

 ISLAMIC UNIVERSITY OF TECHNOLOGY

A QOS GUARANTEED RESOURCE ALLOCATION IN CLOUD

COMPUTING BASED ON SELECTIVE ALGORITHM

Authors:
Md. Tanbin Rahid Kyser (104426)

 Zonayed Ahmed (104429)

Supervisor:

Md. Mohiuddin Khan
Assistant Professor

Department of Computer Science and Technology

Islamic University of Technology

A thesis submitted in partial fulfillments of the requirements for the

degree of Bachelor for Science in Computer Science and Engineering

Academic Year: 2013-2014

Department of Computer Science and Engineering

Islamic University of Technology.

A Subsidiary Organ of the Organization of Islamic Cooperation

Dhaka, Bangladesh

1

Certificate of Research

This is to certify that the work presented in this thesis is the outcome of analysis and

investigation carried out by Md. Tanbin Rahid Kyser and Zonayed Ahmed under the supervision

of Mr. Mohiuddin Khan in the department of Computer Science and Engineering (CSE), IUT,

Gazipur, Bangladesh. It is also declared that neither of this thesis nor any part of this thesis has

been submitted anywhere else for any degree or diploma. Information derived from the published

and unpublished work of others has been acknowledged in the text and a list of references is

given.

 Signature of the Head of the Department

Prof. Dr. M.A. Mottalib

Head of the

Department of Computer Science and Engineering (CSE)

Signature of the Supervisor

______________ _

Md. Mohiuddin Khan

Assistant Professor

Department of Computer Science and Engineering (CSE)

Authors

_________________ _ _____________________

Md. Tanbin Rahid Kyser Zonayed Ahmed

ID: 104426 ID: 104429

2

Abstract

Cloud computing has become a new age technology that has got a huge potentials in

enterprises and markets. It involves over a distributed computing over a network

where a program or application may run on many connected computers at the same

time. As cloud based system has become more and more numerous and dynamic,

resource provisioning is become more and more challenging. At the same time

energy has become an issue in this days. So, here we discuss resource allocation

constraints with the energy and QoS based. Here QoS is the major part and Energy

is minor part but we tried to consider both at the same time. Now, Energy and QoS

are both depends on resource utilization. This utilization parameter based on two

terms but this energy and QoS are reverse proportional. So, if we need to reach an

equilibrium state then we need to use some kind of heuristics method. Here we use

game theoretic approach for reaching an equilibrium state for getting a QoS and

Energy aware system. Basically resource allocation depends on job scheduling.

Several existed job scheduling algorithms was implemented. This algorithms are

selected according to SLA. This phenomena is known as automated service

provisioning for cloud computing. In this paper we provide a well-known Selective

Approach for job scheduling including two popular algorithms known as Max-Min

and Min-Min scheduling.

3

Contents

Chapter 1 Introduction ... 5

 1.1 Overview ... 5

 1.2 Problem statement ... 6

 1.3 Motivation .. 6

 1.4 Research Challenges ... 7

Chapter 2 Literature Review .. 8

 2.1 Cloud Computing .. 8

 2.2 Task scheduling in cloud computing: ... 11

 2.3 Energy consumption in cloud computing: ... 17

Chapter 3 Proposed Approach .. 18

 3.1 Strategy Selection & Optimization ... 18

 3.2 Scenario .. 19

 3.3 Flowchart ... 20

 3.4 Algorithm ... 21

 3.5 Necessary Equations .. 21

 3.6 Description of the algorithms .. 22

 3.7 Case Study .. 24

 Case 1 : min-min better than max-min ... 24

Chapter 4 Dataset & Evaluation .. 26

 4.1 Introduction to CloudSim ... 26

 4.2 Experimental Setup .. 29

 4.3 Performance Evaluation ... 30

 Case 1: Evaluation ... 32

 4.4 Comparison against FCFS .. 33

Chapter 5 Future Work ... 35

Appendix ... 36

Bibliography.. 49

4

List of Figures

Figure 1: User and Services of cloud computing ……………………………….. 8

Figure 2: Layers of Cloud Computing ... 9

Figure 3: Algorithm flowchart of Berger Model Algorithm ... 15

Figure 4: Flowchart of Proposed Method .. 20

Figure 5: Architecture of CloudSim .. 27

Figure 6: Case 1 min-min makespan ... 32

Figure 7: Case 1 max-min makespan ……………………………………………………………………………………………….32

Figure 1: Case 2 min-min makespan ...32

Figure 2: Case 2 max-min makespan ……………………………………………………………………………………………….32

5

Chapter 1

Introduction

1.1 Overview

Cloud computing specially refers to a computing machine or group of hardware machines

who commonly referred as the server connected through a communication network such as

internet. Any user who permission to access can run through his application on cloud computing.

In common usage cloud is the metaphor of cloud computing.

Cloud computing infrastructures break down the physical barriers inherent in isolated

systems, automate the management of the group of resources as a single entity, and provide

computational power and data storage facilities to users, ranging from a user accessing a single

laptop to the allocation of thousands of computing nodes distributed around the world. Cloud

computing is a natural evolution for data and computation centers with automated systems

management, workload balancing, and virtualization technologies. Cloud-based services

integrate globally distributed resources into seamless computing platforms. Recently, a great

deal of applications are increasingly focusing on third-party resources hosted across the Internet

and each has varying capacity.

It is known that the underlying cloud computing environment is inherently large scale,

complex, heterogeneous and dynamic, globally aggregating large numbers of independent

computing and communication resources and data stores. In an open cloud computing

framework, scheduling tasks with guaranteeing QoS constrains present a challenging technical

problem.

6

1.2 Problem statement

 In our overall thesis we find the problem of cloud computing. At first we came of the

points that affect the cloud computing. We came to the point of resource allocation problem in

cloud computing. One of the key features of cloud computing is the capability of acquiring and

releasing resources on-demand. The objective of a service provider in this case is to allocate and

de-allocate resources from the cloud to satisfy its service level objectives (SLOs), while minimizing

its operational cost. However, it is not obvious how a service provider can achieve this objective.

In particular, it is not easy to determine how to map SLOs such as QoS requirements to low-level

resource requirement such as CPU and memory requirements. Furthermore, to achieve high

agility and respond to rapid demand fluctuations such as in flash crowd effect, the resource

provisioning decisions must be made online.

Designing energy-efficient data centers has recently received considerable attention. This

problem can be approached from several directions. For example, energy efficient hardware

architecture that enables slowing down CPU speeds and turning off partial hardware components

has become commonplace. Energy-aware job scheduling and server consolidation are two other

ways to reduce power consumption by turning off unused machines. Recent research has also

begun to study energy-efficient network protocols and infrastructures. A key challenge in all the

above methods is to achieve a good trade-off between energy savings and application

performance.

