

BOARD BAZAR, GAZIPUR-1704, BANGLADESH
Tel: 9291250, 9291252 PABX: 9291254-59 Fax: 880-2-9291260 e-mail: vc@iut-dhaka.edu website : www.iutoic-dhaka.edu

HAND GESTURE RECOGNITION USING

DEPTH INFORMATION AND DTW

By

MOUNTAPMBEME ABOUBAKAR

Student Id: 104445

Supervised By

Mr. HASAN MAHMUD

Assistant Professor

CSE DEPARTMENT, IUT

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

October, 2014

DECLARATION

This work, Hand Gesture Recognition using Depth Information and DTW, is the output of

the research carried out by Mountapmbeme Aboubakar (Student Id. 104445) under the

supervision of Mr. Hasan Mahmud (Assistant Professor, CSE Department, IUT). Completed

and submitted to the Department of Computer Science and Engineering (CSE), in Partial

Fulfilment of the Requirements leading to the award of the degree of Bachelor of Science in

Computer Science and Engineering (B.Sc. Engg. CSE).

Mountapmbeme Aboubakar

Student Id: 104445

Mr. Hasan Mahmud

Assistant Professor, CSE, IUT

Prof. Dr. M. A. Mottalib

Head, Department of CSE, IUT

ii

DEDICATION

To my elder brother, ASSANEGOU SOULE, who endlessly advises

and supports me to become successful not only in this world, but also

in the Hereafter.

iii

ACKNOWLEDGEMENT

All the praises and thanks be to Allah, the Lord of the Alamin (mankind, jinn and all that

exists). Qur’an (V. 1:2).

First and foremost we thank the Almighty Allah (SWT) for blessing us with this beautiful thesis

idea and for giving us the knowledge, strength, determination, spirit of team work and for

accompanying us throughout the successful completion of this thesis.

Our special thanks goes to Mr Hasan Mahmud, our thesis supervisor, who directed and

supported us throughout the successful completion of this thesis.

We express our sincere gratitude and thanks to Prof. Dr. M. A. Mottalib, head of the Computer

Science and Engineering Department of the Islamic University of Technology and the entire

staff of the department for the work and efforts they are doing to teach us the knowledge of

computer science and engineering.

iv

Abstract

Human computer interaction has introduced a new paradigm for the construction of computer

interfaces. This requires the construction of easy to use, natural and intuitive computer

interfaces. Various methodologies have been considered to build such interfaces. Gestures and

especially hand gesture represent the most easy to use, natural, intuitive and memorable way

to communicate with computers. However, gesture recognition systems are difficult to design.

These systems are often used in complex environments with cluttered background and different

lighting conditions. These factors act as major constraints in the design of gesture recognition

systems. However, the introduction of depth sensing devices such as the Microsoft Kinect

makes it easy to capture hand gestures in complex backgrounds. The accuracy and efficiency

of gesture recognition systems are often affected by the choice of features to be used to

represent the hand shape and the algorithm to be used for classifying the hand gestures. In this

thesis, we try to implement a hand gesture recognition system that makes use of the time-series

representation of the contour points of the hand shape and uses Dynamic Time Warping (DTW)

for classification of hand gestures. DTW is well known for its accuracy and effectiveness in

matching time-series representations. Our proposed system makes use of the depth information

of the scene provided by the Microsoft Kinect. This allows our system to be used in challenging

backgrounds. We evaluate our system and compare it to some contemporary systems. The

results of evaluation shows that our hand gesture recognition system is accurate and efficient

with a mean accuracy of 94.6% and mean running time of 0.5179s. Our system is also invariant

to scale, rotation and translation and runs effectively in complex background settings. We also

survey some of the methods and algorithms used for recognising hand gestures. Finally we

explore some of the application areas of gesture base interfaces. Interaction using gestures has

proven to be useful in many domains such as in medicine, in classroom for teaching and

presentations, in sign language recognition, interactive emotion recognition, simulations and

in the gaming industry.

Keywords
Human Computer Interaction, HCI, Gesture Recognition, Dynamic Time Warping, DTW,

Microsoft Kinect.

v

Contents

LIST OF TABLES………………………………………………………………………….. viii

LIST OF FIGURES………………………………………………………………………….. ix

1. Introduction ... 1

1.1. The Context.. 2

1.2. The Problem .. 2

1.3. The Solution .. 3

1.4. Innovative Aspects .. 3

1.5. Structure of the thesis ... 3

2. BACKGROUND .. 4

2.1. Gestures ... 5

2.2. Devices used for Capturing Gestures .. 5

2.3. Algorithms Commonly used in Gesture Recognition .. 7

3. STATE-OF-THE-ART ... 9

4. The Problem .. 14

5. THE PROPOSED APPROACH .. 16

5.1. Image Acquisition and Segmentation of Hand Shape 17

5.2. Feature Extraction and Feature Representation ... 19

5.3. Gesture Recognition (Template Matching Using DTW) 21

5.4. Dataset and Database of Emplates ... 21

6. EXPERIMENT AND RESULT ANALYSIS .. 22

6.1 Experimental Setup .. 23

6.2 Experimental Results ... 23

7. APPLICATIONS OF GESTURE INTERACTIVE SYSTEMS
 ………26

vi

8. CONCLUSION AND FUTURE WORKS .. 28

References ... 30

Appendix .. 32

vii

List of Tables

Table 1: Results per class label ... 24

Table 2: Mean Accuracy and Mean Running time of our system and that of FEMD [9] 25

viii

List of Figures

Figure 1: Microsoft Kinect ... 6

Figure 2: FEMD framework, Ren.et.al [9] ... 11

Figure 3: signature definition in FEMD, (source, [9]) .. 12

Figure 4: Proposed Gesture Recognition System.. 17

Figure 5:Image Acquisition and Segmentation of Hand Shape .. 18

Figure 6: Extracted Hand shaped .. 20

Figure 7: Hand contour, with green point showing the initial point and blue point showing the centre

point .. 20

Figure 8: Time-series curve of contour points .. 20

Figure 9: Classes of gestures defined in the dataset .. 21

Figure 10: Confusion Matrix of our system (Left) ... 25

Figure 11: Confusion Matrix of FEMD system [9] (Right) ... 25

file:///E:/Thesis%20on%20HCI/Report/New%20folder/Final_Thesis_Report_svpt.docx%23_Toc402534855
file:///E:/Thesis%20on%20HCI/Report/New%20folder/Final_Thesis_Report_svpt.docx%23_Toc402534856
file:///E:/Thesis%20on%20HCI/Report/New%20folder/Final_Thesis_Report_svpt.docx%23_Toc402534857
file:///E:/Thesis%20on%20HCI/Report/New%20folder/Final_Thesis_Report_svpt.docx%23_Toc402534858
file:///E:/Thesis%20on%20HCI/Report/New%20folder/Final_Thesis_Report_svpt.docx%23_Toc402534859
file:///E:/Thesis%20on%20HCI/Report/New%20folder/Final_Thesis_Report_svpt.docx%23_Toc402534860
file:///E:/Thesis%20on%20HCI/Report/New%20folder/Final_Thesis_Report_svpt.docx%23_Toc402534861
file:///E:/Thesis%20on%20HCI/Report/New%20folder/Final_Thesis_Report_svpt.docx%23_Toc402534861
file:///E:/Thesis%20on%20HCI/Report/New%20folder/Final_Thesis_Report_svpt.docx%23_Toc402534862

1

2

1.1. THE CONTEXT

Recently, a lot of efforts and work is been made to reduce the gap between humans and

computers. This involves bringing the interaction between humans and computers to the

human level where humans can communicate with computers in natural and intuitive ways.

