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Abstract:

With the evolution of time the gene composition of species have changed a lot.
Consequently it has mutated to generate new diseases and traits. In order to
identify genes or coding sections of a DNA sequence it is imperative to find out the
promoter regions or the conserved regions of the DNA code first. But the main
problem stands that the databases for these information are quite messy and
needs to be researched. The main problems in finding motifs in a DNA sequence
are finding a good and fast algorithm, considering mutations in those motifs,
representing variable length motifs and being species general. In this thesis work
we tried to formulate a new algorithm which is fast, accurate and effective.
Instead of general string matching of DNA sequences we have done integer
mapping and matching which are comparatively fast and accurate. Besides in
order to formulate a complete DNA motif finding algorithm we also need a
generalized and rational fitness function for evaluating the potential motifs. Thus
we have formulated a desirable fitness function that enables us to compare the
relativity among potential motifs and finally to predict a certain motif for the input
DNA sequences.

Keywords: Motifs, De Novo Motif Finding, Hash Table, Mutation, Fitness

Function, Integer matching.
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Chapter 1

Introduction

1.1 Overview

Bioinformatics is the application of computer technology to the management of biological
information. Computers are used to gather, store, analyze and integrate biological and genetic
information which can then be applied to gene-based drug discovery and development. The
need for Bioinformatics capabilities has been precipitated by the explosion of publicly available
genomic information resulting from the Human Genome Project. In experimental molecular
biology, bioinformatics techniques such as image and signal processing allow extraction of
useful results from large amounts of raw data.

In the field of genetics and genomics, it aids in sequencing and annotating genomes and their
observed mutations. It plays a role in the textual mining of biological literature and the
development of biological and gene ontology’s to organize and query biological data. It plays a
role in the analysis of gene and protein expression and regulation. Bioinformatics tools aid in
the comparison of genetic and genomic data and more generally in the understanding of
evolutionary aspects of molecular biology. At a more integrative level, it helps analyze and
catalogue the biological pathways and networks that are an important part of systems biology.
In structural biology, it aids in the simulation and modeling of DNA, RNA, and protein structures
as well as molecular interactions.

Accelerated sequencing of genomes in the past decade has been accompanied by a rise in the use
of bioinformatics tools by microbiologists. It would be difficult to find a microbiologist today
who has never accessed online biological databases. Bioinformaticians and software developers
have facilitated this process by increased emphasis on convenience and ease of use of software
and databases, which in turn allowed microbiologists to use increasingly sophisticated techniques
with minimal effort. The discovery of patterns in DNA, RNA, and protein sequences has led to
the solution of many vital biological problems. For instance, the identification of patterns in
nucleic acid sequences has resulted in the determination of open reading frames, identification of
promoter elements of genes, identification of intron/exon splicing sites, identification of SH
RNAs, location of RNA degradation signals, identification of alternative splicing sites etc.Pattern
search in biological sequences has numerous applications and hence a large amount of research
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has been done to identify patterns. In Bioinformatics, it is common to search biological
sequences (DNA, RNA, proteins) for functional motifs such as cross-over hotspot instigators
(chi), restriction sites, regulation motifs, binding sites, active sites in proteins, etc. Sequence
motifs are important tools in molecular biology. Sequence motifs can describe and identify
features in DNA, RNA and protein sequences such as transcription factor binding sites, splice
junctions and protein-protein interaction sites.

‘Motif discovery’ (or ‘motif finding’) in biological sequences can be defined as the problem of
finding short similar sequence elements (building the ‘motif’) shared by a set of nucleotide or
protein sequences with a common biological function. The identification of regulatory elements
in nucleotide sequences, like transcription factor binding sites (TFBSSs), has been one of the most
widely studied flavors of the problem, both for its biological significance and for its
bioinformatics hardness. Motifs are fundamental functional elements in proteins vital for
understanding gene function, human disease, and may serve as therapeutic drug targets.

Regulatory motifs are used to control the expression of genes, dictating under which condition
a gene will be turned on or off. Motif discovery typically involves the discovery of binding sites,
conserved domains. Regulation of gene expression is an essential feature of all living organisms
and viruses. It is vital for understanding gene Function, human disease, drug design. They are
often helpful in finding transcriptional regulatory elements, transcription factor binding sites.
Sequence motifs are becoming increasingly important in the analysis of gene regulation. Within
a sequence or database of sequences, researchers search and find motifs using computer-based
techniques of sequence analysis, such as BLAST. Such techniques belong to the discipline of
bioinformatics.

1.2 Problem Statement

The motif finding algorithms of this paper differ from one another in three ways of defining and
representing motifs, making hash table approach, the fitness function for calculating motif
significance and the search techniques used to find the optimal motifs. Numerous algorithms
have been developed for discovering motifs, as well as algorithms for scanning databases for
matches to a given motif or motifs. Some are specialized for discovery of DNA motifs. The main
problem of large amount of data is the inclusion of noisy and irrelevant data in the information
set. As the datasets become large the number of noisy, redundant and uninformative gene also
increases resulting in space-time complexity. We mainly focused on finding the motifs
accurately. So we work with on an efficient algorithm for motif discovery based on linear PSO,
linear PSO(binary search), hash table approach and variable length motif ranking considering
mutation evaluating them with fitness function.
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1.3 Research Challenges

With the large amount of biological data generated due to DNA sequencing of various
organisms, it is becoming necessary to identify techniques that can help in finding useful
information amongst all the data. Finding motifs involves determining meaningful short
sequences that may be repeated over many sequences in various species. Various approaches
for the motif discovery problem have been proposed in the literature. Computational methods
for identifying and modeling DNA sequence motifs and regulatory elements have been
developed over the past 25 years. These methods either use DNA patterns or position weight
matrices to model target DNA-binding sites. Some of these methods have been used
successfully to discover the cis-regulatory elements in genes that are thought to be
regulated by a common transcription mechanism. Orthogonal information from
comparative genomics or co-regulation at the expression level have been incorporated into
these methods to identify cis-regulatory sites. Because many of the regulatory elements are
functional in vivo only in certain temporal or spatial contexts and require other nearby sites
that together function as cis-regulatory modules, methods have also been developed to
address composite regulatory elements or regulatory modules that consist of DNA sites bound
by multiple regulatory factors. There are now many programs available for DNA motif discovery
and putative regulatory element identification, and several have web interfaces for easy use.
Bioinformatics is such a research area that is the interface between the biological and
computational sciences. Identification of all of the functional elements in genomes, including
genes and regulatory elements, is a fundamental challenge now that the complete genomic
sequences of a number of prokaryotes and eukaryotes are available. The ultimate goal of
bioinformatics is to uncover the wealth of biological information hidden in the mass of data and
obtain a clearer insight into the fundamental biology of organisms. This new knowledge could
have profound impacts on fields as varied as human health, agriculture, the environment,
energy and biotechnology. The identification of DNA motifs remains an active challenge for the
researchers in the bioinformatics domain. In recent years a considerable number of algorithms
have been designed for identifying regulatory elements in DNA sequence.
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1.4 Motivation

In recent decades, scientists have extracted genetic sequences—DNA, RNA, and protein
sequences—from numerous organisms. These sequences hold the information for the
construction and functioning of these organisms, but as yet we are mostly unable to read them.
It has long been known that these sequences contain many kinds of “motifs”, i.e. re-occurring
patterns, associated with specific biological functions. Thus, much research has been devoted
to computer algorithms for automatically discovering subtle, recurring motifs in sequences.
However, previous algorithms search for rigid motifs whose instances vary only by
substitutions, and by insertions or deletions. Real motifs are flexible, and not only do vary by
insertions and deletions but also on other things. This study describes a new computer
algorithm for discovering motifs, which allows for arbitrary insertions and deletions. This
algorithm can discover real, flexible motifs, and should be able to help us determine the
functions of many biological molecules. Motif discovery is one of the classical sequence analysis
problems but still has not been satisfactorily solved in an exact and efficient manner. Motifs are
important patterns that are helpful in finding transcriptional regulatory elements, transcription
factor binding site s, function al genomics, drug design, etc. As a result, numerous papers have
been written to solve the motif search problem. Our motivation was finding an improved
approach for motif discovery.

