm that looks to tackle this problem is the

Simultaneous Localization and Mapping (SLAM) algorithm. SLAM is a

probabilistic method in which a robot maps an environment while

simultaneously localizing itself within the map. Once a map has been generated,

navigation becomes much easier. One of the biggest hurdles in robotics is being

able to accurately analyze sensor data. Some mapping robots look to track

odometry data as a means to determine location, and to create a map. However

odometry data is imperfect. The fact that there is always some degree of sensor

error needs to be considered. As time elapses, sensor error compounds,

drastically distorting any map that has been created. Figure 1 shows an example

of odometry based mapping. In this case, error from the odometery quickly

accumulates and while any individual error may be small, the sum quickly

becomes significant.Alternatively, some robots have access to GPS. While GPS is

convenient, it is oftentimes not available, or not accurate enough for use indoors

or in conned environments. The solution to this problem is Simultaneous

Localization and Mapping. The SLAM algorithm creates a map of the

environment by statistically merging odometry data with sensor measurements of

the environment. This forms a feedback loop by which a robot can make a much

Chapter 1. Introduction 5

more accurate estimate of the state of its environment as well as the robot’s

location within that environment.

Chapter 2

Literature Review

2.1 The SLAM Problem

One of the major developments in SLAM research was proof that errors in

feature location acquired by agents are correlated with one another. The

correlation exists because an error in localization will have a universal effect on

the perceived location of all features (we will discuss this in more detail in the

chapter on the Kalman Filter). Understanding and utilizing the relationship

among errors in feature locations and robot pose is at the core of SLAM

research; it is the major motivation behind solving localization and mapping

concurrently. This chapter will now consider localization and mapping each

individually to develop a better understanding the SLAM problem and further

illuminate the motivation behind finding a simultaneous solution.

Works by Maybeck, Durant-Whyte, Nebot, and Csorba all helped inspire this

portion of my thesis, but the development of SLAM problem as it appears here is

(as far as I know) unique. It represents a precursor to the works of the authors

mentioned above, and is written to provide motivation for various steps taken in

their respective works. Few specific citations are made, but this section would

not have been possible without understanding gained from these authors. In

particular, many of the specifics of the localization problem and the mapping

problem presented here are elaborate on diagrams created by Durant-Whyte.

SLAM is a process by which a mobile robot can build a map of an environment

and at the same time use this map to deduce it’s location. In SLAM both the

trajectory of the platform and the location of all landmarks are estimated on-line

without the need for any a priori knowledge of location.

6

Chapter 2. Literature Review 7

Consider a mobile robot moving through an environment taking relative

observations of a number of unknown landmarks using a sensor located on the

robot as shown in Figure 1. At a time instant k, the following quantities are

defined:

Xk : The state vector describing the location and orientation of the vehicle.

Uk: The control vector, applied at time k1 to drive the vehicle to a state xk at

time k.

Mi: A vector describing the location of the ith landmark whose true location is

assumed time invariant.

Zik: An observation taken from the vehicle of the location of the ith landmark at

time k. When there are multiple landmark observations at any one time or when

the specific landmark is not relevant to the discussion, the observation will be

written simply as Zk.

In addition, the following sets are also defined:

X0:k = x0, x1, , xk = X0:k-1, xk : The history of vehicle locations.

U0:k = u1, u2, uk = U0:k-1 , uk : The history of control inputs.

m = m1,m2, ,mn : The set of all landmarks.

Z0:k = z1, z2, , zk = Z0:k-1, zk : The set of all landmark observations.

2.2 The Probabilistic SLAM

In probabilistic form, the Simultaneous Localization and Map Building (SLAM)

problem requires that the probability distribution:

P(xk, m — Z0:k, U0:k, x0)

be computed for all times k. This probability distribution describes the joint

posterior density of the landmark locations and vehicle state (at time k) given

the recorded observations and control inputs up to and including time k together

with the initial state of the vehicle. In general, a recursive solution to the SLAM

problem is desirable. Starting with an estimate for the distribution P(xk-1, m —

Z0:k-1, U0:k-1) at time k-1, the joint posterior, following a control uk and

observation zk, is computed using Bayes Theorem. This computation requires

that a state transition model and an observation model are defined describing

the effect of the control input and observation respectively.

The observation model describes the probability of making an observation zk

when the vehicle location and landmark locations are known, and is generally

described in the form

P(zk — xk,m).

Chapter 2. Literature Review 8

It is reasonable to assume that once the vehicle location and map are defined,

observations are conditionally independent given the map and the current vehicle

state.