This issue among others is addressed by Human-Computer Interaction (HCI). Among the

various interaction techniques used to achieve this goal, interaction using gestures appears to

be the most efficient in terms of naturalness and intuitiveness. However, modelling gesture

based interactive systems is not an easy task and presents a lot of challenges. Many devices

and algorithms have been developed to recognize and classify human gestures for

communication with computers [1]. Among the human gestures used for interacting with

computers, hand gestures represent the simplest and most easy to use. Hand gestures are

expressive motion of the hand, including the fingers in order to communicate. Humans

frequently gesture with their hand while they communicate. Thus interaction between humans

and computers using hand gestures provide the most effective way to model naturalness.

However, effective and efficient hand gesture recognition systems are yet to be developed.

The Microsoft Kinect [2] [3] is a motion sensing input device developed by Microsoft

originally for use with the Xbox gaming console. However, after introducing this device, its

potentials for used with computers uncovered and as a result Microsoft released the Microsoft

Kinect for Windows alongside the Microsoft Kinect for Windows SDK to help developers

build computer applications by exploiting the motion sensing and audio input capabilities of

this device. The Microsoft Kinect has been used recently for capturing hand gestures for used

in gesture recognition systems [2] [4] [5].

1.2. THE PROBLEM

As mentioned above, designing efficient hand gesture recognition systems still poses a lot of

challenges and such systems are yet to be developed. Despite these challenges a lot of efforts

have been made in the past years. Generically, a hand gesture recognition system is composed

of 3 steps: image acquisition and hand segmentation, feature extraction & representation, and

gesture recognition. These steps individually pose a lot of challenges. Different researches [6]

[7] have been conducted to improve the efficiency of the individual steps and of the system as

a whole. However, it is difficult to find a system that is efficient in all the three steps combined.

Therefore designing a systems that is efficient as a whole requires considering efficiency at the

modular level as well as how to integrate these modules to increase the overall efficiency of

the system. This is of primary concern.

3

1.3. THE SOLUTION

In this thesis, we design, implement and evaluate a hand gesture recognition system that uses

techniques that have been proven efficient at the individual levels and which combine

efficiently to produce a robust hand gesture recognition system. Our system uses the Microsoft

Kinect for image acquisition and segmentation, a feature representation based on the global

features of the hand and Dynamic Time Warping (DTW) for the gesture recognition module.

This thesis also surveys the different type of methods and techniques used to recognise hand

gestures as well as describes some of the application areas of gesture based interactions.

1.4. INNOVATIVE ASPECTS

We have demonstrated the efficiency of DTW in classifying hand gestures based on contour

information represented as time-series. Our hand gesture recognition systems overcomes some

of the shortcomings of the existing systems. This systems operates well under cluttered

background i.e. no constraint is place on the environment of the gesturer. The systems is also

translation, rotation and scale invariant. This system can be adapted to recognise any set of

predefined gestures.

1.5. STRUCTURE OF THE THESIS

As mentioned above, this thesis designs a new gesture recognition system as well as surveys

the different methods and techniques used so far for recognising gestures. Chapter 2 gives a

brief overview of the different types of human gestures used for interacting with computers.

Chapter 2 also discuss in a concise way the various devices, methods and techniques used for

recognising these gestures. We conclude this chapter with a brief overview of some of the

application areas of gesture recognition systems. Chapter 3 describes the problem associated

with some of the gesture recognition systems introduced in chapter 2. Chapter 4 describes our

proposed system in detail. In chapter 5 we present our experimental results. Chapter 6 cover

some of the related work as well as the comparison of our systems with these systems. Finally,

chapter 7 concludes our system as well as presents some future directions of our work.

4

5

2.1. GESTURES

Designing gesture based interaction systems naturally begins with understanding what gestures

are. This requires us to understand the different types of gestures expressed by humans, their

mechanism of operation, how gestures convey information and their context of use. As stated

in [1], gestures are expressive, meaningful body motions involving physical movements of the

fingers, hands, arms, head, face, or body with the intent of conveying meaningful information

or interacting with the environment. From this definition, we observe that we have facial

gestures, that is those gestures involving the face which are mostly emotional in nature,

gestures involving the hands, arms and fingers which are the most common and widely used in

communication especially in sign language and finally we have gestures involving the motion

of the whole body. Naturally, we have two main categories of gestures and this affects how

gestures are recognised [1]. We have static and dynamic gestures. Static gestures are simply

poses, where a person assumes a certain pose for a fixe time period such a making a sign with

the hand to indicate ‘stop’. Dynamic gestures are those which change in time and space where

the gesture takes a particular path or trajectory to convey a meaningful information such a

‘waving’ to say good bye. Intuitively, dynamic gesture are more difficult to recognise than

static gestures. In [1], you will find detail description of the different types of human gestures

as well as some of the techniques and methods used to recognise each type of these gestures.

2.2. DEVICES USED FOR CAPTURING

 GESTURES

In order to recognise gestures, you need to track and capture the gesture. Many devices have

been develop for tracking or capturing hand gestures.

Until recently, gestures, especially hand gestures have been tracked or captured accurately by

using optical and electromechanical sensors [1] [8]. Electromechanical sensing devices capture

hand gestures accurately and efficiently but they do not provide the naturalness and easy to use

paradigm stated by HCI. These devices need to be attached to or worn by the user in order to

recognised gesture. As we can see, they are cumbersome, add weight to the user and even

hinder the free movement of the user thus eliminating the naturalness sought. Some of these

devices include data gloves, tracking suites etc. Electromechanical devices are very efficient

in capturing hand gestures in the sense that they directly track the motion of the hand and

convey the signal accurately to the computer. A small wearable three-axial inertial sensor is

used in [8] to track the hand motion and subsequently send signal to the computer.

Due to the limitations of electromechanical motion sensing devices, optical or vision based

sensors where introduced in gesture recognition [1]. This include simple cameras. The camera

is used to track the hand motion in video frames and these frames are then used for recognising

6

gestures. These sensors provide an improvement in the naturalness over the electromechanical

sensors but in exchange, the accuracy and efficiency are greatly reduced due to the limitations

of optical sensors. The optical sensors often require special lighting conditions to accurately

track a gesture, they are sensitive to cluttered background and the obtained hand pose is highly

distorted in most of the cases [1].

To overcome the limitations of electromechanical sensors and vision based sensors, depth

based sensors were recently introduced for capturing hand gestures [2] [6] [9]. Depth based

sensors such as the Microsoft Kinect introduced in chapter 1 are increasingly being used for

capturing hand gestures due to their efficiency and accuracy. These sensors use the depth

information of a video frame to correctly segment the hand region from the image, therefore

they rely on the 3D data of the frame. As a result, their contactless nature as opposed to

electromechanical sensors and their ability to rely on depth information rather than the 2D

colour information used by vision based sensors makes them the most effective and robust

device currently in used for capturing hand gestures. Depth based gesture recognition systems

have proven to be resistant to cluttered background and lighting conditions as described in [6]

[9].

