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Abstract 
 

Human computer interaction has introduced a new paradigm for the construction of computer 

interfaces. This requires the construction of easy to use, natural and intuitive computer 

interfaces. Various methodologies have been considered to build such interfaces. Gestures and 

especially hand gesture represent the most easy to use, natural, intuitive and memorable way 

to communicate with computers. However, gesture recognition systems are difficult to design. 

These systems are often used in complex environments with cluttered background and different 

lighting conditions. These factors act as major constraints in the design of gesture recognition 

systems. However, the introduction of depth sensing devices such as the Microsoft Kinect 

makes it easy to capture hand gestures in complex backgrounds.  The accuracy and efficiency 

of gesture recognition systems are often affected by the choice of features to be used to 

represent the hand shape and the algorithm to be used for classifying the hand gestures. In this 

thesis, we try to implement a hand gesture recognition system that makes use of the time-series 

representation of the contour points of the hand shape and uses Dynamic Time Warping (DTW) 

for classification of hand gestures. DTW is well known for its accuracy and effectiveness in 

matching time-series representations. Our proposed system makes use of the depth information 

of the scene provided by the Microsoft Kinect. This allows our system to be used in challenging 

backgrounds. We evaluate our system and compare it to some contemporary systems. The 

results of evaluation shows that our hand gesture recognition system is accurate and efficient 

with a mean accuracy of 94.6% and mean running time of 0.5179s. Our system is also invariant 

to scale, rotation and translation and runs effectively in complex background settings. We also 

survey some of the methods and algorithms used for recognising hand gestures. Finally we 

explore some of the application areas of gesture base interfaces. Interaction using gestures has 

proven to be useful in many domains such as in medicine, in classroom for teaching and 

presentations, in sign language recognition, interactive emotion recognition, simulations and 

in the gaming industry. 

 

Keywords 
Human Computer Interaction, HCI, Gesture Recognition, Dynamic Time Warping, DTW, 

Microsoft Kinect. 
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1.1. THE CONTEXT 
 

Recently, a lot of efforts and work is been made to reduce the gap between humans and 

computers.  This involves bringing the interaction between humans and computers to the 

human level where humans can communicate with computers in natural and intuitive ways. 

This issue among others is addressed by Human-Computer Interaction (HCI). Among the 

various interaction techniques used to achieve this goal, interaction using gestures appears to 

be the most efficient in terms of naturalness and intuitiveness. However, modelling gesture 

based interactive systems is not an easy task and presents a lot of challenges. Many devices 

and algorithms have been developed to recognize and classify human gestures for 

communication with computers [1]. Among the human gestures used for interacting with 

computers, hand gestures represent the simplest and most easy to use. Hand gestures are 

expressive motion of the hand, including the fingers in order to communicate. Humans 

frequently gesture with their hand while they communicate. Thus interaction between humans 

and computers using hand gestures provide the most effective way to model naturalness. 

However, effective and efficient hand gesture recognition systems are yet to be developed. 

The Microsoft Kinect [2] [3] is a motion sensing input device developed by Microsoft 

originally for use with the Xbox gaming console. However, after introducing this device, its 

potentials for used with computers uncovered and as a result Microsoft released the Microsoft 

Kinect for Windows alongside the Microsoft Kinect for Windows SDK to help developers 

build computer applications by exploiting the motion sensing and audio input capabilities of 

this device. The Microsoft Kinect has been used recently for capturing hand gestures for used 

in gesture recognition systems [2] [4] [5]. 

 

1.2. THE PROBLEM 
 

As mentioned above, designing efficient hand gesture recognition systems still poses a lot of 

challenges and such systems are yet to be developed. Despite these challenges a lot of efforts 

have been made in the past years. Generically, a hand gesture recognition system is composed 

of 3 steps: image acquisition and hand segmentation, feature extraction & representation, and 

gesture recognition. These steps individually pose a lot of challenges. Different researches [6] 

[7] have been conducted to improve the efficiency of the individual steps and of the system as 

a whole. However, it is difficult to find a system that is efficient in all the three steps combined. 

Therefore designing a systems that is efficient as a whole requires considering efficiency at the 

modular level as well as how to integrate these modules to increase the overall efficiency of 

the system. This is of primary concern. 
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1.3. THE SOLUTION 
 

In this thesis, we design, implement and evaluate a hand gesture recognition system that uses 

techniques that have been proven efficient at the individual levels and which combine 

efficiently to produce a robust hand gesture recognition system. Our system uses the Microsoft 

Kinect for image acquisition and segmentation, a feature representation based on the global 

features of the hand and Dynamic Time Warping (DTW) for the gesture recognition module. 

This thesis also surveys the different type of methods and techniques used to recognise hand 

gestures as well as describes some of the application areas of gesture based interactions.  

 

1.4. INNOVATIVE ASPECTS 
 

We have demonstrated the efficiency of DTW in classifying hand gestures based on contour 

information represented as time-series. Our hand gesture recognition systems overcomes some 

of the shortcomings of the existing systems. This systems operates well under cluttered 

background i.e. no constraint is place on the environment of the gesturer. The systems is also 

translation, rotation and scale invariant. This system can be adapted to recognise any set of 

predefined gestures. 

 

1.5. STRUCTURE OF THE THESIS 
 

As mentioned above, this thesis designs a new gesture recognition system as well as surveys 

the different methods and techniques used so far for recognising gestures. Chapter 2 gives a 

brief overview of the different types of human gestures used for interacting with computers. 

Chapter 2 also discuss in a concise way the various devices, methods and techniques used for 

recognising these gestures. We conclude this chapter with a brief overview of some of the 

application areas of gesture recognition systems. Chapter 3 describes the problem associated 

with some of the gesture recognition systems introduced in chapter 2. Chapter 4 describes our 

proposed system in detail. In chapter 5 we present our experimental results. Chapter 6 cover 

some of the related work as well as the comparison of our systems with these systems. Finally, 

chapter 7 concludes our system as well as presents some future directions of our work. 
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2.1. GESTURES 
 

Designing gesture based interaction systems naturally begins with understanding what gestures 

are. This requires us to understand the different types of gestures expressed by humans, their 

mechanism of operation, how gestures convey information and their context of use. As stated 

in [1], gestures are expressive, meaningful body motions involving physical movements of the 

fingers, hands, arms, head, face, or body with the intent of conveying meaningful information 

or interacting with the environment. From this definition, we observe that we have facial 

gestures, that is those gestures involving the face which are mostly emotional in nature, 

gestures involving the hands, arms and fingers which are the most common and widely used in 

communication especially in sign language and finally we have gestures involving the motion 

of the whole body. Naturally, we have two main categories of gestures and this affects how 

gestures are recognised [1]. We have static and dynamic gestures. Static gestures are simply 

poses, where a person assumes a certain pose for a fixe time period such a making a sign with 

the hand to indicate ‘stop’. Dynamic gestures are those which change in time and space where 

the gesture takes a particular path or trajectory to convey a meaningful information such a 

‘waving’ to say good bye. Intuitively, dynamic gesture are more difficult to recognise than 

static gestures.  In [1], you will find detail description of the different types of human gestures 

as well as some of the techniques and methods used to recognise each type of these gestures. 