1.3 Motivation

In the cloud computing environment, task scheduling and resource assignment have been

unified managed by providers through virtualized technology. They have been used to hide and

complete users’ tasks transparently. Task scheduling becomes more complex because of the

transparent and dynamic flexibility of cloud computing system, and the different needs for

recourses of different applications. Task scheduling strategies only focus on equity or efficiency

7

will increase the cost of time, space, and throughput and improve the quality of service of the

entire cloud computing at the same time. The task scheduling goals of Cloud computing is provide

optimal tasks scheduling for users, and provide the entire cloud system throughput and QoS at

the same time. Specific goals are load balance, quality of service (QoS), economic principle, and

the optimal operation time and system throughput.

1.4 Research Challenges

Cloud computing technology provides the method of sharing basic infrastructure. It bring

the computing resources and storage resources in different geographical positions into a

resource pool through virtual technology. Users need to apply before using it, and we need to

release resources after using it so that the resources can be reused. In this way, the cloud

computing center can provide high-performance computing resources and huge storage

resources which are simple and low cost.

With further development and maturity of cloud computing technology, the features of

efficient, flexible, and customizable provide a new way to solve the problems encountered in the

operation process of the scientific workflow. When using the cloud platform, researchers need

to upload resources data sets to the cloud computing platform. Because the scale of resources

set may be very large, there are bandwidth limitations between different parts and some set of

resources can only be stored in the specified resource center, researchers cannot upload all the

set of data resources to the same resource center or upload all the set of data resources to every

resource center.

While they need to upload different set of data resources to different data resource

centers, so that the tasks of scientific workflow can be executed in parallel. On one hand, it

increases the user fees for the use of cloud resources. So studying an effective and fair task

scheduling algorithm in a cloud environment is not only important in resources transmission and

reducing the transmission of user fees, but also important in enhancing the implementation of

the performance and user satisfaction.

8

Chapter 2

Literature Review

2.1 Cloud Computing

The main idea behind cloud computing is not a new one. John McCarthy in the 1960s already

envisioned that computing facilities will be provided to the general public like a utility. The term

“cloud” has also been used in various contexts such as describing large ATM networks in the 1990s.

 [1]

Figure 3: Users and Services of Cloud Computing

9

However, it was after Google’s CEO Eric Schmidt used the word to describe the business model

of providing services across the Internet in 2006, that the term really started to gain popularity.

Cloud computing architecture is given below. Generally speaking, the architecture of a cloud

computing environment can be divided into 4 layers: the hardware/datacenter layer, the

infrastructure layer, the platform layer and the application layer, as shown in Fig.2.

Figure 4: Layers of Cloud Computing

a. Infrastructure layer:

Also known as the virtualization layer, the infrastructure layer creates a pool of storage and

computing resources by partitioning the physical resources using virtualization technologies such

as Xen, KVM and VMware. The infrastructure layer is an essential component of cloud computing,

since many key features, such as dynamic resource assignment, are only made available through

virtualization technologies.

10

b. Platform layer:

Built on top of the infrastructure layer, the platform layer consists of operating systems

and application frameworks. The purpose of the platform layer is to minimize the burden of

deploying applications directly into VM containers. For example, Google App Engine operates at

the platform layer to provide API support for implementing storage, database and business logic

of typical web applications.

c. Application layer:

 At the highest level of the hierarchy, the application layer consists of the actual cloud

applications. Different from traditional applications, cloud applications can leverage the

automatic-scaling feature to achieve better performance, availability and lower operating cost.

Types of cloud computing:

There are many issues to consider when moving an enterprise application to the cloud

environment. For example, some service providers are mostly interested in lowering operation

cost, while others may prefer high reliability and security.

Types of cloud computing is given bellow-

1. Public clouds: A cloud in which service providers offer their resources as services to

the general public.

2. Private clouds: Also known as internal clouds, private clouds are designed for

exclusive use by a single organization.

3. Hybrid clouds: It is a combination of public and private cloud models that tries to

address the limitations of each approach.

11

2.2 Task scheduling in cloud computing:

Software developers and third-party service providers often deploy applications that exhibit

dynamic behavior in terms of workload patterns, availability, and scalability requirements.

Typically, Cloud computing thrives on highly varied and elastic services and infrastructure

demands.

Traditional task scheduling algorithm focuses on efficiency or cost. It has pertinence for

tasks of Specific style and targets for specific types of tasks such as to target the least finishing

time, the most optimum availability, and the least cost. These scheduling policies have better

efficiency or better cost advantages, but can cause uneven loading, unilateral advantages of

efficiency and cost. The expectations of enterprises integrated QoS are not balanced, that means

service requirement quality of task scheduling in cloud environment cannot meet the

expectations of users. Therefore, it's more important that the efficiency and cost of task

scheduling model are balanced. Task scheduling in cloud computing environment should not only

meet the balance between efficiency and cost, but also meet the equitable resources

distribution.

Divide users ‘tasks according to the QoS, users have a clear direction of resources service.

The game between efficiency and cost is based on meeting users' benefits or fee requirement

and then seeking optimal value or equilibrium point. And finally achieve double-win in user

efficiency and cost. We call this process efficiency optimization.

Cloud computing uses virtualized technology to pack resources and then supply for users.

These new traits require us to establish a link between users and virtual resources. And we need

to develop new applicable task scheduling and resource mapping mechanism.

12

We would like to discuss two algorithms and evaluation.

(1) Berger Model:

Berger model theory on distributive justice in the field of social distribution was

first introduced into the job scheduling algorithm in cloud computing. Through the

expansion of CloudSim platform, job scheduling algorithm based on Berger model is

implemented. The validity of the algorithm is verified on the extended simulation

platform. Berger Model considers two parameters:

(a) Completion time: For real-time demand higher users, the task needs to be

completed within as little time as possible.

(2) Bandwidth: If user requests need higher communication bandwidth, the

bandwidth requirements need to give priority to.

To measure user satisfaction according to different QoS parameters, different

quantification evaluation criteria need to be established for different QoS parameters.

The cloud computing uses virtualization technology to map host resources to the

virtual machine layer, therefore the job scheduling in cloud computing is implemented in

application layer and virtual machine layer. Scheduling is to map task to resources

according to a certain principle of optimization. Cloud computing makes required

resources of task manifest in the form of a virtual machine. The resource search process

is converted the search process of a virtual machine.

Suppose the resource characteristics set of the virtual machine VMi is

Ci = [Ci1, Ci2, Cir] ; r=1;2;3

Where Ci1, Ci2, Ci3 denotes CPU, memory and bandwidth respectively. The

performance vector of VMi is:

VMi = [ECi1, ECi2, ECi3]

Where ECir is the corresponding performance value of characteristics Cir of VMi

So, the general expectations vector of the type i task is:

ei = [ei1, ei2, ei3]

13

 And,

Where the first dimensional ei1 denotes weight for CPU number, the second

dimensional ei2 denotes weight for memory; the third dimensional ei3 denotes

weight for bandwidth.

