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Abstract

DNA contains the information of structure and function of different molecules of any
living being. Short repeating patterns in a DNA sequence, called Motifs, are useful
to understand and analyze this information. Gene function, drug design etc. has
influences of motifs and can be well understand by studying motifs. Transcription
Factor Binding Sites, Regulatory elements also can be found using motifs. So motif
finding is very important in computational biology. Recent advancements in gene
expression analysis already prompt the scientists to introduce a number of motif
finding algorithms. Planted Motif Search (PMS) is one of them. It has been found as
NP-Hard problem and takes exponential time to calculate. Finding all the possible
motifs of the given input set is done by an exact algorithm. But it takes lots of time
to calculate. Approximate algorithms always take less time than exact algorithm
but do not find all the possible motifs always. We have proposed an approximate
algorithm for Planted Motif Search which at first generates all possible motif set and
use a bucketing concepts to find out the proper motifs from the whole data set. We
use two benchmark data sets of DNA sequences to perform the comparative analysis
with other approaches. Experimental results show that our bucketing approach finds
more amounts of motifs than the other approximate algorithms and takes less amount
of time for about all of the cases than exact algorithms. Most of the time, we get
above 80% of the possible motifs of the given input set.
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Chapter : Introduction
This thesis is about finding planted motifs in DNA sequences. In this chapter we
discuss about the Overview of the thesis, Definition of the problem, Motivation behind
our thesis, Scope of the thesis, Research challenge, Objectives of the thesis, Our
contribution and Organization of this book.

1.1 Overview

Cells are the basic structural, functional and biological unit of all living being. Human
being has 60 trillion cells of 320 types. Nucleus is the power house of cell where
chromosomes are present which contains DNA. DNA is self replicating material which
is the carrier of genetic information.Without sequence information encoded as DNA
none of the living being could exist. Understanding sequences is therefore important
for biological scientists. In this thesis, we study different algorithms for the Motif
Discovery Problem and propose an efficient algorithm for this purpose.

A DNA molecule consists of two anti-parallel chains of four types of nucleotides form-
ing a double helix. These nucleotides are - Adenine (A), Cytosine (C), Guanine (G)
and Thymine (T). A single strand of this double helix DNA can be expressed as a
string over the alphabet

∑
= {A,C,G, T}. Proteins which are special sequence of nu-

cleotides that bind to DNA in a specific manner is called Transcription Factor and this
sequence of nucleotides are called Binding Motifs[1]. Motif Discovery Problem arises
when DNA contains instances of binding motifs and they are unknown. Example of
Binding Motif :

GGCTGCACACGTGTATTGC...ACGATGTCTCGC
ATCGCATCACGTGACCAGT...GACATGGACGGC
TCGCACGTGGTGGTACAGT...AACATGACTAAA
CGTTAGGACCATCACGTGA...ACAATGAGAGCG
TAGCCCACGTGGATCTTGT...AGAATGGCCTAT

Here, “CACGT” is repeated in all the sequences. “CACGT” is one of the motif for
these given DNA sequences.

1.2 Problem Statement

Finding repeating patterns in DNA sequences for a given length considering a given
number of maximum mismatch.

The problem statement means we need to find (l, d) motifs from a given set of DNA
sequences where,

l = length of motifs needed to be discovered
d = number of maximum mismatch considerable for being a motif
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n = number of DNA sequences in the input Data set
m = length of each DNA sequence in the input Data set

Motif Discovery Problem is illustrated below with a sample dataset:
TTACGTACGAATCGAC →mismatch with “AATCG” = 0
ATTCGGTACGTAGAAT →mismatch with “AATCG”= 1
CTTAGGCTGCTATAGT →mismatch with “AATCG” = 2
GTACTGACTCGCTAGC →mismatch with “AATCG” = 1


Here “AATCG” can be (5,2) motif for this Data set as in every DNA sequence there
are sub sequences of length 5 having maximum mismatch 2 with “AATCG”.

1.3 Motivation & Scopes

In biology, sequence motifs are short sequence patterns, usually with fixed lengths,
that represent many features of DNA, RNA, and protein molecules. Sequence motifs
can represent transcription factor binding sites for DNA, splice junctions for RNA, and
binding domains for proteins. Motifs helps to find similarities between different DNA
samples by assisting in Sequence Alignment. Analysis of mutation in genomes, disease
detection and drug designing requires the assistance of sequence motifs. Thus, discov-
ering sequence motifs can lead to a better understanding of transcriptional regulation,
mRNA splicing, and the formation of protein complexes. Furthermore, protein motifs
can represent the active sites of enzymes or regions involved in protein structure and
stability. Motif discovery is an important computational problem because it allows
the discovery of patterns in biological sequences in order to better understand the
structure and function of the molecules the sequences represent. Especially, identify-
ing regulatory elements, especially the binding sites in DNA for transcription factor, is
important to understand the mechanisms that regulate gene expression. These DNA
motif patterns are usually fairly short (5-20 base pairs long) and is known to recur
in different genes or several times within a gene [2]. A DNA sequence can have zero,
one, or multiple copies of a motif. In addition to these more common forms DNA
motifs, there are also palindromic motifs (sub sequence that is exactly the same as its
own reverse complement) and gapped motifs (two smaller conserved sites separated
by a gap) [3] . The high diversity and variability of motifs make them very difficult
to identify.

A large number of algorithms for finding DNA motifs have been developed. These
algorithms mostly detect overrepresented motifs and conserved motifs that might be
good candidates for being transcription factor binding sites. Algorithms that detect
overrepresented motifs deduce motifs by considering the regulatory region (promoter)
of several co-regulated or co-expressed genes. Co-regulated genes are known to share
some similarities in their regulatory mechanism, possibly at transcriptional level, so
their promoter regions might contain some common motifs that are binding sites for
transcription factors. Thus, the way to detect these regulatory elements is to search

2



for statistically overrepresented motifs in the promoter region of such a set of co-
expressed genes. However, algorithms that detect overrepresented motifs perform not
as well in higher organisms. To overcome this, some algorithms consider conserved
motifs from orthologous species. Since selective pressure causes functional sequences
to evolve slower than non-functional sequences, well-conserved sites represent possible
candidates for DNA motifs. Recent algorithms have also combined the two approaches
to achieve improvement in motif finding. As Motif Discovery is an NP-Hard problem
and it takes exponential time to discover motifs there is a scope for reducing run-
time. Apart from this, large length motif discovery is also a good area to research as
finding large length motif still a big challenge as it takes time up to several days for
computation.

1.4 Research Challenges

In this large-scale genome sequencing era the main bottleneck to progress in molec-
ular biology is data analysis. The prime objective of this thesis is the investigation
of one kind of biological information contained in sequenced data: the motif and its
discovery from a set of DNA sequences. A motif is roughly a mathematical repre-
sentation underlying a transcription factor binding site.More precisely, the main goal
of this thesis is the proposal of efficient and effective algorithms for motif discovery,
capable of dealing with the enormous amount of data coming from the Bioinformatics
community.