1.5 Scopes

Biology is encoded in molecular sequences: deciphering this encoding remains a grand scientific
challenge. Functional regions of DNA, RNA, and protein sequences often exhibit characteristic
but subtle motifs; thus, computational discovery of motifs in sequences is a fundamental and
much-studied problem. This study aims at giving a new approach for better motif finding
approach. However, most current algorithms do not allow for insertions or deletions (indels)
within motifs, and the few that do have other limitations. But in our approach we try to solve
that by using PSO. But still lot of work is needed for improving our algorithm. For that purpose
the door for implementation is open for all interested ones. There can be work done like- for
reducing the time complexity, giving scores to the alighments, for overcoming the
generalization problem and others.
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1.6 Thesis Outline

In Chapter 1 we have talked about the introduction of our study in a précised manner. Chapter
2 deals with the basic motif finding method and some highlighted evolutionary approaches with
a brief discussion about “motif” discovery and PSO method, a modified algorithm for variable
length motif discovery. Chapter 3 will be discussed about our proposed algorithm and some
elaborate discussion. Here we present a method “Species Specific Motif Discovery Using HAH
table and Variable Length Motif ranking considering mutation” for discovering motifs allowing
simple comparison among sequences from databases in a fully general manner. Chapter 4 will
consist of the experimental analysis and result comparisons.
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Chapter 2

Literature Reviews

This chapter is divided into two categories. In the first part of this chapter, we will describe the
fundamentals of Motif Detection. It gives the basics idea about the motif definition, detection
and the decisions made latter part of this book. Information about motif detection and other
relevant topics are mostly taken from various research articles . In the last section, a short
description about the different properties of the Motif finding methods will be provided.

2.1Motif

To classify and identify the features of DNA, RNA, Protein sequences in molecular biology, motif
plays an important role. It has the capabilities to describe and find out the special
characteristics of DNA, RNA, Protein sequences. Sequence motifs are becoming important in
the analysis of gene regulation day by day. Actually Motifs are short repeating pattern in DNA,
RNA, Protein sequences in molecular biologythat is conserved during the process of evolution.
Motifs are short, recurring patterns in DNA that are presumed to have a biological
function.Often they indicate sequence-specific binding sites for proteins such as nucleases and
transcription factors (TF). Others are involved in important processes at the RNA level, including
ribosome binding, mRNA processing (splicing, editing) and transcription termination. Basically it
has a great impact on biological science. It resides in a DNA, RNA or Protein sequences and
plays an important role in molecular biology.

Some common features of motif has been invented to identify it in the long sequences of DNA,
RNA or Protein. Some important features that are helpful to identify motif or know about motif
are given below:

e Motifs are patterns are of length 5 to 20 bases and are repeated overmany sequences.
e They are small, have constant size, and are repeated very often.
e They are statistically over-represented in regulatory regions.

Here we have given an example of motif in DNA sequences to understand the characteristic of
motif. From the example we can have a brief idea about the short recurring sequence Motif. In
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the following example, we can see a conserved short sequence (Motif) in few DNA Sequences.
From the example we can see that the pattern ATGCAACT is unchanged and conserved. This
short DNA sequence ATGCAACT is called motif.

CGGGGCTATGCAACTGGGTCGTCACATTC
TTTGAGGGTGCCCAATAAATGCAACTCCA
GGATGCAACTGATGCCGTTTGACGACCTA
AAGGATGCAACTCCAGGAGCGCCTTTGCT

TACATGATCTTTTGATGCAACTTGGATGA

2.2 Overview of Motif Discovery

Motif discovery is a process of finding a meaningful pattern for DNA, RNA and protein sequence
that is commonly shared by two or more human and animal molecules. Motif sequences are
patterns found in biological sequences (DNA sequences, Protein sequences) that are important
for understanding gene function, human disease, drug design, etc. It is helpful to find out and
know the transcriptional regulatory elements, transcription factor binding sites, and so on.
Basically it plays a great role to find out the biological function in human evolution. However, to
find motif sequences is a very challenging task for the people of this sector.

Identification of motifs is becoming very important because they represent conserved
sequences which can be biologically meaningful. Some of the areas where motif discovery can
be useful include finding binding sites in amino acids, finding regulatory information within
either DNA or RNA sequences, searching for splicing information and protein domains. The
motifs can represent patterns which activate or inhibit the transcription process and are
responsible for regulating gene expression. Motif identification can be thought of as finding the
best local multiple alignments for the sequences under consideration. So, motif discovery is a
challenging field for the people of bioinformatics. But motif discovery is very interesting and
important in biological science though it is challenging task. Motif discovery can be used to
categorize unknown DNA sequences into their corresponding families which is very important
in biological science. If we can find out the similar family of DNA sequences it is easy to know
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the biological function of them. Motif discovery also helps to classify the features of DNA, RNA,
Protein sequences. From the motif we can know the characteristics of DNA, RNA, and Protein.
Motifs represent regions that have been conserved through evolution. So, those regions are
likely to be important for the function of the protein (e.g. an active site).Motifs can be used to
classify proteins into families based on their functions, or predict the function of a new protein.
It is very important to know the functions of protein in biological functions. For this reason
motif finding is very important feature today for its demand. The motifs can represent patterns
which activate or inhibit the transcription process and are responsible for regulating gene
expression. Not only that but also motif is helpful in finding transcriptional regulatory elements,
transcription factor binding sites. For these reasons researchers are very much interested to
find out the best algorithm to detect the short conserved sequence Motif.

They are taking the challenges to find out the Motif sequences which have great impact on
biological function. Motif identification can be thought of as finding the best local multiple
alignments for the sequences under consideration. But there are some causes for what it is
becoming challenging and difficult task for the bioinformatics people.

The challenges present in motif identification include:

e We do not know the actual length of Motif sequence. So, it’s difficult to find out motif of
unknown length.

e The motifs are never exactly the same as the actualconserved sequence. There is always a
lot of sequence variability present with respect to a single motif.

e Motifs are very short signals as compared to the size of the DNA sequence under
consideration.

e The regulatory sequences containing the motifs may sometimes be located very far away
from coding regions that they regulate. This makes it difficult to determine the portion of
the DNA sequence that should be analyzed.

e The regulatory sequences may, at times, be present on the opposite strand from the
coding sequence they regulate.

For these few topics today motif finding is still one of the hardest task and becoming the
challenging field for the people of this field. They are trying hard to find the path to overcome
the given problem and find out the optimal path for detecting the motif from the long
sequences of DNA, RNA and Protein.
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2.2.1 Types of Motif Finding Approach
Three versions of the motif search problem have been identified by researchers:

e Simple Motif Search (SMS),
e Planted Motif Search (PMS) — also known as (I, d )- motif search and
e Edit-distance-based Motif Search (EMS).

PMS problem takes as input n sequences of length m each and two integers | and d. The
problem is to identify a string M of length | such that M occurs in each of the n sequences with
a Hamming distance of at most d.

For example, if the input sequences are GCGCGAT, CACGTGA, and CGGTGCC; | =3 and d=1, then
GGT is a motif of interest. EMS is the same as PMS, except that edit distance is used instead of
the Hamming distance. SMS takes as input n sequences and an integer | .The problem is to
identify all the patterns of length | (with up to | /2 wild card characters), together with a count
of how many times each pattern occurs.

2.3 Modeling and representation of DNA motifs

2.3.1 Representation of DNA motifs with sequence patterns

Motifs in DNA sequences can be modeled by sequence patterns, which are simply ‘words’ in the
four-letter alphabet (A, C, G, T) of DNA. In order to capture the information about degeneracy,
where more than one base may occur in a specific position of a binding site, the International
Union of Pure and Applied Chemistry (IUPAC) nucleic acid codes are used (see Fig. 2). Once a
sequence pattern for a binding site is determined, there are very fast methods for finding all
occurrences of that pattern in a DNA sequence. The limitation of sequence patterns is that
many binding sites do not match the pattern exactly, although they are usually very similar to it.
Fig. 2shows an alignment of binding sites for the Pho4 TF from Saccharomyces cerevisiae, taken

from the Promoter Database of Saccharomyces cerevisiae(SCPD) , and shows that at most

positions more than one base is tolerated, even though there is always a predominant, or
preferred, base. A consensus sequence, which indicates the most common base at each
position, is easily determined for this site: ATTCGCACGTGG. However, as the occurrence matrix
(see Fig. 3) shows, only positions 6—9 always match the consensus sequence, and every other
position tolerates variants; in a larger sample size of functional sites, even the apparently
conserved positions may show variations. A search for the consensus sequence would miss all
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of the known sites.If we were to encode every position with the IUPAC degeneracy letter from
the observed sites; we would get the pattern HBHHNCACGYKN (invariant positions in bold). A
search of the genome with this pattern would find all of the known sites, but would also
produce a large excess of nonfunctional sites that match the pattern. For example, the
sequence CGATACACGCTA matches the degenerate IUPAC pattern but has almost no similarity
to the consensus sequence, matching only the four conserved positions, and is unlikely to be a
binding site. Alternatively, we could search using the consensus sequence allowing one
mismatch, but we would miss 13 of 14 known sites that way. The known binding sites have
between one and five mismatches to the consensus sequence, so to find all of them in the
genome one would have to allow up to five mismatches. However, there are more than 200
000 different sequences that match the consensus allowing for five mismatches, the vast
majority of which are unlikely to be true binding sites.