The motion model for the vehicle can be described in terms of a probability

distribution on state transitions in the form

P(xk — xk-1, uk)

That is, the state transition is assumed to be a Markov process in which the next

state xk depends only on the immediately proceeding state xk-1 and the applied

control uk, and is independent of both the observations and the map.

The SLAM algorithm is now implemented in a standard two-step recursive

(sequential) prediction (time-update) correction (measurement-update) form:

Time-update:

P(xk,m — Z0:k-1,U0:k, x0)

=P(xk — xk-1, uk) P(xk-1,m— Z0:k-1, U0:k-1, x0) dxk-1 ——————- (4)

Measurement Update:

P(xk,m — Z0:k,U0:k, x0) = P(zk — xk, m) P(xk, m — Z0:k-1,U0:k, x0)/ P(zk

— Z0:k-1,U0:k) ———-(5)

Equations 4 and 5 provide a recursive procedure for calculating the joint

posterior P(xk,m — Z0:k,U0:k, x0) for the robot state xk and map m at a time k

based on all observations Z0:k and all control inputs U0:k up to and including

time k. The recursion is a function of a vehicle model P(xk — xk-1,uk) and an

observation model P(zk — xk , m). It is worth noting that the map building

problem may be formulated as computing the conditional density P(m —

X0:k,Z0:k,U0:k). This assumes that the location of the vehicle xk is known (or at

least deterministic) at all times, subject to knowledge of initial location. A map

m is then constructed by fusing observations from different locations. Conversely,

the localization problem may be formulated as computing the probability

distribution P(xk — Z0:k,U0:k,m). This assumes that the landmark locations

are known with certainty and the objective is to compute an estimate of vehicle

location with respect to these landmarks.

2.3 Steps of SLAM Implementation

The simultaneous localization and mapping (SLAM) problem asks if it is

possible for a mobile a robot to be placed at an unknown location in an unknown

environment and for the robot to incrementally build a consistent map of this

environment while simultaneously determining its location within this map. In

Chapter 2. Literature Review 9

SLAM both the trajectory of the platform and location of all landmarks are

estimated without the need for a priori knowledge of the location [17].

Robotic mapping suffers from basically 2 kinds of errors. One is the

measurement error and another is the process error. The solution is a

probabilistic approach called SLAM that makes use of a kalman Filter. The

kalman Filter is one of the mostly used filtering algorithms that frequently used

in Robotics. The job of kalman filter is to reduce errors in the measurement and

update of the robot state. The Kalman Filter works according to the Predict

Update schema as shown in figure 1

There are mainly 5 steps in SLAM approach. These are:

1. State Estimation

2. Landmark Extraction

3. Data Association

4. State Update

5. Landmark Update

State Estimation: At any given time step the robot knows the actions that it will

apply to its motors in the next time step. It also knows how those actions will

change the robot position in its environment. Therefore, in the estimation step,

the robot uses this information to predict where it will be in the next step.

Landmark Extraction: A landmark is any part of the environment that has some

distinguishable features. After making a prediction for the next time step the

robot carries some actions on its motors and moves to the time step for which it

has made a prediction. The robot then take a sensor measurement of the

environment and extracts any distinguishable landmarks. These landmarks must

be such that they can be correctly recognized again at a future time step. Any

error in landmark extraction can have catastrophic effect on the estimation of

the map.

Data Association: After extracting all recognizable landmarks in its

environment, the robot must compare each observed landmarks to the previously

observed landmarks. The newly extracted landmarks are then associated with

the previous landmarks. The data that are associated are the location of the

extracted landmarks, their size, in which angle they are placed with the robot

etc. The data association step is one of the most challenging step of SLAM as it

incorporates with complexity algorithms. The robot matches up the landmarks

Chapter 2. Literature Review 10

that correspond and compares the observed landmark locations to a prediction of

where the landmarks had would have been had the state estimation step been

completely accurate. This creates an error factor representing this difference, and

is known as the innovation error.

State Update: The robot uses the innovation error to modify the prediction of its

state. This is done by multiplying the innovation error by a statistically optimal

factor called the kalman gain, and adding it to the prediction state. The robot

has now formed its best estimate of its state for that time step.

Landmark Update: The robot then takes any new landmarks that it has

observed and adds them to the state so that they may be re-observed for the

later time step.