As the size of data is huge, we need to design an algorithm such that it can deal with
different types of data from different species. It takes exponential time to find motifs.
This is one of the major drawback designing any algorithm for this problem. There is
a trade off between time complexity and efficiency. For finding all the motifs exist in
the data set it takes huge time. On the contrary, run time can be reduced by reducing
the efficiency, i.e, finding less amount of motifs than existing motifs. Finding large
length motif is also a big challenge in motif discovery as it will take huge amount of
time as well as space. As huge amount of data needs to be manipulated and number of
motifs for any DNA sequence is huge it consumes a lot of memory. Reducing memory
consumption is an important challenge in Motif Discovery Problem.

1.5 Research Objectives

Objective of this thesis is to propose an approximate algorithm for planted motif
search problem. As this problem takes exponential time, reducing execution time is
the prime objective. Since we propose an approximate algorithm finding as much
motif as possible is an issue. We tried to solve the problem for different data samples.
Finding motif of different length and mismatch is one of the major concern. Though
the data samples of DNA are huge, reducing memory consumption during execution
is also our objective.
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1.6 Research Contribution

We proposed an algorithm introducing hashing which reduces execution time and can
find around 80% motifs of the given samples. Then we improved our algorithm for
finding large length motifs and reducing execution time. Our improved algorithm can
find upto 30 length motifs with at most 10 mismatches.

1.7 Thesis Organization

In Chapter 1 we have discussed our study in a precise and concise manner. Chapter
2 deals with the necessary literature review for our study and their development so
far. In Chapter 3 we have stated the skeleton of our proposed method, proposed
algorithm and also the flowchart to provide a detail insight of the working procedure
of our proposed method Randomly Projected Possible Motif Discovery (RPPMD)
using Motif prediction and Bucketing. Chapter 4 shows the results and comparative
analysis of successful implementation of our proposed method. The final segment of
this study contains all the references and credits used.
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Chapter : Literature Review
We studied literature related to DNA motif finding problem. In this chapter we
discuss about different algorithms proposed in those literature.

2.1 Approaches

Many version of motif search problem has been researched so far. Motifs search prob-
lem can be different types –Simple Motif Search (SMS)[4], Edit distance based Motif
Search (EMS)[5], Planted Motif Search (PMS)[6, 7, 8].

Motif Search

Simple
Motif Search

Edit Distance Based
Motif Search

Planted
Motif Search

Exact
Algorithm

Approximate
Algorithm

Figure 1: Different Approaches of Motif Search

1. Simple Motif Search (SMS)[4]:
In simple motif search, there is only one input – length of the motif (l). All the

motifs of length 1 to l are searched. All the given sequences are checked if they contain
any motif of length 1 to l. In this case, maximum number of mismatch considerable
is half of length of the motif, i.e., l/2.

2. Edit distance based Motif Search (EMS)[5]:
In EMS, there are three inputs – length of motif (l), maximum number of mis-

match considerable (d), and a threshold value (q). If any subsequence of length l has
occurrences in at least q sequences out of n sequences ( n = total number of given
sequences) with maximum d number of mismatches, then it will be outputted as a
motif.

3. Planted Motif Search (PMS)[6, 7, 8]:
Planted motif search requires two input value – length of motif (l) and maximum

number of mismatch considerable (d). That is why it is also called (l, d)-planted motif
search problem. All the sequences are checked one by one and if any subsequence is
present in all sequences having maximum d number of mismatch then it will be a
motif of the given data set.
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We have explored further in Planted Motif Search (PMS). There are two types of
Planted Motif Search (PMS) algorithm-

• Exact Algorithm

• Approximate Algorithm

Exact Algorithm:
Exact algorithms find out all the possible motifs in the given data set. Finding

out all possible motifs is a very complex and time consuming problem. It takes huge
amount of time, even days, for finding out the motif of relatively large length motif.
But it guarantees that it will find out all possible motifs.

Approximate Algorithm:
Approximate algorithms give emphasis on time. They find out the expected motifs

in very efficient time with respect to exact algorithm. But they do not find all possible
motifs all the time.

2.2 Exact Algorithms

Some of the Exact algorithms for motif discovery are
PMS1[4], PMS2[4], PMS3[4], PMS4[9], Winnower[10], SP-Star[10], RISOTTO[11],

VOTING[12], Pampa[13], PMSPrune[14], PMS5[15], PMS6[16], PMS8[7], qPMS7[17],
qPMS9[18].

2.2.1 PMS1

Rajasekaran, Balla, and Huang (2005) give a detailed description of algorithm PMS1
in [4]. From each of the n input sequences (S1, S2, . . . , Sn) all possible l −mers are
generated; let Ci contain every l − mer of Si. For every l − mer uCi , all possible
l − mers v are generated such that v is at a Hamming distance of at most d from
u. Such l-mers v are individually termed neighbors of u and are members of the
neighborhood of u. Let Li contain the collection of neighborhoods of all l −mers u
from Ci. All sets Li are alphabetically sorted and duplicates are eliminated. Any
l −mer that is an element of every set Li is added to the solution set M of motifs.

Using algorithm PMS1[4], any given PMSP may be solved in O
(
mn
(
l
d

)
(|
∑
| − 1)d 1

w

)
time, where w is the word length of the computer.

Consider the following simple algorithm for the planted motif problem:

• Let the input sequences be S1, S2, ......, Sn.The length of each sequence is m.
Form all possible l − mers from out of these sequences.The total number of
l −mer is less equal nm. Call this collection of l −mers C. Let the collection
of l −mers in S1 be C
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• Let u be an l −mer in C ′′. For all uC ′′ generate all the patterns v such that u
and v are at a hamming distance of d. The number of such patterns for a given
u is

(
l
d

)
3d. Thus the total number of patterns generated is m

(
l
d

)
3d. Call this

collection of l −mers C ′′.Note that C ′′ contains M , the desired output pattern
(assuming that M does not occur in any of the input sequences)

• For every pair of l−mers (u, v) with uC and vC ′′ compute the hamming distance
between u and v. Output that l−mers of C ′′ that has a neighbor (i.e., an l-mer
at a hamming distance of d) in each one of the n input sequences. The run time
of this algorithm is O(nm2

(
l
d

)
3d). If M occurs in one of the input sequences,

then this algorithm will run in time O(n2m2l).

Another equally simple algorithm considers every possible l-mer one at a time and
checks if this l − mer is the correct motif M . There are 4l possible l − mers. Let
M ′′ be one such l−mer.We can check if M ′′ = M as follows. Compute the hamming
distance between u and M ′′ for every uC. (Note that C is the collection of all possible
l-mers in the input sequences.) As a result we can check if M occurs in each input
sequence (at a hamming distance of d). Thus we can identify all the motifs of interest
in a total of O(nml4l) time.