 

2.2. DEVICES USED FOR CAPTURING                            

      GESTURES  
 

In order to recognise gestures, you need to track and capture the gesture. Many devices have 

been develop for tracking or capturing hand gestures. 

Until recently, gestures, especially hand gestures have been tracked or captured accurately by 

using optical and electromechanical sensors [1] [8]. Electromechanical sensing devices capture 

hand gestures accurately and efficiently but they do not provide the naturalness and easy to use 

paradigm stated by HCI. These devices need to be attached to or worn by the user in order to 

recognised gesture. As we can see, they are cumbersome, add weight to the user and even 

hinder the free movement of the user thus eliminating the naturalness sought. Some of these 

devices include data gloves, tracking suites etc. Electromechanical devices are very efficient 

in capturing hand gestures in the sense that they directly track the motion of the hand and 

convey the signal accurately to the computer. A small wearable three-axial inertial sensor is 

used in [8] to track the hand motion and subsequently send signal to the computer. 

Due to the limitations of electromechanical motion sensing devices, optical or vision based 

sensors where introduced in gesture recognition [1]. This include simple cameras. The camera 

is used to track the hand motion in video frames and these frames are then used for recognising 
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gestures. These sensors provide an improvement in the naturalness over the electromechanical 

sensors but in exchange, the accuracy and efficiency are greatly reduced due to the limitations 

of optical sensors. The optical sensors often require special lighting conditions to accurately 

track a gesture, they are sensitive to cluttered background and the obtained hand pose is highly 

distorted in most of the cases [1]. 

To overcome the limitations of electromechanical sensors and vision based sensors, depth 

based sensors were recently introduced for capturing hand gestures [2] [6] [9]. Depth based 

sensors such as the Microsoft Kinect introduced in chapter 1 are increasingly being used for 

capturing hand gestures due to their efficiency and accuracy. These sensors use the depth 

information of a video frame to correctly segment the hand region from the image, therefore 

they rely on the 3D data of the frame. As a result, their contactless nature as opposed to 

electromechanical sensors and their ability to rely on depth information rather than the 2D 

colour information used by vision based sensors makes them the most effective and robust 

device currently in used for capturing hand gestures. Depth based gesture recognition systems 

have proven to be resistant to cluttered background and lighting conditions as described in [6] 

[9]. 

The Microsoft Kinect is increasingly being used in gesture recognition systems for image 

acquisition and segmentation [2] [4] [5] [9]. Briefly, the Microsoft Kinect (also called Kinect) 

is a physical device that contains a camera, a microphone array, and an accelerometer as well 

as a software pipeline that processes colour, depth, and skeleton data.  

 

 

 

The Microsoft Kinect has the following components and specifications 

• An RGB camera that stores three channel data in a 1280x960 resolution 

• An infrared (IR) emitter and an IR depth sensor 

• A multi-array microphone, which contains four microphones for capturing sound 

Figure 1: Microsoft Kinect 
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• A 3-axis accelerometer configured for a 2G range, where G is the acceleration due to 

gravity. 

Other than the Microsoft Kinect, other 3D sensing devices are common nowadays. Examples 

include the Wavi Xtion by ASUS. The detail description of the hardware components and 

specifications of the Microsoft Kinect can be found in [3] or in the Microsoft Website itself.  

 

2.3. ALGORITHMS COMMONLY USED IN      

 GESTURE RECOGNITION 
 

Many algorithms have been used so far for recognising gestures [1]. Theoretically, recognising 

gestures involves the application of principles and concepts from diverse domains. This 

includes image processing concepts, statistical models, pattern recognition concepts, computer 

vision techniques and many others. Tools for recognising gestures include among others 

Hidden Markov’s Models (HMM), Principal Component Analysis, Artificial Neural Networks 

(ANN), Dynamic Time Warping (DTW), connectionist approach, template matching and many 

others. In [1] and [7] a detail description of each of these algorithms and approaches have been 

given and a description of how each of these methods are used in the recognition of the different 

types of gestures stated above. 

The type of gesture determines the type of algorithm to be used. Static gestures are usually 

recognised using template matching. Template matching usually involves measuring the 

similarity or dissimilarity between feature representations of hand shapes. The Finger-Earth 

Movers Distance (FEMD) has been used as a dissimilarity measure in [9]. 

 

Hidden Markov’s Model (HMM) 

HMMs [1] [10] are useful tools for recognising dynamic gestures. As stated in [1], an HMM is 

a double stochastic process governed by: 1) an underlying Markov chain with a finite number 

of states and 2) a set of random functions, each associated with one state. A HMMs models 

spatio-temporal information such as gestures efficiently.  HMM is mostly used in the 

recognition part of the gesture recognition process. An HMM is made of states, which generate 

observation symbols according to state transition probabilities and output probabilities as 

described in [1] and [10]. In [11], they have used a method where an adaptive mean shift 

algorithm is applied to the depth histogram of the gesturing hand in order to track the trajectory 

of the gesturing hand and subsequently passes this information to a HMM in order to recognise 

the dynamic hand gesture. The disadvantage of using HMMs in recognising gestures is that 

HMMs usually require the definition of the observation sequence as well as transition 

probabilities. Also training the HMM for the set of gestures to be recognised is not always easy.  
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Dynamic Time Warping (DTW) 

 

DTW is another popular method that has been used in gesture recognition systems [6]. 

The DTW algorithm is briefly described in [6] as follows: 

Let 𝑀 = (𝑀1, . . . ,𝑀𝑚) be a model sequence in which each 𝑀𝑖 is a feature vector and let 𝑄 = 

(𝑄1, . . . , 𝑄𝑛) be a query sequence in which each 𝑄𝑗 is another feature vector. 