 Pseudo code of resource selection process as follows:

Begin
Define initial vector of general expectation ei
for Ti, i = 1 to m {

Select VMi according to the require of Ti;
}
for i = 1 to t{//normalization

for j = 1 to 3{
Wi = Computing GXIJ;

}
}
for i = 1 to t{

eucDis[i] = Computing Euclidean distance of Wi and ei
}
Select minimum Euclidean distance Do from eucDis[i];
Binding Ti to Do;
End;

The actual total completion time Tf (Tf =Twait+Texec+TTrans) of taskTi is from submit
the task to return results. The expectations completion timeTexpt of taskTi is assigned by
user. Thus, the Eq.is:

We can use this equation to calculate bandwidth:

14

When user task needs a variety of QoS requirements, we should use integrated

general expectation.

The equation gives us the integrated expectation where eij denotes the j

expectation value of task Ti

 So, equation converts to

As to the adjustment on the initial vector of general expectations, it can be

constrained by defining threshold value |Ji|>1. When |Ji| > 1, the system automatically

adjusts the vector of general expectations. Tasks can be repeated to obtain a reasonable

vector of general expectations.

 Based on completion time, the algorithm is:

(1) According to QoS classification, the general expectation of tasks, which acts as the
fairness constraints for selection and allocation of resource, is established.

(2) According to parameterized task characteristics and their corresponding general
expectation constraint, select the better resources of virtual machine to run the task.

(3) Calculate the value of fairness justice function based on the results of resource
allocation. Statistics user satisfaction and adjust model.

Disadvantage:

As to the initial value of general expectation vector, what the Berger model gives

is empirical value. We need to build a fuzzy neural network of QoS feature vector of task

and parameter vector of resource based on the non-linear mapping relationship between

QoS and resource. Through learning, more accurate vector value of the general

expectation can be obtained.

15

The flowchart of the algorithm is given below:

Figure 5: Algorithm flowchart of Berger Model Algorithm

16

(2) Li et al. (CMMS):

Li et al. uses CMMS (Cloud Min-Min Scheduling) for static resource allocation in cloud

computing. Min-min is a popular greedy algorithm. The original min-min algorithm does not

consider the dependencies among tasks. So in the dynamic min-min algorithm, we need to

update the mappable task set in every scheduling step to maintain the task dependencies. Tasks

in the mappable task set are the tasks whose predecessor tasks are all assigned.

The algorithm is:

Require: A set of tasks, different clouds,𝑀matrix
Ensure: A schedule generated by CMMS.
1: form a mappable task set 𝑃
2: while there are tasks not assigned do
3: update mappable task set𝑃
4: for 𝑖: task𝑣𝑖 ∈𝑃do
5: Send task check requests of𝑣𝑖 to all other schedulers
6: Receive the earliest resource available time responses from all other schedulers
7: Find the cloud𝐶(𝑣𝑖) giving the earliest finish time of 𝑣𝑖, assuming no other task

preempts 𝑣𝑖
8: end for
9: Find the task-cloud pair(𝑣𝑘,𝐶𝑚𝑖𝑛(𝑣𝑘))with the earliest finish time in the pairs

generated in for-loop
10: Assign task𝑣𝑘 to cloud 𝐷(𝑣𝑘)
11: Remove𝑣𝑘from 𝑃
12: update the mappable task set𝑃
13: end while

Disadvantage:

 Sometimes only min-min algorithm can’t perform better than min-max. So, we need to

use both the algorithms to ensure maximum utility.

17

2.3 Energy consumption in cloud computing:

Improving energy efficiency is another major issue in cloud computing. It has been estimated that

the cost of powering and cooling accounts for 53% of the total operational expenditure of data

centers. In 2006, data centers in the US consumed more than 1.5% of the total energy generated

in that year, and the percentage is projected to grow 18% annually. Hence infrastructure

providers are under enormous pressure to reduce energy consumption. The goal is not only to

cut down energy cost in data centers, but also to meet government regulations and

environmental standards.

Designing energy-efficient data centers has recently received considerable attention. This

problem can be approached from several directions. For example, energy efficient hardware

architecture that enables slowing down CPU speeds and turning off partial hardware components

has become commonplace. Energy-aware job scheduling and server consolidation are two other

ways to reduce power consumption by turning off unused machines.

Recent research has also begun to study energy-efficient network protocols and infrastructures.

A key challenge in all the above methods is to achieve a good trade-off between energy savings

and application performance. In this respect, few researchers have recently started to investigate

coordinated solutions for performance and power management in a dynamic cloud environment.

Lack of energy-conscious provisioning techniques may lead to overheating of Cloud resources

(compute and storage servers) in case of high loads. This in turn may result in reduced system

reliability and lifespan of devices. Another related issue is the carbon dioxide (CO2) emission that

is detrimental to the physical environment due to its contribution in the greenhouse effect. All

these problems require the development of efficient energy-conscious provisioning policies at

resource, VM, and application level.

18

Chapter 3

Proposed Approach

From the above knowledge of task scheduling due to resource allocation in cloud computing. We can

define that task scheduling problem is related with Knapsack problem. Because if we can see the analogies

between them in knapsack problem there are some boxes with weight and cost so does in resource

allocation problem we can see that here resources with their cost and capabilities moreover the execution

time and capability to run a job.

3.1 Strategy Selection & Optimization:
 As knapsack problem is an np-complete problem but its optimization is np-hard. Due to the np-

hard problem we can see that here no optimal solution is existed. But still we can implement the optimal

strategy by using some kind of greedy approach. But at the same time if we see the equation of energy

and scheduling in cloud. We can see they are almost inversely proportional but there is no linear equation

which we can draw between them. So, we cannot implement greedy strategy.

 Greedy strategy cannot be implemented because there is no linear equation possible between

QoS and energy. As we are increasing the QoS means we are increasing the compute then the power is

increasing at the same time. On the other hand the amount of energy is also increasing at the same time.

So, whenever we are increasing the QoS the energy consumption is decreasing. For QoS parameter we

considered the Mean execution time according to SLA. According SLA which have higher priority will be

executed with the min execution time. Due to considering energy consumption we must consider the

19

computation power. So, if we have capabilities of computational devices we will migrate VM’s according

to the SLA. At the same time we can consider the energy parameters and shut down the hosts which is

not considerably well for us.

3.2 Scenario:

Here in this scenario we have implemented a Selective algorithm to choose between 2 algorithms

which is very popular in names of MAX-MIN and MIN-MIN algorithm.

The reason behind the choosing this algorithm is this is a game theoretic approaches which is

verily known as Fairness in a game or No Sum Game. So, here we get the idea of completing the

task within time.

The main goal of our algorithm is to provide a better execution time to the makespan of tasks

on machines and provide better quality of service we design an algorithm that assigns tasks to

best machines in such a way that it provides satisfactory performance to both, cloud users and

providers. The algorithm is designed to make a choice between Min-Min and Max-Min scheduling

algorithm based on certain criteria.

Min-Min algorithm follows the following procedure:

Phase1: It first computes the completion time of cloudlets on each VM and then for each cloudlet

it chooses the VM which processes the cloudlet in minimum possible time.

Phase2: Then among all the cloudlets in MT the cloudlet with minimum overall completion time

is chosen and is allocated to VM on which minimum execution delay is expected. The cloudlet is

removed from the list of MT and the process continues until MT list is empty.