The Microsoft Kinect is increasingly being used in gesture recognition systems for image

acquisition and segmentation [2] [4] [5] [9]. Briefly, the Microsoft Kinect (also called Kinect)

is a physical device that contains a camera, a microphone array, and an accelerometer as well

as a software pipeline that processes colour, depth, and skeleton data.

The Microsoft Kinect has the following components and specifications

• An RGB camera that stores three channel data in a 1280x960 resolution

• An infrared (IR) emitter and an IR depth sensor

• A multi-array microphone, which contains four microphones for capturing sound

Figure 1: Microsoft Kinect

7

• A 3-axis accelerometer configured for a 2G range, where G is the acceleration due to

gravity.

Other than the Microsoft Kinect, other 3D sensing devices are common nowadays. Examples

include the Wavi Xtion by ASUS. The detail description of the hardware components and

specifications of the Microsoft Kinect can be found in [3] or in the Microsoft Website itself.

2.3. ALGORITHMS COMMONLY USED IN

 GESTURE RECOGNITION

Many algorithms have been used so far for recognising gestures [1]. Theoretically, recognising

gestures involves the application of principles and concepts from diverse domains. This

includes image processing concepts, statistical models, pattern recognition concepts, computer

vision techniques and many others. Tools for recognising gestures include among others

Hidden Markov’s Models (HMM), Principal Component Analysis, Artificial Neural Networks

(ANN), Dynamic Time Warping (DTW), connectionist approach, template matching and many

others. In [1] and [7] a detail description of each of these algorithms and approaches have been

given and a description of how each of these methods are used in the recognition of the different

types of gestures stated above.

The type of gesture determines the type of algorithm to be used. Static gestures are usually

recognised using template matching. Template matching usually involves measuring the

similarity or dissimilarity between feature representations of hand shapes. The Finger-Earth

Movers Distance (FEMD) has been used as a dissimilarity measure in [9].

Hidden Markov’s Model (HMM)

HMMs [1] [10] are useful tools for recognising dynamic gestures. As stated in [1], an HMM is

a double stochastic process governed by: 1) an underlying Markov chain with a finite number

of states and 2) a set of random functions, each associated with one state. A HMMs models

spatio-temporal information such as gestures efficiently. HMM is mostly used in the

recognition part of the gesture recognition process. An HMM is made of states, which generate

observation symbols according to state transition probabilities and output probabilities as

described in [1] and [10]. In [11], they have used a method where an adaptive mean shift

algorithm is applied to the depth histogram of the gesturing hand in order to track the trajectory

of the gesturing hand and subsequently passes this information to a HMM in order to recognise

the dynamic hand gesture. The disadvantage of using HMMs in recognising gestures is that

HMMs usually require the definition of the observation sequence as well as transition

probabilities. Also training the HMM for the set of gestures to be recognised is not always easy.

8

Dynamic Time Warping (DTW)

DTW is another popular method that has been used in gesture recognition systems [6].

The DTW algorithm is briefly described in [6] as follows:

Let 𝑀 = (𝑀1, . . . ,𝑀𝑚) be a model sequence in which each 𝑀𝑖 is a feature vector and let 𝑄 =

(𝑄1, . . . , 𝑄𝑛) be a query sequence in which each 𝑄𝑗 is another feature vector.

A warping path W defines an alignment between 𝑀 and 𝑄. Formally, 𝑊 = 𝑤1, . . . , 𝑤𝑇 , where

max(𝑚, 𝑛) ≤ 𝑇 ≤ 𝑚 + 𝑛 − 1. Each 𝑤𝑡 = (𝑖, 𝑗) specifies that feature vector 𝑀𝑖of the model

is matched with feature vector 𝑄𝑗 . The warping path is typically subject to several constraints:

 Boundary conditions: 𝑤1 = (1, 1) and 𝑤𝑇 = (𝑚, 𝑛). This requires the warping path

to start by matching the first frame of the model with the first frame of the query, and

end by matching the last frame of the model with the last frame of the query.

 Temporal continuity: Given 𝑤𝑡 = (𝑎, 𝑏) then 𝑤𝑡−1 = (𝑎′, 𝑏′), where 𝑎 − 𝑎′ ≤ 1

and 𝑏 − 𝑏′ ≤ 1. This restricts the allowable steps in the warping path to adjacent

cells along the two temporal dimensions.

 Temporal monotonicity: Given 𝑤𝑡 = (𝑎, 𝑏) then 𝑤𝑡−1 = (𝑎′, 𝑏′) where 𝑎 − 𝑎′ ≥
 0 and 𝑏 − 𝑏′ ≥ 0. This forces the warping path sequence to increase monotonically

in the two temporal dimensions.

There are exponentially many warping paths that satisfy the above conditions. However we are

only interested in the path that minimizes the warping cost:

𝐷𝑇𝑊(𝑄, 𝐶) = 𝑚𝑖𝑛

{

√∑𝑤𝑘

𝑇

𝑡=1

2

}

The 𝑚𝑖𝑛 is calculated for all 𝑤1, . . . , 𝑤𝑇.

This path can be found using dynamic programming to evaluate the following recurrence,

which defines the cumulative distance 𝛾(𝑖, 𝑗) as the distance 𝑑(𝑖, 𝑗) found in the current cell

and the minimum of the cumulative distances of the adjacent elements:

𝛾(𝑖, 𝑗) = 𝑑(𝑞𝑖 , 𝑐 𝑗) + 𝑚𝑖𝑛{𝛾(𝑖 − 1, 𝑗 − 1), 𝛾 (𝑖 − 1, 𝑗), 𝛾 (𝑖, 𝑗 − 1)}

The Euclidean distance between two sequences can be seen as a special case of DTW where

the 𝑘𝑡ℎ element of 𝑊 is constrained such that 𝑤𝑘 = (𝑖, 𝑗)𝑘, 𝑖 = 𝑗 = 𝑘. Note that it is only

defined in the special case where the two sequences have the same length. The time and space

complexity of DTW is 𝑂(𝑛𝑚).

9

10

As mentioned earlier, robust hand gesture recognition is still a problem especially when the

fingers are involved. In [12], a method has been introduced for tracking the finger tips and

centre of palms using Microsoft Kinect. The method makes use of the depth sensing capability

of the Kinect device. It assumes that the finger tips are the closest parts of the hand facing the

Kinect. It uses the distance transform algorithm to detect the centre of the palm. This method

is developed as part of a research work to build gesture controlled robots. The disadvantage

with this method is that it tracks only fingertips and centre of palms. It does not recognise the

number of fingers and the trajectory of the gesturing hand.

Another method involving finger tracking and hand gesture recognition has been proposed by

[4]. This method uses the Kinect sensor to detect the gesturing hand. It then uses Median

filtering technique to remove noise from the detected hand during the segmentation phase.