A warping path W defines an alignment between 𝑀 and 𝑄. Formally, 𝑊 = 𝑤1, . . . , 𝑤𝑇 , where 

max(𝑚, 𝑛)  ≤  𝑇 ≤  𝑚 +  𝑛 −  1. Each 𝑤𝑡 = (𝑖, 𝑗) specifies that feature vector 𝑀𝑖of the model 

is matched with feature vector  𝑄𝑗 . The warping path is typically subject to several constraints: 

 Boundary conditions:  𝑤1 = (1, 1) and 𝑤𝑇 = (𝑚, 𝑛). This requires the warping path 

to start by matching the first frame of the model with the first frame of the query, and 

end by matching the last frame of the model with the last frame of the query. 

 Temporal continuity: Given 𝑤𝑡 = (𝑎, 𝑏) then 𝑤𝑡−1 = (𝑎′, 𝑏′), where 𝑎 −  𝑎′ ≤  1 

and  𝑏 −  𝑏′ ≤  1. This restricts the allowable steps in the warping path to adjacent 

cells along the two temporal dimensions. 

 Temporal monotonicity: Given 𝑤𝑡 = (𝑎, 𝑏) then 𝑤𝑡−1 = (𝑎′, 𝑏′) where 𝑎 −  𝑎′ ≥
 0 and  𝑏 −  𝑏′ ≥  0. This forces the warping path sequence to increase monotonically 

in the two temporal dimensions. 
 

There are exponentially many warping paths that satisfy the above conditions. However we are 

only interested in the path that minimizes the warping cost: 

𝐷𝑇𝑊(𝑄, 𝐶) = 𝑚𝑖𝑛

{
 

 
√∑𝑤𝑘

𝑇

𝑡=1

2

}
 

 
 

The 𝑚𝑖𝑛 is calculated for all 𝑤1, . . . , 𝑤𝑇. 

This path can be found using dynamic programming to evaluate the following recurrence, 

which defines the cumulative distance 𝛾(𝑖, 𝑗 ) as the distance 𝑑(𝑖, 𝑗 ) found in the current cell 

and the minimum of the cumulative distances of the adjacent elements: 

𝛾(𝑖, 𝑗 )  =  𝑑(𝑞𝑖 , 𝑐 𝑗)  +  𝑚𝑖𝑛{𝛾(𝑖 −  1, 𝑗 −  1), 𝛾 (𝑖 −  1, 𝑗 ), 𝛾 (𝑖, 𝑗 −  1)} 

The Euclidean distance between two sequences can be seen as a special case of DTW where 

the 𝑘𝑡ℎ element of 𝑊 is constrained such that 𝑤𝑘 = (𝑖, 𝑗 )𝑘, 𝑖 =  𝑗 =  𝑘. Note that it is only 

defined in the special case where the two sequences have the same length. The time and space 

complexity of DTW is 𝑂(𝑛𝑚). 
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As mentioned earlier, robust hand gesture recognition is still a problem especially when the 

fingers are involved. In [12], a method has been introduced for tracking the finger tips and 

centre of palms using Microsoft Kinect. The method makes use of the depth sensing capability 

of the Kinect device. It assumes that the finger tips are the closest parts of the hand facing the 

Kinect. It uses the distance transform algorithm to detect the centre of the palm. This method 

is developed as part of a research work to build gesture controlled robots. The disadvantage 

with this method is that it tracks only fingertips and centre of palms. It does not recognise the 

number of fingers and the trajectory of the gesturing hand. 

Another method involving finger tracking and hand gesture recognition has been proposed by 

[4]. This method uses the Kinect sensor to detect the gesturing hand. It then uses Median 

filtering technique to remove noise from the detected hand during the segmentation phase. 

After obtaining the hand segment, the contour of the segmented hand is calculated. Equidistant 

point are taken on this contour. From this contour point, a centroid distance function is 

calculated. A Fourier descriptor is calculated from this function. Finally a feature vector is 

obtained based on this Fourier descriptor. The system is trained by computing the feature vector 

of each gesture in the set of gestures to be recognised. Gesture recognition is done through 

template matching. This technique successfully differentiated the number of fingers in a hand 

in a gestured hand. However, it requires the fingers to be widely opened and straight, it requires 

the gesturing hand to be parallel with the camera plane and finally it only models static gestures. 

Yang et.al. [11] have proposed a hand tracking algorithm using depth image by calculating 

hand weighted probabilities. The method for detecting the hand gesture uses an adaptive mean 

shift algorithm. The trajectory of the hand is tracked using a 3D feature vector and the gesture 

is recognised by a HMM. This method was used to implement a gesture controlled media 

player. However, this method only tracks the hand trajectory and does not take into 

consideration the configuration of the fingers. 

In [6], a method for recognising dynamic hand gestures has been developed. However, this 

does not take into account the configuration of the fingers. In [6], DTW is used to recognise 

the dynamic gestures. 

Ren et.al. [9] [13] [14] have proposed a part-base hand gesture recognition system using the 

Microsoft Kinect. They have employed a technique called Finger Earth Mover’s Distance 

(FEMD) to measure the dissimilarity between two hand shapes. This method is part based, 

meaning using fingers (global features) to differentiate the hand shapes instead of local features 

such as contours used by classic shape recognition methods. Our hand gesture recognition 

systems is based on some of the work done by Ren et al. [9].  For better understanding, the 

FEMD framework proposed by Ren et al. is briefly described below. 

Our system is related to this framework at the level of image acquisition, segmentation and 

feature extraction. Our framework defers from the FEMD framework at the level of feature 

representation and gesture recognition. We were motivated by the performance of FEMD and 

DTW. 

The FEMD framework is shown below 
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Image acquisition and segmentation in the FEMD framework is the same as described for our 

systems. This framework also extracts the contour points and represents them as a time-series 

curve. The difference comes in the representation of this time-series information as a feature 

vector or signature for the gesture recognition step. 

This framework represents the input hand shape by global features. That is each finger in the 

hand shape represents a cluster in the signature. Ren et.al. [9] defines a hand signature 𝑅 as 

follows 

𝑅 = {(𝑟1, 𝑤𝑟1),… , (𝑟𝑚, 𝑤𝑟𝑚)} 

Where 𝑟𝑖 is a cluster (finger) representative and 𝑤𝑟𝑖 is the weight of the cluster. 

𝑟𝑖 is defined as the angle interval between the end points of each finger segment i.e.       