20

Max-Min algorithm works similarly like Min-Min in phase 1. Unlike Min-Min, Max-Min allocates

the cloudlet with maximum expected completion time to VM (i.e. Longer task is first allocated a

VM). Max-Min algorithm allocates considerably long task (cloudlet) (long in comparison to other

given set of tasks) to one VM and smaller tasks to another VM based on their completion time

on each VM. Min-Min on the other hand is useful when all the tasks are almostnof same size.

When all the tasks are of similar sizes then min-min allocates the cloudlet to a VM on which it

executes in minimum possible time. This not only ensures that overall makespan of tasks on VM

is reduced but also provide minimum delays in processing of tasks.

3.3 Flowchart:

Figure 6: Flowchart of Proposed Method

21

 3.4 Algorithm:

(1) Sort tasks in meta-task MT ascending.
(2) While there are tasks in MT
(3) for all tasks ti in MT
(4) for all machines mj
(5) Ctij = Etij + rj
(6) for all tasks ti in MT
(7) Find minimum CTij and resource mj that
(8) If there is more than one resource that obtain

 (9) Select resource with least utilization rate
 (10) Calculate average CT (mean)

(11) Calculate standard deviation (S.D.)
(12) Find place p in MT where difference of two consequence CTij > S.D.
(13) If p<= s/2 or S.D. > mean then
(14) Assign t1 to resource ml that obtains CT1l
(15) else
(16) Assign ts to resource ml that obtains CTsl
(17) Delete assigned task from MT
(18) End While

3.5 Necessary Equations:

 Setup an environment in CloudSim.

 Find the expected execution time,

E = FileSize (Cloudlets)/ MIPS (VM)

 Find the completion time by considering that all the tasks in a first Serve First Come

manner to the resources

C E + R; Where, R = waiting time for a resource. For the first resource it

is 0.

 Least Utilization Rate,

22

 Where, tei = finishing time of executing ti on resource mj

tsi = starting time of executing ti on resource mj

T = the total application execution time so far;

 Then find the mean for the particular resources.

Mean = (C1 + C2 + + Cn)/ n.

 Then find the Standard Deviation.

S.D. = √(Cn - Mean)2/ √n

3.6 Description of the algorithms:

(a) Max-Min algorithm:

Here we have an example to explain the MAX-MIN algorithm. For example considering the

following scenario.

 VM 1 VM 2

Task 1 1.6 0.8

Task 2 6.6 3.3

Task 3 9.6 4.8

 Table1: Scenario of tasks and resources (VMs)

23

From the table we need to find the minimum value of the tasks and then make a set then find
the highest value from the set then put that task to that VM. And remove that row.

After updating the table looks alike this-

 VM 1 VM 2

Task 1 1.6 5.6

Task 2 6.6 8.1

Then find the minimum values again and put the values to a set and find the maximum again and
put that to the resource.

And update the table remove the task.

 VM1 VM2

Task1 8.2 5.6

Then assign the final task to the resource.

(b) Min-MIN algorithm:

Min-Min algorithm uses a similar technique like the previous MAX-MIN algorithm. Here in this

section at first we need to find the minimum value instead of creating a set of minimum values.

So, at first find the minimum value here we can see that Task 1 on VM 2 is the minimum value so

allocate VM2 to Task 1.

24

 VM 1 VM 2

Task 1 1.6 0.8

Task 2 6.6 3.3

Task 3 9.6 4.8

Now, here update the table after allocating task 1 to VM 2.

 VM 1 VM 2

Task 2 6.6 4.1

Task 3 9.6 5.6

After updating the table here we need find the minimum value and allocate that to the VM. Now,

here we can see that minimum value is 4.1 so assign the task to that VM.

After that again update the table and continue the procedure.

 VM 1 VM 2

Task 3 9.6 8.9

3.7 Case Study:

Case 1 (min-min better than max-min):

Assume that minimum CTij for each task is found and S.D. is calculated too (i.e. lines 1 to 11 of

the algorithm is executed).

Index 1 2 3 4 5 6

CTij 1 50 60 80 100 120

p = 1< s/2= 1<3
S = 6

S.D. = 38.18

25

In this case, there exists one short task and five long tasks. So, according to our algorithm, Min-

Min outperforms Max-Min. As it can be seen, occurrence of the place of difference is in the first

half, so Min-Min is selected to assign next task.

Case 2 (max-min better than min-min):

Assume that minimum CTij for each task is found and S.D. is calculated too (i.e. lines 1 to 11 of

the algorithm is executed).

Index 1 2 3 4 5 6

CTij 10 20 30 50 60 1000

In this case, there exists one long task and five short tasks. So, according to our algorithm, Max-

Min outperforms Min-Min. As it can be seen, occurrence of the place of difference is in the

second half, so Max-Min is selected to assign next task.

p = 5> s/2= 5>3 S = 6

S.D. = 360.4

26

Chapter 4

Dataset & Evaluation

For our working purpose we use the CloudSim toolkit. CloudSim is a support model for

simulating cloud frameworks or cloud environments.

4.1 Introduction to CloudSim

 CloudSim is a simulation toolkit made by University of Melbourne’s cloud lab. For a

formal definition of CloudSim is given below.

 A suitable alternative is the utilization of simulations tools,

which open the possibility of evaluating the hypothesis prior to

software development in an environment where one can

reproduce tests. Specifically in the case of Cloud computing, where

access to the infrastructure incurs payments in real currency,

simulation-based approaches offer significant benefits, as it

allows Cloud customers to test their services in repeatable and

controllable environment free of cost, and to tune the

performance bottlenecks before deploying on real Clouds.

The CloudSim simulation layer provides support for modeling and simulation of virtualized Cloud-

based data center environments including dedicated management interfaces for VMs, memory,

27

storage, and bandwidth. The fundamental issues, such as provisioning of hosts to VMs, managing

application execution, and monitoring dynamic system state, are handled by this layer.

There is a clear distinction at this layer related to provisioning of hosts to VMs. A Cloud host can

be concurrently allocated to a set of VMs that execute applications based on SaaS provider’s

defined QoS levels. This layer also exposes the functionalities that a Cloud application developer

can extend to perform complex workload profiling and application performance study.

Figure 7: Architecture of CloudSim

28

4.2 Key terminologies of CloudSim:

Some of the key terminologies of CloudSim is given below-

o Cloudlet: This class models the Cloud-based application services. Every application service

has a pre-assigned instruction length and data transfer (both pre and post fetches)

overhead that it needs to undertake during its life cycle.

o CloudletScheduler: This abstract class is extended by the implementation of different

policies that determine the share of processing power among Cloudlets in a VM. There

are two types of cloudletscheduler:

o CloudetSchedulerSpaceShared,

o CloudletSchedulerTimeShared.

o Datacenter: This class models the core infrastructure-level services (hardware) that are

offered by Cloud providers (Amazon, Azure, and App Engine). It encapsulates a set of

compute hosts that can either be homogeneous or heterogeneous with respect to their

hardware configurations. Furthermore, every Datacenter component instantiates a

generalized application provisioning component that implements a set of policies for

allocating bandwidth, memory, and storage devices to hosts and VMs.

o DatacenterCharacterstics: This class models a broker, which is responsible for mediating

negotiations between SaaS and Cloud providers; and such negotiations are driven by QoS

requirements. The broker acts on behalf of SaaS providers.

o VM: This class models a VM, which is managed and hosted by a Cloud host component.

