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Abstract 

An important part of gene regulation is mediated by specific proteins, called 

transcription factors, which influence the transcription of a particular gene by binding to 

specific sites on DNA sequences, called transcription factor binding sites (TFBS) or, 

simply, motifs. Such binding sites are relatively short segments of DNA, normally 5 to 25 

nucleotides long, overrepresented in a set of co-regulated DNA sequences. There are two 

different problems in this setup: motif representation, accounting for the model that 

describes the TFBS’s; and motif discovery, focusing in unraveling TFBS’s from a set of 

co-regulated DNA sequences. This thesis proposes a discriminative scoring criterion that 

culminates in a discriminative mixture of Bayesian networks to distinguish TFBS’s from 

the background DNA. This new probabilistic model supports further evidence in non-

additivity among binding site positions, providing a superior discriminative power in 

TFBS’s detection. On the other hand, extra knowledge carefully selected from the 

literature was incorporated in TFBS discovery in order to capture a variety of 

characteristics of the TFBS’s patterns. This extra knowledge was combined during the 

process of motif discovery leading to results that are considerably more accurate than 

those achieved by methods that rely in the DNA sequence alone. 
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Chapter 1 

Introduction 

1.1 Overview 
 

Bioinformatics is the application of computer technology to the management of 

biological information. Computers are used to gather, store, analyze and integrate 

biological and genetic information which can then be applied to gene-based drug 

discovery and development. The need for Bioinformatics capabilities has been 

precipitated by the explosion of publicly available genomic information resulting from 

the Human Genome Project. There are different fields in bioinformatics like DNA 

sequencing, DNA Motif finding, Gene selection, Gene prediction, Gene expression, 

Protein selection etc. Among them we are interested in motif finding or motif extraction 

problems. 

All life on this planet depends on three types of molecule: DNA, RNA, and proteins. 

DNA, or deoxyribonucleic acid, is a simple molecule consisting four types of bases: 

adenine (A), thymine (T), guanine (G) and cytosine(C). The nucleotide order of a DNA 

fragment is known as gene sequence. 

Patterns appearing repeated either inside a same string or over a set of strings are 

important objects to identify. Such repeated patterns are called motifs and their 

identification is called motif inference or motif extraction. Finding motif in gene 

sequence is a very important topic in bioinformatics. There are two types of motif, single 

motifs and structured motifs. In our work, we are only considering the single motifs. 
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1.2 Problem Statement 

There are many motif finding algorithms out there. They are different in strategies, input, 

output types etc. The main problem of large amount of data is the inclusion of noisy and 

irrelevant data in the information set. As the datasets become large the number of noisy, 

redundant and uninformative gene also increases resulting in space-time complexity. So, we are 

set to find an algorithm that will find out the possible motif with few mismatches with great 

accuracy. We work on an algorithm called “RISOTTO” which has a great performance in case of 

accuracy but has poor space-time complexity. So, we combine the “RANDOM PROJECTION” 

algorithm with RISOTTO to improve its complexity. 

1.3 Research Challenges 
 

With the large amount of biological data generated due to DNA sequencing of various 

organisms, it is becoming necessary to identify techniques that can help in finding useful 

information amongst all the data. Finding motifs involves determining meaningful short 

sequences that may be repeated over many sequences in various species. Various approaches for 

the motif discovery problem have been proposed in the literature. Computational methods for 

identifying and modeling DNA sequence motifs and regulatory elements have been developed 

over the past 25 years. These methods either use DNA patterns or position weight matrices to 

model target DNA-binding sites. Some of these methods have been used successfully  to  

discover  the  cis-regulatory  elements  in  genes  that  are  thought to  be  regulated  by  a  

common  transcription  mechanism.  Orthogonal information from comparative genomics or co-

regulation at the expression level have  been  incorporated  into  these  methods  to  identify  cis-

regulatory  sites. Because many of the regulatory elements are functional in vivo only in certain 

temporal or spatial contexts and require other nearby sites that together function as cis-regulatory 

modules, methods have also been developed to address composite regulatory elements or 

regulatory modules that consist of DNA sites bound by multiple regulatory factors. There are 

now many programs available for DNA motif discovery and putative regulatory element 

identification, and several have web interfaces for easy use. Bioinformatics is such a research 

area that is the interface between the biological and computational sciences. Identification of all 

of the functional elements in genomes, including genes and regulatory elements, is a 

fundamental challenge now that the complete genomic sequences of a number of prokaryotes 
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and eukaryotes are available. The ultimate goal of bioinformatics is to uncover the wealth of 

biological information hidden in the mass of data and obtain a clearer insight into the 

fundamental biology of organisms. This new knowledge could have profound impacts on fields 

as varied as human health, agriculture, the environment, energy and biotechnology. The 

identification of DNA motifs remains an active challenge for the researchers in the 

bioinformatics domain. In recent years a considerable number of algorithms have been designed 

for identifying regulatory elements in DNA sequence. 

1.4 Motivation 

In this large-scale genome sequencing era the main bottleneck to progress in 

molecular biology is data analysis. The prime objective of this thesis is the investigation 

of one kind of biological information contained in sequenced data: the motif model and 

its discovery from a set of co-regulated DNA sequences. A motif is roughly a 

mathematical representation underlying a transcription factor binding site. More 

precisely, the main goal of this thesis is the proposal of efficient and effective algorithms 

for motif representation and discovery, capable of dealing with the enormous amount of 

data coming from the Bioinformatics community. Such models and algorithms should be 

able to look in and beyond the DNA sequence alone, preferably gathering information 

from different sources. This ground in the belief that such diverse information would 

increase the discriminative power of current tools. To its possible extent, the 

improvements obtained should be documented by complexity analysis, as well as by 

experimental results over biologically relevant sequence-sets. 

        



 

 

 

 

 

Chapter 2 

Literature Reviews 

     This chapter is divided into different sections. In each section, we will discuss 

some proposed method for DNA motif finding. Along with their description, we will try 

to highlight the shortcomings of each of the discussed methods. 

2.1 Motif: 
 

To classify and identify the features of DNA, RNA, Protein sequences in 

molecular biology, motif plays an important role. It has the capabilities to describe and 

find out the special characteristics of DNA, RNA, Protein sequences. Sequence motifs 

are becoming important in the analysis of gene regulation day by day. Actually Motifs 

are short repeating pattern in DNA, RNA, Protein sequences in molecular biology that is 

conserved during the process of evolution. Motifs are short, recurring patterns in DNA 

that are presumed to have a biological function. Often they indicate sequence-specific 

binding sites for proteins such as nucleuses and transcription factors (TF). Others are 

involved in important processes at the RNA level, including ribosome binding, mRNA 

processing (splicing, editing) and transcription termination. Basically it has a great 

impact on biological science. It resides in a DNA, RNA or Protein sequences and plays 

an important role in molecular biology. 