2.4 Kalman Filter

The Kalman Filter (or KF) was developed by R.E. Kalman, whose prominent

paper on the subject was published in 1960 (Welch and Bishop, [2006]). The KF

potential in specific localization and mapping problems was well known shortly

after Kalman published his paper in 1960. However, the KF was not generally

used to represent an entire world state (and was therefore not used as a complete

solution to the SLAM problem) until 1988 (Castellanos, Neira, Tardos, [2004]).

The Kalman Filter is an algorithm which processes data and estimates variable

values (Maybeck, [1979]). In a SLAM context, the variable values to be

estimated will consist of the robot pose, and feature locations-i.e. the world

state. The data to be processed may include vehicle location, actuator input,

sensor readings, and motion sensors of the mobile robot. In other words, the

Kalman Filter can utilize all available data to simultaneously estimate robot pose

and generate a feature map. Under certain conditions, the estimates made by the

Kalman Filter are very good; in fact, they are in a sense ”optimal”. Welch and

Bishop explain that the state estimates provided by the Kalman Filter will use

any available information to minimize the mean of the squared error of the

estimates with regard to the available information (Welch and Bishop, [2006]).

Another way of putting this is that the error in the state estimates made by the

Kalman Filter are minimized statistically (Maybeck, [1979]).

Chapter 2. Literature Review 11

2.5 Kalman Filter and SLAM

There are many reasons for why KF techniques are such a popular choice for

SLAM researchers. As was mentioned previously, the KF is capable of

incorporating all available measurements (Maybeck, [1979]) and providing a least

squares estimate of a process state. When modeled carefully, this is precisely

what SLAM algorithms attempt to do. Furthermore, as we saw in The Slam

Problem, SLAM would be trivial if robot sensors were noise free; handling noise

in the best way possible is the essential purpose of the KF, (Maybeck, [1979]).

Finally, the KF works well in practice and so researchers continue to use it

(Durant-Whyte, [2002]).

In order to implement the Kalman Filter in the SLAM process, we have to

describe the system. Therefore, it will be assumed that the robot moves in a

linear fashion, and that the system can be described by the following equations:

xk+1 = Fkxk + Gkuk + vk —————-(1)

yk = Hkxk + wk —————————(2)

Equation (1) is the state equation and indicates that the robot state at the next

time step is a linear function of the current state, xk, the input vector, uk, and

an error term, vk.

Equation (2) is the output equation and indicates that the measurement vector

taken from the sensors is a linear function of the robot state, xk, and an error

term, wk

The variables are as follows (Assuming n landmarks have been observed):

xk : Robot state. This is a (3 + 2n) 1 vector containing the x, y estimate of the

robot’s position as well as the estimated angle, ?, that the robot is pointed. The

state also contains the estimated x, y coordinates of every previously observed

landmark in the environment.

uk : System input. This is a 31 vector containing the predicted change in robot

x, y, ? to the next time step.

yk : System measurement. This is a 2n1 vector containing observed, sensor

measurements of the x, y coordinates for each landmark with respect to the

robot’s coordinate frame.

vk : Process noise. This is a (3 + 2n) 1 vector containing the error in the system

e.g. slipping wheels. The error is assumed to be Gaussian with zero mean.

wk : Measurement noise. This is a 2n 1 vector containing the error in the sensor

measurements. The error is assumed to be Gaussian with zero mean.

Chapter 2. Literature Review 12

Vk : Covariance matrix of the process noise vector. This is a (3 + 2n) (3 + 2n)

matrix.

Wk : Covariance matrix of the measurement noise vector. This is a 2n 2n matrix.

Fk : State Transition Matrix. This matrix maps the previous state to the next

state. For the purposes of this project, this will just be the (3+2n)(3+2n)

identity matrix since we want there to be a direct mapping.

Gk : Input Transition Matrix. This matrix maps the input vector to the next

state. For the purposes of this project, this will just be a (3 + 2n) 3 matrix

where the top 3 3 matrix is the 5 identity matrix. This is the case since we want

the del x,del y, from the input vector to get mapped to only the x, y, ? elements

of the state vector.

Hk : Measurement Transition Matrix. This matrix maps the state vector to the

measurement vector.

For the purposes of this project, this will just be a 2n(3+2n) matrix consisting of

a Hi submatrix for each observed landmark. Each Hi corresponds to the ith

landmark and is arranged with enough 0’s in each row so thatthe 2 2 identity

matrix lines up with the ith landmark in the state vector. This arrangement is

required so that Hk takes the same form as the measurement vector.