After obtaining the hand segment, the contour of the segmented hand is calculated. Equidistant

point are taken on this contour. From this contour point, a centroid distance function is

calculated. A Fourier descriptor is calculated from this function. Finally a feature vector is

obtained based on this Fourier descriptor. The system is trained by computing the feature vector

of each gesture in the set of gestures to be recognised. Gesture recognition is done through

template matching. This technique successfully differentiated the number of fingers in a hand

in a gestured hand. However, it requires the fingers to be widely opened and straight, it requires

the gesturing hand to be parallel with the camera plane and finally it only models static gestures.

Yang et.al. [11] have proposed a hand tracking algorithm using depth image by calculating

hand weighted probabilities. The method for detecting the hand gesture uses an adaptive mean

shift algorithm. The trajectory of the hand is tracked using a 3D feature vector and the gesture

is recognised by a HMM. This method was used to implement a gesture controlled media

player. However, this method only tracks the hand trajectory and does not take into

consideration the configuration of the fingers.

In [6], a method for recognising dynamic hand gestures has been developed. However, this

does not take into account the configuration of the fingers. In [6], DTW is used to recognise

the dynamic gestures.

Ren et.al. [9] [13] [14] have proposed a part-base hand gesture recognition system using the

Microsoft Kinect. They have employed a technique called Finger Earth Mover’s Distance

(FEMD) to measure the dissimilarity between two hand shapes. This method is part based,

meaning using fingers (global features) to differentiate the hand shapes instead of local features

such as contours used by classic shape recognition methods. Our hand gesture recognition

systems is based on some of the work done by Ren et al. [9]. For better understanding, the

FEMD framework proposed by Ren et al. is briefly described below.

Our system is related to this framework at the level of image acquisition, segmentation and

feature extraction. Our framework defers from the FEMD framework at the level of feature

representation and gesture recognition. We were motivated by the performance of FEMD and

DTW.

The FEMD framework is shown below

11

Image acquisition and segmentation in the FEMD framework is the same as described for our

systems. This framework also extracts the contour points and represents them as a time-series

curve. The difference comes in the representation of this time-series information as a feature

vector or signature for the gesture recognition step.

This framework represents the input hand shape by global features. That is each finger in the

hand shape represents a cluster in the signature. Ren et.al. [9] defines a hand signature 𝑅 as

follows

𝑅 = {(𝑟1, 𝑤𝑟1),… , (𝑟𝑚, 𝑤𝑟𝑚)}

Where 𝑟𝑖 is a cluster (finger) representative and 𝑤𝑟𝑖 is the weight of the cluster.

𝑟𝑖 is defined as the angle interval between the end points of each finger segment i.e.

 𝑟𝑖 = [𝑟𝑖𝑎, 𝑟𝑖𝑏]

The weight of a cluster, 𝑤𝑟𝑖 is the normalized area within the finger segment.

This is shown below.

Figure 2: FEMD framework, Ren.et.al [9]

12

This framework uses two methods to identify the finger segments from the time series

representation. The first method is Thresholding decomposition where the height information

in the time-series curve is used to segment the fingers. The second method is the Near-Convex

decomposition. More about these methods can be found in [9] [13] [14].

After representing two hand shapes as signatures as described above, their FEMD distance can

be then calculated. FEMD stems from the Earth Mover’s Distance (EMD) defined by Rubner

et al [15].

For two signature R and T, their FEMD distance is given by

FEMD(R,T) = 𝛽𝐸𝑚𝑜𝑣𝑒 + (1 − 𝛽)𝐸𝑒𝑚𝑝𝑡𝑦

 =
𝛽∑ ∑ 𝑑𝑖𝑗𝑓𝑖𝑗

𝑛
𝑗=1

𝑚
𝑖=1 + (1− 𝛽)|∑ 𝑤𝑟𝑖

𝑚
𝑖=1 −∑ 𝑤𝑡𝑗

𝑛
𝑗=1 |

∑ ∑ 𝑓𝑖𝑗
𝑛
𝑗=1

𝑚
𝑖=1

Where 𝐷 = [𝑑𝑖𝑗] is the ground distance matrix for R and T such that 𝑑𝑖𝑗 is the ground distance

from 𝑟𝑖 to 𝑡𝑗.

Figure 3: signature definition in FEMD, (source, [9])

13

𝑑𝑖𝑗 is defined as the minimum moving distance for interval [𝑟𝑖𝑎, 𝑟𝑖𝑏] to totally overlap

[𝑡𝑗𝑎,𝑡𝑗𝑏], i.e.:

𝑑𝑖𝑗 = {
0, 𝑟𝑖 𝑡𝑜𝑡𝑎𝑙𝑙𝑦 𝑜𝑣𝑒𝑟𝑙𝑎𝑝 𝑤𝑖𝑡ℎ 𝑡𝑗

min(|𝑟𝑖𝑎 − 𝑡𝑗𝑎|, |𝑟𝑖𝑏 − 𝑡𝑗𝑏|) , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

𝑓𝑖𝑗 is the flow from 𝑟𝑖 to 𝑡𝑗 and constitutes the flow matrix F.

Consult [9] for the full definition of the flow matrix, F.

Finally, gesture recognition in FEMD is also achieved through template matching. However,

as mention earlier, FEMD is a dissimilarity measure. That is the input hand is recognized as

the class with which it has the minimum dissimilarity distance

c = arg min FEMD (𝐻, 𝑇𝑐),

Where H is the input hand signature and T is a template of class c.

Some of the disadvantages of the FEMD framework include:

1. Setting the finger threshold: it is difficult to set a threshold that would correctly identify

the finger clusters in all the cases.

2. It has a high confusion rate for some gestures as will be seen in a later chapter

14

15

Our main objective is to design and evaluate an efficient and accurate hand gesture recognition

system. In order to understand the problem we are trying to solve, it is important to categories

it according to the individual steps involved in hand gesture recognition. At this point, it is

worth noting that our designed systems deals only with static hand gestures.

First and foremost is the problem of acquiring an image and segmenting the hand shape from

the image of the gesturer. Vision based techniques are suitable for image acquisition of the

hand gesture [1] [6]. However, segmenting the region of interest, i.e. the hand region from the

2D image is usually inefficient and results in a distorted hand shape. Skin detection techniques

[7], based on skin colour have been used to segment the hand from the rest of the image.

However, this method is inefficient especially when the hand overlaps with the face in which

case there will be ambiguity between the colour of the hand and face. Many hand detection

approaches using RGB cameras have been proposed in the literature [1] [6]. Despite these

efforts, proper segmentation of the hand region is still a problem. Using vision based

approaches, the segmented hand region is usually sensitive to cluttered background, lighting

conditions and the resolution of the camera. The contour of the segmented hand is usually

distorted in most of the cases.

The next problem we tried to tackle in our systems is the feature extraction and representation

from the segmented hand shape. Ideally, a hand gesture recognition system or any other

classification system in general should be invariant to certain parameters or changes.

Particularly, a hand gesture recognition system should be rotation, translation and scale

invariant. To maintain these invariabilities requires careful selection of features to represent

the hand shape. Approaches such as skeletal representation used in skeleton matching methods

[f] usually are sensitive to contour distortions. Histograms have also been used for representing

the hand shape [f]. Correspondence-based approaches [f] and shaped context approaches also

suffer from some of these constraints.