Some common features of motif has been invented to identify it in the long sequences of 

DNA, RNA or Protein. Some important features that are helpful to identify motif or know 

about motif are given below: 
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 Motifs are patterns of length 5 to 20 bases and are repeated over many sequences. 

 They are small, have constant size, and are repeated very often. 

 They are statistically over-represented in regulatory regions. 

Here we have given an example of motif in DNA sequences to understand the 

characteristic of motif. From the example we can have a brief idea about the short 

recurring sequence Motif. In the following example, we can see a conserved short 

sequence (Motif) in few DNA Sequences. From the example we can see that the pattern 

ATGCAACT is unchanged and conserved. This short DNA sequence ATGCAACT is 

called motif. 

                          CGGGGCTATGCAACTGGGTCGTCACATTC 

TTTGAGGGTGCCCAATAAATGCAACTCCA 

GGATGCAACTGATGCCGTTTGACGACCTA 

AAGGATGCAACTCCAGGAGCGCCTTTGCT 

TACATGATCTTTTGATGCAACTTGGATGA 

Figure 1: Typical representation for a motif 

 

2.2 Motif Representation 

 

Deterministic models: 

There are two main kinds of deterministic models: regular expressions and 

consensus sequences. The regular expressions used in motif discovery denote a subset of 

regular languages and are typically composed of exact symbols, ambiguous symbols, 

fixed gaps or flexible gaps. A consensus sequence represents a collection (neighborhood) 

of binding site sequences that are at most at a certain Hamming distance of the 

underlying consensus sequence. Each binding site sequence in this collection is called a 

motif occurrence or consensus occurrence. The number of mismatches depends largely 
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on the size of the motif. There are a few variants to these two models. A first alternative 

imposes a restriction on the location of mismatches along the consensus sequence (Pavesi 

et al., 2001). That is, a consensus occurrence can present at most a certain number of 

mismatches in the first i nucleotides, and so on. On the other hand, a second variant takes 

into account the sum of mismatches between all consensus occurrences and the 

underlying consensus sequence (Li and Fu, 2005). 

Probabilistic models: 

The main drawback of deterministic models is that they lose some information, as 

compared with the collection of binding site sequences from where they are generated. 

For instance, even if we know that a consensus sequence has at least 2 mismatches within 

the collection of binding sites, we do not know if there are one or more bases which are 

specially well conserved, nor, for those bases that are not so well conserved, what kind of 

mismatches they have. The probabilistic models appeared to overcome such loss of 

information. 

Motif discovery: 

Identifying TFBS’s is notoriously difficult for both prokaryotic and eukaryotic 

organisms. There are two major limitations in this task. First, there is a constraint of 

algorithmic nature, meaning that in general the proposed methods can only be applied to 

sets of sequences restricted in their length and number. Second, there is a weakness in the 

models employed for TFBS’s, leading to poor TFBS predicting methods. Nevertheless, 

the subject has gained a renewed interest in the last few years, with the sequencing of the 

genomes of vertebrates such as man and mouse. The literature on the topic of DNA 

binding site sequence detection is extensive, and there are several surveys on the subject 

(Sandve and Drablos, 2006; Tompa et al., 2005; Pavesi et al., 2004a; Stormo, 2000;Vanet 

et al., 1999; Brazma et al., 1998a). Herein, we concentrate on briefly surveying methods 

that try to extract conserved single binding sites, or multiple ones, possibly located at 

constrained distances from one another in a set of co-regulated DNA sequences. Up to 
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ten years ago, all methods for detecting DNA binding sites considered each such site 

individually. These methods therefore looked for single motifs, that is, motifs composed 

of a unique binding site. This includes pattern-based approaches which allowed for 

wildcards or a limited number of spacers but not for mutations (Brazma et al., 1998b; 

Tompa, 1999; van Helden et al., 1998). Apart from these, only an approach by Sagot 

(1998) based on a suffix tree allowed for mutations. Another very popular single motif 

discoverer is the MEME algorithm (Bailey and Elkan, 1994, 1995a,b), an Expectation 

Maximization (EM) procedure that identifies motifs with high relative entropy. MEME 

[4] deals with single and multiple motifs by identifying significant sets of compatible 

motifs. It works by iteratively building such multiple motifs from single ones ensuring 

that the occurrence positions of the multiple motifs do not contradict the occurrence 

positions of the single motifs previously identified. In this, the set of motifs reported must 

only satisfy compatibility. No constraint, and therefore no statistical value, is put on the 

distances separating them.              

2.3 Related Work: 

2.3.1 PMS (Planted Motif Search) [17]: 
  

Inputs are t sequences of length n each. Inputs also are two integers’ l and d. The 

problem is to find a motif (i.e., a sequence) M of length l. It is given that each input 

sequence contains a variant of M. The variants of interest are sequences that are at a 

hamming distance of d from M. 

Numerous papers have been written in the past on the topic of motif search 

(PMS).Examples include Bailey and Elkan, Lawrence et al., Rocke and Tompa. These 

algorithms employ local search techniques such as Gibbs sampling, expectation 

optimization etc. These algorithms may not output the planted motif always. We refer to 

such algorithms as approximation algorithms. Algorithms that always output the correct 

answer are referred to as exact algorithms. More algorithms have been proposed for PMS 

by the following authors: Pevzner and Sze, Buhler and Tompa. The algorithm of Pevzner 
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and Sze is based on finding cliques in a graph and the algorithm of Buhler and Tompa  

employs random projections. These algorithms have been experimentally demonstrated to 

perform well. These are approximation algorithms as well. 

         Algorithms for PMS can be categorized into two depending on the basic approach 

employed, namely, profile-based algorithms and pattern-based algorithms (Price et al.) 

Profile based algorithms predict the starting positions of the occurrences of the motif in 

each sequence. On the other hand, pattern-based algorithms predict the motif (as a 

sequence of residues) itself. Several pattern based algorithms are known. Examples 

include PROJECTION[5], MULTIPROFILER[8], MITRA[6], and PatternBranching[7]. 

PatternBranching (due to Price, Ramabhadran and Pevzner) starts with random seed 

strings and performs local searches starting from these seeds. Examples of profile-based 

algorithms include CONSENSUS[10], GibbsDNA[9], MEME[4], and ProfileBranching 

[7]. The performance of profile-based algorithms is specified with a measure called 

“performance coefficient”. The performance coefficient gives an indication of how many 

positions (for the motif occurrences) have been predicted correctly.  

Algorithm: 

The algorithm has the following steps: 1) Let the input sequences be S1,S2…St. 

The length of each sequence is n. Form all possible l-mers from out of these sequences. 