Chapter 3

Problem

In the recent papers based on EKF SLAM using Kinect, the researchers cited

some of the limitations of the current algorithm that included -

1. fixing the translation bug in the EKF part

2. incorporating a line landmark detection system

3. adding more sophisticated landmark acossiation algorithm

4. producing a 3D map from the 2D slices of the data

5. improving efficiency throughout the process

6. handling degenerate cases where camera faces only planar surfaces

7. removing inconsistency between RGB-BA mapping and 8 point RANSAC by

emphasizing on the image homography, building more robust loop closure logic

etc [14][20].

Among these shortcomings, the one that we have considered to work in is 3D

mapping. The previous approaches of SLAM didn’t have the resource to map a

3D environment until the advent of visual SLAM. After that, the problem was to

implement it in an efficient way as the previous visual SLAM implementations

relied on monocular or stereo vision cameras who couldn’t give any depth value

from its readings that could be used to map the 3D environment. So, after kinect

was introduced, there arose a chance to map 3D environments using the depth

value and incorporate the height information in the map.

13

Chapter 4

Proposed Methodology

4.1 Our Approach

To overcome this problem, we will take the depth value and the angle

information from the kinect sensor and then retrieve the height information of

the landmarks by geometric calculation. This information will be added to every

landmark in the map making it 3D.In present algorithm, they used 2D kalman

filter where only the (x,y) position of the landmarks were incorporated. We will

try to incorporate a Z-value i.e. the height information of the landmarks in the

kalman filter that will give us the correlation between the robot position and the

3D landmarks in place of 2D. This height information will help in the mobile

robot navigation where a robot will be able to determine the feasibility of

navigating itself over the landmarks by judging its height information. We

constructed an architecture of our proposed methodology in the light of the

SLAM architecture. The architecture is shown below :

4.2 Why Kinect

The Xbox Kinect is a vision sensor made by Microsoft for use with the Xbox 360

gaming console. The Kinect is revolutionary in that it is capable of 3D image

sensing. From Figure 3 below, it can be seen that the middle sensor is an RGB

camera, and the other two are used in 3D depth sensing. The Kinect works by

projecting a large number of IR dots around the area in front of the device. An

example of this can be seen below in Figure 4. The depth device to the left in

Figure 3 projects the IR dots around the room. The sensor to the right then

14

Chapter 4. Proposed Methodology 15

Figure 4.1: Architecture of our proposed SLAM

Chapter 4. Proposed Methodology 16

Figure 4.2: Kinect

observes the dot pattern. The Kinect is able to calculate the depth to every

point in sight based on the dispersion pattern. For example, dots that are close

together indicate objects that are closer, while dots that are more spread out

indicate objects that are farther away. [13] Kinect has 8-bit RGB VGA resolution

(640*480 Pixels) video camera. The Kinect sensor bar also contains two cameras,

a special infrared light source, and four microphones. It also contains a stack of

signal processing hardware that is able to make sense of all the data that the

cameras, infrared light, and microphones can generate. By combining the output

from these sensors, a program can track and recognize objects in front of it,

determine the direction of sound signals, and isolate them from background noise.

4.3 Implmentation

The hardware for this project was chosen to have the necessary components to

implement a SLAM algorithm. Therefore, the robot needed the following:

(1.) A base capable of supporting the rest of the hardware. The base had to be

capable of receiving and executing motor commands, as well as generating and

sending odometry data.

(2.) A vision sensor capable of generating RGB images of the environment in

real time. This was necessary in order to identify and track landmarks in the

environment.

(3.) A distance sensor capable of determining the distances to each landmark in

the environment.

(4.) A processor capable of interfacing with the aforementioned hardware and

containing the processing power to run a SLAM algorithm in real time.

For selecting a base , we chose a robot that will give us the necessary

information. The information contains generating and sending motor commands

as well as odometry data. Odometry data is normally used to calculate distance

Chapter 4. Proposed Methodology 17

covered by the robot. Odometry data is measured using a wheel encoder. Using

the circumference of the wheel encoder can calculate the rotation of wheels and

from that the distance is measured. For our thesis we select the iRobot create

which is a simple to implement and also cheap. It also performs well and gives us

all the necessary information.

The next important phase is to generate RGB images from the environment in

real time. This is necessary in order to identify and track landmarks in the

environment. For generating the RGB images we use XBOX 360 Kinect sensor.