Algorithm PMS1[4] is based on sorting and takes the following form:

• Generate all possible l −mers from out of each of the n input sequences. Let
Ci be the collection of l −mers from out of Si for 1 <= i <= n.

• For all 1 <= i <= n and for all uCi generate all l−mers v such that u and v are
at a hamming distance of d. Let the collection of l −mers corresponding to Ci
be C ′′i for 1 <= i <= n. The total number of patterns in any C ′′i is O(m

(
l
d

)
3d).

• Sort all the l−mers in every C ′′i , 1 <= i <= n and eliminate duplicates in every
C ′′i .Let Li be the resultant sorted list corresponding to C ′′i .

• Merge all the Lis (1 <= i <= n) and output the generated l−mer that occurs
in all the Lis.

2.2.2 PMS2

An improved algorithm over PMS1[4] called PMS2[4]. Let M be the planted motif.
Note that if M occurs in every input sequence, then every substring of M also occurs
in every input sequence. In particular, there are at least l− k+ 1k−mers (ford <=
k <= I) such that each of these occurs in every input sequence at a hamming distance
of at most d. Let Q be the collection of k−mers that can be formed out of M . There
are l − k + 1 k-mers in Q. Each one of these k −mers will be present in each input
sequence at a hamming distance of at most d.
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In addition, in every input sequence Si , there will be at least one position ij such
that a k −mer of Q occurs starting from ij ; another k −mer of Q occurs starting
from ij + 1; ...; yet another k −mer occurs starting from ij + l − k. We can get an
l −mer putting together these k −mers that occur starting from each such ij.

Possibly, there could be many motifs of length k that are in the positions starting
from each of ij, ij + 1, ...., ij + l–k such that all of these motifs are present in all of
the input sequences (with a hamming distance of at most d). Assume that M(ij + r)
is one motif of length k that starts from position ij + r of Si that is also present in
every input sequence,(for 0 <= r <= l−k) . If the last k−1 residues of M(ij+r+1)
(for 0 <= r <= l − k − 1), then we can obtain an l −mer from these motifs in the
obvious way. This l −mer is potentially a correct motif. Also, note that to obtain
potential motifs (of length l), it suffices to process one of the input sequences (in a
manner described above). Now we are ready to describe the improved algorithm.

There are two phases in the algorithm. In the first phase we identify all (d+c)−mers
M(d + c)(for some appropriate value c) that occur in each of the input sequences at
a hamming distance of at most d. We also collect potential l − mers (as described
above) in this phase. In the second phase we check, for each l −merM ′ collected in
the firrst phase, if M ′ is a correct answer or not. Finally we output all the correct
answers.

First we observe that the algorithm PMS1[4] can also be used for the case when we
look for a motif M that occurs in each input sequence at a hamming distance of at
most d. The second observation is that if c is large enough then there will not be many
spurious hits. A suggested value for c is the largest integer for which PMS1[4] could
be run (without exceeding the core memory of the computer and within a reasonable
amount of time).

We present more details on the two phases

Phase 1:
Solve the planted (d + c, d) − motif problem on the input sequences (with a

hamming distance of <= d, using e.g., a modified PMS1 []). Let R be the set of all
motifs found. Let Sk be one of the input sequences. (Sk could be an arbitrary input
sequence; it could be chosen randomly as well.) Find all the occurrences of all the
motifs of R in Sk (with a hamming distance of up to d). This can be done, e.g., as
follows: form all the (d+c)−mers of Sk (keeping track of the starting position of each
in Sk); For each (d+ c)−mer u ε Sk , find all the (d+ c)−mers v such that u and v
are at a hamming distance of at most d. If R′ is the collection of these (d+ c)−mers,
sort R and R′ and merge them; and figure out all the occurrences of interest.

Let Sk be of length m. For every position i in Sk, let Li be the list of all motifs of
R that are in Sk (with a hamming distance of <= d) starting from position i. Let A
be the l − mer of Sk that occurs starting from position i. Let M1 be a member of
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Li. If M2 is a member of Li + 1 − (d + c) such that the last 2(d + c) − l characters
of M1 are the same as the first 2(d + c) − l characters of M2,then we could get an
l−mer B by appending the last l− (d+ c) residues of M2 to M1 (at the end). If the
hamming distance between A and B is d, then B is retained as a candidate for the
correct motif. We gather all such candidates and check if any of these candidates are
correct motifs. Details are given below.

Phase 1:
for i := 1 to m− l + 1
for every u ε Li

for every v ε Li+l−(d+c)
Let the l − mer of Sk starting from position i be A. If the last 2(d + c) − l

residues of u are the same as the first 2(d+ c)–l residues of v, then form an l−mer B
by appending the last l− (d+ c) residues of v to u. If the hamming distance between
A and B is d, then add B to the list C of candidates.

Phase 2:
for every v ε C
Check if v is a correct motif in O(nml) time

For any node u of L+ i there can be at most 4l−(d+c) candidate motifs. Thus the time

needed to get all the candidate motif is O
(∑m−l+1

i=1 |Li| 4l−(d+c)
l
)

.

Thus we will get our expected motif. PMS2 [4] is better than PMS1[4].

2.2.3 PMS3

A third algorithm called PMS3 [4] has been given which is more memory saving than
PMS2 [4]. This algorithm enables one to handle large values of d. Let d′ = [d/2].
Let M be the motif interest with |M | = l = 2l′ for some integer l′. let M1 refer to
the first half of M and M2 to the second half. We know that M occurs in every input
sequence. Let S = S1, S2, ...., Sm be an arbitrary input sequence.

Let the occurrence of M (with a hamming distance of d) in S start at position i. Let
S ′ = Si, Si+1, ...., Si+l′−1andS

′′ = S ′i+l, ...., Si+l−1.

Then, clearly, either

• The hamming distance between M1 and S ′ is at most d′ or

• The hamming distance between M2 and S” is at most d′

Also, note that in every input sequence either M1 occurs with a hamming distance
of at most d′ or M2 occurs with a hamming distance of at most d′ As a result, in at
least t′ sequences (where t′ = [t/2]) either M1 occurs with a hamming distance of at
most d′ or M2 occurs with a hamming distance of at most d′. PMS3 [4] exploits these
observations.
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Memory Saving:

The way PMS1[4] is described, we first form all possible l −mers from out of all the
input sequences, generate all relevant neighbors of these l−mers, sort and merge all
of them to identify the generated l−mers found in all the sequences. We can modify
the algorithm as follows so as to reduce the memory used.

For PMS1 [4] we generate all possible l −mers from out of the first input sequences
S1. But there exists some extension in this approach.

Extensions:

We consider two variants in this section.

Problem 1(a). Input is n sequences each of length m. The problem is to identify a
motif M of length l. It is given that each input sequence has a sub string of length l
such that the hamming distance between this substring and M is at most d.