The total number of l-mers is ≤ tn. Call this collection of l-mers C. Let, the collection of 

l-mers in S1 be C’; 2) Let u be an l-mer in C’. For all u ∈ C’ generate all the patterns v 

such that u and v are at a hamming distance of d. The number of such patterns for a given 

u is (  
 
)        . Thus the total number of patterns generated is O  (  

 
)    ). Call this 

collection of l-mers C’’. Note that C’’ contains M, the desired output pattern (assuming 

that M does not occur in any of the input sequences); 3) For every pair of l –mers (v,u) 

with u ∈ C’  and v ∈ C’’  compute the hamming distance between u and v. Output that l-

mer of C’’  that has a neighbor in each one of the n input sequences. The run time of this 

algorithm is O     (  
 
)    ). If M occurs in one of the input sequences, then this 

algorithm will run in time O(     ). 
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2.3.2 RANDOM PROJECTION [5]: 
 

The RANDOMPROJECTIONS algorithm is another randomized approach to 

motif finding. If an l-long pattern is “implanted” in DNA sequences without mutations, 

then motif finding simply reduces to counting the number of occurrences of l-mers from 

the sample (the most common one reveals the implanted pattern). However, motif finding 

becomes very difficult when the pattern is implanted with mutations. Could we possibly 

reveal mutated patterns in the same way that we deal with non-mutated patterns, that is, 

by considering the positions that were not mutated? For example, in any instance of a 

pattern of length 8 with two mutated positions, six positions remain unaffected by 

mutations and it is tempting to use these six positions as a basis for motif finding. There 

are two complications with this approach. First, the six constant positions do not 

necessarily form a contiguous string: the mutated nucleotides may be in positions 3 and 

7, leaving the other six conserved positions to form a gapped pattern. Second, different 

instances of the pattern can mutate in different positions. For example, three different 

instances of the mutated pattern may differ in positions 3 and 7, 3 and 6, and 2 and 6 

respectively. The key observation is that although the three mutated patterns **X***X*, 

**X**X**, *X***X** are all different, their “consensus” gapped pattern *XX**XX* 

remains unaffected by mutations. If we knew which gapped pattern was unaffected by 

mutations we could use it for motif search as if it were an implanted gap pattern without 

mutations. The problem, however is that the locations of the four unaffected positions in 

*XX**XX* are unknown. To bypass this problem, RANDOMPROJECTION [5] tries 

different randomly selected sets of k (out of l) positions to reveal the original implanted 

pattern. These sets of positions are called projections. We will define a (k, l)-template to 

be any set of k distinct integers 1 ≤ t1 < · · · < tk ≤ l. For a (k, l)-template t = (t1, . . . , tk) 

and an l-mer a = a1, . . . , al , define Projection(a,t) =at1 , at2 . . . atk to be the concatenation 

of nucleotides from a as defined by the template t. For example, if a=ATGCATT and t = 

(2, 5, 7), then Projection(a,t)=TAT. The RANDOMPROJECTIONS [5] algorithm, below, 

chooses a random (k,l)-template and projects every l-mer in the sample onto it; the 
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resulting k-mers are recorded via a hash table. We expect that k-mers that correspond to 

projections of the implanted pattern appear more frequently than other k-mers. Therefore, 

k-mers that appear many times (e.g., whose count in the hash table is higher than a 

predefined threshold θ) as projections of l-mers from the sample are likely to represent 

projections of the implanted pattern. Of course, this is subject to noise and a single (k, l)-

template does not necessarily reveal the implanted pattern. The 

RANDOMPROJECTIONS [5] algorithm repeatedly selects a given number, m, of 

random (k,l)-template and aggregates the data obtained for all m iterations. As 

RANDOMPROJECTIONS [5] chooses different random templates, the locations of the 

implanted pattern become clearer. As compared to other motif finding algorithms, 

RANDOMPROJECTIONS requires additional parameters: k (the number of positions in 

the template), θ (the threshold that determines which bins in the hash table to consider 

after projecting all l-mers), and m (the number of chosen random templates). The 

RANDOMPROJECTIONS algorithm creates a table, Bins, of size    such that every 

possible projection (k-mer) corresponds to a unique address in this table. For a given 

(k,l)-template r, Bins(x) holds the count of l-mers a in DNA such that Projection(a, r) = x. 
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RANDOMPROJECTIONS provides no guarantee of returning the correct pattern, 

but one can prove that RANDOMPROJECTIONS [5] returns the correct motif with high 

probability, assuming that the parameters are chosen in a sensible way. The main 

difference between this toy algorithm and the practical Projection algorithm developed by 

Jeremy Buhler and Martin Tompa is the way in which this algorithm evaluates the results 

from hashing all the l-mer projections. The method that we have presented here to choose 

(s1, s2, . . . , st) is crude, while the Projection algorithm uses a heuristic method that is 

harder to trick by accidentally large counts in the array motifs. 

 

 

2.3.3 RISO: 

RISO discovers motifs composed of many binding sites separated by spacers. 

Each binding site is called a box. 

 

Generic parameters: 

 Alphabet file: the file name with the alphabet of the motifs (examples are the DNA 

or protein alphabet). 

 FASTA file: the file name of the input sequences (sequences must be in FASTA 

format). 

 Output file: the name of the output file. 

 Quorum: the minimum percentage of input sequences where the motif must appear 

to be extracted. 

 Boxes: number of boxes of the motif. 
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For each box of the motif it is also needed: 

 Min length: minimum length of the corresponding box. 

 Max length: maximum length of the corresponding box. 

 Substitutions: maximum number of substitutions allowed in corresponding box. 

 Min spacer length: minimum distance that separates the corresponding box to the 

next one (if exists). 

 Max spacer length: maximum distance that separates the corresponding box to the 

next. 

An example of the input parameters follows: 

Alphabet file        ../params/alphabet  

FASTA file           ../params/dnc_subtilis_330-30.seq  

Output file          ../params/b-subtilis-output  

Quorum               12  

Boxes                2  

 

BOX 1  

Min length           6  

Max length           6  

Substitutions        1  

Min spacer length    16   

Max spacer length    18  

BOX 2  

Min length           6  

Max length           6  

Substitutions        1 

 

Table 1: Input parameters of RISO 
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Interpret the output 

For each motif that RISO-Dynamic discovers in the input dataset, it prints the 

following: 

 An header with a summary of the input parameters  

 Each of the subsequent lines prints the following information: 

o The motif. 

o A numeric representation of the motif. 

o The number of different sequences where the motif appears. 

o The number of occurrences of the motif (allowing repeats and overlaps in 

the same sequence). 

 The number of total motifs founded and the time spent. 