The outstanding feature of kinect is that it not only gives us the image but also

gives us the depth information of each and every pixel. This is a revolutionary

device and no other device ever gave that kind of information. We use the depth

information to calculate the height of an particular object which is known as

landmarks in SLAM. We found that calculating the height and incorporating it

with the existing 2d KF SLAM algorithm we can give more information about

the map to the robot. We know that map building is main purpose of the SLAM

and building more efficient map gives us more accurate result to the SLAM. So

the main contribution to our implementation of this thesis is to calculate the

height of the landmarks using Kinect and incorporate this information with the

existing kalman filter based SLAM algorithm and see what is the results.

4.4 Kinds of Landmarks we used in our implementation

For simplicity purpose and to avoid complexity we take very simple shaped

landmarks. We choose simple shaped rectangle, triangle and circle for our thesis.

The idea behind choosing these simple landmarks are that we assume that the

environment is a planar surface and the objects surrounding the robot are very

simple shaped that gives us more accurate result. Though the real world is

surrounded with so many complex objects with so many complex combinations

for better result and for creating the map more efficiently we assume that the

environment is pretty simple to explore for the robot.

From the above three shapes we can easily understand how simple our landmarks

are. We use these three shaped objects in our thesis implementation. We take

several images where all possible combinations of these objects are considered.

For example, first we take an image of only a single object that stands in front of

kinect camera. Then we take another image of circle and rectangle shaped

objects where they are not staying in parallel rather they are standing with two

Chapter 4. Proposed Methodology 18

Figure 4.3: Circle

different positions in front of the camera. Then again we capture an image

considering all the landmarks together.

4.5 Image Capturing Procedure

For capturing the image we made a GUI interface using Microsoft Visual Studio

2010.

The images captured using this GUI are color images and depth images. Some of

the images are shown below:

4.6 Obtaining the Heights

When only the landmarks are visible in the images, we pass three arguments to

the gHeight() function to calculate the height of the landmark. We calculate the

Chapter 4. Proposed Methodology 19

Figure 4.4: Triangle

top most pixel of the landmarks and also the bottom most pixel of the

landmarks using how much pixels are covered by the landmarks in the total

image and how much viewing angle is covered by the landmarks of the total

image. After getting these two pixel locations we can get the depth value of the

corresponding pixels. So this two depth measurement and the angle between this

two line is passed as an argument to the gHeight() function. We build an

algorithm the will take this tree values and calculate the corresponding height of

the landmarks. The algorithm looks like this:

function gheight(d1,d2,pd)

ds=min(d1,d2);

db=max(d1,d2);

theta=((pd*47)/480);

db1=ds*cos(deg2rad(theta));

db2=db-db1;

dp=sqrt(ds power(2)-db1 power(2);

Chapter 4. Proposed Methodology 20

Figure 4.5: Rectangle

Figure 4.6: Graphical user interface made in visual studio

Chapter 4. Proposed Methodology 21

Figure 4.7: 1

Figure 4.8: 2

Chapter 4. Proposed Methodology 22

Figure 4.9: 3

Figure 4.10: 4

Chapter 4. Proposed Methodology 23

Figure 4.11: 5

Figure 4.12: 6

Chapter 4. Proposed Methodology 24

Figure 4.13: 7

Figure 4.14: 8

Chapter 4. Proposed Methodology 25

h=sqrt(db2 power(2)+dp power(2)

Chapter 5

Evaluation and Future Work

5.1 Evaluation

From the result table we can see that the percentage of deviation we have

observed is very less. In each test cases the result is quite satisfactory. The

observed height is very close to the actual height and the difference between

them is very negligible in case of robot navigation. This small will not create any

Figure 5.1: result table with single landmark

Figure 5.2: result table with 2 landmarks

26

Chapter 5. Evaluation and Future Work 27

Figure 5.3: result table with 3 landmarks

kind of problem while developing the final map of the environment. Though in

our experiment we have a used 3 different types of simple planar shapes it can

also measure all kinds of simple shapes.

5.2 Future Work

From the problem statement we have given previously we have shown a method

to make a 3-dimensional mapping environment by incorporating the height

information of the landmarks. This information can help the robot while

navigating specially in a situation that it needs to decide that whether it will roll

over on the landmark or it will just simply avoid it. It depends on the height

information of the landmarks. If the landmarks are well small in size then robot

can easily identify this and do its job accordingly. So our proposed methodology

shows hao to detect an object using the very versatile and efficient device like

Kinect. We hope that our algorithm can be implemented accordingly and we can

make the 3D map with the least amount of error. In this whole paper we

basically focus on the basics of SLAM algorithm and how kalman filters are using

in this algorithm. So in the near future we will try to implement the whole

project using a real life device like kinect.