Theorem:

Problem 1(a) can be solved in timeO(nm
∑d

i=0

(
l
i

)
3i l
w

) then this run time isO(nm
(
l
d

)
3d l

w
).

Proof:An algorithm similar to PMS1[4] can be devised.

• Generate all possible l −mers from out of each of the n input sequences. Let
Ci be the collection of l −mers from out of Si for 1 <= i <= n.

• For all 1 <= i <= n and for all u ε Ci generate all l − mers v such that u
and v are at a hamming distance of at most d . Let the collection of l −mers
corresponding to Ci be C ′i for 1 <= i <= n. The total number of patterns in
any C ′i is O(

∑d
i=0

(
l
i

)
3i).

• Sort all the l −mers in every C ′i and eliminate duplicates, 1 <= i <= n. Let
Li be the resultant sorted list corresponding to C ′i.

• Merge all the Lis(1 <= i <= n) and output the generated (in step 2) l −mer
that occurs in all the Lis.

Problem 1(b).Input are n sequences each of length m. The problem is to find all
motifs M of length l. A motif M should be output if it occurs in at least εn of the
input sequences at a hamming distance of d. Here ε is a fraction specified as a part
of the input.

Theorem:

Problem 1(b) can be solved in time O(nm
(
l
d

)
3d l

w
).

Proof:

The algorithm to be used is the same as PMS1 [4]. The only difference is that step 4
now becomes:” Merge all the Lis (1 <= i <= n) and output the generated (in step
2) l −mers that occur in at least εn of the Lis ” . The run time remains the same
asymptotically.

One could also refine Problem 1(b) to look for motifs that occur at a hamming distance
of at most d.
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2.2.4 PMSPrune

This algorithm introduces a tree structure for the motif candidates and uses a branch-
and-bound algorithm to reduce the search space. Let S = s1, s2, . . . , sn be a given set
of input strings. PMSprune[14] follows the same strategy as PMS0: For every l−mer
y in S1 it generates the set of neighbors of y and, for each of them, checks whether
this is a motif or not. Some key steps in the algorithm are:

• It generates the d−neighborhood of every l−mer y in s1 using a tree of height
d. The root of this tree will have y. Every l − mer that is at a distance of 1
from y will be a node in the tree that is at a distance of 1 from the root; every
l −mer that is at a distance of 2 from y will be a node in the tree that is at a
distance of 2 from the root; and so on.When a node in this tree is visited, check
if the corresponding l-mer is an (l, d)-motif. I.e., if the l − mer is x, check if
dH(x, S)d. If so, output this l−mer. In any case move to the next node in the
tree. This tree is explored in a depth first manner.

• If each node in the tree is visited for each l −mer Y in S1, then the run time
of PMSPrune[14] will be at least as much as that of PMS0. PMSPrune[14] uses
some pruning conditions to prune sub trees that cannot possibly have any motifs
in them.

• For an l − mer x, which corresponds to a node in a sub tree of height h, the
algorithm uses the value of dH(x, S) and h to prune the descendants of x.

• PMSPrune[14] calculates the value of dH(x, S) for the nodes (x) in the tree in
an incremental way, taking into account the way in which the neighborhood is
generated.

Overall Process:

The overall process of PMSPrune[14] is given below:

Figure 1: Overall process of PMSPrune[14]
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2.2.5 PMS5

PMS5 [15] is an extension of PMS0[19]. If S = {S1, S2, . . . , Sn} is a set of strings (not
necessarily of the same length). Let M l

d(S) denote the (l, d)-motifs present in S. Let
S ′′ = S2, S3, . . . , Sn. PMS5[15] computes the (l, d)-motifs of S as

∐
L∈S1

M l
d(L, S

′).
Here L refers to an l −mer.

One of the key steps in the algorithm is a subroutine to compute the common d-
neighborhood of three l −mers. Let x, y, z be any three l −mers. To compute Bd

(x, y, z), PMS5 represents Bd(x) as a tree Td(x). Each node in this tree represents an
l −mer in Bd(x). The root of Td(x) stands for the l −mer x. Td(x) has a depth of
d. Nodes of Td(x) are traversed in a depth-first manner. The node and the l −mer
it represents may be used.

Interchangeably While the tree is traversed, any node t will be output if t is in
Bd(y) ∩ Bd(z). When any node t is visited, check if there is a descendant ′′ of t
such that ′′ is in Bd(y) ∩ Bd(z). Prune the sub tree rooted at t if there is no such
descendant. In PMS5[15], the problem of checking if t has any descendant that is in
Bd(y)∩Bd(z) is formulated as an integer linear program (ILP) on ten variables. This
ILP is solved in O(1) time. Solving the ILP instances is done as a prepossessing step
and the results are stored in a look up table.

2.2.6 WINNOWER

WINNOWER [10] is a graph-theoretic approach which represents a motif as a large
clique (complete sub graph) and attempt to solve the clique problem efficiently by
filtering.

Problem Reduction:
Given a set of sequences S = S1, S2, . . . . . . ., Sm and suppose we are looking for a

(l, d)-motif. We construct a graph G as follows:

• Every vertex in G corresponds to a length-l word in S .

• Consider two words x and y appear in two different sequences in S . x and y are
connected by an edge if their hamming distance is at most 2d. 2d is chosen to
cater for all possible (l, d)-motif, that ”sits” in the middle in terms of distance
between the two vertex that has distance 2d.

• Note that G is a m− partite graph. An example is shown in Figure 2.

Notice that the problem of finding a (l, d)-motif corresponds to finding a clique
of size m, where m is the number of strings. Thus, the problem of finding motifs is
reduced to the problem of finding large cliques. However, finding cliques is a NP-
complete problem. Therefore WINNOWER[10] proposes a method to filter edges
which definitely do not belong to any large cliques.
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Figure 2: WINNOWER[10] M-partite Graph

Definitions

• A vertex v is a neighbor of a clique C if it is connected to every vertex in this
clique (i.e., C ∪ {v} is a clique).

• A clique is called extendable if it has at least one neighbor in every part of the
multipartite graph G.

• An edge is called spurious if it does not belong to any extendable clique of size
k.

WINNOWER[10] is an iterative algorithm that converges to a collection of extendable
cliques by filtering out spurious edges.

Algorithm:

1. Construct a graph G by:

• Consider two words x and y appear in two different sequences in S . x and
y are connected by an edge if their hamming distance is at most 2d.

2. Filtering of spurious edges:

• Filtering weak vertices:

Vertices that are not supported by a neighbor in every part of G are
filtered out.

• Filtering weak edges:

Unsupported edges are removed.

• Filtering weak triangles.

• If the computation allow filter more.
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Example:
An example of finding cliques and removing spurious edges is shown in the follow-

ing two figures.

Figure 3: Clique in a String

Figure 4: After Filtering Spurious Signal

2.2.7 SP-STAR

SP-STAR [10] is proposed by Pevzner and Sze. First, it chooses a suitable scoring
function to access the goodness of a motif. Then, for each l −mer appearing in the
sample, find its best instance in each sequence and collect these instances together to
form an initial motif. Employ a local improvement heuristic to improve each initial
motif.