%%% 2 128/1062 196736 12 12 2 6 6 1 16 18 6 6 1 alphabet ACGT$  

==============================================================  

AAAAAA_AAAAAA 000000-000000 188 703  

AAAAAA_AAAAAC 000000-000001 139 357  

AAAAAA_AAAAAG 000000-000002 166 410  

AAAAAA_AAAAAT 000000-000003 193 461  

...................................  

TTTTTT_TTTTTA 333333-333330 201 507  

TTTTTT_TTTTTC 333333-333331 171 441  

TTTTTT_TTTTTG 333333-333332 148 384  

TTTTTT_TTTTTT 333333-333333 188 700  

Nb models: 6419  

User time: 45.33 sec. 

 

Table 2: Output of RISO     
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2.3.4 RISOTTO-Single motif extraction [2]: 

A single motif is a word over an alphabet. Given an error rate e, a motif is said to 

e-occur in a sequence if it occurs with at most e letters substitution. The single motif 

extraction problem takes as input N sequences, a quorum q, d a maximal number e of 

mismatches allowed, and a minimal and maximal length for the motifs, kmin and kmax, 

respectively. The problem consists in determining all motifs that e-occur in at least q 

input sequences. Such motifs are called valid. An efficient exact algorithm for the 

extraction of single motifs with mismatches has been introduced in [13] and is based on a 

suffix tree. In a few words, motifs are considered in lexicographical order starting from 

the empty word, and they are extended to the right as long as the quorum is satisfied until 

either a valid motif of maximal length is found (if the kmax length is reached), or the 

quorum is no longer satisfied. In both cases, a new motif is attempted. At each step, all 

nodes spelling e-occurrences of the current motif are taken in to account. More formally, 

the algorithm presented in [13] we refer to is sketched in Algorithm 1, where motif m is 

the one whose extension is being tried.  

 

Figure 2 . 1: Single motif extraction 

At the beginning ExtractSingleMotif is called on the empty word. The algorithm 

recursively calls itself for longer motifs built by adding letters (step 4), and considers new 

ones (step 1) when the extension fails (step 2). A valid motif is spelled out whenever a 

motif whose length lies within the required minimal and maximal length is being 
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considered (step 3). The order in which motifs are generated corresponds to a depth-first 

visit of a complete trie M of all words of length kmax on the alphabet. We refer to M as 

the motif tree. In fact, the algorithm does not need to allocate the motif tree. The only 

memory requirement is for the suffix tree T. Assuming that the required length of the 

motif is k (that is kmin = kmax = k), and that at most e mismatches are allowed, the 

algorithm has worst case time complexity. 

RISOTTO- Using maximal extensibility of factors: 

 The modification consists in storing information concerning maximal extensibility 

in order to avoid trying to extend hopeless motifs. Assume that in our virtual depth-first 

visit of the motif tree, we have found out that motif m can be further extended without 

losing the quorum up to a length of MaxExt(m) only , the latter representing its maximal 

extensibility . If later on, we are processing a motif m’ that has m as a suffix, then the 

MaxExt(m) information could be useful, as it applies to m’ as well because m’ can also 

be extended with at most MaxExt(m) symbols (and possibly less). In particular, we have 

that if |m’| + MaxExt(m) < kmin, then we can avoid any further attempt to extend m’ 

because there is no hope to reach length kmin for motifs that have m’ as prefix. 

 

Figure 2 . 2: Example where the extension of m’ can be avoided, using MaxExt(m), where m is a 

suffix of m’, because |m’|+MaxExt(m) < kmin 

Motifs are considered in lexicographical order by a depth-first (virtual) visit of the 

motif tree M. Every time we stop extending a motif, that is, when we (virtually) 

backtrack in M, it is either because we found a valid motif of the maximal length, or 
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because the quorum is no longer satisfied (m does not satisfy the condition at step 2, and 

we start to consider the next one in lexicographical order). More formally, the analysis 

the motif m is abandoned both when m is valid and |m| = kmax, or m does not satisfy the 

quorum. In the first case, m is valid, as are all its prefixes, and |m| = kmax. No 

information on the maximal extension of m nor of its prefixes can be of any use because 

all motifs having a prefix of m as suffix can in general still be extended as much as 

necessary to reach at least the length kmin. For this reason, we set MaxExt(m) = +∞, 

meaning that m can be extended possibly more than we are computing. In the second 

case, m does not satisfy the quorum while all its prefixes do. For reasons that will be 

clearer later, we chose to only use the maximal extensibility information of motifs of 

length up to kmin -1, hence this case can be subdivided in to two subcases. When a motif 

m cannot be extended anymore and it has not reached the length kmin-1, we set 

MaxExt(m) = 0. If the motif has reached a length h between kmin-1 and kmax, we set 

MaxExt(mα|kmin -1)=h- (kmin -1)where ( mα|kmin -1 is the prefix of length kmin-1 of mα. 

Since it can be that MaxExt(mα| kmin -1) had already received some value because a 

previous extension of ( mα| kmin -1) was interrupted, then we change the value of 

MaxExt(mα| kmin -1) only if we are increasing it, as maximal extensibility of a motif 

refers to its longest extension. We assume that all maximal extensibility values are 

initially set to -1, hence the first attribution to MaxExt(mα| kmin -1) will always increase 

its value. In all the cases above, the algorithm does not consider any further extension of 

m, and backtracks. This backtracking consists in either replacing the last letter of m, or 

considering a shorter motif which in general shares a prefix with m, if ϭ|m| was the last 

letter of the alphabet ∑. In this latter case, the whole sub tree rooted at the node spelling 

ϭ1….Ϭ|m|-1, has been (virtually) completely visited. Thus, we have all the information 

necessary to set the value of MaxExt(ϭ1….Ϭ|m|-1) according to MaxExt(x)=1 + max 2 
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MaxExt(x), for all valid motifs x such that |x| < kmin -1. If the letter Ϭ|m|-1 was the last of 

the alphabet, then the backtracking goes further. In that case, also the MaxExt 

information concerning the word ϭ1….Ϭ|m|-2 can be lled in in the same way, and so on as 

long as we (virtually) climb up in the tree. As mentioned before, maximal extensibility 

information can be used for motifs whose extension is being considered and for which 

this information could actually prevent some useless attempts. Namely, assume we are 

trying to extend the motif m=ϭ1….Ϭ|m|. Since the motifs are considered by means of a 

depth-first search on the virtual motif tree, we obviously do not know the value of 

MaxExt(m) yet. Moreover, we know MaxExt(ϭ2….Ϭ|m|). Only if it lexicographically 

precedes m, that is, it has already been virtually visited in the motif tree. If this is not the 

case, we check whether MaxExt(ϭ3….Ϭ|m|). is already known, and so on, possibly until 

the singleton Ϭ|m|. If they are all lexicographically greater than m, then no maximal 

extension information can be used for m, but if for any of them MaxExt is known and it 

holds that the maximal possible extension is not enough to reach kmin, then the 

information is useful as it guarantees that attempting to further extend m is useless.