Chapter 6

Conclusion

We began our discussion in the first chapter by establishing what the SLAM

problem is on an intuitive level, and by discussing what a solution to the SLAM

problem would accomplish. In short, the SLAM problem is tough to solve or

even understand fully, but the closer we get to solving it the more we open the

door to a truly autonomous robot. To better understand the SLAM problem, we

first broke the SLAM problem down into the component problems (localization

and mapping on their own), and we discovered each could be solved without too

much trouble. The problem is, in order to localize we need to start with an error

free map, and to map we need to be able to localize. This is what motivated us

to consider the first solution to the SLAM problem, the Kalman Filter.

In the Kalman Filter we found a solution that could take advantage of all

available data statistically minimize the total squared error in our state

prediction. The KF accomplishes this task for us by maintaining a state

prediction and a covariance matrix containing a confidence value for every binary

relationship in the environment. We noticed the KF specified how each

observation could be used to update all feature predictions, and all covariance

matrix values. Also, we noticed that the state prediction and covariance matrix

had a fixed size independent of the number of iterations of the filter.

Consequently, the KF allows us to map for as long as we want without increasing

the time to run each iteration. It is safe to say that if there are approximately

200 features we wish to map, a Kalman Filter will be the correct method to use.

It should also be noted that the Kalman Filter theory was not simply accepted

at face value. It was rigorously proved, thus allowing for strong conceptual

understanding. Also, the Kalman Filter was applied to SLAM in a somewhat

different manner than it had been by former Trinity projects. A similar project

28

Chapter 6. Conclusion 29

was accomplished in 2010 as discussed in [1]. Many concepts were learned and

borrowed from this project. However, the program was written slightly

differently, and one particular fault in the previous project was addressed. The

previous project required that all of the 25 landmarks be in sight at all time.

The methods described in this project allow for landmarks to go unobserved and

not disturb the estimates of re observed landmarks. Nor do the estimates of the

re observed landmarks affect the non re observed landmarks.

our proposed methodology shows how to detect an object using the very versatile

and efficient device like Kinect. We hope that our algorithm can be implemented

accordingly and we can make the 3D map with the least amount of error. In this

whole paper we basically focus on the basics of SLAM algorithm and how

kalman filters are using in this algorithm. So in the near future we will try to

implement the whole project using a real life device like kinect.

Chapter 7

Simulation Code

using System;

using System.Collections.Generic;

using System.Linq;

using System.Text;

using System.Windows;

using System.Windows.Controls;

using System.Windows.Data;

using System.Windows.Documents;

using System.Windows.Input;

using System.Windows.Media;

using System.Windows.Media.Imaging;

using System.Windows.Navigation;

using System.Windows.Shapes;

using Microsoft.Kinect;

using System.IO;

namespace WpfApplication1

{

public partial class MainWindow : Window

{

int someValue = 0;

short[] rawDepthData;

const float MaxDepthDistance = 4095; // max value returned

const float MinDepthDistance = 850; // min value returned

const float MaxDepthDistanceOffset = MaxDepthDistance - MinDepthDistance;

KinectSensor _sensor;

BitmapSource image;

BitmapSource imgFrame;

public MainWindow ()

{

InitializeComponent ();

}

private void image1_ImageFailed(object sender , ExceptionRoutedEventArgs e)

{

}

30

Chapter 7. Simulation Code 31

private void Window_Loaded(object sender , RoutedEventArgs e)

{

if (KinectSensor.KinectSensors.Count > 0)

{

_sensor = KinectSensor.KinectSensors [0];

if (_sensor.Status == KinectStatus.Connected)

{

_sensor.DepthStream.Enable ();

_sensor.ColorStream.Enable ();

_sensor.AllFramesReady += new EventHandler <AllFramesReadyEventArgs >(_sensor_AllFramesReady);

_sensor.Start ();

}

}

}

void _sensor_AllFramesReady(object sender , AllFramesReadyEventArgs e)

{

using (DepthImageFrame depthFrame = e.OpenDepthImageFrame ())

{

if (depthFrame == null)

{

return;

}

byte[] pixels = GenerateColoredBytes(depthFrame);

int stride = depthFrame.Width * 4;

image = BitmapSource.Create(depthFrame.Width , depthFrame.Height ,

96, 96, PixelFormats.Bgr32 , null , pixels , stride);

image1.Source = image;

}

using (ColorImageFrame colorFrame = e.OpenColorImageFrame ())

{

if (colorFrame == null)

{

return;