W=HAhorT (‘Weak’ base pairing)
S=Cord ('Strong’ base pairing)
R=AorgG (Purine)

Y=CorT (Pyrimidine)
K=GorT (Keto group on base)
M=AhortC (Amino group on base)
B=C G orT (Hot A)

D=A G orT (Hot C)

H=4 C orT (Not G)

V=3 C org (Hot T)

N=A C, G, orT (Any base)

Figure 2 IUPAC nucleotide codes for representation of degenerate DNA sequence patterns
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a) Alignment of the 14 S. cerevisiaepho4-binding sites generated by the consensusprogram
reveals a 12 nt. representative DNA motif. The binding site is boxed; sequences shown in
gray are on the opposite strand of the DNA and have been reverse-complemented in this
figure.

b) The table shows the frequency of each base at each of the 12 positions in the motif.
Beneath it are shown the consensus sequence and the IUPAC representation, which
shows all degeneracy in the sequence.

2.3.2 Representation with weight matrices

A more general representation of TF-binding sites is a position weight matrix (PWM)
(alternative names include weight matrix, position-specific scoring matrix or PSSM, specificity
matrix, and others. In this representation (see Fig. 4), an I-long sequence motif is represented
by a 4 x Imatrix where each possible base, at each position in the binding sites, is assigned a
score. The score of any specific sequence is just the sum of the position scores from the weight
matrix corresponding to that sequence. For example, the score of the consensus sequence, is
the sum of the bold numbers in the matrix (see Fig. 4d). Any other sequence can be scored
similarly, so that an entire genome can be scanned by a matrix and the score at every position

obtained.
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Figure 4 Matrix representations of the 14 pho4-binding sites in Fig. 3

2.4 Related Works for Motif Finding

Day by day Motif Detection is becoming a challenging and interesting topic to the concerned
people of this area. Many researchers are working to develop the methods to find the short
sequence from the DNA or Protein sequences. Motif discovery is a very important problem in
biology. It finds applications in DNA or protein sequence analysis, comprehending disease
susceptibility and disease cure. A considerable effort in this area was concentrated on
understanding the evolution of the genome by identifying the DNA binding sites for
transcription factors. So, now-a-days we can see a number of existing methods to get the motif
in the effective way. In this study, we present some of the computational methods that exist
and try to evaluate their performance in case of long sequences. Some computational
algorithms along with some Graph-based algorithms have been found to identify motif. Here,

we will discuss some of the methods that are needed to develop our proposed method.
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2.4.1 Motif discovery using linear-PSO with linear search

Lailee et al [1] used a modified motif search algorithm based on a population based stochastic
optimization technique called Linear Particle Swarm Optimization (PSO).

For this study PSO was modified for discovering motif. The modified Linear-PSO is chosen even
though it is slower because linear search is not a choice but a necessary criteria for identifying
motif for specific species. Linear-PSO is used linear selection and linear search in order to
compare all possible motifs existing in DNA sequences for representing specific species. Particle
Swarm Optimization algorithm is an evolutionary optimization technique by Kennedy
&Eberhart. In Linear PSO they use linear number for population initializing and next position
updating.

Main Objective:
Search a species specific motif existed in each DNA sequence from the same species.

Process:
First a DNA set is selected as Target set. Then target motif(s) is extracted from the Target set
.Then target motif is compared with other DNA sequences.

Target motif is the possible combination of bases from the ‘Target Set’ of pre specified length.
Number of target motif, t=(n—tn)+1
where n = length of target DNA sequence

tm = length of target motif

Target DNA Sequence: CGGATCTGGGTCGACCTGCA...... CAACGGAT

Motif Length =8

1st Target Motif: CGGATCTGGGTCGACCTGCA...... CAACGGAT
2nd Target Motif: CGGATCTGGGTCGACCTGCA...... CAACGGAT
3rd target Motif: CGGATCTGGGTCGACCTGCA...... CAACGGAT

nth Target Motif: CGGATCTGGGTCGACCTGCA...... CAACGGAT
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Fitness calculation:
Fitness function is used to maximize the similarity of the sequence of the motif found while

avoiding low complexity solution .In case of exact match for each base count 1 point and for

exact match count an additional point (total point multiply by 2).

2.4.2 Motif discovery using linear-PSO with binary search

Lailee et al [4] used linear-PSO for binary search. Searching is one of the most basic
operations performed in a computer. Searching is widely used in fields such as database
management, compiler construction and natural language processing. Searching in
bioinformatics is important because there is a need to identify pattern in DNA sequences as
quickly as possible. Therefore, speed is one of the most important criteria when determining the
quality of a search process. The most popular method of searching is Binary Search.The Linear-
PSO algorithm [2] which uses linear search requires more time compared to the original PSO.
Even though the speed of Linear-PSO is slow, the validity and accuracy of the result is high

because all possible combinations of motifs are tested.

However, linear search slows down the algorithm, when the speed is one of the most important
factors under consideration. In this paper we present an improved version of Linear -PSO that is
integrated with a Binary Search.The first DNA sequence was selected as a Reference Set and
other DNA sequences will be used to compare for similarity of motif among different animals
from the same species as shown in Fig 4. Target motif is found as like as in the linear search
algorithm. From the 1% sequence target motif is selected and compare with the other sequences.
In this study, length of motif is set to 6 bases and without any mutation (6, 0).Linear-PSO with
Binary Search is an improved version of Linear-PSO. There were two improvements made to the
Linear-PSO algorithm. First, the preprocessed data needed to be sorted before applying this

algorithm. Second, for similarity searching, Binary Search is used instead of Linear Search.
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Reference Set:

1% Target Motif:
2m Target Motif:
3 Target Motif:

4n Target Motif:

Nt Target Motif:

Seq1:

TTCTTAGCTCCGCTCCTGCTGGTGTCCTCCACTCG...

Seq1:

TTCTTAGCTCCGCTCCTGCTGGTGTCCTCCACTCG...

Seq1:

TTCTTAGCTCCGCTCCTGCTGGTGTCCTCCACTCG...

Seqg1:

TTCTTAGCTCCGCTCCTGCTGGTGTCCTCCACTCG. ..

Seq1:

TTCTTAGCTCCGCTCCTGCTGGTGTCCTCCACTCG...

Seq1:

TTCTTAGCTCCGCTCCTGCTGGTGTCCTCCACTCG...

2.4.3 Motif discovery using De Bruijn Graph

Hong Zhou et al [5] used De Bruijn graph for motif discovery.Graph theory is playing an
important role in computational biology. Graph-based algorithms provide a simpler and quicker
solution to computationally intensive problems such as DNA fragment assembly and motif

discovery.

This paper focuses on developing a time-efficient algorithm for motif discovery using a de
Bruijn graph. We have found that the algorithm was successful in mining signals for larger
number of sequences and at a faster rate when compared to some popular motif searching tools

such as MEME.

First a deBruijn graph is constructed. Then cycles are removed and transformed it into a directed
acyclic graph.Then a path on the directed graph is computed and later on the conserved regions

are extracted.

2.4.4 A Modified Algorithm for Variable Length DNA Motif Discovery

Samiul Islam et al [11] used variable length motif discovery, introducing index table concept in
motif searching, In their paper they model the solution by following steps: Extract target motif,
compare with other DNA sequence, calculating the target motif using fitness function, find the
best motif using fitness value.A DNA sequence is selected as a target set and motifs(particles)
are generated from the target set of a specific length which are known as ‘target motif’.
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First target motif

BW970508 : TTCTTAGCTCCGCTCCTGCTGGTGTCCTCCACTCGCG i AAGCTACTCTCT

Second target motif

BWS70508 : TTCTTAGCTCCGCTCCTGCTGGTGTCCTCCACTCGCG e AAGCTACTCTCT

Third target motif
BW370508 : TTCTTAGCTCCGCTCCTGCTGGTGTCCTCCACTCGAG. ... AAGCTACTCTCT

Nth target motif
BW370508 : TTCTTAGCTCCGCTCCTGCTGGTGTCCTCCACTCGLG. . ... AAGCTACTCTCT

For searching purpose they have made a index table where the positions of the first character of
the target motif existed in other DNA sequences will be indexed.