After extracting and representing the hand shape comes the problem of recognising the hand

gestures. Many algorithms have been used for recognising hand gestures [1] [7]. Each

algorithm having its advantages and disadvantages. The algorithm to choose also depends on

the feature representation of your hand shape. As stated in the previous chapter, recognising

static gestures usually involves a similarity or dissimilarity measure through template

matching. Choosing the correct algorithm to use usually involve a lot of trade-offs. The usually

affect the efficiency of the system.

Finally, the problem of integrating the different modules to form a complete hand gesture

recognition system. The modules may be efficient separately but when combined together yield

a system with low efficiency than predicted. For example, a good feature representation may

not be suitable as input to an efficient algorithm.

In the next chapter, we describe how we tackled some of these problems in our designed

system.

16

17

In this chapter, we discuss our proposed system in great detail relative to the problem presented

in chapter 3. Our approach of description is based on the 3 generic steps involved in hand

gesture recognition. That is, image acquisition & hand segmentation, feature extraction &

representation, and gesture recognition.

A graphical representation of our system given below.

5.1. IMAGE ACQUISITION AND

 SEGMENTATION OF HAND SHAPE

We use the Kinect sensor as the input device to our system. Using the Kinect sensor, we capture

the RGB image and the depth image of the gesturer. In particular, we used the Microsoft Kinect

for Windows SDK version 1.8 during the design of the system. The RGB and depth images are

all 640 x 480 pixels. The depth values are stored in millimetres. The Kinect sensor has proven

to be robust in capturing images for used in hand gesturing recognition [2] [5] [9]. Depending

on the version of the Microsoft Kinect used, some pre-processing is required in order to

calibrate the RGB and Depth Images. After calibration, the input is ready for hand

segmentation.

Segmentation of hand shape involves isolating the region of interest from the input image. That

is the gestured hand shape. Other background information are not required. In most systems

such as in [9], hand segmentation is usually represented under the feature extraction &

representation module. However, how the hand is segmented depends on the device or

technique used to acquire the image. This justifies why we join them as one module in our

system.

Image
Acquisition and
Segmentation

Feature
Extraction and
Representation

Template
Matching using

DTW

Database of
Templates

Figure 4: Proposed Gesture Recognition System

18

Before segmenting the hand shape, some pre-processing is performed on the RGB image. This

involves converting the RGB image into grey-scale. We then used the depth information in the

depth image to segment the hand shape from the RGB image. First, we locate the smallest

depth value from the depth image. This corresponds to the closest point of the hand to the

camera plane. We call this value minimum-distance. Next, a threshold value is added to the

minimum-distance to give the segmentation threshold. This segmentation threshold is then

used to segment the hand region from the rest of the image.

It is important to note that the hand should be the closest object to the camera for correct

segmentation of the hand region.

Ren et.al. [9] have used a similar technique to segment the hand shape. However, for proper

segmentation of the region of interest, they require the gesturer to wear a black belt on the wrist

of the gesturing arm.

To allow flexibility in gesturing, we follow the approach of wearing a black belt on the wrist

of the gesturing hand as described by Ren et.al. The figure below shows the steps through

image acquisition and segmentation of hand shape.

Figure 5:Image Acquisition and Segmentation of Hand Shape

19

5.2. FEATURE EXTRACTION AND FEATURE

 REPRESENTATION

After segmenting the region of interest from the input image, we are now ready for feature

extraction and representation. As stated earlier, the choice of the features should be such that

the system will present a high degree of invariance to scaling, translation and rotation. The

representation of the features depends on the algorithm to be used to recognise the gestures.

From the illustrated figure of our system above, DTW is used for gesture recognition. As

described earlier, DTW is suitable for finding similarities between time-series. We choose the

contour of the hand shape as our features and represent these features as a time-series. Contour

information has been used successfully by [4] and [9]. In [9], the information is represented as

a time-series. Whereas in [4], representation is based on a discrete Fourier transform of the

contour information.

The contour points of the hand shape are suitable for use as feature representation because no

matter the orientation and location of the hand shape, the contour of the hand remains the same

when represented as a time-series.

Before extracting the contour points or vertices, we need to identify the centre point of the hand

shape as well as the black belt’s pixels.

We applied a distance transform function on the bitwise image of the segmented hand shape in

order to obtain the centre point. The index of maximum distance returned by this function is

the centre of the hand shape. Distance transform has been used by [9] and [12] this to locate

the centre point.

The RANSAC algorithm was applied on the identified black belt pixels to fit a line that will

enable use locate our starting point.

In order to obtain the contour points, we first convert the hand shape from grey-scale to binary.

To get rid of any distortion that may result from segmentation, we apply a region filling method

to the binary image. Now, the image is ready for the extraction of the boundary points. We

apply a simple boundary extraction technique which consist of eroding the images with a

structuring element and subtracting the output from the original binary image.

That is

𝛽(𝐴) = 𝐴 − (𝐴Θ𝐵)

Where 𝐴 is the input image, (𝐴Θ𝐵) is the erosion of 𝐴 by structuring element 𝐵 and 𝛽(𝐴) is

the extracted boundary of 𝐴.

Using the same time-series representation as used by Ren et.al. [9], we define the vertical axis

of our time-series to be the Euclidean distance between each contour vertex and the centre point

of the hand shape. The horizontal axis represents the angle between each contour vertex and

the initial point relative to the centre point. The initial point is determine based on the line

drawn through the black belt’s pixels using the RANSAC algorithm.

20

The final task in this step involves defining a feature vector for the next step in our framework.

The time-series defined above is then converted to a 2D feature vector𝑓.

𝑓 is defined as follows:

 𝑓 = {(𝑑𝑖, 𝑎𝑖), … , (𝑑𝑛, 𝑎𝑛)}

Where 𝑑𝑖 and 𝑎𝑖 are respectively the Euclidean distance and angle of vertex 𝑖 and 𝑛 is the

number of vertices in the boundary of the extracted hand shape.

After this step, the feature vector representation 𝑓 is ready to be passed as input to DTW in the

next module.

Below is a sequence of images pictorially describing feature extraction and representation.

Figure 6: Extracted Hand shaped

Figure 7: Hand contour, with green point
showing the initial point and blue point
showing the centre point

Figure 8: Time-series curve of contour points

21

5.3. GESTURE RECOGNITION (TEMPLATE

MATCHING USING DTW)

Our gesture recognition step involves a similarity measure through template matching using

DTW. DTW has been used in [6] for recognising dynamic hand gestures. In this step, DTW is

applied between the feature vector representation of the incoming unknown hand shape and a

set of predefined templates stored in our database. The unknown hand shape is classified as

belonging to the class of the template with which it has the minimum DTW value. That is the

unknown gesture is classified under class 𝑐, such that

𝑐 = argmin𝐷𝑇𝑊(𝑈, 𝑇𝑐)

Where U is an unknown input gesture representation, T is a template from the database of

template and c is the class label of T.

5.4. DATASET AND DATABASE OF

TEMPLATES

We created a new dataset which contains 200 samples. We had two people perform each

gesture type 10 times. We combined our dataset with the dataset provided by Ren et.al. [9]

which contains 1000 samples. So in total we used 1200 samples to evaluate our system. This

samples are all taken in complex scenes with cluttered background. This dataset defines 10

different classes of hand gestures as shown below.