Every VM component has access to a component that stores the following characteristics

29

related to a VM: accessible memory, processor, storage size, and the VM’s internal

provisioning policy that is extended from an abstract component called

theCloudletScheduler.

o VmAllocationPolicy: This abstract class represents a provisioning policy that a VM

Monitor utilizes for allocating VMs to hosts. The chief functionality of the

VmmAllocationPolicy is to select the available host in a data center that meets the

memory, storage, and availability requirement for a VM deployment.

4.2 Experimental Setup

For simulation purpose we are considering the following set of data-

No. of Datacenters 1

No. of Hosts 2

No. of VMs 2

No. of Cloudlets 3

Size of Cloudlet 1 16

Size of Cloudlet 2 50

Size of Cloudlet 3 30

MIPS of VM 1 10

MIPS of VM 2 20

 Table: Input Data.

30

4.3 Performance Evaluation

Case 1: (Min-Min):

 Step: 1 Step: 2

 Step: 3 Step: 4

 Case 1: (Max-Min):

 Step: 1 Step: 2

 Step: 3 Step: 4

31

Case 2: (Min-min):

 Step: 1 Step: 2

 Step: 3 Step: 4

Case 2: (Max-min):

 Step: 1 Step: 2

 Step: 3 Step: 4

32

Case 1: Evaluation

Figure 8: Case 1 min-min makespan Figure 9: Case 1 max-min makespan

Case 2: Evaluation

Figure 10: Case 2 min-min makespan Figure 11: Case 2 max-min makespan

0

5

10

15

20

25

30

35

40

45

VM 1 VM 2

Task 1 Task 2 Task 3 Task 4

0

5

10

15

20

25

30

35

VM 1 VM 2
Task 3 Task 2 Task 1 Task 4

0

1

2

3

4

5

6

7

8

VM 1 VM 2

Task 1 Task 2 Task 3 Task 4

0

1

2

3

4

5

6

7

8

9

VM 1 VM 2
Task 4 Task 2 Task 3 Task 1

33

So, in case 1, tasks are distributed in both VMs for max-min makespan. So, max-min performs

better in case 1.

Again, in case 2, tasks are more evenly distributed in both VMs and thus columspans are almost

equal. Here, min-min performs better.

4.4 Comparison against FCFS

So, here is the comparison of the algorithms in a Time Sharing Mode with First Come First
Serve.

 Figure: Column Span using FCFS during Time sharing

Now from our Selective algorithm we get the following data and columnspan.

0

200

400

600

800

1000

1200

1400

1600

1800

VM 1 VM 2

Task 1 Task 2 Task 3

34

 Figure: Columnspan during MAX-MIN Sharing

So, using a selective approach is way better than the existing algorithms. For the first case the
columnspan is less so the execution time is less than the first one. So, it will use the less
executional power than the previous one. So, the power consumption is another important
thing here. So, the load balancing is done by this.

So, the algorithm provides a better perfection when the task have close range or the distance
between two consecutive tasks is either very high or low. If they are scattered in this scenario
algorithm works on a worst case scenario. So, the complexity of our algorithm during MAX-MIN
and MIN-MIN O (C2V).

0

200

400

600

800

1000

1200

1400

VM 1 VM 2

Chart Title

Task 1 Task 2 Task 3

35

Chapter 5 Future Work
 Cloud computing has recently emerged as a compelling paradigm for managing and

delivering services over the Internet. The rise of cloud computing is rapidly changing the

landscape of information technology, and ultimately turning the long-held promise of utility

computing into a reality.

 As cloud computing is an evolving business so does research challenges are coming quite

new here. For the task allocation methods we declare energy consumption but still we didn’t

simulate this in our work. So, we can easily make this possible by adding some sort of estimation

workloads from the expectation and result by representing graph. Now we just simulate the

algorithms only.

 In future we need to work on several key aspects like VM migration, VM allocation and

more on load balancing algorithm. So, that the power consumption and QoS awareness will raise

by this time during allocating VMs in normal.

Cloud Computing involves investment of huge capital to install tremendous resources at

a single Datacenter. Therefore, to maximize the use of tremendous capabilities offered by

Cloud these resources need to be provisioned efficiently. The algorithm given in the paper

ensures that all resources are efficiently utilized and jobs given by the user are executed with

smaller delays. The provisioning technique given in the paper attempts to improve the

throughput by minimizing Makespan. In future, dependencies between tasks can be modeled

to further minimize the Makespan and maximize the throughput using Workflows.

36

Appendix:

CloudSim Simulation Code for Proposed Method

MAX-MIN:

package pkgfinal;

import java.text.DecimalFormat;
import java.util.ArrayList;
import java.util.Calendar;
import java.util.LinkedList;
import java.util.List;
import org.cloudbus.cloudsim.*;
import org.cloudbus.cloudsim.core.CloudSim;
import org.cloudbus.cloudsim.provisioners.BwProvisionerSimple;
import org.cloudbus.cloudsim.provisioners.PeProvisionerSimple;
import org.cloudbus.cloudsim.provisioners.RamProvisionerSimple;

public class Final {

 private static List<Cloudlet> cloudletList;

 private static List<Vm> vmlist;

 public static void main(String[] args) {

37

 Log.printLine("Allocating cloudlets according to MAX-MIN algorithm");

 try {

 int num_user = 1; // number of cloud users
 Calendar calendar = Calendar.getInstance();
 boolean trace_flag = false; // mean trace events

 // Initialize the CloudSim library
 CloudSim.init(num_user, calendar, trace_flag);

 // Second step: Create Datacenters
 //Datacenters are the resource providers in CloudSim. We need at list one of them to
run a CloudSim simulation
 Datacenter datacenter0 = createDatacenter("Datacenter");

 //Third step: Create Broker
 DatacenterBroker broker = createBroker();
 int brokerId = broker.getId();

 //Fourth step: Create one virtual machine
 vmlist = new ArrayList<Vm>();

 //VM description
 int vmid = 0;
 int mips = 10;
 long size = 10000; //image size (MB)
 int ram = 512; //vm memory (MB)
 long bw = 1000;
 int pesNumber = 1; //number of cpus
 String vmm = "Xen"; //VMM name

 //create two VMs
 Vm vm1 = new Vm(vmid, brokerId, mips, pesNumber, ram, bw, size, vmm, new
CloudletSchedulerTimeShared());

 //the second VM will have twice the priority of VM1 and so will receive twice CPU time
 vmid++;
 Vm vm2 = new Vm(vmid, brokerId, mips * 2, pesNumber, ram, bw, size, vmm, new
CloudletSchedulerTimeShared());