Target motif: TTCTTA
CTTATGTGGCAGTAGAGGCTGAT, . . GTATTAT

Target motit: CTTAGC
CTTATGTGGCAGTAGAGGCTGAT. . .GTATTAT

Creating Index Table:

Base | Position in the 2 sequence

T 2 13 |5 |7 13 |20 |23
C I [0 |19 (44 |71 |77 | 83

Directly search those positions of the DNA sequence for further comparison and compare the
characters sequentially.
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TARGET MOTIF FROM TARGET DTNA -
ITTCTTAGCTCCGCTCCTGCTGGTGT.. ACTCTCT

COMPARE
WITH

SECOND DINA SEQUENCE -
CTTATGTGGCAGTAGAGGCTGAT . ... GTATTAT

THIRED DINA SEQUENCE -
CTCTATCGGCAGCTTCCGACCG.... AAGGCTA

For Fitness calculation and Ranking, maximize the similarity of the sequence motif avoid low
complexity solutions. For example ‘TTTTT’ has lower complexity than ‘ATTTA’. For exact
matching, Fitness value = motif length*2. For one mutation, Fitness value = motif length-1. For

ranking highest fitness value is considered.
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Chapter 3
Proposed Method

3.1 Overall Concept

PSO algorithm starts with the random initialization of a population of individual particle in the
search space. Each particle goes through the fitness calculation. However, previous researchers
who used methods based on PSO only focus on motif detection in individual DNA sequence that
permit randomization of selected population.In our method we propose to select variable
length target motif where as previously some researchers selected constant length target
motifs. For that reason the output motif sequence may not be the best motif sequence because
there can be other motif sequence of different length whose fitness value might be higher than
the previous. In our proposed method we focus on not only finding the exact motif sequence
and also the mutation.

In our thesis work, we are going to propose a new searching algorithm based on the PSO where
for each cycle only one particle called ‘target motif’ are selected and compared with the DNA
sequences for fitness calculation.

The selection of target motif in our proposed method plays an important role to get the exact
and accurate motif sequence. Here, we consider the variable length to choose the target motif
from the selected DNA sequence which will to correctly identify the motif. Because motif length
is an important fact in finding motif sequences. So, we consider the variable length to calculate
the fitness value and from the fitness values we can identify the best suited motif. In our
method we have shown that when the target motif length is increasing it’s tough to get the
perfect match. But here we can see that for which length of target motif we are getting the
motif frequently and for which length we are getting the highest fitness value.

We can see the experimental result from our next result section from where we can get the
idea of our proposed variable length target motif.

Secondly we develop a new searching algorithm to compare the target motif with other DNA
sequences in effective way. Basically we introduce the ‘hash table’ in searching process which
brings the flexibility and simplicity. Each sequence is converted to a corresponding index hash
table. So basically instead of string matching we are trying for integer matching which is faster
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in all sense. It’s also helpful for time consuming. It reduces the redundancy which we face in the
linear search. Actually linear search is a time consuming and lengthy process for long DNA
sequences. So, we are planning to improve the method by effectively the hash table concept to
compare the long DNA sequences in an effective way.

3.2 Proposed Method

The information in DNA is stored as a code made up of four chemical bases A, T, C, and G. In our
proposed method the main focus is on finding the best suited motif sequence from a set of
DNA sequences. To do that we assume the chemical bases as characters and the DNA
sequences as strings. Initially we will select some random DNA sequences of same species. But
finally we will choose a specific dataset (GenBank:SusScrofa) for DNA sequences.

First target motif
| BW970508 : TTCTTAGCTCCGCTCCTGCTGGTGTCCTCCACTCGCG  inneaienas AAGCTACTCTCT |

Second target motif
|BW9?0508  TTCTTAGCTCCGCTCCTGCTGGTGTCCTCCACTCGCG. i AAGCTACTCTCT |

Third target motif
‘BWQ?DSUS cTTCTTAGCTCCGCTCCTGCTGGTGTCCTCCACTCGCG. e AAGCTACTCTCT |

Nthtarget motif
‘ BW970508 : TTCTTAGCTCCGCTCCTGCTGGTGTCCTCCACTCGLG. s AAGCTACTCTCT |

From those DNA sequences first we have selected a random DNA sequence as target DNA
sequence and from it we will extract the target motifs. For the every DNA sequences we have
made the hash table. Below we have shown our reference genome and 2" DNA sequence and
its hash table:
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Reference Genome:

CATGCTATGAATGCCATGCGCATT
1 2 3 4 56 7 8 9 10 11 1213 14 15 1617 18 19 2021 22 23 24 2526 27 28 29 30

2nd DNA sequence hash table:

A: 1 2 8 13 14 16 17 22
T 3 6 9 12 18 23 29 30
G: 5 15 20 21 24 25 26 28
C: 4 7 10 il 19 27 .

Figure 11 Hash Table for 2nd DNA sequence

Our target motif is AATCGT and we are going to the 2" DNA sequence hash table and looking
for A’s position and we have found it in 1, 2, 8, 13, 14, 16, 17, 22 index position. Now our
second letter is also A it must be in next of 1%t A position. And that’s why 8 and 22 indices are

4 16 |17 a Position

i'é‘m-_,za\zg 30 \ | AATCGT
G |5 15 |20 [21 [24 |25 z"é‘“wag\

omitted.

[

This indices
are omitted

Figure 12 Matching index

Now, our next letter is T and its position is 3, 6, 9, 12, 18, 23, 29, 30. And we need to check
whether it’s in the next position of the second A’s index. And we have found it in the 3™ and

18t positon.

.:I.__ : sass .F _————
Al 12 (BB | (16 |17 |Z AATCGT
I T: 3 & 9 12 1_8 23 29 30
5 15 20 21 24 25 26 28
4 7 10 1 19 27
L *

Figure 13 Matching index

Similarly we need to check for C’'s and G’s position.
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A1 (2 1B B Mo 11e |17 |2 AATCGT
T 3 [ 9 12 18 23 29 30
G: 5 15 20 21 24 25 26 28
C: 4 7 10 11 1 27
Figure 14 Matching index
A: 1 p) 8 13 14 16 |17 |22
T 3 6 9 12 18 | 29 30 AATCGT
G: 5 15 o0 |2 24 25 26 28
C 4 7 10 1 19 |Z7

Figure 15 Matching index

But now we have to check T’s index which position must be 21 but here in 21 position its G’s
index so this doesn’t match and we can say that it’s 1 letter mutation.

A 1 2 8 13 14 16 17 22 AATCGT

T: 3 6 9 12 18 [ 29 30

N I 2 2 2 e s P

- 4 ' " 5 19 ﬁhﬁﬁhh&"‘ This indicates
possible mutation

Figure 16 Matching index

For target motif: A=1, A =2, T=3, C=4, G=5, T=6

For 2" DNA sequence if we take A’s position as i then 2" A’s position must be i+1. This
sequence will be continued up to six characters and if all matches then it is (6,0) potential motif
and if one mismatch then it is (5,1) potential mutated motif.
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Index i=1 |li= 2 i= 3 i = 4 i=5 i=6
TargetMotif (index) | A= 1 |A= 2| T= 3 C= 4 G= 5 T=6
2r¢ DMNA Sequence A=1 |A= 2| T= 3 C= 4 G= 5 T=6
hashtable (index)

274 DNASequence | A=16 |A=17 | T=18 C=19 G=20 G=21
hashtable (index)
Now,we can saythatitis a potentialmotif.

Figure 17 Finding potential motif

Now we need to do this process repeatedly to get the potential motif and below we have
shown our flow chart:

Dataset
Reference genome Other DNA sequence
Target Motif Hashtable

~. ~

Check consecutively in Hash table

|

Storetarget motif

Apply Fitness Function

Find Best Mot I OutputMotif

Figure 18 our proposed motif discovery flow chart
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3.3 Proposed Algorithm

Algorithm: MOTIF _FINDER

1. Select the database for finding motifs, constraint is the database files must be DNA
sequences of the same species.

2. Select randomly any one of the DNA sequences to be the reference DNA from where we
will extract the motifs.

3. Make hash table consisting of 4 rows for the 4 letters A,T,G & C for the remaining DNA
sequences.

4. Extract motifs of length 5 to 20 from the reference DNA sequence.
5. Take 1 motif at a time and begin checking.

I.  For each target motif check indices of corresponding characters in hash table of
next sequences.

II.  Consider the mutation flag set to 1. [1 mutation allowed in each motif]
A. If corresponding indices match output it as a motif.