Figure 9: Classes of gestures defined in the dataset

From this dataset, we created a database of templates. That is we computed the feature vector

representation of each of these gestures and stored them in the database. This was then used

for template matching against the unknown gestures.

The experimental results and analysis of our system are given in the next chapter.

22

23

6.1 EXPERIMENTAL SETUP

All the experiments were conducted on an Intel® Core™ i3-2120 CPU @ 3.30 GHz with

4GB of RAM. This was running a Window 7 32-bit operating system.

Our images were captured using Microsoft Kinect for Windows SDK version 1.8.

Our system was implemented on MATLAB R2013a.

6.2 EXPERIMENTAL RESULTS

In order to determine the accuracy and efficiency of our proposed system, we ran a series of

tests on our system. As mentioned in the previous chapter, we generated a new dataset and

combined with the dataset provided by Ren et.al. [9]. There are ten class labels representing

each gesture. There are 120 images per class.

We analysed our results based on the following criteria.

1. Robustness to cluttered background and lighting sensitivity

2. Invariance to scale, translation and rotation

3. Accuracy and running time

Robustness to cluttered background and lighting

sensitivity

Our system proved to be robust to cluttered background and occlusions from the scene. The

images from our dataset were taken in challenging scenes. This robustness is justified by the

fact that our segmentation is based on the depth information of the scene. So provided the hand

is always the closest part of the body to the camera the system will always perform well under

any type of background. Also, the Microsoft Kinect requires no special lighting conditions.

Therefore the system is also insensitive to lighting condition. Normal bright light is sufficient.

Invariance to scale, translation and rotation

The gestures in a particular class of our dataset were performed by different people in different

orientations. This system still proved to be invariant to these factors. This is because our feature

representation is based on the contour of the hand shape. The contour information capture the

topology of the hand no matter the orientation.

24

Accuracy and Running time

Finally, we measured the accuracy and running time of our system. A series of test cases were

run for each class. Specifically, we tried to classify 100 unknown images from each class of

gestures defined above. The classification results per class are shown in the table below, where

the ‘True’ column denotes the number of correctly classified samples and the ‘False’ column

the number of incorrectly classified samples.

Class Label True False

1 97 3

2 92 8

3 95 5

4 89 11

5 88 12

6 96 4

7 95 5

8 98 2

9 96 4

10 100 0

From the above results, we obtained a mean accuracy of 94.6% and a mean running time of

0.5179s. The mean accuracy was obtained by averaging the number of correctly classified

images from the table above. The mean running time was also obtained from by averaging the

running time of all the test cases.

Table 1: Results per class label

25

In order to further compare our results with the FEMD method proposed by Ren et.al. [9][13]

[14] . We developed the following confusion matrix.

As we can see from the confusion matrices above, there is a high confusion rate in class 2 of

the FEMD system. This class is highly confused with class 1, class 3 and class 8. However, in

our system, the confusion rate in class 2 is low and is highly confused only with class 1.

The table below compares our mean accuracy and mean running time to that of FEMD

 Mean Accuracy Mean Running time

Our System 94.6 % 0.5004s

Thresholding decomposition + FEMD 93.2% 0.5179s

The above results demonstrate the accuracy and efficiency of our system.

1 97 1 2

2 5 92 1 2

3 2 95 2 1

4 2 4 89 5

5 4 6 88 2

6 2 96 2

7 2 1 95 2

8 1 98 1

9 1 1 96 2

10 100

 1 2 3 4 5 6 7 8 9 10

Figure 10: Confusion Matrix of our system (Left) Figure 11: Confusion Matrix of FEMD system [9] (Right)

1 95 1 3 1

2 3 86 4 2 1 4

3 2 94 2 2

4 4 87 6 3

5 7 89 3 1

6 1 2 95 2

7 1 1 96

8 6 2 92

9 1 1 98

10 100

 1 2 3 4 5 6 7 8 9 10

Table 2: Mean Accuracy and Mean Running time of our system and that of FEMD [9]

26

27

Gesture interactive systems find applications in a wide variety of fields.

They are mostly used in the gaming industry, in the medical field, in education, and many other

field. Below are some of the application of gesture based interactive systems as given in [1]

 Developing aids for the hearing impaired;

 Enabling very young children to interact with computers;

 Designing techniques for forensic identification;

 Recognizing sign language;

 Medically monitoring patients’ emotional states or stress Levels;

 Lie detection;

 Navigating and/or manipulating in virtual environments;

 Communicating in video conferencing;

 Distance learning/tele-teaching assistance;

 Monitoring automobile drivers’ alertness/drowsiness levels, etc.

28

29

8.1. CONCLUSION

In conclusion, we have designed and developed an accurate and efficient gesture recognition

system that performs well in uncontrolled environments. After evaluating our system with a

gesture set of 10 classes, we obtain a mean accuracy of 94.6% and a mean running time of

0.5179s. The system has proven to be robust to cluttered background as well as insensitive to

lighting conditions. The system is also invariant to scaling, translation and rotation. Our

contribution is the definition of a 2D feature vector based on the time-series representation of

the contour of the hand shape. Our system also demonstrated the power of DTW in matching

time-series representation. We also achieved our initial objective which was to find out whether

classification accuracy could be improved by using DTW with the time-series representation

of the hand shape rather than using the FEMD metric.

8.2. FUTURE WORKS

As our future work, we plan in studying the feasibility of upgrading our system to recognise

dynamic hand gestures by using HMM. As stated earlier, HMMs are useful tools for

recognising dynamic hand gestures. It is a double stochastic process that models spatio-

temporal processes such as gestures efficiently. That is, processes that change with both time

and space. Dynamic hand gestures recognition is still lacking behind as compared to static hand

gesture recognition. Most dynamic hand gesture recognition systems do not take into

consideration the configuration of the fingers, i.e. they only differentiate the path taken by the

hand as a whole. For example, waving with five fingers opened and waving with 2 fingers

opened will be recognised as the same gesture. However, in order to expand the grammar of

gesture based interfaces, there is a need to differentiate between such types of gestures. Thus

with efficient systems like ours and the FEMD, we plan on studying how to incorporate

dynamism in the gesture recognition system.

Optimising our system for better accuracy and performance is also part of our future work.

Finally, we intend to develop some real-life applications to demonstrate the efficiency and

accuracy of our system.

30

References

[1] S. Mitra And T. Ach, "Gesture Recognition: A Survey," Ieee Transactions On Systems, Man, And

Cybernetics, Vol. 37, No. Part C: Applications And Reviews, Pp. 311-324, 2007.

[2] K. K. Biswas And S. K. Basu , "Gesture Recognition Using Microsoft Kinect®," In Automation,

Robotics And Applications (Icara), 2011 5th International Conference, Wellington, 2011.

[3] M. Avancini, "Using Kinect To Emulate An Interactive," Facoltà Di Scienze Matematiche,

Fisiche E Naturali, Università Degli Studi Di Trento, 2012.

[4] A. Kulshreshth, C. Zorn And J. J. Laviola Jr, "Poster: Real-Time Markerless Kinect Based Finger

Tracking And Hand Gesture Recognition For Hci," In 3d User Interfaces (3dui), 2013 Ieee

Symposium On , Orlando, Fl , 2013 .