         

Figure 2 . 3: Single motif extraction with maximal extensibility function 
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2.3.5 GRISOTTO [3]: 

GRISOTTO is a greedy approach to improve combinatorial algorithms, RISOTTO 

[2] for motif discovery with prior knowledge. Position-specific priors (PSP) have been 

used with success to boost EM and Gibbs sampler-based motif discovery algorithms. PSP 

information has been computed from different sources, including orthologous 

conservation, DNA duplex stability, and nucleosome positioning. Here RISOTTO is 

extended by post-processing its output with a greedy procedure that uses prior 

information. PSP’s from different sources are combined into a scoring criterion that 

guides the greedy search procedure. 

Methods 
 

GRISOTTO [3] uses the RISOTTO [2] output as starting points of a greedy 

procedure that aims at maximizing a scoring criterion based on combined prior 

information. Our approach diverges from EM (used in MEME [4]) and Gibbs sampling 

(used in PRIORITY [11]) as we do not consider latent variables and do not use a 

background model. Moreover, instead of maximizing the likelihood, GRISOTTO uses a 

scoring criterion based on the balanced information of observing the DNA sequences and 

the priors given a candidate motif. We called this score Balanced Information Score 

(BIS). Furthermore, GRISOTTO [3] returns the IUPAC string that is best fitted, 

according to BIS, via a greedy search procedure. 

 

GRISOTTO Algorithm: 
 

Some notations used in GRISOTTO algorithm are given in the table below: 
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Table 3: Definition of terms used in describing the algorithms presented in Methods 

 

Considering that we have a set of N co-regulated DNA sequences hence forward 

denoted by f =(fi) i =1,...,N. The length of the each sequence fi is ni, that is, f =(fij) i =1,..., 

ni. Moreover, consider that Sp contains some prior information in a PSP format about the 

domain in study, with p= 1 ...ℓ, where ℓ is the number of priors (eventually zero). We 

denote by S=〈S1,...,Sℓ〉the list of all priors. The goal of GRISOTTO [3] is to report a 

single motif of a fixed size k, that is, an IUPAC string of size k. The IUPAC alphabet is 

henceforward denoted by Σ. The pseudo code of GRISOTTO is depicted in Algorithm 1. 

The algorithm starts by running RISOTTO [2] to extract, at least zmin, nd at most zmax, 

motifs of size k. From the RISOTTO output, the top Z motifs are collected in a set called 

C (Step 2) and constitute the starting points of the GRISOTTO greedy procedure, called 

GGP (Step 4). Briefly, GGP starts with a motif m∈ C and returns the best fitted motif, 

according to BIS, by updating each position in m with an IUPAC symbol until no local 

improvements can be achieved. In Step 5-6 the variable r, which stores the output of the 

algorithm, is updated whenever the GGP procedure returns a motif with a BIS score 

higher than the current stored one. Note that in Step 2 the result variable r is initialized 
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with the empty motif ε. We consider that the empty motif ε has the minimum possible 

BIS scoring value. 

It remains to explain the GGP procedure given in Algorithm 2. The general idea of 

the algorithm is to process each position of the motif m, received as parameter, in a 

greedy fashion. Variable i identifies the motif position being processed. It is initialized 

with the value 0 (Step 1), the first position of m, and it is incremented in a circular way 

using modular arithmetic (Step 9). GPP terminates when k consecutive positions of the 

motif m being considered cannot be improved, according to BIS, and so m remains 

unchanged for a complete k-round. This information is stored in variable t that counts 

how many consecutive positions of m have not been modified. Variable t is initialized 

with 0 (Step 1) and controls the outer cycle (Step 2-9), which terminates when t =k. The 

Boolean flag changed is read in the outer cycle (Step 7) to detect whether the i-th position 

of the motif has been modified inside the body of the inner cycle (Step 6). It is initialized 

in each run of the outer cycle with false (Step 3). The inner cycle (Step 4-6) tries to 

improve the BIS score of m by updating its i-th position with each letter a ∈ Σ. We 

denote by m 〈i,α〉 the motif m where the i-th position of m was replaced by the letter a. 

Whenever the BIS score of m 〈i, α〉 is greater than the BIS score of m(Step 5) three 

variables are updated:  

(i) Motif m is updated to m〈i, α〉; 

(ii) Variable t is reset to its initial value, forcing a complete k-round from that 

point on;  

 (iii) Flag changed is turned to true.  

After the inner cycle, in Step 7, we test whether the i-th position of m was not modified 

by checking the value of the flag changed. If that is the case, variable t is incremented 

(Step 8). Next, in Step 9, variable i is incremented so that the next position of m can be 

inspected. 
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Balanced information score: 
 

Start by noticing that a motif m of size k written in IUPAC can be easily translated 

into a PSSM with dimension 4 ×k. Moreover, observe that if we had to guess in which 

position m occurs in sequence fi that would be the position ji that maximizes       

[  ..   + k- 1]) where    (w) is the probability of observing the DNA word w by the 

PSSM induced by m and     [  ..   + k- 1]) is the k-long segment off i that starts at 

position ji. In other words, such ji annotates the position in which we believe the motif m 

occurs in fi. Henceforward consider that we annotate for each sequence fi the respective 

position ji where m occurs with higher probability (refer to Table 1). Following Shannon, 

these lf-information of a probabilistic event with probability p is given by - log(p). If the 

event is very rare, the self-information is very high. On the other hand, if the event has 

probability close to 1, observing such event gives us almost no information. So, by 

assuming that m occurs independently in each sequence off, the self-information that m 

occurs in all sequences off in the annotated positions is given by 

   
   = −log(      [  ..    +  k- 1]))                   (1) 

Note that the above sum is zero (its minimal value) if the motif m occurs with 

probability 1 in all annotated positions and, moreover, the sum is not upper-bounded. 

Considering that the priors are in PSP format, their information can be easily computed 

from the annotated sequences. Indeed, the self-information given by the prior Sp of 

observing the annotated position Sji, for all 1≤i ≤N, is computed as 

   
   = −log (  [i,  ])                                           (2) 

Where Sp[i, j] is the prior probability stored at the j-th position of the i-th 

sequence in the Sp PSP file. Having this, it remains to understand how the information 

from different priors can be combined. Actually, priors come from different sources [4], 

and some of these sources might have more quality or be more relevant for motif 

discovery than others. A simple way to heuristically combine prior information is to 

multiply the contribution of each prior by a constant a p that measures the belief in the 
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quality/relevance of each prior Sp and consider a balanced sum of all self- information’s. 