B. If corresponding indices match with 1 mismatch maximum, output it as a
mutated motif.

C. Else go to step 5.
[Il.  Check for 1 letter mutation.

A.  Check for strings of size 1 less than the target motif length from the hash
table of other sequences.

B. If all corresponding indices match check its left position by comparing the
character at the leftmost of the motif and corresponding index from the
hash table.

C. Ifthe character does not match output it as a possible 1 character

mutated motif.

D. ElsegotosteplV.

29| Page



IV.  Calculate the fitness value according to the fitness function.
V. Increase motif length.
VI.  Go back to step 4 and repeat the process until motif length is greater than 20.

6. Make a ranking table from the fitness values of target motifs.

Choose the high ranked motif as output.

3.4 Fitness Calculation:

Similarity and complexity are the two main factor required to evaluate a motif [9]. Along with
the necessity of being the two sequences to be similar, their complexity also needs to be
addressed. For example ‘TTTTT’ has lower complexity than ‘ATTTA’. The objective of the fitness
function is to maximize the similarity of the sequence motif as well as avoiding low complexity
solutions.

3.4.1 Fitness Function [12] :
Fitness function used in this experiment is adapted from Sarwar Topon, Dianhui Wang [12] that
we intend to use in our algorithm:

(o) = d(K,M)
T T AK, Mref) + c(K)
r(K,M) is used to find the potential motif.
k
d(k,m) = 1—1/k z £(bi, Dk (bi, D) |0 < d(km) < 1
¥bi€x
=1

d(K,M) is generalized hamming distance, where f(bi,i) and k(bi,i) are the observed frequencies of
base biat positioniin Kand M.

1
K2 | Supiex(ZH, kb, i))z]] o

c(k) =4/3[1- v 0<ck) <1

30| Page



c(K) is used to find the composition complexity of K where the complexity is scored according to
the distribution of bases (A, C, G, T) in the K.

Example:
Let’s say K = AATCTC M = AATGTC Mref = ACTATC
d(K,M) == d(K,Mref) = 2 o(K) = 0.72

6 6

> r(K,M) =0.15822
As d(K,M) > d(K,Mref) so it is a potential motif of r(K,M) = 0.60096

Let’s say K = TTTTTT M = AATGTC Mref = ACTATC
d(K,M) = = d(K,Mref) = = c(K) = 0.0
> 1(K,M) =1.0

So the lowest r(K,M) is their desired motif.

3.4.2 Fitness Function [13]

Total_Fitness (P) = wi*L + wo*Y FS(Sm, Pn )......ooooieiiiinnnn. [13 ]
Here,

w1l = weight given to the length and

w2 = weight given to similarity.
If S=AATCTC,P=AATCTC

w1l =w2 =1 [we assume]

L =length of the motif = 6

Then ) FS(Sm, Pn ) means how many times P has been found in S (DNA sequences).
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Example :

If it matches exactly then 1 otherwise 0. Here for this example:

Total_Fitness(P) = wi*L + wo* YFS(Sm, Pn)

Let’s say P has been found in S for 19 times that means:

Total_fitness(P) = 1*6+1*19 = 25 [ wi=wz=1 and Y FS(Sm,Pn) =19 ]

Here for low complexity like “TTTTTT” it will show the highest value but actually it is

not a motif.

3.4.3 Proposed Fitness Function:

Fitness_Score = w1 * L + w2 * r(K,M)
r(k,m) will now calculate the similarity

Let’s say K= AATCTC M=AATGTC Mref = ACTATC

d(K,M) =§ d(K,Mref) =

c¢(K) =0.72

> r(K,M) = 0.60096
As d(K,M) > d(K,Mref) so it is a potential motif of r(K,M) = 0.60096

Fitness Score = 1*6+1*(0.60096+0.72) = 7.32096

Let’s say K = TTTTTT M = AATGTC Mref = ACTATC
d(K,M) = = d(K,Mref) = = c(K) = 0.0
> 1(K,M) =1.0

Fitness_Score=1*6+1*1.0=7
Now, it will give lower value for lower complexity.

So in this example AATCTC is the potential motif.
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3.5 Experimental Data and Results:

In this paper, we have used Sus Scrofa , Mus musculus, Homo sapiens, Aedes aegypti , Felis

catus dataset. The data was taken from GenBank database. The lengths of selected sequences are

from 829 based to 850 bases. Table shows the dataset we have used.

3.5.1 Datasets:

The datasets that we used are as follows (accession numbers specified)

SusScrofa

BW970508

BW971304

BW972295

BW973679

3.4.2 Results:

Musmusculus Feliscatus
JK707008.1 KJ933256
JK707007.1 KJ933223
JK707011.1 KJ933191
JK707010.1 KJ933160

Table 1: Dataset

Homo sapiens

NM_001166002.2

NM_001166004.2

NM_001166003.2

NM_181773.4

Aedesaegypti

KJ736826

KJ736827

KJ736825

KJ736824

We have considered variable length motif discovery. As mentioned earlier, any of the DNA

sequences can be chosen for generating the target motifs. For our experiment, we have selected

the first DNA sequence to generate target motif. When we have considered the motif length as

six without mutation (6, 0), the total number of potential motif presents in the DNA sequence is

824 ((829 — 6) +1). The set of target motifs then compared with all possible combinations of

motifs from 2", 3@ and 4" DNA sequences with the help of index table generated for respective

DNA sequence. The same procedure has been repeated while the motif length are (7, 0) and (8,

0). Only one iteration is required in this process to discover any unknown motifs. While

searching for a motif, the fitness function assigns points for each of the potential motifs for each
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of the other DNA sequences. The motifs are ranked based on the fitness values acquired while
comparing with other DNA sequences.We have also considered the possibility of mutation in
motifs. We have allowed our calculation to consider one or more mutation (i.e. (6, 1,(6,2)) for
motifs of length six and one or two or no mutation) while comparing motifs with other

sequences. Below we have given our target motif results for 2", 3" and 4" sequence.

Sequence | Motif Target Total r(k) d(k, m) | c(k) value

Number | Length Motifs Fitness | value | value

6,0 TGTGGC 27.7776 | 03.7776 | 01.3332 02.4444

GTGGCT 27.7776 | 03.7776 | 01.3332 02.4444

AAAAGG 27.1112 | 03.1112 | 01.3332 01.7776

7,0 ATTTCAG 30.2448 | 02.2448 | 00.8572 01.3878

GTGGCTG 29.7142 | 01.7142 | 00.5714 01.1428

ATGTGTA 15.5102 | 01.5102 | 00.8571 00.6531

8,0 ATTTCAGC 25.5938 | 01.5938 | 00.8750 00.7188

v ATGTGTAC 25.3438 | 01.3438 | 00.6250 00.7188

(9]