14



Definition:
Consider a set of length-l sequences w1, w2, ...., wn . Define,

SPscore(w1, w2, ...., wn) =
∑

i,j δ(wi, wj)

Algorithm:

• Let W be the set of length-l words in all n sequences S1, S2...., Sn

• For any length-l word w ∈ W :

1. Find the best match w1, w2, ......, wn in each of the n sequence .

2. Get the consensus word, by counting the most frequently appearing word
in each column. Let w be the consensus word.

3. Repeat steps 1 and 2 until SPscore can not be further improved.

Example:

• Given a string v , locate the string wi , which is closest to v in each sequence
which is shown below.

• Use the most frequent letter in each position to define a new majority string.

• Repeat until there are no more changes in the string v.
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The main reason why SP score is chosen over STAR is that it is able to give a better
initial estimate of the goodness of a string. For subtle signals, typical distance between
signal instances is less than or equal to 2d, while typical distance between two random
best instances from v can be as large as 4d, where d is the number of mismatches, as
shown in the following figure.

Figure 5: Distances between instances

2.3 Approximate Algorithms

Some of the approximate algorithms for motif discovery are - Gibb’s Sampling[20],
MEME[21], Random Projection[22], PhyloCon[23], Pattern branching[8], MEME:ZOOPS[24],
MITRA[25], PhyME [26], Motion-Motif Graphs[27], PRIORITY- DC[28], MEME:ZOOP-
DC[29], RPB-DC[30].

2.3.1 GIBB’S SAMPLING

A stochastic (Monte Carlo) algorithm for motif finding. Works by ’stumbling’ onto
a few motif instances, which bias the weight matrix, which causes it to sample more
motif instances, which biases the weight matrix more until convergence. Not guaran-
teed to converge to same motif every time run several times, compare results. Works
for protein, DNA, RNA motifs.

The Gibbs sampler [20] uses a randomized approach to iteratively improve a motif.
Initially, a motif, represented as a PWM, is generated by selecting one random length
l segment (substring) from each of the m sequences involved. Then the Gibbs sampler
will repeatedly perform a predictive update step and a sampling step to iteratively
improve the motif.

Predictive update step: In the predictive update step, one of the selected length l
segment, chosen either at random or by some predetermined order, is removed from
the selection.

Sampling step: Suppose that the removed segment is from sequence Si. In the sam-
pling step, we add a length l segment from Si to the list of selected segments, which
we will describe in more detail.
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Firstly, from the remaining m - 1 selected segments, we compute the PWMs for
the motif model θ(whichisusedtorepresentthemotif)aswellasthebackgroundmodelθ0
(which is used to represent the background distribution of the sequences). The PWM
for θ0 will be computed based on the nucleotides in the sequences that are outside the
selected segments, and every column of the PWM for 0 will be the same.

Let Si, j be the length l segment at position j in Si . We define Wθ to be the PWM
for the model θandWθ(j) to be the value of the nucleotide at position j in Wθ. Also,
we define

P (Si,j|θ) =
∏l

k=1Wθ(Si,j[k], k]),

And P (Si,j|θ0)is defined analogously.

For each segment Si,j , we compute a weight Ai,j , defined to be

Ai,j =
P (Si,j |θ)
P (Si,j |θ0)

The weight Ai,j , after normalization, gives the probability of choosing segment Si,j
for addition into the set of selected segments.

When using the Gibbs sampler[20], different run will give different results .Normally
the motif is chosen from the best out of a number of runs. Also there are various
variants of the standard Gibbs sampling approach. These include the Gibbs motif
sampler AlingACE and BioProspector.

Algorithm: Given N sequences of length L and desired motif width W:

1. Choose a starting position in each sequence at random:

A1 in Seq 1, A2 in Seq 2, . . . , An in Seq N

2. Choose a sequence at random from the set (for example Seq 1).

3. Make a weight matrix model of width W from the sites in all sequences except
the one chosen in step 2.

4. Assign a probability to each position in Seq 1 using the weight matrix model
constructed in step 3:

p = p1, p2, p3, . . . , pL−W+1

5. Sample a starting position in Seq 1 based on this probability distribution and
set a1 to this new position.

6. Choose a sequence at random from the set (for example Seq 2).

7. Make a weight matrix model of width W from the sites in all sequences except
the one chosen in step 6.
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8. Assign a probability to each position in Seq 2 using the weight matrix model
constructed in step 7.

9. Sample a starting position in Seq 2 based on this dist.

10. Repeat until convergence (of positions or motif model)

2.3.2 Random Projection

Introduced by Buhler and Tompa (2001). It’s an approximate approach for finding
motif. Suppose we have a planted (l, d)-motif problem on t sequences ofn letters. We
randomly select k positions out of l positions. This selection is called (l, k) gapped
pattern.

For each l −mer in the data we look at its k-subset which is defined by the gapped
pattern. This subset is called projection. We use the obtained k-subset as a hash
value for the l-mer.

Given a gapped pattern, count all k-length hashes of all l −mers. We cannot avoid
collisions, since many l − mers can produce same hash. We group l − mers that
hash to the same k −mer in a set called bucket. Random sequences should have the
same bucket size for any hashed pattern. Hopefully, some buckets will be significantly
over-represented, which will mean that they represent motifs.

Lets see what parameter k should we consider. First of all, for a hash to have a
practical meaning, we need k ≤ l − d. Otherwise, we risk including mutated bases in
our hash function.

On the other hand, we want to exclude random sequences. For this we bound k from
below. Given a random sequence, calculate expected number of counts in its bucket:

E[counts] = nt
4k

Hence if k > log4n · t, then E[counts] < 1 for a random sequence.

Let P be a pattern which represents an (l, d)-motif. We define a planted bucket to be
a bucket to which P hashes.

The probability that instance of P in a single sequence hashes to h(P ) is

Prob[P → h(p)] =
(l−d

k )
( l
k)

= Phit

For k = 7 and for (l, d) = (15, 4), Phit = 0.06 and we have 20 chances to hit it. The
expected number of buckets hit by random sequences is

E[|h(P )|)] = nt
4k

+ n.Phit
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Where n ∗ Phit is a probability that expected sequence has got matched with a
bucket. This formula tells us that we will see an over-representation in some bucket.

We define a threshold S on bucket counts. Buckets with size above S will be suspects
for a planted bucket.The probability that the size of planted bucket will fail to exceed
the threshold is:

Prob|[h(P )| < S] =
∑S−1

i=0

(
n
i

)
(Phit)

i(1− Phit)n−1 = Pfail

Above value can be as large as 0.1, which clearly does not help to find the planted
bucket.