 //add the VMs to the vmList
 vmlist.add(vm1);
 vmlist.add(vm2);

 //submit vm list to the broker
 broker.submitVmList(vmlist);

 //Fifth step: Create two Cloudlets
 cloudletList = new ArrayList<Cloudlet>();

38

 //Cloudlet properties
 int id = 0;
 long length = 4000;
 long fileSize = 100;
 long outputSize = 100;
 UtilizationModel utilizationModel = new UtilizationModelFull();

 Cloudlet cloudlet1 = new Cloudlet(id, length, pesNumber, fileSize, outputSize,
utilizationModel, utilizationModel, utilizationModel);
 cloudlet1.setUserId(brokerId);

 long fileSize2 = 500;
 id++;
 Cloudlet cloudlet2 = new Cloudlet(id, length, pesNumber, fileSize2, outputSize,
utilizationModel, utilizationModel, utilizationModel);
 cloudlet2.setUserId(brokerId);

 long fileSize3 = 300;
 id++;
 Cloudlet cloudlet3 = new
Cloudlet(id,length,pesNumber,fileSize3,outputSize,utilizationModel,utilizationModel,utilizationModel);
 cloudlet3.setUserId(brokerId);

 //add the cloudlets to the list
 cloudletList.add(cloudlet1);
 cloudletList.add(cloudlet2);
 cloudletList.add(cloudlet3);

 //submit cloudlet list to the broker
 broker.submitCloudletList(cloudletList);

 Selection s1 = new Selection();

 int x1 = s1.executionTime(cloudlet1.getCloudletFileSize(),vm1.getMips());
 int x2 = s1.executionTime(cloudlet1.getCloudletFileSize(),vm2.getMips());
 int x3 = s1.executionTime(cloudlet2.getCloudletFileSize(), vm1.getMips());
 int x4 = s1.executionTime(cloudlet2.getCloudletFileSize(), vm2.getMips());
 int x5 = s1.executionTime(cloudlet3.getCloudletFileSize(), vm1.getMips());
 int x6 = s1.executionTime(cloudlet3.getCloudletFileSize(), vm2.getMips());

 int c1 = s1.completionTime(x1, 0);
 int c2 = s1.completionTime(x2, 0);
 int c3 = s1.completionTime(x3, x1);
 int c4 = s1.completionTime(x4, x2);
 int c5 = s1.completionTime(x5,x1,x3);
 int c6 = s1.completionTime(x6,x2,x4);

 double mean;

 mean = s1.mean(c1, c2, c3, c4, c5, c6, 3);

39

 double SD;

 SD = s1.standardDeviation(c1, c2, c3, c4, c5, c6, mean, 3);

 if(SD >= mean){
 Time[][] metaTask = new Time[][] {
 {new Time(cloudlet1.getCloudletFileSize()/vm1.getMips()),new
Time(cloudlet1.getCloudletFileSize()/vm2.getMips()) },
 {new Time(cloudlet2.getCloudletFileSize()/vm1.getMips()),new
Time(cloudlet2.getCloudletFileSize()/vm2.getMips())},
 {new Time(cloudlet3.getCloudletFileSize()/vm1.getMips()),new
Time(cloudlet3.getCloudletFileSize()/vm2.getMips())},

 };

 for(int i = 0; i < cloudletList.size(); i++){
 for(int j = 0; j < vmlist.size(); j++){
 metaTask[i][j].setCurrentValue(metaTask[i][j].getBaseValue());
 }
 }

 double tempMin = 123456;
 int tempMinRow = 0;
 int tempMinCol = 0;

 //inserted here
 int[] tCol= new int[cloudletList.size()];
 double[] minArray = new double[cloudletList.size()];

 for(int i = 0; i < cloudletList.size(); i++){
 for(int j = 0; j < vmlist.size(); j++){
 if (metaTask[i][j].getCurrentValue() < tempMin){
 tempMin = metaTask[i][j].getBaseValue();
 //tempMinRow = i;
 tempMinCol = j;
 }
 }
 minArray[i] = tempMin;
 tempMin = 123456;
 tCol[i] = tempMinCol;
 }
 double tempMax=0.0;

 for(int i=0;i<cloudletList.size();i++){
 if(minArray[i] > tempMax){
 tempMax = minArray[i];
 tempMinRow = i;
 tempMinCol = tCol[i];
 }
 }

40

 broker.bindCloudletToVm(cloudletList.get(tempMinRow).getCloudletId(),vmlist.get(tempMinCol).getId());

 for(int i = 0; i < cloudletList.size(); i++){
 if(i != tempMinRow)
 metaTask[i][tempMinCol].setCurrentValue(metaTask[i][tempMinCol].getCurrentValue() +
metaTask[tempMinRow][tempMinCol].getBaseValue());
 }

 double tempMin2 = 123456;
 int tempMinRow2 = 0;
 int tempMinCol2 = 0;

 //inserted here
 int[] tCol2= new int[cloudletList.size()];
 double[] minArray2 = new double[cloudletList.size()];

 for(int i = 0; i < cloudletList.size(); i++){
 for(int j = 0; j < vmlist.size(); j++){
 if (metaTask[i][j].getCurrentValue() < tempMin2) {
 tempMin2 = metaTask[i][j].getCurrentValue();
 //tempMinRow2 = i;
 tempMinCol2 = j;
 }

 }
 minArray2[i] = tempMin2;
 tempMin2 = 123456;
 tCol2[i] = tempMinCol2;
 }

 double tempMax2=0.0;

 for(int i=0;i<cloudletList.size();i++){
 if(minArray2[i] > tempMax2 && minArray2[i] != tempMinRow){
 tempMax2 = minArray2[i];
 tempMinRow2 = i;
 tempMinCol2 = tCol2[i];
 }
 }

broker.bindCloudletToVm(cloudletList.get(tempMinRow2).getCloudletId(),vmlist.get(tempMinCol2).getId());

 for(int i = 0; i < cloudletList.size() && i != tempMinRow2; i++){
 metaTask[i][tempMinCol2].setCurrentValue(metaTask[i][tempMinCol2].getCurrentValue() +
metaTask[tempMinRow2][tempMinCol2].getBaseValue());
 }

 double tempMin3 = 123456;
 int tempMinRow3 = 0;
 int tempMinCol3 = 0;

 //inserted here

41

 int[] tCol3 = new int[cloudletList.size()];
 double[] minArray3 = new double[cloudletList.size()];

 for (int i = 0; i < cloudletList.size(); i++){
 for(int j = 0; j < vmlist.size(); j++){

 if (metaTask[i][j].getCurrentValue() < tempMin3){
 tempMin3 = metaTask[i][j].getCurrentValue();
 //tempMinRow3 = i;
 tempMinCol3 = j;
 }