§ TGTGGCAC 25.0938 | 01.0938 | 00.3750 00.7188

E; 6,1and 6,2 GTGGCT 42.6666 | 06.6666 | 03.0000 03.6666

?\' AAAAGG 33.8890 | 03.8890 | 01.6665 02.2220

CAAAAA 31.3890 | 01.3890 | 00.0000 01.3890

7,1and 7,2 GTGGCTG 76.4285 | 06.4285 | 03.5715 02.8570

GTGTACA 30.6122 | 02.6122 | 01.1428 01.4694

GTGGAGT 30.5714 | 02.5714 | 01.4286 01.1428

8,1and8,2 | GTGGAGTT 50.1876 | 02.1876 | 01.0000 01.1876

CTGCCATG 25.4688 | 01.4688 | 00.7500 00.7188

CGGTCCTG 25.2812 | 01.2812 | 00.6250 00.6562
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Sequence | Motif Target Total r(k) d(k, m) c(k)
Number | Length Motifs Fitness | values | values values
6,0 AAGAAG 108.4448 | 12.4448 | 05.3328 07.1104
GTGGAG 43.0002 | 07.0002 | 04.0002 03.0000
TGTGGA 42.6666 | 06.6666 | 03.0000 03.6666
7,0 CAAGAAG 59.4284 | 03.4284 | 01.1428 02.2856
AAGAAGG 44.7552 | 02.7552 | 01.2858 01.4694
GAAGAAG 44.7552 | 02.7552 | 01.2858 01.4694
8,0 GAAGAAGG 50.2500 | 02.2500 | 01.2500 01.0000
AAGAAGGC 50.1876 | 02.1876 | 01.0000 01.1876
CGCGGAGC 25.2188 | 01.2188 | 00.6250 00.5938
6,1and 6,2 AAGAAG 145.8324 | 19.8324 | 10.5000 09.3324
§ TTGTGG 56.0000 | 08.0000 | 04.0000 04.0000
agJ_ TGTGGA 49.7777 | 07.7777 | 03.5000 04.2777
§ 7,1and 7,2 CAAGGTG 61.0612 | 05.0612 | 02.2856 02.7756
« TGACACG 60.0816 | 04.0816 | 01.1428 02.9388
CAAGAAG 60.0000 | 04.0000 | 01.7144 02.2856
8,1and8,2 | CAAGGTGG 50.5624 | 02.5624 | 01.2500 01.3124
TGGACCGG 50.3124 | 02.3124 | 01.0000 01.3124
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Sequence | Motif Target Total r(k) d(k, m) c(k)
Number | Length Motifs Fitness | values | values values
6,0 CCTGCA 43.0002 | 07.0002 | 03.0000 04.0002
TCATCA 28.0000 | 04.0000 | 01.3332 02.6668
ACCAGG 28.0000 | 04.0000 | 01.3332 02.6668
7,0 CATCATC 443877 | 02.3877 | 00.4287 01.9593
GTGGCCA 30.8164 | 02.3877 | 01.4286 01.3878
TTCAGCA 30.0408 | 02.0408 | 00.5714 01.4694
8,0 GGCACCAT 25.3438 | 01.3438 | 00.6250 00.7188
" GTGGCCAT 25.3438 | 01.3438 | 00.6250 00.7188
§ GCGGCGAA 25.2500 | 01.2500 | 00.6250 00.6250
;',' 6,1and 6,2 ATGCTG 70.5560 | 10.5560 | 03.3330 07.2220
fq, AAGAAG 47.4446 | 05.4446 | 02.3331 03.1108
ACCAGG 43.9998 | 07.9998 | 04.0002 04.0002
7,1and 7,2 TGCCGCC 75.7145 | 05.7145 | 02.8570 02.8570
CATCATC 44.8164 | 02.8164 | 00.8571 01.9593
ATGCTGC 30.8980 | 02.8980 | 01.4286 01.4694
8,1and8,2 | CAAGAGTC 49.9376 | 01.9376 | 00.5000 01.4376
ATGCTGCA 25.3750 | 01.3750 | 00.6250 00.7500
CTGCAGTG 25.3438 | 01.3438 | 00.6250 00.7188
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Table 2: Potential target motif( after fitness calculation)




3.4.3 Time Comparisons:

Hash Table

Proposed

Figure 19 Time comparison between hash table and our proposed method

Here for hash table approach for (6,0) motif it took 128 seconds where for our proposed method
it takes 15 seconds. For (7,0) motif it takes 14 seconds and for (8,0) motif it takes 18 seconds.
For hash table approach (6,1) motif took 236 seconds where our method take only 31 seconds for

both (6,1) and (6,2) motifs. And all at once it takes 84 seconds.

3.4.4 Result Verification:

For our result evaluation we used Fasta, Blast, CompareMotif(Online de novo motif finding tool)
http://bioware.ucd.ie/~compass/biowareweb/Server pages/comparimotif.php . For input it takes motif

in one text file and DNA sequence in another text file then there is a field of variation in motif if there is
0.5 then it will consider 50 percent mutation from its parents and if it is 1 then it will show the exact
match of the motif.For the following output inputs were

I.  Compare motif

Motifs file (motifs_length_6.txt)
2"Y DNA sequence from Sus
scrofa dataset (2.txt, accession
number BW971304)

IC value 1.0 (means only exact
matching)

I1.  Proposed system

Motifs file (motifs_length_6.txt)
2" DNA sequence from Sus
scrofa dataset (2.txt, accession
number BW971304)

Allowed Mutation is 2
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Table 3 : Inputs for result verification



http://bioware.ucd.ie/~compass/biowareweb/Server_pages/comparimotif.php

(Online de novo motif finding tool)

CompareMotif

Proposed System

Sim1 §im2 Match Pos  |MatchiC  [MormIC  |Score |[Infol  |Info2
ES EP |TTCTTA| & 6.000 | 1.000 | 6.000 | 6.00 |60.00
ES EP |TCTTAG| & 6.000 | 1.000 | 6.000 | 6.00 |60.00
ES EP |TCTTAG| 6 6.000 | 1.000 | 6.000 | 6.00 |60.00
ES EP |CTTAGC| 6 6.000 | 1.000 | 6.000 | 6.00 |60.00
ES EP |TAGCTC| 6 6.000 | 1.000 | 6.000 | 6.00 |60.00
ES EP |CTGCTG| 6 6.000 | 1.000 | 6.000 | 6.00 |60.00
ES EP |CTGCTG| 6 6.000 | 1.000 | 6.000 | 6.00 |60.00
ES EP |TGGTGT| 6 6.000 | 1.000 | 6.000 | 6.00 |60.00
ES EP |CCTCCA| 6 6.000 | 1.000 | 6.000 | 6.00 |60.00
ES EP |GCTTTC| & 6.000 | 1.000 | 6.000 | 6.00 |60.00
ES EP |CTGCCG| & 6.000 | 1.000 | 6.000 | 6.00 |60.00
ES EP |TGTAGC| & 6.000 | 1.000 | 6.000 | 6.00 |60.00
ES EP |GCTCTT| & 6.000 | 1.000 | 6.000 | 6.00 |60.00
ES EP |TTCAGC| & 6.000 | 1.000 | 6.000 | 6.00 |60.00
ES EP |GCAGCT| & 6.000 | 1.000 | 6.000 | 6.00 |60.00
ES EP |CAGCTC| & 6.000 | 1.000 | 6.000 | 6.00 |60.00
ES EP |CCCAGC| 6 6.000 | 1.000 | 6.000 | 6.00 |60.00
ES EP |CGTGGC| 6 6.000 | 1.000 | 6.000 | 6.00 |60.00
ES EP |GGCTCG| 6 6.000 | 1.000 | 6.000 | 6.00 |60.00
ES EP |GCTCGG| 6 6.000 | 1.000 | 6.000 | 6.00 |60.00
ES EP |GCCTGG| 6 6.000 | 1.000 | 6.000 | 6.00 |60.00
ES EP |GAGCTG| 6 6.000 | 1.000 | 6.000 | 6.00 |60.00
ES EP |GGCAAG| 6 6.000 | 1.000 | 6.000 | 6.00 |60.00
ES EP |AGGTGG| & 6.000 | 1.000 | 6.000 | 6.00 |60.00
ES EP |AAGTTC| & 6.000 | 1.000 | 6.000 | 6.00 |60.00
ES EP |TTCAGC| & 6.000 | 1.000 | 6.000 | 6.00 |60.00
ES EP |AGACCA| & 6.000 | 1.000 | 6.000 | 6.00 |60.00
ES EP |GAAAGC| 6 6.000 | 1.000 | 6.000 | 6.00 |60.00
ES EP |CGTGAG| & 6.000 | 1.000 | 6.000 | 6.00 |60.00
ES EP |AGGGGG| 6 6.000 | 1.000 | 6.000 | 6.00 |60.00

Motif Number

164
169
180
181

TAGCTC
CTaCTG
CTaCTG
CTGGTG
TGGTGT
CCTCCA
CACTCG
GCTTTC
GCTCTC
CTCTCG
(Tacca
GCCaCe
TTGTAG
TaTAGC
GCAACC
ATGCCC
GCCCAA
GCCCAA
GCTCTT
GCTCTT
TTCAGC
GCAGCT
CAGCTC
CTCGCA
CAGGAC
GGACCT
CCcAaC
CAGCGC
CGTGGC
GGCTCG
GCTCGG

Position

623
528
531
532

o oun

252
383
577
295
557

21 22 9

513
685

514
686

12 @ 14

347
347
466
500

348
348
467
581

~l

253 254 255
384 385 386
578 579 586
296 297 298
558 559 560
2425

515 516 517
687 608 609
8 16

349 358 351
8 358 351
468 @ 470
502 503 504

712 9 714 @ 716

6l 62 63 64 65

574 575 576 577 578
@ 602 603 604 665
744 @ 746 @ 48

8 138 139 148 141

B 433 434 435 436
249 250 251 252 253
@ 833 B 835 836

343
569
247
534
333
470
245
624
529
532
533

344
570
248
535
334

345 346 347
571 572 573
249 258 251
536 @ 538
335 @ 337

0 472 @ 474

246
625
530
533
534

247 248 249
626 @ 628

531 532 533
534 535 536
535 536 537
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Figure 20 Result comparison




Chapter 4

Conclusion

4.1 Summary of the research
In our thesis, mainly we proposed a method to identify motif in an effective way. As motif

detection is an important part of biological researches due its demand on biological science, we
have tried our best to find out the most efficient way to detect motif in DNA sequences. Actually
we have considered the length of the target motif very seriously and we build up our proposed
algorithm according to the variable length of target motif. We mainly developed a new searching
algorithm concept where we introduce hash table concept from the index of the target motif
using linear search and we have used new fitness function to calculate the potential motif and

also we consider the first letter mutation and mutation in any possible position.