      𝑟𝑖 = [𝑟𝑖𝑎, 𝑟𝑖𝑏] 

The weight of a cluster, 𝑤𝑟𝑖 is the normalized area within the finger segment. 

This is shown below. 

Figure 2: FEMD framework, Ren.et.al [9] 
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This framework uses two methods to identify the finger segments from the time series 

representation. The first method is Thresholding decomposition where the height information 

in the time-series curve is used to segment the fingers. The second method is the Near-Convex 

decomposition. More about these methods can be found in [9] [13] [14].  

After representing two hand shapes as signatures as described above, their FEMD distance can 

be then calculated. FEMD stems from the Earth Mover’s Distance (EMD) defined by Rubner 

et al [15].  

For two signature R and T, their FEMD distance is given by 

FEMD(R,T) = 𝛽𝐸𝑚𝑜𝑣𝑒 + (1 −  𝛽)𝐸𝑒𝑚𝑝𝑡𝑦 

 

    =
𝛽∑ ∑ 𝑑𝑖𝑗𝑓𝑖𝑗

𝑛
𝑗=1

𝑚
𝑖=1  +  (1− 𝛽)|∑ 𝑤𝑟𝑖

𝑚
𝑖=1 −∑ 𝑤𝑡𝑗

𝑛
𝑗=1 | 

∑ ∑ 𝑓𝑖𝑗
𝑛
𝑗=1

𝑚
𝑖=1

 

Where 𝐷 = [𝑑𝑖𝑗] is the ground distance matrix for R and T such that 𝑑𝑖𝑗 is the ground distance 

from 𝑟𝑖 to 𝑡𝑗. 

Figure 3: signature definition in FEMD, (source, [9]) 
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𝑑𝑖𝑗 is defined as the minimum moving distance for interval [𝑟𝑖𝑎, 𝑟𝑖𝑏] to totally overlap  

[𝑡𝑗𝑎,𝑡𝑗𝑏], i.e.: 

𝑑𝑖𝑗 =  {
0,    𝑟𝑖 𝑡𝑜𝑡𝑎𝑙𝑙𝑦 𝑜𝑣𝑒𝑟𝑙𝑎𝑝 𝑤𝑖𝑡ℎ 𝑡𝑗

min(|𝑟𝑖𝑎 − 𝑡𝑗𝑎|, |𝑟𝑖𝑏 − 𝑡𝑗𝑏|) ,  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.
 

𝑓𝑖𝑗  is the flow from  𝑟𝑖 to 𝑡𝑗 and constitutes the flow matrix F. 

Consult [9] for the full definition of the flow matrix, F.  

Finally, gesture recognition in FEMD is also achieved through template matching. However,  

as mention earlier, FEMD is a dissimilarity measure. That is the input hand is recognized as 

the class with which it has the minimum dissimilarity distance 

c = arg min FEMD (𝐻,  𝑇𝑐), 

Where H is the input hand signature and T is a template of class c. 

Some of the disadvantages of the FEMD framework include: 

1. Setting the finger threshold: it is difficult to set a threshold that would correctly identify 

the finger clusters in all the cases.  

2. It has a high confusion rate for some gestures as will be seen in a later chapter 
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Our main objective is to design and evaluate an efficient and accurate hand gesture recognition 

system. In order to understand the problem we are trying to solve, it is important to categories 

it according to the individual steps involved in hand gesture recognition. At this point, it is 

worth noting that our designed systems deals only with static hand gestures. 

First and foremost is the problem of acquiring an image and segmenting the hand shape from 

the image of the gesturer. Vision based techniques are suitable for image acquisition of the 

hand gesture [1] [6]. However, segmenting the region of interest, i.e. the hand region from the 

2D image is usually inefficient and results in a distorted hand shape. Skin detection techniques 

[7], based on skin colour have been used to segment the hand from the rest of the image. 

However, this method is inefficient especially when the hand overlaps with the face in which 

case there will be ambiguity between the colour of the hand and face. Many hand detection 

approaches using RGB cameras have been proposed in the literature [1] [6]. Despite these 

efforts, proper segmentation of the hand region is still a problem. Using vision based 

approaches, the segmented hand region is usually sensitive to cluttered background, lighting 

conditions and the resolution of the camera. The contour of the segmented hand is usually 

distorted in most of the cases. 

The next problem we tried to tackle in our systems is the feature extraction and representation 

from the segmented hand shape. Ideally, a hand gesture recognition system or any other 

classification system in general should be invariant to certain parameters or changes. 

Particularly, a hand gesture recognition system should be rotation, translation and scale 

invariant. To maintain these invariabilities requires careful selection of features to represent 

the hand shape. Approaches such as skeletal representation used in skeleton matching methods 

[f] usually are sensitive to contour distortions. Histograms have also been used for representing 

the hand shape [f]. Correspondence-based approaches [f] and shaped context approaches also 

suffer from some of these constraints. 

After extracting and representing the hand shape comes the problem of recognising the hand 

gestures. Many algorithms have been used for recognising hand gestures [1] [7]. Each 

algorithm having its advantages and disadvantages. The algorithm to choose also depends on 

the feature representation of your hand shape. As stated in the previous chapter, recognising 

static gestures usually involves a similarity or dissimilarity measure through template 

matching. Choosing the correct algorithm to use usually involve a lot of trade-offs. The usually 

affect the efficiency of the system.  

Finally, the problem of integrating the different modules to form a complete hand gesture 

recognition system. The modules may be efficient separately but when combined together yield 

a system with low efficiency than predicted. For example, a good feature representation may 

not be suitable as input to an efficient algorithm. 

In the next chapter, we describe how we tackled some of these problems in our designed 

system. 
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In this chapter, we discuss our proposed system in great detail relative to the problem presented 

in chapter 3. Our approach of description is based on the 3 generic steps involved in hand 

gesture recognition. That is, image acquisition & hand segmentation, feature extraction & 

representation, and gesture recognition. 

A graphical representation of our system given below. 

 

 

  

 

 

5.1. IMAGE ACQUISITION AND     

 SEGMENTATION OF HAND SHAPE 
 

We use the Kinect sensor as the input device to our system. Using the Kinect sensor, we capture 

the RGB image and the depth image of the gesturer. In particular, we used the Microsoft Kinect 

for Windows SDK version 1.8 during the design of the system. The RGB and depth images are 

all 640 x 480 pixels. The depth values are stored in millimetres. The Kinect sensor has proven 

to be robust in capturing images for used in hand gesturing recognition [2] [5] [9]. Depending 

on the version of the Microsoft Kinect used, some pre-processing is required in order to 

calibrate the RGB and Depth Images. After calibration, the input is ready for hand 

segmentation. 