 }
 minArray3[i]=tempMin3;
 tempMin3 = 123456;
 tCol3[i] = tempMinCol3;
 }

 //Inserted here
 double tempMax3 = 0.0;

 for(int i=0;i<cloudletList.size();i++){
 if (minArray3[i] != tempMinRow && minArray3[i] != tempMinRow2){
 if(minArray3[i] > tempMax3){
 tempMax3 = minArray3[i];
 tempMinRow3 = i;
 tempMinCol3 = tCol2[i];
 }
 }
 }

broker.bindCloudletToVm(cloudletList.get(tempMinRow3).getCloudletId(),vmlist.get(tempMinCol3).getId());

 }

 //MIN MIN ALGORITHM

 else if(SD < mean){
 Time[][] metaTask = new Time[][] {
 {new Time(cloudlet1.getCloudletFileSize()/vm1.getMips()),new
Time(cloudlet1.getCloudletFileSize()/vm2.getMips()) },
 {new Time(cloudlet2.getCloudletFileSize()/vm1.getMips()),new
Time(cloudlet2.getCloudletFileSize()/vm2.getMips())},
 {new Time(cloudlet3.getCloudletFileSize()/vm1.getMips()),new
Time(cloudlet3.getCloudletFileSize()/vm2.getMips())},

 };

 for(int i = 0; i < 3; i++){
 for(int j = 0; j < 2; j++){
 metaTask[i][j].setCurrentValue(metaTask[i][j].getBaseValue());
 }

42

 }

 double tempMin = 123456;
 int tempMinRow = 0;
 int tempMinCol = 0;

 for(int i = 0; i < 3; i++){
 for(int j = 0; j < 2; j++){
 if (metaTask[i][j].getBaseValue() < tempMin){
 tempMin = metaTask[i][j].getBaseValue();
 tempMinRow = i;
 tempMinCol = j;
 }
 }
 }

 broker.bindCloudletToVm(cloudletList.get(tempMinRow).getCloudletId(),vmlist.get(tempMinCol).getId());

 for(int i = 0; i < 3; i++){
 if(i != tempMinRow)
 metaTask[i][tempMinCol].setCurrentValue(metaTask[i][tempMinCol].getCurrentValue() +
metaTask[tempMinRow][tempMinCol].getBaseValue());
 }

 double tempMin2 = 123456;
 int tempMinRow2 = 0;
 int tempMinCol2 = 0;

 for(int i = 0; i < 3; i++){
 for(int j = 0; j < 2; j++){
 if(i != tempMinRow){
 if (metaTask[i][j].getCurrentValue() < tempMin2) {
 tempMin2 = metaTask[i][j].getCurrentValue();
 tempMinRow2 = i;
 tempMinCol2 = j;
 }
 }
 }
 }

broker.bindCloudletToVm(cloudletList.get(tempMinRow2).getCloudletId(),vmlist.get(tempMinCol2).getId());

 for(int i = 0; i < 3 && i != tempMinRow2; i++){
 metaTask[i][tempMinCol2].setCurrentValue(metaTask[i][tempMinCol2].getCurrentValue() +
metaTask[tempMinRow2][tempMinCol2].getBaseValue());
 }

 double tempMin3 = 123456;
 int tempMinRow3 = 0;
 int tempMinCol3 = 0;

 for (int i = 0; i < 3; i++){

43

 for(int j = 0; j < 2; j++){
 if(i != tempMinRow && i != tempMinRow2){
 if (metaTask[i][j].getCurrentValue() < tempMin3){
 tempMin3 = metaTask[i][j].getCurrentValue();
 tempMinRow3 = i;
 tempMinCol3 = j;
 }
 }
 }
 }

broker.bindCloudletToVm(cloudletList.get(tempMinRow3).getCloudletId(),vmlist.get(tempMinCol3).getId());

 }

 //bind the cloudlets to the vms. This way, the broker
 // will submit the bound cloudlets only to the specific VM
 // Sixth step: Starts the simulation
 CloudSim.startSimulation();

 // Final step: Print results when simulation is over
 List<Cloudlet> newList = broker.getCloudletReceivedList();

 CloudSim.stopSimulation();

 printCloudletList(newList);

 //Print the debt of each user to each datacenter
 datacenter0.printDebts();

 Log.printLine("Simulation finished!");
 }
 catch (Exception e) {
 e.printStackTrace();
 Log.printLine("The simulation has been terminated due to an unexpected error");
 }
 }

 private static Datacenter createDatacenter(String name){

 // Here are the steps needed to create a PowerDatacenter:
 // 1. We need to create a list to store
 // our machine
 List<Host> hostList = new ArrayList<Host>();

 // 2. A Machine contains one or more PEs or CPUs/Cores.
 // In this example, it will have only one core.
 List<Pe> peList = new ArrayList<Pe>();

 int mips = 1000;

44

 // 3. Create PEs and add these into a list.
 peList.add(new Pe(0, new PeProvisionerSimple(mips))); // need to store Pe id and MIPS Rating

 //4. Create Hosts with its id and list of PEs and add them to the list of machines
 int hostId=0;
 int ram = 2048; //host memory (MB)
 long storage = 1000000; //host storage
 int bw = 10000;

 hostList.add(
 new Host(
 hostId,
 new RamProvisionerSimple(ram),
 new BwProvisionerSimple(bw),
 storage,
 peList,
 new VmSchedulerSpaceShared(peList)
)
); // This is our first machine

 //create another machine in the Data center
 List<Pe> peList2 = new ArrayList<Pe>();

 peList2.add(new Pe(0, new PeProvisionerSimple(mips)));

 hostId++;

 hostList.add(
 new Host(
 hostId,
 new RamProvisionerSimple(ram),
 new BwProvisionerSimple(bw),
 storage,
 peList2,
 new VmSchedulerSpaceShared(peList2)
)
); // This is our second machine

 // 5. Create a DatacenterCharacteristics object that stores the
 // properties of a data center: architecture, OS, list of
 // Machines, allocation policy: time- or space-shared, time zone
 // and its price (G$/Pe time unit).
 String arch = "x86"; // system architecture
 String os = "Linux"; // operating system
 String vmm = "Xen";
 double time_zone = 10.0; // time zone this resource located
 double cost = 3.0; // the cost of using processing in this resource
 double costPerMem = 0.05; // the cost of using memory in this resource
 double costPerStorage = 0.001; // the cost of using storage in this resource
 double costPerBw = 0.0; // the cost of using bw in this resource

45

 LinkedList<Storage> storageList = new LinkedList<Storage>(); //we are not adding SAN devices
by now

 DatacenterCharacteristics characteristics = new DatacenterCharacteristics(
 arch, os, vmm, hostList, time_zone, cost, costPerMem, costPerStorage, costPerBw);

 // 6. Finally, we need to create a PowerDatacenter object.
 Datacenter datacenter = null;
 try {
 datacenter = new Datacenter(name, characteristics, new
VmAllocationPolicySimple(hostList), storageList, 0);
 } catch (Exception e) {
 e.printStackTrace();
 }

 return datacenter;
 }

 //We strongly encourage users to develop their own broker policies, to submit vms and cloudlets
according
 //to the specific rules of the simulated scenario
 private static DatacenterBroker createBroker(){