}

byte[] pixels = new byte[colorFrame.PixelDataLength];

colorFrame.CopyPixelDataTo(pixels);

int stride = colorFrame.Width * 4;

imgFrame = BitmapSource.Create(colorFrame.Width , colorFrame.Height ,

96, 96, PixelFormats.Bgr32 , null , pixels , stride);

image2.Source = imgFrame;

}

}

void StopKinect(KinectSensor sensor)

{

if (sensor != null)

Chapter 7. Simulation Code 32

{

sensor.Stop ();

sensor.AudioSource.Stop ();

}

}

private void Window_Closing(object sender , System.ComponentModel.CancelEventArgs e)

{

StopKinect(_sensor);

}

private byte[] GenerateColoredBytes(DepthImageFrame depthFrame)

{

//get the raw data from kinect with the depth for every pixel

rawDepthData = new short[depthFrame.PixelDataLength];

someValue = depthFrame.PixelDataLength;

depthFrame.CopyPixelDataTo(rawDepthData);

//use depthFrame to create the image to display on-screen

// depthFrame contains color information for all pixels in image

// Height x Width x 4 (Red , Green , Blue , empty byte)

Byte[] pixels = new byte[depthFrame.Height * depthFrame.Width * 4];

//Bgr32 - Blue , Green , Red , empty byte

// Bgra32 - Blue , Green , Red , transparency

//You must set transparency for Bgra as .NET defaults a byte to 0 = fully transparent

// hardcoded locations to Blue , Green , Red (BGR) index positions

const int BlueIndex = 0;

const int GreenIndex = 1;

const int RedIndex = 2;

someValue = rawDepthData.Length;

//loop through all distances

//pick a RGB color based on distance

for (int depthIndex = 0, colorIndex = 0;

depthIndex < rawDepthData.Length && colorIndex < pixels.Length;

depthIndex ++, colorIndex += 4)

{

//gets the depth value

int depth = rawDepthData[depthIndex] >> DepthImageFrame.PlayerIndexBitmaskWidth;

if (depth < MinDepthDistance && depth !=-1)

{

pixels[colorIndex + BlueIndex] = 178;

pixels[colorIndex + GreenIndex] = 190;

pixels[colorIndex + RedIndex] = 181;

}

if (depth > MaxDepthDistance)

{

pixels[colorIndex + BlueIndex] = 178;

pixels[colorIndex + GreenIndex] = 190;

pixels[colorIndex + RedIndex] = 181;

Chapter 7. Simulation Code 33

}

if (depth == -1)

{

pixels[colorIndex + BlueIndex] = 178;

pixels[colorIndex + GreenIndex] = 190;

pixels[colorIndex + RedIndex] = 181;

}

if (depth >MinDepthDistance && depth < MinDepthDistance +1000)

{

pixels[colorIndex + BlueIndex] = 0;

pixels[colorIndex + GreenIndex] = 0;

pixels[colorIndex + RedIndex] = 255;

}

}

return pixels;

}

private void image1_MouseMove(object sender , MouseEventArgs e)

{

double i = e.GetPosition(image1).X;

double j = e.GetPosition(image1).Y;

if (i > 640 || j > 480 || i<0 || j<0)

return;

label1.Content = String.Format (" distance at ({0}, {1}) is {2} millimetres .",

i, j, rawDepthData [640 * (int)Math.Floor(j) +

(int)Math.Floor(i) - 1] >> DepthImageFrame.PlayerIndexBitmaskWidth);

}

private void button1_Click(object sender , RoutedEventArgs e)

{

using(TextWriter tw = new StreamWriter(textBox1.Text))

{

foreach(short val in rawDepthData)

{

tw.WriteLine(val >> DepthImageFrame.PlayerIndexBitmaskWidth);

}

tw.Flush ();

tw.Close ();

}

FileStream stream = new FileStream(textBox1.Text + "_depth" + ".png", FileMode.Create);

BitmapEncoder encoder = new PngBitmapEncoder ();

encoder.Frames.Add(BitmapFrame.Create(image));

encoder.Save(stream);

}

private void button2_Click(object sender , RoutedEventArgs e)

{

FileStream stream = new FileStream(textBox1.Text + "_color" + ".png", FileMode.Create);

BitmapEncoder encoder = new PngBitmapEncoder ();

encoder.Frames.Add(BitmapFrame.Create(imgFrame));

encoder.Save(stream);

Chapter 7. Simulation Code 34

}

private void button3_Click(object sender , RoutedEventArgs e)

{

/* TimerCallback callBack = new TimerCallback(OnTick);

m_Timer = new Timer(callBack , null , 0, 2500);

/*timer = new Timer (1000);

timer.Elapsed += new ElapsedEventHandler(timer_Elapsed);

timer.Enabled = true;

timer.Start ();*/

}

}

}

Chapter 8

Reference

• R. C. Smith and P. Cheeseman. On the representation and estimation of

Spatial uncertainty. Int. J. of Robotics Research, 1986.