The solution is to repeat the projection m times. The probability of failing to flag the
planted bucket h(P ) after m trials is Pfail. If we agree to not be able to find motif
1% of time, take

m ≥ log(0.01)
log(Pfail)

Then 99% of time, the planted bucket gets over the threshold S at least once in m
trials.

Having identified the planted bucket we need to figure out what is the motif. The
algorithm for doing this is roughly as follows:

• Recover the locations which hash to the planted bucket.

• Construct a profile from these substrings.

• Use an iteration motif finder from this profile.

• If the consensus is an (l, d)-motif, then report.

Random projections[22] algorithm works better than other mentioned algorithms be-
cause previous work was largely based on k−mer counts. In other algorithms, every
frequent k −mer is used either in some weird graph problem or every l−mer in the
sequence is used as an iterative start point as done in WINNOWER [ ], for example.
But consecutive patterns just do not get into the twilight zone.

However, situation with real data is a bit different. In real data we have non-uniform
letter frequencies, non-independence and mismatch positions much more correlated,
since “random data” has non-random profile.
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2.3.3 RPB-DC

This method starts with random projection of the input sequences. Once the pro-
jected buckets are created and sorted according to the frequency of elements in each
bucket, each element of buckets are extended based on Position Specific Prior (PSP)
information specifically the DC priors. A popular benchmark data set for motif dis-
covery is used here.

Algorithm:

• Step 1. Take the Bucket with higher number of elements in it.

• Step 2. Take one element of the selected bucket. Here every element is a(lmin−
1)mer which is represented by two numbers - one is the starting index and
another is the sequence number.

• Step 3. Select one nucleotide alphabetically (A < C < G < T ) and extend
the selected element in step 2. Now extend all other elements in the same
bucket with this nucleotide and star counting the number of matches among
the elements of the bucket after extension. Retain the nucleotide for extension
which brings maximum number of matches and discard others.

• Step 4. If not a single match is found after extension in step 3 then it will be
counted as a mismatch.

• Step 5. Repeat Step 3 and Step 4 until the motif is extended up to lmax or
number of mismatches is greater than M or both.

• Step 6. If the extension has been stopped then check if the length of extended
motif is within the range from lmin to lmax. If yes then store it in the final list
with its length and list of indexes in the sequences where it occurred.

• Step 7. Repeat from Step 2 to Step 6 for every elements in the bucket.

• Step 8. Repeats from Step 1 to Step 7 for every other buckets with elements in
them.

This method is not only effective for its higher success rate but also very efficient be-
cause it reduces costs by avoiding comparisons of every possible motifs of a predefined
length. The buckets created by Random Projection in this method provide the po-
tential starting positions within sequences to start comparison rather than sequential
brute force method from the starting of every sequence.
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2.4 Overall Comparison

We have compared all the exact and approximate algorithms that we have studied
so far in the Table 1. PMS1[4], PMS2 [4], PMS3[4] - these three algorithm can find
motif of maximum length of 15 with mismatch 4. PMSPrune[14] can find (17, 7)
motifs and PMS5[15] can find up to (19, 7). All of these are exact algorithm. All of
these algorithms takes huge memory to execute. They all build tree and traverse the
tree in DFS manner to find the motifs.WINNOWER[10], SP-STAR[10] are also exact
algorithm.

Table 1: Comparison Among the Studied Algorithms

Algorithm
Highest Length

of MOTIF
can be found

Space
Consumption

Approximate
/Exact

PMS1[4] (15,4) Highly Consuming Exact
PMS2 [4] (15,4) Highly Consuming Exact
PMS3[4] (15,4) Highly Consuming Exact

PMSPrune[14] (17,7) Highly Consuming Exact
PMS5[15] (19,7) Highly Consuming Exact

Gibbs Sampling[20] - Consuming Approximate
WINNOWER[10] (15,4) Consuming Exact

SP-STAR[10] (15,4) Consuming Exact
Random Projection[22] (18,6) Consuming Approximate

RPB-DC[30] - Consuming Approximate

Gibbs Sampling[20], Random Projection[22] , RPB-DC[30] - these are approximate al-
gorithm. They cannot find all the motifs that is present in any data set. WINNOWER[10]
and SP-STAR[10] are pattern branched algorithms and can find up to (15, 4) motifs.
Random Projection[22] and RPB-DC[30] are based on hashing. They build some
buckets using hashing and later the find the motifs by expectaion maximization on
those buckets. These all are approximate algorithms. So, they take relatively less
memory for execution and cannot find all the motifs of the data set.
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Chapter : Proposed Method
In this chapter we proposed our algorithm with all necessary definitions and notations
for better understanding.

3.1 Notations and Definitions

In this section , some notations and definitions are introduced which will help to
describe our algorithm clearly.

Definition 1. Given a set of sequences S = S1, S2, S3, .., Sn over an alphabet set
A,T,C,G such that |Si| = m and two integer value l and d, 0 ≤ d < l < m, we define
Planted Motif Search(PMS) as to find out a subsequence x such that |x| = l and every
sequence in S has a subsequence xi such that |xi| = l and x differs from xi in at most
d places.

Definition 2. A string x having length of l is called an l −mer.
Definition 3. DH(x, y) is the number of mismatches between strings x and y over

alphabet set A,T,C,G.
DH(x, y) := number of mismatches between x and y

Definition 4.Bd(x) is the set of all neighbors of string x over alphabet set A,T,C,G.
Bd(x) := {z |DH(x, z) ≤ d}

Definition 5. Cbucket is the list of those buckets which are obtained after project-
ing all l −mers of candidate motif set along k randomly chosen positions.
Cbucket:= { CAAAA, CAAAT , . . . , CTTTT }
This given Cbucket is the list of buckets after projecting along 4 randomly chosen posi-
tion.

Definition 6. Sbucket is the list of those buckets which are obtained after projecting
all l −mers of the given input sequences set along k randomly chosen positions.
Sbucket:= { SAAAA, SAAAT , . . . , STTTT }
This given Sbucket is the list of buckets after projecting along 4 randomly chosen posi-
tion.

Definition 7. Sx is correspondent bucket of Cy , where x = y. For example, SATTG
is the correspondence bucket of CATTG .

Definition 8. Lx is the list of all l −mers in Cx .

3.2 Proposed Algorithm

The idea of our proposed method is based on following observations.
Observation 1: Bd(x) for all l − mer x in S1 of the given sequence set S =

{S1, S2, . . . , Sn} contains all possible motifs for the set S as well as some more l−mers
which are not motif for S.

Observation 2: Bucketing all the l −mers of the given set S along k randomly
chosen position, for k < l− d, will cluster all those l−mers which have no mismatch
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in those k positions in the same bucket.
From observation 1, we realize that we can build a candidate motif set for a given

input set S which contains all l−mer neighborhoods of first sequence S1. Observation
2 states that, using projection along randomly chosen k position will give us the
clusters of the input sets l −mers.

From the observations, we have proposed a new method of finding DNA planted
motif which first generates all candidate motif set and then extract original motifs.
Steps of our proposed method are shown in Figure 11 using flowchart.