 DatacenterBroker broker = null;
 try {
 broker = new DatacenterBroker("Broker");
 } catch (Exception e) {
 e.printStackTrace();
 return null;
 }
 return broker;
 }

 /**
 * Prints the Cloudlet objects
 * @param list list of Cloudlets
 */
 private static void printCloudletList(List<Cloudlet> list) {
 int size = list.size();
 Cloudlet cloudlet;

 String indent = " ";
 Log.printLine();
 Log.printLine("========== OUTPUT ==========");
 Log.printLine("Cloudlet ID" + indent + "STATUS" + indent +
 "Data center ID" + indent + "VM ID" + indent + "Time" + indent + "Start Time" +
indent + "Finish Time");

 DecimalFormat dft = new DecimalFormat("###.##");
 for (int i = 0; i < size; i++) {
 cloudlet = list.get(i);
 Log.print(indent + cloudlet.getCloudletId() + indent + indent);

46

 if (cloudlet.getCloudletStatus() == Cloudlet.SUCCESS){
 Log.print("SUCCESS");

 Log.printLine(indent + indent + cloudlet.getResourceId() + indent + indent +
indent + cloudlet.getVmId() +
 indent + indent + dft.format(cloudlet.getActualCPUTime()) +
indent + indent + dft.format(cloudlet.getExecStartTime())+
 indent + indent + dft.format(cloudlet.getFinishTime()));
 }
 }

 }
}

Hhhkh

/*
 * To change this template, choose Tools | Templates
 * and open the template in the editor.
 */
package pkgfinal;

/**
 *
 * @author Mitul
 */
public class Selection {
 public Selection(){
 }

 public int executionTime(long fileSize,double mips){
 int executionTime;

 executionTime = (int) (fileSize / mips);

 return executionTime;
 }

 public int completionTime(int e,int w){
 int completionTime;

 completionTime = e + w;

 return completionTime;
 }

 public int completionTime (int e,int w1,int w2){
 int completionTime;

 completionTime = e + w1 + w2;

 return completionTime;
 }

47

 public double mean(int c1,int c2,int c3,int c4,int c5,int c6,int n){

 double mean_comp;

 mean_comp = (c1 + c2 + c3 + c4 + c5 + c6)/n;

 return mean_comp;

 }

 public double standardDeviation(int c1,int c2,int c3,int c4,int c5,int c6,double mean,int n){
 double sd;

 int e1 = (int) Math.pow((c1-mean), 2);
 int e2 = (int) Math.pow((c2-mean), 2);
 int e3 = (int) Math.pow((c3-mean), 2);
 int e4 = (int) Math.pow((c4-mean), 2);
 int e5 = (int) Math.pow((c5-mean), 2);
 int e6 = (int) Math.pow((c6-mean), 2);

 sd = Math.sqrt(e1+e2+e3+e4+e5+e6)/Math.sqrt(n);

 return sd;

 }
}

Hjg

package pkgfinal;

/**
 * Created with IntelliJ IDEA.
 * User: mitul
 * Date: 9/16/14
 * Time: 10:49 PM
 * To change this template use File | Settings | File Templates.
 */
public class Time {
 private double baseValue = 0;
 private double currentValue = 0;

 Time(double baseValue){
 this.baseValue = baseValue;
 }

 public double getBaseValue() {
 return baseValue;
 }

 public void setBaseValue(double baseValue) {
 this.baseValue = baseValue;

48

 }

 public double getCurrentValue() {
 return currentValue;
 }

 public void setCurrentValue(double currentValue) {
 this.currentValue = currentValue;
 }
}

49

Bibliography

[1] Cloud computing: state-of-the-art and research challenges byQi Zhang·Lu

Cheng·Raouf Boutaba in IJSA 2010 vol 1: 7-18.

 [2] A game-theoretic method of fair resource allocation for cloud computing services by

Guiyi Wei·Athanasios V. Vasilakos·Yao Zheng Naixue Xiong.in IEEE 2012.

 [3] CloudSim: a toolkit for modeling and simulation of cloud computing environments

and evaluation of resource provisioning algorithms by Rodrigo N. Calheiros, Rajiv Ranjan, Anton

Beloglazov, C´esar A. F. De Rose and Rajkumar Buyya

 [4] Optimal Online Deterministic Algorithms and Adaptive Heuristics for Energy and

Performance Efficient Dynamic Consolidation of Virtual Machines in Cloud Data Centers Anton

Beloglazov and Rajkumar Buyya in online Willey Online.

 [5] Research and Simulation of Task Scheduling Algorithm in Cloud Computing Hong Sun,

Shi-ping Chen, Chen Jin, Kai Guo in TELKOMNIKA, Vol.11, No.11, November 2013.

 [6] Survey on Resource Allocation Policy and Job Scheduling Algorithms of Cloud

Computing by Lu Huang and Hai-shan Chen in JOURNAL OF SOFTWARE, VOL. 8, NO. 2, FEBRUARY

2013.

 [7] A Particle Swarm Optimization-based Heuristic for Scheduling Workflow Applications

in Cloud Computing Environments by Suraj Pandey, Linlin Wu, Siddeswara Mayura Guru,

Rajkumar Buyya.

 [8] S. Pandey, W. Voorsluys, M. Rahman, R. Buyya, J. Dobson, and K. Chiu. A grid workflow

environment for brain imaging analysis on distributed systems. Concurrency and Computation:

Practice & Experience, 21(16):2118–2139,November 2009.

50

 [9] R. Buyya, S. Pandey, and C. Vecchiola. Cloudbus toolkit for market-oriented cloud

computing. In CloudCom ’09: Proceedings of the 1st International Conference on Cloud

Computing, volume 5931 of LNCS, pages 24–44. Springer, Germany, December 2009.

 [10] Energy Efficient Resource Management in Virtualized Cloud Data Centers Anton

Beloglazov* and Rajkumar Buyya in 2010 10th IEEE/ACM International Conference on Cluster,

Cloud and Grid Computing.

 [11] Resource Management and Scheduling in Cloud Environment Vignesh V, Sendhil

Kumar KS, Jaisankar N in International Journal of Scientific and Research Publications, Volume 3,

Issue 6, June 2013,ISSN 2250-3153.

 [12] SLA-based Resource Allocation for Software as a Service Provider (SaaS) in Cloud

Computing Environments Linlin Wu, Saurabh Kumar Garg and Rajkumar Buyya in 2011 11th

IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing.

 [13] Energy efficient utilization of resources in cloud computing systems Young Choon

Lee·Albert Y. Zomaya in SPRINGER online 2010.

 [14] Efficient Resource Management for Cloud Computing Environments Andrew J.

Younge, Gregor von Laszewski, Lizhe Wang, Pervasive Technology Institute, Indiana University,

Bloomington, IN USA and Sonia Lopez-Alarcon, Warren Carithers , Rochester Institute of

Technology, Rochester, NY USA.

 [15] Resource Allocation and Scheduling in the Cloud Ms. Shubhangi D. Patil, Dr. S. C.

Mehrotra in International Journal of Emerging Trends & Technology in Computer Science

(IJETTCS) 2012.