Segmentation of hand shape involves isolating the region of interest from the input image. That 

is the gestured hand shape. Other background information are not required. In most systems 

such as in [9], hand segmentation is usually represented under the feature extraction & 

representation module. However, how the hand is segmented depends on the device or 

technique used to acquire the image. This justifies why we join them as one module in our 

system. 

Image 
Acquisition and 
Segmentation

Feature 
Extraction and 
Representation

Template 
Matching using 

DTW

Database of 
Templates

Figure 4: Proposed Gesture Recognition System 
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Before segmenting the hand shape, some pre-processing is performed on the RGB image. This 

involves converting the RGB image into grey-scale. We then used the depth information in the 

depth image to segment the hand shape from the RGB image. First, we locate the smallest 

depth value from the depth image. This corresponds to the closest point of the hand to the 

camera plane. We call this value minimum-distance. Next, a threshold value is added to the 

minimum-distance to give the segmentation threshold.  This segmentation threshold is then 

used to segment the hand region from the rest of the image.  

It is important to note that the hand should be the closest object to the camera for correct 

segmentation of the hand region. 

Ren et.al. [9] have used a similar technique to segment the hand shape. However, for proper 

segmentation of the region of interest, they require the gesturer to wear a black belt on the wrist 

of the gesturing arm. 

To allow flexibility in gesturing, we follow the approach of wearing a black belt on the wrist 

of the gesturing hand as described by Ren et.al. The figure below shows the steps through 

image acquisition and segmentation of hand shape. 

 

 

  

Figure 5:Image Acquisition and Segmentation of Hand Shape 
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5.2. FEATURE EXTRACTION AND FEATURE 

  REPRESENTATION 
 

After segmenting the region of interest from the input image, we are now ready for feature 

extraction and representation. As stated earlier, the choice of the features should be such that 

the system will present a high degree of invariance to scaling, translation and rotation. The 

representation of the features depends on the algorithm to be used to recognise the gestures. 

From the illustrated figure of our system above, DTW is used for gesture recognition. As 

described earlier, DTW is suitable for finding similarities between time-series. We choose the 

contour of the hand shape as our features and represent these features as a time-series. Contour 

information has been used successfully by [4] and [9]. In [9], the information is represented as 

a time-series. Whereas in [4], representation is based on a discrete Fourier transform of the 

contour information. 

The contour points of the hand shape are suitable for use as feature representation because no 

matter the orientation and location of the hand shape, the contour of the hand remains the same 

when represented as a time-series. 

Before extracting the contour points or vertices, we need to identify the centre point of the hand 

shape as well as the black belt’s pixels. 

We applied a distance transform function on the bitwise image of the segmented hand shape in 

order to obtain the centre point. The index of maximum distance returned by this function is 

the centre of the hand shape. Distance transform has been used by [9] and [12] this to locate 

the centre point.  

The RANSAC algorithm was applied on the identified black belt pixels to fit a line that will 

enable use locate our starting point. 

In order to obtain the contour points, we first convert the hand shape from grey-scale to binary. 

To get rid of any distortion that may result from segmentation, we apply a region filling method 

to the binary image. Now, the image is ready for the extraction of the boundary points. We 

apply a simple boundary extraction technique which consist of eroding the images with a 

structuring element and subtracting the output from the original binary image. 

That is  

𝛽(𝐴) = 𝐴 − (𝐴Θ𝐵)  

Where 𝐴 is the input image, (𝐴Θ𝐵) is the erosion of 𝐴 by structuring element 𝐵 and 𝛽(𝐴) is 

the extracted boundary of 𝐴. 

Using the same time-series representation as used by Ren et.al. [9], we define the vertical axis 

of our time-series to be the Euclidean distance between each contour vertex and the centre point 

of the hand shape. The horizontal axis represents the angle between each contour vertex and 

the initial point relative to the centre point. The initial point is determine based on the line 

drawn through the black belt’s pixels using the RANSAC algorithm. 
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The final task in this step involves defining a feature vector for the next step in our framework. 

The time-series defined above is then converted to a 2D feature vector𝑓.  

𝑓 is defined as follows:  

    𝑓 =  {(𝑑𝑖,  𝑎𝑖), … , (𝑑𝑛, 𝑎𝑛)} 

Where 𝑑𝑖 and 𝑎𝑖  are respectively the Euclidean distance and angle of vertex 𝑖 and 𝑛 is the 

number of vertices in the boundary of the extracted hand shape. 

After this step, the feature vector representation 𝑓 is ready to be passed as input to DTW in the 

next module. 

Below is a sequence of images pictorially describing feature extraction and representation. 

 

 

 

  

Figure 6: Extracted Hand shaped 

Figure 7: Hand contour, with green point 
showing the initial point and blue point 
showing the centre point 

Figure 8: Time-series curve of contour points 
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5.3. GESTURE RECOGNITION (TEMPLATE 

MATCHING USING DTW) 
 

Our gesture recognition step involves a similarity measure through template matching using 

DTW. DTW has been used in [6] for recognising dynamic hand gestures. In this step, DTW is 

applied between the feature vector representation of the incoming unknown hand shape and a 

set of predefined templates stored in our database. The unknown hand shape is classified as 

belonging to the class of the template with which it has the minimum DTW value. That is the 

unknown gesture is classified under class 𝑐, such that  

𝑐 = argmin𝐷𝑇𝑊(𝑈, 𝑇𝑐) 

Where U is an unknown input gesture representation, T is a template from the database of 

template and c is the class label of T. 

 

5.4. DATASET AND DATABASE OF 

TEMPLATES 
 

We created a new dataset which contains 200 samples. We had two people perform each 

gesture type 10 times.  We combined our dataset with the dataset provided by Ren et.al. [9] 

which contains 1000 samples. So in total we used 1200 samples to evaluate our system. This 

samples are all taken in complex scenes with cluttered background. This dataset defines 10 

different classes of hand gestures as shown below.  

 

 

Figure 9: Classes of gestures defined in the dataset 

From this dataset, we created a database of templates. That is we computed the feature vector 

representation of each of these gestures and stored them in the database. This was then used 

for template matching against the unknown gestures. 