Experimental results show that the proposed method identifies the motifs from Sus Scrofa,Homo
Sapiens, Cat, Mus muculus dataset with similar accuracy as Linear-PSO and with greater
efficiency. By incorporating Linear-PSO we have achieved the benefit of allowing all possible
motifs in a sequence of variable length and along with it, the addition of the concept of index
table made the pervious algorithm an improved method. As a result, the algorithm becomes

faster and the validity of the result is also high.

4.2 Future works
We have completed our simulation work and have got better result than using the Linear-PSO

method and modified algorithm of motif finding..

During the process of creating index table, we have created hash table for every DNA sequence
and for every character we are going back to the hash table again and it has been taken less time
then previous method. And the fitness function that we have used is more efficient than the
previous one which is too trivial. And here we also considered the first letter mutation. So next

time we will try to make the search faster though we have used exhaustive search here.
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Chapter 6

6.0 Appendix
Appendix 6.1 - Textprocessor.java

Package text processor;

Import java.io.BufferedReader;
Import java.io.Buffe redWriter;
Import java.io.DatalInputStream;
Import java.io.File;

Import java.io.FileInputStream;
Import java.io.FileNotFoundException;
Import java.io.FileWriter;

Import java.io.IOException;
Import java.io.InputStreamReader;
Import java.io.PrintWriter;
Import java.text.DecimalFormat;

publicclassfinal output({

publicfinal output(String

input,intmotif length,intsequence no)throwsFileNotFoundException,IOException{
create directory();

PrintWriter result =newPrintWriter (newBufferedWriter (new

FileWriter("final output\\"+"final output sequence no"+sequence no+" motif le
ngth "+motif length+".txt",6false)));

String[] motifs =new String][ 1,
double[]total fitness=newdouble][ ] , dkm=newdouble [ ], rk=newdouble[ 1,
ck=newdouble[ 1,

FileInputStreamfstream=newFileInputStream(input) ;
DataInputStream in =newDatalnputStream(fstream);
BufferedReaderbr=newBufferedReader (newInputStreamReader (in)) ;
intline count=0;

String line="";
int count=0;
while((line=br.readLine()) '=null) {
if (line count>1) {
String[] output=line.split("\\s+");
motifs[count]=String.valueOf (output[0]) ;
total fitness[count]=Double.parseDouble (output[1]);
rk[count]=Double.parseDouble (output[2]) ;
dkm[count]=Double.parseDouble (output[3]) ;
ck[count]=Double.parseDouble (output[4]) ;
count++;

}

line count++;

}
for(int j=0;j<count;j++) {
for (int 1=7j+1;1<count;l++) {
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if((motifs[j]l==null? motifs[l]==null:
motifs[j].equals(motifs[l]))&&!"".equals(motifs[j])&&!"".equals(motifs[1])){
total fitness[j]=total fitness[j]l+total fitness[1l];
rk[j1=rk[j]+rk[1];

dkm[j]=dkm[j]+dkm[1];

ck[jI=ck[jI+ck[1l];

motifs[1l]=""";

total fitness[1]=0;

rk[1]=0;

dkm[1]=0;

ck[1]1=0;

}

}

}

for(int j=1;j<count;j++) {

for (int l=count-1;1>=j;--1) {

if (total fitness[l-1]1>total fitness[1]){

String temp motif=motifs[1-1];
doubletemp total fitness=total fitness[l-1];
doubletemp rk=rk[1-11;
doubletemp dkm=dkm[1-11];
doubletemp ck=ck[1-11;

motifs[l-1]= motifs[1l];

total fitness[l-1]=total fitness[l];
rk[1-1]1=rk[1l];

dkm[1-1]=dkm[1];

ck[1l-1]=ck[1l];

motifs[l]=temp motif;

total fitness[l]=temp total fitness;
rk[l]l=temp rk;

dkm[l]=temp dkm;

ck[l]=temp ck;

}

}

}

result.println("Motifs"+" "+"Total Fitness"+" "+"r (k) "+"
"+"d (k,m) "+" "+Mc (k) ") ;

for(int h=count-1;h>=0;h--){

if (motifs[h]!'=""){

result.print (motifs[h]) ;

result.print (" ")

result.print (newDecimalFormat ("00.0000") .format (total fitness[h])):
result.print (" ")

result.print (newDecimalFormat ("00.0000") .format (rk[h]));
result.print (" ")

result.print (newDecimalFormat ("00.0000") .format (dkm[h]))
result.print (" ")

result.print (newDecimalFormat ("00.0000") .format (ck[h]));
result.println() ;

}

}

br.close() ;

result.close();

}
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privatevoidcreate directory() {
File theDir5 =newFile("final output");

if('theDir5.exists()) {

boolean result =false;

try{

theDir5.mkdir () ;

result=true;

}catch (SecurityException se) {

}

if (result) {

System.out.println("DIR created");

}

}

}

}

Appendix 6.2 - motifGenerator.java

packagetext processor;

importjava.io.BufferedWriter;
importjava.io.File;
importjava.io.FileWriter;
importjava.io.IOException;
importjava.io.PrintWriter;

publicclassmotifGenerator(

publicmotifGenerator(String DNA,intmotif length)throwsIOException({
String reference motif;

int counter =0;

int total =0;
File theDir=newFile("motifs");

// 1f the directory does not exist, create it
if('theDir.exists()){

boolean result =false;
try{
theDir.mkdir () ;
result=true;
}catch (SecurityException se) {
//handle it
}
if (result){
System.out.println("DIR created");
}
}
PrintWriter update
=newPrintWriter (newBufferedWriter (newFileWriter ("motifs\\motifs length "+moti
f length+".txt",false)));
for(inti=0;i<DNA.length()-(motif length-1);i++) {
reference motif=DNA.subSequence (counter,counter+motif length) .toString()
total++;
counter++;
update.write(reference motif);
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update.println("\n");

}

System.out.println("Total Number of motifs possible is : "+ total +" bp.");
System.out.println("Total Length of DNA sequence 1 is : "+DNA.length ()+"
bp.");

update.close() ;

}

}

Appendix 6.3 - HashTable.java
/*

* To change this license header, choose License Headers in Project
Properties.