[5] Y. Li, "Hand Gesture Recognition Using Kinect," Department Of Computer Engineering And

Computer Sciences ,University Of Louisville, Louisville, 2012.

[6] P. Doliotis, A. Stefan, C. Mcmurrough, D. Eckhard And V. Athitsos, "Comparing Gesture

Recognition Accuracy Using Color And Depth Information," In Proceedings Of The 4th

International Conference On Pervasive Technologies Related To Assistive Environments , New

York, 2011.

[7] A. Chaudhary, J. L. Raheja, K. Das And S. Raheja, "Intelligent Approaches To Interact With

Machines Using Hand Gesture Recognition In Natural Way: A Survey," International Journal Of

Computer Science & Engineering Survey (Ijcses), Vol. 2, Pp. 122-123, 2011.

[8] K. Barczewska And A. Drozd, "Comparison Of Methods For Hand Gesture Recognition Based

On Dynamic Time Warping Algorithm," In Proceedings Of The 2013 Federated Conference On

Computer Science And Information Systems, Krako, 2013.

[9] Z. Ren, J. Yuan, J. Meng And Z. Zhang, "Robust Part-Based Hand Gesture Recognition Using

Kinect Sensor," Ieee Transactions On Multimedia, Vol. 15, Pp. 1110-1120, 2013.

[10] A. D. Wilson And A. F. Bobick, "Hidden Markov Models For Modeling And Recognizing

Gesture Under Variation," In Hidden Markov Models, River Edge,, World Scientific Publishing

Co., Inc, 2002, Pp. 123 - 160.

[11] C. Yang, Y. Jang, J. Beh, D. Han And H. Ko, "Gesture Recognition Using Depth-Based Hand

Tracking For Contactless Controller Application," In Ieee International Conference On

Consumer Electronics (Icce), 2012.

[12] J. L. Raheja, A. Chaudhary And S. K, "Tracking Of Fingertips And Centre Of Palm Using

Kinect," In In Proceedings Of The 3rd Ieee International Conference On Computational

Intelligence, Modelling And Simulation, Malaysia, 2011.

31

[13] Z. Ren, J. Meng And J. Yuan, "Depth Camera Based Hand Gesture Recognition And Its

Applications In Human-Computer-Interaction," In Information, Communications And Signal

Processing (Icics) , Singapore, 2011.

[14] Z. Ren, J. Yuan And Z. Zhang, "Robust Hand Gesture Recognition Based On Finger-Earth

Mover's Distance With A Commodity Depth Camera," In Mm '11 Proceedings Of The 19th Acm

International Conference On Multimedia , New York, 2011.

[15] S. Marcel, O. Bernier, J. Viallet And D. Collobert, "Hand Gesture Recognition Using Input–

Output Hidden Markov Models," In 4th Ieee International Conference On Automatic Face And

Gesture Recognition (Fg 2000), Grenoble, 2000.

[16] Y. Rubner, C. Tomasi And L. . J. Guibas, "The Earth Mover's Distance As A Metric For Image

Retrieval," International Journal Of Computer Vision, Vol. 40, No. 2, Pp. 99 - 121 , 2000 .

32

Appendix

Source Code

Function: Feature Extractor

1. %This function is the feature Extractor
2. %It takes as input a depth image and the correspoinding colour image
3. %The output is a 2D feature vector representing the time-series
4. %inputs
5. % depthImgPath : path to depth image
6. % colorImgPath : path to colour image
7. %Output
8. % featureVector : 2D feature vector
9. function [featureVector] = featureExtractorDtw(depthImgPath,

colorImgPath)

10. delimiter = ',';

11. filename = depthImgPath; %this is the depth image file in txt

12. depthimg = importdata(filename, delimiter); %convert depth file

to image matrix

13. img = imread(colorImgPath); %this is the corresponding colour

image

14. rec = [0 0 590 470];

15. imggray = rgb2gray(img); %convert colour image to grayscale

16. %figure,imshow(imggray);

17. %%below we calibrate the depth and colour images so that pixel

positions

18. %%correspond in both images.note Kinect does not calibrate the

images. it

19. %%is a random process like trial and error

20. %if your images are calibrated, you can delete the calibration

code and

21. %start from SEGMENTATION AND FEATURE EXTRACTION below

22. %% CALIBRATION STARTS

23. depthimg = imcrop(depthimg, rec);

33

24. %depthimg = imresize(depthimg, [480 640]);

25. %imggray = imcrop(imggray, rec);

26. [i j] = size(depthimg);

27. imggray = imresize(imggray, [i j]);

28. imggray = imresize(imggray, [520 710]);

29. %figure, imshow(imggray);

30. imggray = imcrop(imggray, [66 28 i j]);

31. % CALIBRATION ENDS

32. %end calibration. now depth and colour pixel now correspond in

a 1 to 1

33. %mapping

34. %% SEGMENTATION AND FEATURE EXTRACTION

35. %%we locate the minimum depth of the image below

36. min = 10000; %holds the value of the min depth to the camera

37. for r = 1:i

38. for c = 1:j

39. if (depthimg(r,c) ~= 0)

40. if(depthimg(r,c) < min)

41. min = depthimg(r,c);

42. end

43. end

44. end

45. end

46. threshold = min + 70; %segmentation threshold. depth of the

hand region

47. %from camera for segmentation

48. xmin = 100000; %min x coordinate of hand contour

49. xmax = -1000; %maz x coordinate of hand contour

50. ymin = 100000; %min y coordinate of hand contour

51. ymax = -1000; %max y coordinate of hand contour

52. %this is to crop the hand region from the whole image

53. %% we segment the hand region below. all pixels other than the

hand pixels

54. %%are set to white

55. for r = 1:i

56. for c = 1:j

34

57. if(depthimg(r,c) > threshold || depthimg(r,c) == 0)

58. row = r;

59. col = c;

60. if(col < 1)

61. col = c;

62. end

63. if(row > i)

64. row = r;

65. end

66. imggray(row,col) = 255;

67. end

68. end

69. end

70. %figure, imshow(imggray); %imggray now represents our segmented

hand image

71. %% cropping the hand region

72. %%obtaining the min x,y and max x,y vals of the hand region for

cropping

73. for y = 1:j

74. for x = 1:i

75. if((depthimg(x,y) < threshold) && ((imggray(x,y) > 0) &&

imggray(x,y)~= 255))

76. if(x < xmin)

77. xmin = x;

78. end

79. if(x > xmax)

80. xmax = x;

81. end

82. if(y < ymin)

83. ymin = y;

84. end

85. if(y > ymax)

86. ymax = y;

87. end

88. end

89. end

90. end

91. %% cropping using imcrop

35

92. height = xmax - xmin;

93. width = ymax - ymin;

94. rect = [ymin-5 xmin-5 width+10 height+10];

95. cropimg = imcrop(imggray, rect);

96. cropimg2 = cropimg;

97. %figure, imshow(cropimg2);

98. %cropimg and cropimg2 now represent our segmented hand region

which is

99. %approximately 100x100 pixels

100. %% Identifying the black belt pixels below

101. [row col] = size(cropimg);

102. index = 1;

103. for i = 1:row

104. for j = 1:col

105. if(cropimg(i,j) < 30)

106. cropimg(i,j) = 255;

107. pts(1,index) = j; %pts holds our black belts pixels

108. pts(2,index) = i;

109. index = index + 1;

110. end

111. end

112. end

113. %figure, imshow(cropimg);

114. % now, pts contains our black belt's pixels locations.