The experimental results and analysis of our system are given in the next chapter.  
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6.1 EXPERIMENTAL SETUP 
 

All the experiments were conducted on an Intel® Core™ i3-2120 CPU @ 3.30 GHz with 

4GB of RAM. This was running a Window 7 32-bit operating system. 

Our images were captured using Microsoft Kinect for Windows SDK version 1.8. 

Our system was implemented on MATLAB R2013a. 

 

6.2 EXPERIMENTAL RESULTS 
 

In order to determine the accuracy and efficiency of our proposed system, we ran a series of 

tests on our system. As mentioned in the previous chapter, we generated a new dataset and 

combined with the dataset provided by Ren et.al. [9].  There are ten class labels representing 

each gesture. There are 120 images per class.  

We analysed our results based on the following criteria. 

1. Robustness to cluttered background and lighting sensitivity 

2. Invariance to scale, translation and rotation 

3. Accuracy and running time 

 

Robustness to cluttered background and lighting 

sensitivity 

Our system proved to be robust to cluttered background and occlusions from the scene. The 

images from our dataset were taken in challenging scenes. This robustness is justified by the 

fact that our segmentation is based on the depth information of the scene. So provided the hand 

is always the closest part of the body to the camera the system will always perform well under 

any type of background. Also, the Microsoft Kinect requires no special lighting conditions.  

Therefore the system is also insensitive to lighting condition. Normal bright light is sufficient. 

 

Invariance to scale, translation and rotation 

The gestures in a particular class of our dataset were performed by different people in different 

orientations. This system still proved to be invariant to these factors. This is because our feature 

representation is based on the contour of the hand shape. The contour information capture the 

topology of the hand no matter the orientation. 
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Accuracy and Running time 

 

Finally, we measured the accuracy and running time of our system. A series of test cases were 

run for each class. Specifically, we tried to classify 100 unknown images from each class of 

gestures defined above. The classification results per class are shown in the table below, where 

the ‘True’ column denotes the number of correctly classified samples and the ‘False’ column 

the number of incorrectly classified samples. 

Class Label True False 

1 97 3 

2 92 8 

3 95 5 

4 89 11 

5 88 12 

6 96 4 

7 95 5 

8 98 2 

9 96 4 

10 100 0 

 

From the above results, we obtained a mean accuracy of 94.6% and a mean running time of 

0.5179s. The mean accuracy was obtained by averaging the number of correctly classified 

images from the table above.  The mean running time was also obtained from by averaging the 

running time of all the test cases. 

  

Table 1: Results per class label 
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In order to further compare our results with the FEMD method proposed by Ren et.al. [9][13] 

[14] . We developed the following confusion matrix. 

 

 

 

 

 

                               

As we can see from the confusion matrices above, there is a high confusion rate in class 2 of 

the FEMD system. This class is highly confused with class 1, class 3 and class 8. However, in 

our system, the confusion rate in class 2 is low and is highly confused only with class 1. 

The table below compares our mean accuracy and mean running time to that of FEMD  

 

 Mean Accuracy Mean Running time 

Our System 94.6 % 0.5004s 

Thresholding decomposition + FEMD 93.2% 0.5179s 

 

The above results demonstrate the accuracy and efficiency of our system. 

 

  

1 97  1      2  

2 5 92  1    2   

3 2  95   2   1  

4  2 4 89   5    

5   4 6 88  2    

6 2     96   2  

7   2   1 95 2   

8 1       98 1  

9      1  1 96 2 

10          100 

 1 2 3 4 5 6 7 8 9 10 

Figure 10: Confusion Matrix of our system (Left) Figure 11: Confusion Matrix of FEMD system [9] (Right) 

1 95 1      3 1  

2 3 86 4 2   1 4   

3  2 94 2   2    

4   4 87 6  3    

5    7 89 3 1    

6 1 2    95   2  

7   1   1 96    

8 6 2      92   

9 1     1   98  

10          100 

 1 2 3 4 5 6 7 8 9 10 

Table 2: Mean Accuracy and Mean Running time of our system and that of FEMD [9] 
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Gesture interactive systems find applications in a wide variety of fields.  

They are mostly used in the gaming industry, in the medical field, in education, and many other 

field. Below are some of the application of gesture based interactive systems as given in [1] 

 Developing aids for the hearing impaired; 

 Enabling very young children to interact with computers; 

 Designing techniques for forensic identification; 

 Recognizing sign language; 

 Medically monitoring patients’ emotional states or stress Levels; 

 Lie detection; 

 Navigating and/or manipulating in virtual environments; 

 Communicating in video conferencing; 

 Distance learning/tele-teaching assistance; 

 Monitoring automobile drivers’ alertness/drowsiness levels, etc. 
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8.1.  CONCLUSION 
 

In conclusion, we have designed and developed an accurate and efficient gesture recognition 

system that performs well in uncontrolled environments. After evaluating our system with a 

gesture set of 10 classes, we obtain a mean accuracy of 94.6% and a mean running time of 

0.5179s. The system has proven to be robust to cluttered background as well as insensitive to 

lighting conditions. The system is also invariant to scaling, translation and rotation. Our 

contribution is the definition of a 2D feature vector based on the time-series representation of 

the contour of the hand shape. Our system also demonstrated the power of DTW in matching 

time-series representation. We also achieved our initial objective which was to find out whether 

classification accuracy could be improved by using DTW with the time-series representation 

of the hand shape rather than using the FEMD metric. 

 

 

8.2.  FUTURE WORKS 
 

As our future work, we plan in studying the feasibility of upgrading our system to recognise 

dynamic hand gestures by using HMM. As stated earlier, HMMs are useful tools for 

recognising dynamic hand gestures. It is a double stochastic process that models spatio-

temporal processes such as gestures efficiently. That is, processes that change with both time 

and space. Dynamic hand gestures recognition is still lacking behind as compared to static hand 

gesture recognition. Most dynamic hand gesture recognition systems do not take into 

consideration the configuration of the fingers, i.e. they only differentiate the path taken by the 

hand as a whole. For example, waving with five fingers opened and waving with 2 fingers 

opened will be recognised as the same gesture. However, in order to expand the grammar of 

gesture based interfaces, there is a need to differentiate between such types of gestures. Thus 

with efficient systems like ours and the FEMD, we plan on studying how to incorporate 

dynamism in the gesture recognition system. 

Optimising our system for better accuracy and performance is also part of our future work. 