In order to keep the resulting value with the same magnitude of each component, we 

consider a convex combination, that is,    
   αp =1 .Thus, the combined self-information 

is computed as 

     
    (αp   

   = −log(  [i,  ]))                         (3) 

Following a similar idea, we balance with a constant λ∈(0, 1] the self-information 

given by the occurrence of the motif in (1) with the self-information given by the priors 

in (2), obtaining in this way the following expression. 

 

The closer the above expression is to zero the less (balanced) self-information 

follows from observing a candidate motif the annotated positions of both the DNA 

sequences and the priors. Indeed, we expect motifs to occur in the annotated positions of 

both the DNA sequences and the priors with high probability. Therefore, the goal is to 

find a motif m that minimizes such information. Next, and for the sake of simplification, 

we drop the minus sign in (3), that is, we consider the final scoring criterion, called 

balanced information score (BIS), defined as 

 

And restate our goal to finding a motif m that maximizes (4). Note that BIS (m, f, 

S) is always non-positive and, therefore, is upper-bounded by 0. For the BIS score in 

Equation (4) to be well-defined it remains to determine the values of the constant λ and 
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αp for all 1 ≤p≤ℓ. Whenever there is no knowledge about the quality of the priors the 

values of such constants should be uniform, that is, λ=1/2 and αp =1/ ℓ, for all 1≤p≤ℓ. 

Usually, it is possible to refine heuristically these constants by evaluating the usefulness 

of each prior in well-known domains. Finally, it is not obvious how to translate back the 

combined information into a combined prior that could be used in an EM or Gibbs 

sampler-based algorithm. 

These techniques need that such prior reflects the probability of finding a motif in 

a certain position of the DNA sequences in order to correctly bias, in each iteration step, 

the expected log-likelihood of the candidate motif occurring in the positions given by the 

latent variable. On the other hand, GRISOTTO [3] incorporates prior information in BIS 

resulting in a theoretical-information scoring criterion that measures the information of 

observing the candidate motif in the annotated positions of both the DNA sequences and 

the priors. These annotated positions are computed only once, for each candidate motif, 

in such a way that the balanced contribution to the BIS score of the DNA sequences and 

the priors in those positions is maximal. The higher the value of the BIS score, the higher 

the probability that a candidate motif occurs in the annotated positions of both the DNA 

sequences and the priors. Therefore, GRISOTTO reports the motif, among all candidate 

ones, which maximizes the BIS scoring criterion.  

GRISOTTO can use different types of prior information. Some of them are given here. 

 

Evolutionary conservation-based priors: 
 

Diverse methods for motif discovery make use of orthologous conservation to 

assess whether a particular DNA site is conserved across related organisms, and thus 

more likely to be functional. A comprehensive work along this line was done by 

PRIORITY researchers [14], where an orthologous conservation-based prior was devised 

to improve their Gibbs sampler-based motif discovery method. This prior was built in a 

discriminative way by taking into account not only sequence-sets that were bounded by 

some profiled TF (the positive set) but also sequence-sets that were not bounded by the 
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same TF (the negative set). In this way the prior reflects not only the probability that a 

W-mer at a certain position is conserved but of all the conserved occurrences of this W-

mer what fraction occurs in the bound sequence-set. Conserved occurrences are found by 

searching if a W-mer in a reference sequence also occurs in most of its orthologous ones 

regardless of its orientation or specific position. For this particular case, the evolutionary 

conservation-based prior was used for each inter genetic region in S. Cerevisiae and it 

used the orthologous sequences from six related organisms, namely,S. paradoxus, S. 

mikatae, S. kudriavzevii, S. bayanus, S. castelliandS. kluyveri. Thepriorwas named 

discriminative conservation-based prior(DC) and was made available, in a PSP format, at 

PRIORITY webpage. Herein, we gauge the performance of GRISOTTO [3] when this 

exact DCprior is incorporated into the BIS scoring criterion. Results comparing 

GRISOTTO-DC [3] with PRIORITY-DC [16], MEME-DC [17], and other state-of-the-

art algorithms, can be found in Table 2. Results show that GRISOTTO-DC correctly 

predicted 83 motifs out of the 156 experiments, whereas PRIORITY-DC found 77 and 

MEME:ZOOP-DC81 [4]. We conclude that GRISOTTO [3] performed at least as well as 

PRIORITY and MEME: ZOOP when the same DCPSP was used. A closer inspection of 

detailed results of GRISOTTO, in Additional file2 reveals that GRISOTTO-DC found 15 

motifs that PRIORITY-DC did not, while PRIORITY-DC found only 10 motifs that 

GRISOTTODC did not. 

Combining priors: 
 

Despite considerable effort to date in developing new potential priors to boost 

motif discoverers, PSP’s from different sources have not yet been combined. Actually, 

although having some degree of redundancy, because, for instance, the positioning of 

nucleosomes may be correlated with DNA double helix stability, it is easy to conclude by 

a closer inspection of the detailed results in. As a matter of fact, PRIORITY researchers 

have already noticed this fact [15]. However, it is not a trivial task determining how to 

translate the IS combined information into a PSP that can be used in EM or Gibbs 

sampler-based algorithms. In order to gauge the potential of combined priors, we 
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incorporated in the BIS score the three DC, DE and DN priors. We call the final prior 

combined discriminative prior (CDP). Results show that GRISOTTO-CD [3] Pis the 

more accurate motif discoverer for the 156 sequence-sets being evaluated. It correctly 

predicted 93 motifs, while GRISOTTO-DC [3] found 83, GRISOTTO-DE 80 and 

GRISOTTO-DN77. In this way GRISOTTO CD [3] Pre accomplished an improvement 

of at least 12% over correct predictions, when compared with GRISOTTO variants 

considering the priors individually. This raises the overall proportion of successful 

predictions in 7%, on top of the improvements already attained in the previous sections, 

over these 156 yeast sequence-sets. Moreover, when comparing GRISOTTO-CDP [3] 

with state-of-the-art motif discoverers the final proportion of successful predictions was 

raised to 60%, while the best known previous value, to our knowledge, was 51% attained 

by MEME-DC [4] . This leads us to conclude that combining priors from different 

sources is even more beneficial than considering them separately. ChiP-seq data Herein 

we measure the accuracy of GRISOTTO in TF motif discovery on 13 mouse ChiP-seq 

data. This data was gathered by Chenet al. where whole-genome binding sites of 13 

sequence-specific TFs (Nanog, Oct4, STAT3, Smad1, Sox2, Zfx, c-Myc, n-Myc, Klf4, 

Essrb, Tcfcp2l, E2f1, and CTCF) were profiled in mouse ES cells using the ChiP-seq 

approach. Sequences of ±100 bp size from the top 500 binding peaks were selected for 

each factor, repeats were masked, and the Weeder tool was used to find overrepresented 

sequences unravelling 12 of the 13 factors We assess the quality of GRISOTTO [3] in 

discovering motifs from mouse ChiP-seq data with two priors. First, an orthologous 

conservation-based PSP was used as information for higher organisms is now available. 