115. %% use ransac to draw a straight line through our black belt's

pixels

116. index = index -1;

117. st = pts(2,1);

118. en = pts(2,index);

119. iterNum = 300;

120. thDist = 2;

121. thInlrRatio = .1;

122. [t,r] = ransac(pts,iterNum,thDist,thInlrRatio);

123. k1 = -tan(t);

124. b1 = r/cos(t);

125. len = 1:col;

36

126. ypts = uint8(k1*len+b1); %% y points generated from ransac

127. %% below we extract the boundary of our handshape

128. cropimg2 = ~(im2bw(cropimg2, 0.9)); %convert hand image to

binary image

129. dstimg = cropimg2; %dstimg copy of image to be used for

distance transform

130. % to obtain the centre point

131. cropimg2 = imfill(cropimg2, 'holes');

132. SE = strel('square',3);

133. cropimg2 = cropimg2 - (imerode(cropimg2,SE)); %boundary

extraction

134. cropimg2 = ~cropimg2; %invert the binary pixels

135. %now cropimg2 holds only the boundary or contour of the

handshape

136. %% perform distance transform on dstimg to find centre point

137. dstimg = bwdist(~dstimg); %distance transform algorithm

138. [mpv, indp] = max(dstimg); %mpv = row vector containing max

distance for each column

139. %indp = index of these values

140. %md = max(mpv); %md = maximum distance after distance

transform

141. maxval = max(dstimg(:));

142. [md,rowind] = max(mpv); %rowind = row index value of centre

point

143. colind = indp(rowind); %colind = column index value of centre

point

144. centrept = [rowind colind]; %%this is our centre point

145. %% below we obtain intersection point of ransac line and hand

contour

146. plotimg = cropimg2; %temporary image to be used as background

147. plotimg(:,:) = 1; %% white background of same size as our hand

image to be

148. % used to draw ransac line for obtaining intersection point

37

149. %figure, imshow(dstimg, []); %display our distance tranformed

hand shaped

150. %% we look for intersection point of line and image below

151. %set(gcf,'visible','off');

152. figure('visible','off'), imshow(plotimg), hold on;

153. %set(gcf,'visible','off');

154. plot(len,k1*len+b1,'r'), hold on; %ransac line plot

155. f = getframe; %Capture screen shot

156. [im,map] = frame2im(f); %Return associated image data which

contains our

157. %ransac line

158. if isempty(map) %Truecolor system

159. rgb = im;

160. else %Indexed system

161. rgb = ind2rgb(im,map); %Convert image data

162. end

163. im = rgb2gray(im);

164. im = im2bw(im);

165. im = imresize(im,[row col]); %im now is an image of our ransac

line through

166. %the black colour pixel.

167. %figure, imshow(im);

168. ab = cropimg2+im; % now we obtain the intersection point of the

handshape

169. % and the ransac line

170. %ab = im2bw(ab); % ab is an image with black pixels

represented the

171. %intersection point

172. set(gcf,'visible','off');

173. %figure, imshow(ab);

174. %% now we extract the starting points from ab

175. linedir = int16(ypts(col) - ypts(1)); %denotes orientation of

line so to

176. %easily locate start point

177. [row col] = size(ab);

178. if(linedir > 0)

179. fin = 0;

38

180. for i = 1:row

181. for j = 1:col

182. if(ab(i,j) == 0)

183. stpt = [i j];

184. fin = 1;

185. break;

186. end

187. end

188. if(fin == 1)

189. break;

190. end

191. end

192. elseif(linedir <= 0)

193. fin = 0;

194. for i = row:-1:1

195. for j = 1:col

196. if(ab(i,j) == 0)

197. stpt = [i j];

198. fin = 1;

199. break;

200. end

201. end

202. if(fin == 1)

203. break;

204. end

205. end

206. end

207. % stpt now represents our starting point.

208. %% locate end point for proper segmentation

209. if(linedir > 0)

210. fin = 0;

211. for i = 1:row

212. for j = 1:col

213. if(ab(i,j) == 0)

214. endpt = [i j];

215. end

216. end

217. end

218. elseif(linedir <= 0)

219. fin = 0;

220. for i = row:-1:1

221. for j = 1:col

39

222. if(ab(i,j) == 0)

223. endpt = [i j];

224. end

225. end

226. end

227. end

228. %%

229. %% now time series representation of our handshape

230. ctpt = [centrept(2) centrept(1)];

231. [row col] = size(ab);

232. k = 1;

233. if(linedir > 0)

234. for i = 1:endpt(1)

235. for j = 1:col

236. if(cropimg2(i,j) == 0)

237. cp = [i j]; %% cp implies current position

238. eudist = sum((ctpt-cp).^2).^0.5; %eudist = euclidean

distance between cp and

239. %initial point, centrept

240. rdist(k) = eudist; %% rdist is an array that holds the

241. %the eudist for each contour point

242. %now we calculate the angle between each contour point

243. %and the initial pt, stpt relative to centrept

244. v1 = cp - ctpt;

245. v2 = stpt - ctpt;

246. ang = atan2(v1(1)*v2(2)-v2(1)*v1(2),v1(1)*v2(1)+v1(2)*v2(2));

247. Angle = mod(180/pi * ang, 360);

248. nangle(k) = Angle/360; %nangle is an array of angles

249. k = k+1;

250. end

251. end

252. end

253. elseif(linedir <= 0)

254. k = 1;

255. for j = 1:col

256. for i = 1:stpt(1)

257. if(cropimg2(i,j) == 0)

40

258. cp = [i j]; %% cp implies current position

259. eudist = sum((ctpt-cp).^2).^0.5; %eudist = euclidean

distance between cp and

260. %initial point, centrept

261. rdist(k) = eudist; %% rdist is an array that holds the

262. %the eudist for each contour point

263. %now we calculate the angle between each contour point

264. %and the initial pt, stpt relative to centrept

265. v1 = cp - ctpt;

266. v2 = stpt - ctpt;

267. ang = atan2(v1(1)*v2(2)-v2(1)*v1(2),v1(1)*v2(1)+v1(2)*v2(2));

268. Angle = mod(180/pi * ang, 360);

269. nangle(k) = Angle/360; %nangle is an array of angles

270. k = k+1;

271. end

272. end

273. end

274. end

275. %% below we draw the time series curve of the hand shape

276. count1=timeseries(rdist,nangle);

277. count1.Name = 'Relative Distance';

278. count1.TimeInfo.Units = 'Normalised Angle';

279. %figure, plot(count1), grid on

280. %% smoothing version of the time series curve of the hand shape

281. ys = smooth(nangle,rdist,1,'rloess');

282. %plot(x,y2,x,ys)

283. count1=timeseries(ys,nangle);

284. %normangles = count1.time;

285. %figure, plot(count1), grid on, hold on;

286. featureVector = [count1.time count1.data]; %2D feature Vector

to be used as

287. %input to DTW