Finally, we intend to develop some real-life applications to demonstrate the efficiency and 

accuracy of our system.  
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Appendix 
 

 

Source Code 

 

Function: Feature Extractor 

 

1. %This function is the feature Extractor 
2. %It takes as input a depth image and the correspoinding colour image 
3. %The output is a 2D feature vector representing the time-series 
4. %inputs  
5. %   depthImgPath : path to depth image 
6. %   colorImgPath : path to colour image 
7. %Output 
8. %   featureVector : 2D feature vector 
9. function [ featureVector] = featureExtractorDtw( depthImgPath, 

colorImgPath) 

 

 

10. delimiter = ','; 

11. filename = depthImgPath; %this is the depth image file in txt 

 

12. depthimg = importdata(filename, delimiter); %convert depth file 

to image matrix  

 

13. img = imread(colorImgPath); %this is the corresponding colour 

image  

 

 

14. rec = [0 0 590 470]; 

 

15. imggray = rgb2gray(img); %convert colour image to grayscale 

 

16. %figure,imshow(imggray); 

 

17. %%below we calibrate the depth and colour images so that pixel 

positions 

18. %%correspond in both images.note Kinect does not calibrate the 

images. it 

19. %%is a random process like trial and error 

20. %if your images are calibrated, you can delete the calibration 

code and 

21. %start from SEGMENTATION AND FEATURE EXTRACTION below 

 

 

22. %% CALIBRATION STARTS 

23. depthimg = imcrop(depthimg, rec); 
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24. %depthimg = imresize(depthimg, [480 640]); 

25. %imggray = imcrop(imggray, rec); 

 

26. [i j] = size(depthimg); 

27. imggray = imresize(imggray, [i j]); 

 

28. imggray = imresize(imggray, [520 710]); 

29. %figure, imshow(imggray); 

30. imggray = imcrop(imggray, [66 28 i j]); 

 

 

31. % CALIBRATION ENDS 

32. %end calibration. now depth and colour pixel now correspond in 

a 1 to 1 

33. %mapping 

 

 

34. %% SEGMENTATION AND FEATURE EXTRACTION 

 

35. %%we locate the minimum depth of the image below 

36. min = 10000; %holds the value of the min depth to the camera 

37. for r = 1:i 

38. for c = 1:j 

39. if ( depthimg(r,c) ~= 0) 

40. if(depthimg(r,c) < min) 

41. min = depthimg(r,c); 

42. end 

 

43. end 

 

44. end 

45. end 

 

46. threshold = min + 70; %segmentation threshold. depth of the 

hand region  

47. %from camera for segmentation 

 

 

48. xmin = 100000; %min x coordinate  of hand contour 

49. xmax = -1000;  %maz x coordinate  of hand contour 

50. ymin = 100000;  %min y coordinate  of hand contour 

51. ymax = -1000;  %max y coordinate  of hand contour 

 

52. %this is to crop the hand region from the whole image 

 

 

53. %% we segment the hand region below. all pixels other than the 

hand pixels 

54. %%are set to white 

 

55. for r = 1:i 

56. for c = 1:j 
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57. if(depthimg(r,c) > threshold || depthimg(r,c) == 0 ) 

 

58. row = r; 

59. col = c; 

60. if(col < 1) 

61. col = c; 

62. end 

63. if( row > i) 

64. row = r; 

65. end 

66. imggray(row,col) = 255; 

67. end 

 

 

68. end 

69. end 

 

 

70. %figure, imshow(imggray); %imggray now represents our segmented 

hand image 

 

 

 

 

71. %% cropping the hand region 

72. %%obtaining the min x,y and max x,y vals of the hand region for 

cropping 

 

73. for y = 1:j 

74. for x = 1:i  

 

75. if( (depthimg(x,y) < threshold) && ((imggray(x,y) > 0) && 

imggray(x,y)~= 255) ) 

 

76. if( x < xmin) 

77. xmin = x; 

78. end 

79. if(x > xmax) 

80. xmax = x; 

81. end 

 

82. if( y < ymin) 

83. ymin = y; 

84. end 

85. if(y > ymax) 

86. ymax = y; 

87. end 

88. end 

89. end 

90. end 

 

 

91. %% cropping using imcrop 
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92. height = xmax - xmin; 

93. width = ymax - ymin; 

 

94. rect = [ymin-5 xmin-5 width+10 height+10]; 

 

95. cropimg = imcrop(imggray, rect); 

 

 

96. cropimg2 = cropimg; 

97. %figure, imshow(cropimg2); 

 

98. %cropimg and cropimg2 now represent our segmented hand region 

which is 

99. %approximately 100x100 pixels 

 

100. %% Identifying the black belt pixels below 

 

101. [row col] = size(cropimg); 

102. index = 1; 

 

103. for i = 1:row 

104. for j = 1:col 

 

105. if(cropimg(i,j) < 30) 

106. cropimg(i,j) = 255; 

107. pts(1,index) = j;  %pts holds our black belts pixels 

108. pts(2,index) = i; 

 

 

109. index = index + 1; 

110. end 

111. end 

112. end 

 

113. %figure, imshow(cropimg); 

114. % now, pts contains our black belt's pixels locations. 

 

 

115. %% use ransac to draw a straight line through our black belt's 

pixels 

 

116. index = index -1; 

117. st = pts(2,1); 

118. en = pts(2,index); 

 

119. iterNum = 300; 

120. thDist = 2; 

121. thInlrRatio = .1; 

122. [t,r] = ransac(pts,iterNum,thDist,thInlrRatio); 

123. k1 = -tan(t); 

124. b1 = r/cos(t); 

125. len = 1:col; 
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126. ypts = uint8(k1*len+b1); %% y points generated from ransac 

 

127. %% below we extract the boundary of our handshape 

 

128. cropimg2 = ~(im2bw(cropimg2, 0.9)); %convert hand image to 

binary image 

129. dstimg = cropimg2;  %dstimg copy of image to be used for 

distance transform 

130. % to obtain the centre point 

131. cropimg2 = imfill(cropimg2, 'holes'); 

132. SE = strel('square',3); 

 

133. cropimg2 = cropimg2 - (imerode(cropimg2,SE)); %boundary 

extraction  

 

 

 

134. cropimg2 = ~cropimg2; %invert the binary pixels 

 

135. %now cropimg2 holds only the boundary or contour of the 

handshape 

 

 

136. %% perform distance transform on dstimg to find centre point 

 

137. dstimg = bwdist(~dstimg); %distance transform algorithm 

 

138. [mpv, indp] = max(dstimg); %mpv = row vector containing max 

distance for each column  

139. %indp =  index of these values 

 