Indeed, there are already such PSP’s for yeast, fly, mouse and even human Second, a 

binding peak-based PSP was tried as ChiP-seq assays provide an intrinsic positional prior 

that can be computed from base-specific coverage profiles. This prior has recently been 

employed in motif discoverers [with success. As for ChiP-chip data, we let GRISOTTO 

[3] find for a single motif of size 8, since priors were computed for 8-mers. However, as 

human-curated motifs are not available for this ChiP-seq data, we made only a 
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resemblance, based on a 6-window match, between the motifs reported by GRISOTTO 

with those outputted by Chen et al. and MEME for the same data. 

Binding peak-based priors: 
 

Huel al. [23] devised prior using coverage profile information provided by the 

ChiP-seq approach. This ground in the belief that motifs are tightly packed near the peak 

summit- the location inside each peak with the highest sequence coverage depth. As a 

result, prior probabilities were set to be proportional to a discretized Student’s t-

distribution with 3 degrees of freedom and rescaled such that they form a step function 

with a fixed 25 bp step-size. The prior probabilities are symmetric and centered at the 

peak summits. As such prior is intrinsically a positional one we built a PSP resuming the 

described probabilities for the 13 mouse ChiP-seq data and ran GRISOTTO [3]. Our 

results show that direct use of binding peak-based priors does not help GRISOTTO 

much. Actually, the motifs reported by this prior were exactly the same a using the 

uniform prior (recall that for the uniform prior any position in the DNA is likely to 

contain a motif). Moreover, when combined with the DC prior GRISOTTO [3] reported 

precisely the same motifs as DC prior alone. These findings suggest that GRISOTTO is 

unable to retrieve any useful information from the binding peak-based prior. We 

attributed this to the fact that part of the information contained in the binding peak based 

prior is already encoded in the BIS score. Indeed, peak summits indicate an 

overrepresentation of a motif in a certain locus. Such overrepresentation is already 

weighted in the BIS score. Notwithstanding, it seems reasonable that for short sequences 

of 200 bp (namely, ±100 bp around the peak summits) the coverage-based prior has no 

real impact on motif discovery. For longer sequences, the effective resolution of the peak 

summits seems to provide useful information. 



 

 

 

 

 

Chapter 3 

 Proposed  Method 

3.1 Overall Concept 
 

In our proposed process of finding DNA motif, we merged the Random Projection 

[5] and RISOTTO [2] algorithm. Thus, we improved the performance of RISOTTO [2] 

by removing the concept of using suffix tree and injected the hashing or bucketing 

concept of Random Projection. As, we know that GRISOTTO [3] use the output data of 

RISOTTO as its input data, now we will feed the output data of our process to 

GRISOTTO as input. From those input data GRISOTTO will calculate the BIS score as 

discussed before [section 2.3.5] and find out our desired output motif. We basically kept 

the GRISOTTO intact and worked on RISOTTO algorithm. 

3.2 Proposed Method and Algorithms  
 

Step 1: 

Our work starts with finding the most probable starting of our motif. Therefore, 

we generate all possible 3-mers and create a bucket for each of this 3-mers.Now we will 

further extend this 3-mer.At each iteration we start with a 3-mer and extend it one 

nucleotide at a time satisfying the quorum and having a minimum length of kmin to kmax 

When we have found that we have a motif that has this length and satisfies a minimum 

quorum percentage then we believe we have that l-mer which is the most probable motif. 

Our search for a 3 mer is followed by our proposed algorithm PROJECTED RISOTTO- 
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PROJECTED_RISOTTO (m, t, n, kmin, kmax, e) 

1. For   i ← 1 to t     //filling the bucket of 3-mers 

2.     For   j ← 1 to n − l + 1 

3.           a ← j
th

  l-mer in the DNA sequence 

4.           store the starting position of j in the bucket list 

5. (m1,m2 … mk) = k-most occurring l-mers out of the 4
l
 buckets. 

6.  For  i ← 1 to k 

7.       For each symbol α in Σ do 

8.       x :=miα 

9.       if miα is valid then 

10.             if | miα | ≥ kmin    then spell out the valid model 

11.             if |miα|< kmax  or |miα|< kmin  then PROJECTED_RISOTTO (miα,e) 

12.       else   

13.             if e(miα) > e    then PROJECTED_RISOTTO (miα,e) 

14.             else discard that | miα |  

Output from this step will be sent as input to the next step of the process. 

Step 2: 

 We then feed the motifs returned by the RISOTTO [2] procedure to the 

GRISOTTO [3] as input and modify the motif using prior information. 

 

GRISOTTO (DNA sequences f, list of priors S = 〈S1 ,..., Sℓ 〉) 

a. run RISOTTO(k, zmin , zmax ); 

b. let r = ε and C be the list of the first z motifs returned in Step 1; 

c. for each motif m in C 

d.          let m = GGP(m, f, S); 

e.          if (BIS(r, f ,S)  <  BIS(m, f ,S)) 

f.                      let r = m; 

g. return r; 
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GGP (motif m, DNA sequences f, list of priors S =〈S1 , ..., Sℓ 〉) 

1. Let t = 0 and i = 0; 

2. While (t <k) 

3.  Let changed = false; 

4.  For each a in Σ 

5.  If (BIS (m〈i, a〉, f, S)>BIS(m, f ,S)) 

6.   Let m = m〈i, a〉, t = 0 and changed =true; 

7.  If (not changed) 

8.   Let t = t + 1; 

9. Let i = (i + 1) mod k; 

10. Return m; 

Thus, this GRISOTTO [3] procedure will modify our motif based on our algorithm and 

produce the best motif. 