Step 1 : Generate l − mers of
first sequence(candidate motifs)

Step 2 : Bucket these candidate mo-
tifs projecting at random positions

Step 3 : Find all the l −
mers of rest DNA sequences

Step 4 : Bucket these l − mers pro-
jecting at the same positions of Step 2

Step 5 : Select those buckets from
Step 2 which has threshold in Step 4

Figure 6: Steps of the proposed method

Step − 1 : Generate all l − mers from first input sequence. The planted motifs
are present in this l −mers set. Because any planted motif must be present in first
sequence with at most d mismatches. Generated l − mers set from first sequence
ensures that the output motifs are present in the set and termed as candidate motif’s
set.

Step − 2 : Cluster the l −mers from Step-1 in buckets using random projection
along k randomly chosen position where k < l− d. Then we will get some buckets of
all l −mers of candidate motif set, i.e, Cbucket.

Step − 3 : Generate a set of all l − mers of all given sequences except the first
sequence. These l−mers are the subsequences of the input sequences of length l and
their neighbors having maximum d mismatches.

Step − 4 : Project all the l − mers from Step-3 along same k positions which
positions were selected for bucketing in Step-2. Thus we will get some buckets of
l −mers of input sequences, i.e., Sbucket .

Step − 5 : Output all the l − mers contained in bucket Cbucket where its corre-
spondent Sbucket has size greater than threshold. The l − mers in those Cbucket are
the output planted motifs of length l having at most d mismatches of the given input
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sequences.

Motif := ∪∀xLx where size of Sx ≥ Sthreshold

We need to define the threshold value for the buckets of the input sets. We set
this value as the average bucket size, i.e.

Sthreshold = n(m−l+1)
4k

where, n = Total number of sequences in S
m = length of each sequence (Si)
k = randomly chosen positions

The pseudo code of our proposed Algorithm is given as follows.

Algorithm 1 Proposed Algorithm for planted motif search

1: Q ← φ
2: for each l −mer x of S1

3: Compute Bd(x)
4: Q ← Q ∪Bd(x)
5: end for
6: k = l − d− 1
7: Motif ← φ
8: for 1 to m
9: generate k random number R1, R2, . . . , Rk where R1 6= R2 6= . . . 6= Rk

10: for each l −mer y in Q
11: String sbucket = y[R1] + y[R2]+ . . . + y[Rk]
12: add y into bucket Ssbucket
13: end for
14: P ← φ
15: for 1 to 4k

16: if size of Sz ≥ Sthreshold then
17: P ← P ∪ l −mers of Cz
18: end if
19: end for
20: if Motif ← φ then
21: Motif ← P
22: else
23: Motif ← Motif ∩ P
24: end if
25:

26: end for
27:
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Example:
A sample data set is given below on which we will explain our proposed method.

Sequence 1: TAAAGCT
Sequence 2: CAAATCT
Sequence 3: TACAGAT
Sequence 4: TAATGCT

1. All the l − mers and their neighbors for (3, 1) motif are generated from first
sequence.

Figure 7: l −mers and their neighbors from Sequence 1

2. Bucket all these neighbors and l −mers hashing in the position 1 and 2.

Figure 8: Bucketing l −mers and their neighbors from Sequence 1
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3. Generating all the l −mers from all the sequences from the data set.

Figure 9: Generating l −mers from all Sequences

4. Bucketing l − mers of the data set in the same position used in Step-2, i.e,
position 1 and 2

Figure 10: Generating l −mers from all Sequences

5. Now we will calculate the threshold value for the buckets. Here,

Total number of l −mers from data set = (7− 3 + 1) ∗ 4 = 20
Number of buckets for data set = 10

Threshold = 20
10

= 2

Now, if BUCKETdata(X) contains more or equal number of l − mers than
threshold, then we will choose the bucket BUCKETmotif (X) and add all the
l−mers present in the bucket BUCKETmotif (X) to the list of the ouput motif.
So the output motif list will be,

AAA, CAG, AAC , ATG, AAG , TAG, AAT , TAT, AGA, AGG, AGC, AGT,
GCT , GCA, TAA , GCC, TAC , GCG, CAA , CAT, ATC , ATA.
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3.3 Improvement of the Proposed Algorithm

Our proposed method works fine for finding motifs of shorter length. For finding
motifs of larger length we have improved our proposed method which can find motifs
of larger length using our proposed method.

Observation 3: For finding (l, d) motif , first find all the ( l
2
, d) motifs. Then find

two consecutive motif positioned in distance of l
2

such that merging these two motif
will generate a string of length l and at last checking validity if it can be (l, d) motif.

From Observation 3, we get the idea of merging all the found motifs applying
Algorithm1 and find motifs for larger length. We will apply Algorithm1 for different
instances and merge them for finding expected motifs.

Start

Input
(l, d)

Run Algorithm1
for (l/2, d)

Find motifs in ev-
ery position of
every sequence
of the Dataset

Merge motifs
positioned at a
certain position
and l/2 position

away and list
in first position

Output those
merged motifs which

are present in
every sequence

Run Algorithm1 for
(ceil(l/2), d) and

(floor(l/2), d)

Find motifs in ev-
ery position of

every sequence of the
Dataset for both input

Merge motifs posi-
tioned at a certain

position and floor(l/2)
position away

and list in first position

Output those
merged motifs

which are present
in every sequence

Stop

l is even
l is odd

Figure 11: Steps of the proposed method 2

In the Figure 11, the steps of the improved version of our proposed method is
shown in a flow chart. We will use our proposed algorithm differently depending on
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the value of length of the motif. We will use this approach for finding large length
motifs. If the value of the length of motif is even then we will apply our proposed
method only once for half of the length. If it is odd then we will apply it two times
for two different values of length as shown in the flow chart. Then we will find motifs
for every position in the data set. We and merge the motifs in any position with the
motifs positioned in half of the desired motif length away. Thus we will get a new data
set where every position contains the motif of expected length. Now all those l−mers
which are present in every sequence will be our desired motifs of larger length.

The pseudo code of our improved version of the Proposed Algorithm is given as follows.

Algorithm 2 Improved version of Proposed Algorithm for planted motif search

1: input l and d
2:

3: if l is even then:
4: Run Algorithm 1 for (l/2, d)
5: for i = 1 to n
6: for j = 1 to m
7: find all the motifs in position j and insert in list L(i, j)
8: for i = 1 to n
9: for j = 1 to m
10: L(i, j) := L(i, j) Cartesian product L(i, j + l/2)
11:

12: else :
13: Run Algorithm 1 for (dl/2e, d) output motif in L1

14: for i = 1 to n
15: for j = 1 to m
16: find all the motifs in position j and insert in list L1(i, j)
17: Run Algorithm 1 for (bl/2c, d) output motif in L2

18: for i = 1 to n
19: for j = 1 to m
20: find all the motifs in position j and insert in list L2(i, j)
21: L(i, j) := L1(i, j) Cartesian product L2(i, j + l/2)
22:

23: Output := Common elements in the lists L(i)
24:

Explanation with Example:
For the data set provided for the explanation of our proposed algorithm, if we

want to find (6, 1) motifs we will first find all the motifs of (3, 1) like we found using
our proposed method. Then we will follow the following steps.
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1. We have to find all the motifs in every positions in the data set.