• H. Durrant-Whyte, Tim Bailey. Simultaneous Localisation and

Mapping(SLAM):Part I The Essential Algorithms.

• S. B. Willimas, G. Dissanauake, H. Durrant-Whyte. An Efficient Approach

to the Simultaneous Localisation and Mapping Problem. Australia, 2006.

• J.A. Castellanos, J.M.M. Montiel, J. Neira, and J.D. Tar-dos. Sensor

in?uence in the performance of simultaneous mo-bile robot localization and

map building. In P. Corke and J. Trevelyan, editors, Experimental

Robotics IV, pages 287-296. Springer-Verlag, 2000.

• M.W.M.G. Dissanayake, P. Newman, H.F. Durrant-Whyte, S. Clark, and

M. Csorba. An experimental and theoreticalinvestigation into simultaneous

localisation and map building.Experimental Robotics IV, pages 265-274,

2000.

• H.J.S. Feder, J.J. Leonard, and C.M. Smith. Adaptive mo-bile robot

navigation and mapping. International Journal of Robotics Research,

Special Issue on Field and Service Robotics, 18(7):650-668, 1999

• J.J. Leonard and H.J.S. Feder. A computationally e?cient method for

large-scale concurrent mapping and localization. In Proc. Ninth

International Symposium on Robotics Research, pages 169-176.

International Foundation of Robotics Research, 1999

35

Chapter 8. Reference 36

• P. Newman. On The Structure and Solution of the Simultaneous

Localisation and Map Building Problem. PhD thesis, University of Sydney,

Australian Centre for Field Robotics, 1999.

• S. Thrun, D. Fox, and W. Burgard. A probabilistic approach to concurrent

mapping and localization for mobile robots. Machine Learning and

Autonomous Robots (joint issue), 1998.

• S.B. Williams, G. Dissanayake, and H.F. Durrant-Whyte. To-wards

terrain-aided navigation for underwater robotics. Ad-vanced Robotics,

15(5):533-550, 2001.

• M. Montemerlo, S. Thrun, D. Koller, B. Wegbreit. FastSLAM 2.0: An

Improved Particle Filtering Algorithm for Simultaneous Localization and

Mapping that Provably Converges.

• G. Dissanayake, S. Huang, Z. Wang, R. Ranashinghe. A Review of Recent

Developments in Simultaneous Localization and Mapping. Sri Lanka,2011.

• M. Montemerlo, S. Thrun, D. Koller, B. Wegbreit. FastSLAM: A Factored

Solution to the Simultaneous Localization and Mapping Problem.

• G. Hu, S. HuANG, l. Zhao, A. Alempijevic, G. Dissanayake. A Robust

RGB-D SLAM Algorithm. Int. Con. On Intelligent Robotics and Systems,

2012.

• A. T. Norton, A. R. McCook. Implementation of Simultaneous Localisation

and mapping algorithm in an Autonomous Robot.2012

• J. E. Guivant and E. M. Nebot, ”Optimization of the simultaneous

localization and map building (SLAM) algorithm for real time

implemen-tation,” IEEE Transactions on Robotics and Automation,

17(3):242-257, 2001.

	Declaration of Authorship
	Abstract
	Acknowledgements
	List of Figures
	1 Introduction
	1.1 toBackground
	1.2 toApplication
	1.3 toHistory
	1.4 toMotivation

	2 Literature Review
	2.1 toThe SLAM Problem
	2.2 toThe Probabilistic SLAM
	2.3 toSteps of SLAM Implementation
	2.4 toKalman Filter
	2.5 toKalman Filter and SLAM

	3 Problem
	4 Proposed Methodology
	4.1 toOur Approach
	4.2 toWhy Kinect
	4.3 toImplmentation
	4.4 toKinds of Landmarks we used in our implementation
	4.5 toImage Capturing Procedure
	4.6 toObtaining the Heights

	5 Evaluation and Future Work
	5.1 toEvaluation
	5.2 toFuture Work

	6 Conclusion
	7 Simulation Code
	8 Reference