3.3 Experimental Data and Result 
 

For testing our algorithm first we implemented it. We implemented it on JAVA 

platform. After implementation we tested it through some data set. The data set was in 

FASTA format. There were 20 sequences of DNA and each of them was 600 nucleotides 

long. Here is the sample of the input sequence: 

 

 19 

>Sequence1 

ACCCTCTTGTATAGCAGCAGATGACCGGGTGTTGCCACTCATAGCCTTCCGATGGAGAGAAGCGCGGGCCACTA

GAAGATAATGTCGGGCCCTTGAGCGCGCCAAGCCCCAGGCATTTGTAGGCAGGTTTCCTCTCCCGCAGGGGCAA

TGTGTACATTCGGTAGAACATAACGCTGGAATTACATTCGCCGCATTACTAGTAAACCGTCCTTTGTAAGGAAGC

CGCCAGGAGTGCGTTAATGGATAGGGTCCGAACGGTCTCAACTAAGTCCACCTTGCGCAGCCAACGCCACAACT

GCCACAGCTTTATCCCGCCTCAGCAGTGGCATGTCTCCAAACCACGGGCAAGCCTGCGATATCAGGCCGCGGAG

TCGTGCCGGAGGATCGTCGCCGTAACGACTGTTCTATACCTACCCTAGGGAATACGGGTCTAATCGAGTATCAGG

GTGGCTAGATAATAGGCGTATTGACGGCTCGCTCATAGGTACCTCAAGAGGTTTTCAGAATATGCACGGCTCAGT

TACACACTCGAACACATATAAGTCAAGCGCCTCCAGCACACCTCCCTAATCGAGGACCATTTTTTATGTGGTCTT

Figure 3 . 1: Example of an input sequence 
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As we divided our algorithm in two steps, this input data set was fed to the first 

part of the algorithm which is known as the PROJECTED RISOTTO.  

First it finds out the occurrences and position of occurrences of all possible 3-

mers. As there are total 64 possible 3-mers, it will results for all 64 3-mers. The outputs 

of this part of the process are shown in figure 3.2: 

 

    

After finding the occurrences of all possible 3-mers we will count the occurrence 

of all 3-mars on the next stage for extending the 3-mer to find out our desired motif.  The 

counts of the all possible 3-mers are shown in figure 3.3: 

 

 
Figure 3 . 1: Occurrences of 3-mers 

Figure 3 . 2: Count of all possible 3-mers 
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Now that we have information about the occurrence of all the 3-mers we will 

extend the 3-mers starting from the most occurring 3-mers. If we want some faster 

solution with partial information, we may use a limited list of all the 3-mers based on the 

highest occurrence criteria. The sorted list of the 3-mers are given here: 

 

 

Now we will extend those selected 3-mers by one nucleotide at time. For 

extending the 3-mers we find out it’s occurrences in all the input sequences and count the 

next position after that 3-mer at each matched location. We find out the position of a 3-

mer by using FINDPOSITION here (given in Appendix) and extend the 3-mer one base 

at a time. So, at each step we find the corresponding positions of a sequence and it is 

extended in the next step by counting the highest occurring base and adding it to the 

current sequence. The positions of a sample 3-mer “GAA” is given in the next page:  

Figure 3 . 4: Sorted list of all possible 3-mers 
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While extending the 3-mers we will consider checking the minimum and 

maximum length of the motifs which can be given manually. We also consider the 

quorum percentage which means minimal occurrence of each motif. If the motif length is 

less than the given maximum motif length (Kmax) and also fulfill the quorum (q) then 

we will extend the motif. If a motif fulfill the quorum and its length is in between Kmax 

and Kmin then we will consider it as an output motif. In this algorithm we also considered 

the number of mismatch. While extending a motif if the motif doesn’t fill the quorum for 

the extended nucleotide then we will consider it as a mismatch and extend the motif from 

the next nucleotide. Output of this process has been shown in figure 3.6.  

 

 

 

 

Figure 3 . 5: Positions of “GAA” in all the sequences 
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                Now these output motifs will be given to GRISOTTO [3] process to check with 

the prior information which we call as the Position Specific Prior. GRISOTTO will check 

each position of a particular motif with it’s prior information in order to find out a motif 

that’s better than the current one. So, GRISOTTO can be used further to resolve the 

motifs we found by RISOTTO. From this process we will find the final desired motif. 

The working procedure of GRISOTTO is discussed in section 2.3.5.   

3.4 Output Run-time comparison 

We compared our output and runtime of our algorithm with several other 

renowned motifs finding algorithm. From the result of the comparison we found that our 

output result is very impressive and accurate.  

While comparing the running time challenging instances of motif problem we 

considered the following parameters (DNA, |Σ| = 4, N = 20 sequences of length n = 600). 

Problem instances are denoted by ( k, m, |Σ|), where k is the length of the motif implanted 

with m mismatches. 

The run-time comparisons of our proposed method are compared here with some existing 

well known algorithms here: 

 

Figure 3 . 6 :Output motifs of “PROJECTED_RISOTTO” 
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 Algorithm (13, 4, 4) (15,5,4) 

qPMSPrune 45s 10.2 m 

PMS5 117s 4.8 m 

Voting 104s 21.6 m 

RISOTTO 772s 106 m 

Proposed Algorithm 57s 113 m 

 

 

These results shown above proved that our modified algorithm finds out motifs 

faster than some well-recognized algorithms while it takes the mismatches and quorum 

percentages into count. Hence, we can claim that our proposed method was implemented 

successfully. 

 

 

 

 

 

 

Table 4 : Run-time comparison 
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                                        Chapter 4 

Conclusion 
 

4.1 Summary: 

   Through the duration of this thesis work we have been able to propose an 

improvement of RISOTTO [2] algorithm for single motif extraction including mismatch. 

We tried improving RISOTTO using random projection method, though we exclude the 

random part of random projection. Output will be post-processed in a greedy fashion by 

GRISOTTO [3] algorithm. This will give us better time and space complexity than the 

original one. Besides, our proposed algorithm will be faster and more efficient for motif 

finding with longer length and more mismatches. Run-time and space complexity will be 

more favorable. We also implemented the algorithm in our way and compared the output 

with the output of other motif searching algorithms. For comparing the algorithms we 

used same set of data set as input and found that our results are very impressive compared 

to few other algorithms. 

4.2 Future work: 

While implementing and simulating our proposed method we faced some problem 

which has some effect on space and the runtime, we will try to eliminate those efficiently. 

We still could not process the output of our proposed method to the GRISOTTO [3] 

algorithm. We will try to implement it in future. We are also thinking some other 

approach in future. Here, we are just working with the single motif extraction problem 

GDP can be further improved by using the probability calculation. We will try to extend 

our algorithm for structured motif extraction in future. Gibbs sampling [9] method can be 

used as the substitution of random projection. Modification of extensibility function to 



Chapter 3.  Proposed Method  36 

 

 

improve the result can also be done. Suffix tree which is used by RISOTTO [2] can be 

substituted by suffix array. Suffix array[18] is a quite new algorithm which can be 

implemented in RISOTTO [2] instead of suffix tree which was used previously.

Error! Reference source not found.4.  

Conclusion 



 

 

 

 

Appendix 

 

JAVA Simulation Codes of Proposed Method: 

The JAVA simulation codes of our proposed algorithm are given below:  

File 1: MOTIF_FINDING.java 
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File 2: FINDPOSITIONS.java 
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