140. %md = max(mpv);  %md = maximum distance after distance 

transform 

 

141. maxval = max(dstimg(:)); 

142. [md,rowind] = max(mpv); %rowind = row index value of centre 

point 

 

143. colind = indp(rowind); %colind = column index value of centre  

point 

 

144. centrept = [rowind colind]; %%this is our centre point 

 

145. %% below we obtain intersection point of ransac line and hand 

contour 

 

146. plotimg = cropimg2; %temporary  image to be used as background 

 

147. plotimg(:,:) = 1; %% white background of same size as our hand 

image to be  

 

148. % used to draw ransac line for obtaining intersection point 
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149. %figure, imshow(dstimg, []); %display our distance tranformed 

hand shaped 

 

 

150. %% we look for intersection point of line and image below 

151. %set(gcf,'visible','off'); 

 

152. figure('visible','off'), imshow(plotimg), hold on; 

153. %set(gcf,'visible','off'); 

154. plot(len,k1*len+b1,'r'), hold on; %ransac line plot 

 

155. f = getframe;              %Capture screen shot 

156. [im,map] = frame2im(f);    %Return associated image data which 

contains our 

157. %ransac line 

158. if isempty(map)            %Truecolor system 

159. rgb = im; 

160. else                       %Indexed system 

161. rgb = ind2rgb(im,map);   %Convert image data 

162. end 

 

163. im = rgb2gray(im); 

164. im = im2bw(im); 

165. im = imresize(im,[row col]); %im now is an  image of our ransac 

line through 

166. %the black colour pixel. 

 

 

167. %figure, imshow(im); 

 

168. ab = cropimg2+im; % now we obtain the intersection point of the 

handshape 

169. % and the ransac line 

 

170. %ab = im2bw(ab);  % ab is an image with black pixels 

represented the  

171. %intersection point 

172. set(gcf,'visible','off'); 

173. %figure, imshow(ab); 

 

174. %% now we extract the starting  points from ab 

 

175. linedir = int16(ypts(col) - ypts(1)); %denotes orientation of 

line so to  

176. %easily locate start point 

 

 

177. [row col] = size(ab); 

 

178. if(linedir > 0 ) 

179. fin = 0; 
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180. for i = 1:row 

181. for j = 1:col 

 

182. if( ab(i,j) == 0) 

183. stpt = [i j]; 

184. fin = 1; 

185. break; 

186. end 

187. end 

188. if(fin == 1) 

189. break; 

190. end 

191. end 

 

192. elseif(linedir <= 0) 

 

193. fin = 0; 

194. for i = row:-1:1 

195. for j = 1:col 

 

196. if( ab(i,j) == 0) 

197. stpt = [i j]; 

198. fin = 1; 

199. break; 

200. end 

201. end 

202. if(fin == 1) 

203. break; 

204. end 

205. end 

206. end 

 

207. % stpt now represents our starting point. 

 

208. %% locate end point for proper segmentation 

 

209. if(linedir > 0 ) 

210. fin = 0; 

211. for i = 1:row 

212. for j = 1:col 

 

213. if( ab(i,j) == 0) 

214. endpt = [i j];     

215. end 

216. end 

217. end 

 

218. elseif(linedir <= 0) 

 

219. fin = 0; 

220. for i = row:-1:1 

221. for j = 1:col 
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222. if( ab(i,j) == 0) 

223. endpt = [i j]; 

 

224. end 

225. end 

226. end 

227. end 

 

228. %% 

 

 

 

229. %% now time series representation of our handshape 

230. ctpt = [centrept(2) centrept(1)]; 

231. [row col] = size(ab); 

232. k = 1; 

233. if(linedir > 0 ) 

 

234. for i = 1:endpt(1) 

235. for j = 1:col 

 

236. if( cropimg2(i,j) == 0) 

237. cp = [i j];     %% cp implies current position 

238. eudist = sum((ctpt-cp).^2).^0.5;    %eudist = euclidean 

distance between cp and  

239. %initial point, centrept 

240. rdist(k) = eudist; %% rdist is an array that holds the 

241. %the eudist for each contour point 

 

242. %now we calculate the angle between each contour point  

243. %and the initial pt, stpt relative to centrept 

 

244. v1 = cp - ctpt; 

245. v2 = stpt - ctpt; 

246. ang = atan2(v1(1)*v2(2)-v2(1)*v1(2),v1(1)*v2(1)+v1(2)*v2(2)); 

247. Angle = mod(180/pi * ang, 360); 

 

248. nangle(k) = Angle/360; %nangle is an array of angles 

 

 

249. k = k+1; 

250. end 

251. end 

 

252. end 

 

253. elseif(linedir <= 0) 

 

254. k = 1; 

255. for j = 1:col 

256. for i = 1:stpt(1) 

 

257. if( cropimg2(i,j) == 0) 
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258. cp = [i j];     %% cp implies current position 

259. eudist = sum((ctpt-cp).^2).^0.5;    %eudist = euclidean 

distance between cp and  

260. %initial point, centrept 

261. rdist(k) = eudist; %% rdist is an array that holds the 

262. %the eudist for each contour point 

 

 

263. %now we calculate the angle between each contour point  

264. %and the initial pt, stpt relative to centrept 

 

265. v1 = cp - ctpt; 

266. v2 = stpt - ctpt; 

267. ang = atan2(v1(1)*v2(2)-v2(1)*v1(2),v1(1)*v2(1)+v1(2)*v2(2)); 

268. Angle = mod(180/pi * ang, 360); 

 

269. nangle(k) = Angle/360; %nangle is an array of angles                      

 

270. k = k+1; 

 

271. end 

272. end 

 

273. end 

274. end 

 

275. %% below we draw the time series curve of the hand shape 

276. count1=timeseries(rdist,nangle); 

277. count1.Name = 'Relative Distance'; 

278. count1.TimeInfo.Units = 'Normalised Angle'; 

279. %figure, plot(count1), grid on 

 

280. %% smoothing version of the time series curve of the hand shape 

281. ys = smooth(nangle,rdist,1,'rloess'); 

282. %plot(x,y2,x,ys) 

283. count1=timeseries(ys,nangle); 

284. %normangles = count1.time; 

285. %figure, plot(count1), grid on, hold on; 

286. featureVector = [count1.time count1.data]; %2D feature Vector 

to be used as  

287. %input to DTW 

 

  

  

  

         

        

  

  

  

 

 