Figure 12: Finding motifs present in every position of the data set

2. We will merger the motifs of any position with the motifs positions in 3 position
away and store the motifs in the first position.

Figure 13: Merging the motifs for getting larger length motif

3. We will find those motifs which are present in all the sequences and has at
most 1 mismatch as we are expected. Thus we can see that, “TAAATC” and
“AAAGCT” can be our motif of (6, 1) of the given data set.
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Chapter : Experimental Results
& Discussion

In this chapter we discuss about the data sets which are used and compare our pro-
posed method with different methods which are already existed. We also show results
for different types of data sets.

4.1 Dataset

For time comparison we have used the dataset used in PMS5 [15]. This dataset
contains 20 DNA sequences each having 600 nucleotides, i.e, length of each string
representing the DNA sequences is 600. This dataset contains at least one motif in
every sequences and there can be more.

For executing out method for different instances we have picked the dataset from
[31], where there are 52 datasets - 6 from fly, 26 from human, 12 from mouse and
8 from yeast.Number of sequences in the datasets vary from 5 to 35 and length of
each sequences vary from 1000 to 2500. All the sequences in the dataset is in FASTA
format.

For comparing the accuracy of our method with other approximate algorithms we
have used the real data sets from yeast, fly from [26]. From this data set we can
see how much accurately our method can find motifs comparing other approximate
methods.

4.2 Result Analysis

We have compared our method with other existing approach considering three im-
portant aspects - Time, Accuracy and Different instances. In the time comparison we
can found how much time our method takes for finding motifs. We have calculated
the result for different types of instances so that we can confirm our method works
for all instances and the result is shown in the respective section.

4.2.1 Time Comparison

In Table 2, the time comparison of our previous and Developed proposed method
with PMS5 [15] is shown. Same data set is used on the same machine for different
combination of length and mismatches. From Table 2, we can see that for up to
large length like 8, our algorithm outperforms than PMS5 [15] algorithm. Even for
more large length like 20 still, our proposed method performs better than PMS5 [15].
Our previous method can calculate motif upto length 10 with 3 mismatches where
our modified new method can calculate motif of length 20 with 6 mismatches.Our
Developed Proposed Method can find up to 30 length motif with 10 mismatches
costing huge memory and time more than 40 hours theoretically.
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Table 2: Comparison with PMS5[7] with Proposed Method

(l,d) PMS5 Algorithm 1 Algorithm 2
(5,2) 35 s 0.141 s 0.13 s
(6,2) 26 s 0.30 s 0.33 s
(7,2) 21s 0.940 s 1.14s
(7,3) 271 s 2.053 s 1.39s
(8,3) 138 s 8.396 s 14.06s
(9,3) 196 s 41.937 s 25.3s
(10,3) 168 s 63.97 s 36.87s
(12,4) 180 s - 154.24s
(14,6) 3.8m - 186.2s
(18,6) 1.2 h - 1.05h
(20,6) 8.6 h - 6.8h

4.2.2 Accuracy

We have compared our method with different approximate methods on the base of
number of motif found. From Table 3, we can see that our method can find about
80% of the motifs of the data set that is used to calculate the accuracy of other
approximate algorihms shown in the table. In this case, our method can find more
amount of motif than other appoximate algorithms.

Table 3: Comparison of number of discovered motifs of our proposed method and
other approximate algorithms on dataset [26]

Algorithms Found Motif ((%)
PhyloCon[23] 12
PhyME [26] 13

MEME:ZOOPS[24] 25
PhyloGibbs[32] 35
Kellis et al.[33] 36
Converge[34] 44

MEME:OOPS- DC[29] 47
PRIORITY- DC[28] 49

MEME:ZOOP- DC[29] 52
RPB-DC[30] 57

Proposed Method 80
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4.2.3 Different Instances

In Table 4, different data set from [31] and different value of (l, d) are used to more
analysis the performance of the proposed method. We experimented our method on
different data sets for ensuring that our method works on different instances and data
sets. From this table, we see that our method works very close to exact approach
when the data set length is high and number of sequences is also large. And for
finding different length motif our method take reasonable amount of time.

Table 4: Experimental results on data set [31]

Dataset Number of Length of Each (l,d) Time (s) Found
Sequences Sequences Motif (%)

dm01r 5 1500 (6,2) 1.81 87
(7,2) 5.804 55
(8,3) 39.55 58

dm05r 3 2500 (6,2) 2.574 99
(7,2) 7.269 97
(8,3) 51.537 94

hm01r 18 2000 (6,2) 2.73 93
(7,2) 7.708 88
(8,3) 50.135 85

hm03r 10 1500 (6,2) 1.998 74
(7,2) 6.302 63
(8,3) 41.565 60

hm20r 35 2000 (6,2) 3.323 98.8
(7,2) 9.84 98.14
(8,3) 52.089 97.3

mus04r 6 1000 (6,2) 1.4 76.4
(7,2) 5.08 60.3
(8,3) 35.45 60

mus10r 13 1000 (6,2) 1.42 78
(7,2) 5.383 68
(8,3) 35.864 60
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Chapter : Conclusion and
Future Work

In this chapter the total overview of our proposed method is described. Limitations
and future works is also discussed.

5.1 Summary of works

In this thesis, we have proposed an approximate method for Planted Motif Search
(PMS) problem which is efficient in consideration of finding more number of motifs
than other approximate algorithms.It also performs good in terms of time than exact
algorithm. Our Proposed method first finds out all the motifs than has a chance to be
motif and then it removes the initially considered motifs that are not motif by refining
the candidate motifs following the process of hashing. Later, we proposed an improved
version of our proposed method which can find larger length motifs. Our proposed
finds around 80% of the motifs within less amount of time. As we have generated the
candidate motifs, it takes a little bit more time for processing. We faced difficulties in
memory consumptions as there was need for generating intermediary data for further
processing and it takes relatively more amount of memory. Our method could work
more efficiently if we could reduce the memory consumption. After all, our proposed
method works relatively good in term of finding more number of motifs and for some
cases where the data set contains DNA sequences of large length, it can find motifs
close to 100%. As a result, we hope this algorithm will ensure better motif finding
approach of a given DNA sequence within a reasonable time to help biologists.

5.2 Scope of Future works

Though our algorithm works well, still it consumes a lot of memory as the size of data
set and the intermediate data generation are huge in number. There are scope for
future works on our proposed method which includes reducing memory consumption,
reducing time for calculation and finding more number of motifs for all instances.
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