* To change this template file, choose Tools | Templates
* and open the template in the editor.
*/

packagetext processor;

importjava.io.BufferedWriter;
importjava.io.FileWriter;
importjava.io.IOException;
importjava.io.PrintWriter;

public class HashTable{

int number;
String DNA;
HashTable (String DNA,int number)throwsIOException({
this.DNA= DNA;
this.number=number;
table sequence();
}
int[][]ltable sequence () throwsIOException{
int hash[]I[];
int A,T,G,C;
int count;
intcount A=0;

intcount T=0;
intcount G=0;
intcount C=0;
hash=newint[4] [DNA.length()];

A=0;
T=1;
G=2;
C=3;

PrintWriter viewer

=newPrintWriter (newBufferedWriter (newFileWriter ("hash table\\hash table seque
nce "+ number +".txt",false)));

for (count=0;count<DNA.length () ; count++) {

if (DNA.charAt (count)=="A"){

hash[A] [count A]=count+l;

count A++;

}
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if (DNA.charAt (count)=="T"){
hash[T] [count T]=count+l;
count T++;

}

if (DNA.charAt (count)=='G") {
hash[G] [count G]=count+l;
count G++;

}

if (DNA.charAt (count)=='C"){
hash[C] [count C]=count+l;
count C++;

}

}

System.out.print ("A : ");
viewer.print ("A : ") ;

for(int m=0;m<count A;m++) {
viewer.print (hash[A] [m]) ;
viewer.print (" ");
System.out.print (hash[A] [m]) ;
System.out.print (" ");

}

System.out.print ("\n"+"T : ");
viewer.println("\n");
viewer.print ("\n"+"T : ");
for(int m=0;m<count T;m++) {
viewer.print (hash[T] [m])
viewer.print (" ");
System.out.print (hash[T] [m]) ;
System.out.print (" ");

}

System.out.print ("\n"+"G : ");
viewer.println("\n");
viewer.print ("\n"+"G : ");
for(int m=0;m<count G;m++) {
viewer.print (hash[G] [m]) ;
viewer.print (" ");
System.out.print (hash[G] [m]) ;
System.out.print (" "),

}

System.out.print ("\n"+"C : ");
viewer.println("\n");
viewer.print ("\n"+"C : ");
for(int m=0;m<count C;m++) {
viewer.print (hash[C] [m]) ;
viewer.print (" ");
System.out.print (hash[C] [m]) ;
System.out.print (" "),

}

System.out.print ("\n") ;
viewer.close() ;
System.out.println("Total Length of DNA sequence "+ number +" is
"+DNA.length ()+" bp.");
return hash;

}

}
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Appendix 6.4 - motifChecker.java

packagetext processor;

importjava.io.BufferedReader;
importjava.io.BufferediWriter;
importjava.io.DataInputStream;
importjava.io.FileInputStream;
importjava.io.FileNotFoundException;
importjava.io.FileWriter;
importjava.io.IOException;
importjava.io.InputStreamReader;
importjava.io.PrintWriter;

public class motifChecker(
int count motif=0;
motifChecker (int[] []lhashtable,Stringpath,Stringoutput,intDNA length,intmotif
length,int mutation) throwsFileNotFoundException,IOException({
FileInputStreamfstream=newFileInputStream(path) ;
DataInputStream in =newDatalnputStream(fstream);
BufferedReaderbr=newBufferedReader (newInputStreamReader (in)) ;
String motif;
char letter =0;
PrintWriter result
=newPrintWriter (newBufferedWriter (newFileWriter ("frequent motifs\\"+
output, false))) ;
PrintWriter result2
=newPrintWriter (newBufferediWriter (newFileWriter ("candidates\\"+
output, false))) ;
PrintWriter result3
=newPrintWriter (newBufferedWriter (newFileWriter ("mutation\\mutation"+mutation
+" "+ output, false)));
int index =0;
int[][] results =newint[motif length] [DNA length];
int length =0;

result.println ("Motif Number"+" "+"Motif"+"
"+"Position");

result.println("============"4" e
|v+|v::::::::u)

//intoutput motif=0;

intmotif no=l;

intm init=mutation;

while((motif =br.readLine()) !'=null) {
length=0;

int[]lcheck count=newint[DNA length];

intm check=1;

for(int m =0; m <=motif.length()-1; m++) {
letter=motif.charAt (m);

index=returnindex (letter) ;

int[] counter =hashtable[index];

inti=0;

if (length ==0){

for (i=0;i<DNA length;i++) {
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results[length] [i]= counter[i];

check count[i]++;

}

}

int[] checker=hashtable[index];

if(length >0){

for(int j =0; j <DNA length; j++){

intcheck mut=0;

for(int k =0;k < checker[k]; k++) {

if (counter[k]== results[length-1][]j]+1&& results[length-1]1[7]1!'=0){
results[length] [J]= counter[k];

check count[j]++;

}

elseif (m init==1){

if ((mutation==1&& length>1&& counter[k]== results[length-2]1[]j]+2&é&
results[length-2]1[]j]'=0&& results[length-1][j]'=results[length-2]1[]j]+1)){
results[length] [jJ]= counter[k];

results[length-1]1[]j1=0;

check count[j]++;

mutation--;

check mut++;

m_check=mutation;

}
}

else(

}

if (m _init==l&&check mut==0) {

mutation=l;

}

}

}

}

length++;

}

if (length>=(motif length-1)) {

for(int k=0;k<DNA length;k++) {

if ((check count[k]==motif length/*&s&m init==m check ) |
(m_init>m checké&&check count[k]==motif length*/)) {
if (motif no>=lé&&motif no<l10) {

result.print (motif no+" T4 ")
}

if (motif no>=l0&&motif no< ) {

result.print (motif no+" T4 ")
}

if (motif nod>= ) {

result.print (motif no+" 4" ")

}

result.print( motif +" ")

count motif++;
result2.println(motif) ;

for(int g=0;g<motif length;g++) {
result.print (" "+ results[g][k]+" "),
}

result.println("\n");

}
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if (check count[k]== motif length-1) {
if (motif no>=lé&&motif no<10) {

result3.print (motif no+" T4
}

if (motif no>=l0&&motif no< ) {
result3.print (motif no+" "4
}

if (motif no>= ) {

result3.print (motif no+" T4

}

result3.print( motif +" ")

for(int g=0;g<motif length;g++) {
result3.print (" "+ results[g] [k]+" "),
}

result3.println("\n");

}

}

}

mutation=1;

if (length>0) {

motif no++;

}

}

result3.close() ;
result2.close() ;
result.close() ;

}
intreturnindex (char in) {
intindexs=0;
if(in =="'A"){
indexs=0;

}

if(in =='T"){
indexs=1;

}

if(in =="'G") {
indexs=2;

}

if(in =="'C"){
indexs=3;

}

returnindexs;

}
intreturncount () {
returncount motif;
}

}
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Appendix 6.5 - fitness_function.java

packagetext processor;

importjava.io.BufferedReader;
importjava.io.BufferedWriter;
importjava.io.DatalnputStream;
importjava.io.FileInputStream;
importjava.io.FileNotFoundException;
importjava.io.FileWriter;
importjava.io.IOException;
importjava.io.InputStreamReader;
importjava.io.PrintWriter;
importjava.text.DecimalFormat;

public class fitness function({

publicfitness function(String path,intcount,intmotif length,int
sequence) throwsFileNotFoundException, IOException{
PrintWriter result
=newPrintWriter (newBufferedWriter (newFileWriter("fitness\\fitness "+"possible
~motifs sequence"+sequence+" length "+motif length+".txt", false)));
FileInputStreamfstream=newFileInputStream(path);
DataInputStream in =newDatalnputStream(fstream);
BufferedReaderbr=newBufferedReader (newInputStreamReader (in)) ;

String motif;

String[] motifs=new String[count];
inti=0;

while ((motif=br.readlLine()) '=null) {
motifs[i]=motif;

i++;

}

char[lreference motif=consensus motif (motifs,count,motif length);
result.print ("Consensus Motif");
result.print (" ")
for(int u=0;u<motif length;u++) {
result.print (reference motif[ul);

}

result.println() ;

result.println("Motif "+" "+"Total Fitness"+"
”+”R(k> ”+” ”+'|D(k’m) H+H "+'|C(k) ");

for (int y=0;y<count;y++) {

if('motifs[y].isEmpty()){

result.print (motifs[y])

result.print (" ")

doubletotalfitness=

total fitness(rk(reference motif,motifs[y].toCharArray(),motif length) ,motif
length) ;

result.print (newDecimalFormat ("00.0000") .format (totalfitness));
result.print (" ")

double fitness =rk(reference motif,motifs[y].toCharArray(),motif length);
result.print (newbDecimalFormat ("00.0000").format (fitness))

result.print (" ")

doubledkm=dkm(reference motif,motifs[y].toCharArray() ,motif length);
result.print (newDecimalFormat ("00.0000") .format (dkm)) ;
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result.print (" ")

doubleck=ck (motifs[y].toCharArray() ,motif length);
result.print (newDecimalFormat ("00.0000") .format (ck)) ;
result.println() ;

}

}

result.close();

}

char[lconsensus motif (String[]lmotifs,intcount,intmotif length) {
char[lreference motif=newchar[motif length];

for(int n=0;n<motif length;n++) {

int a=0,t=0,g9=0,c=0;

for (int m=0;m<count;m++) {

if (motifs[m].charAt(n)=="A"){
a++;

}

if (motifs[m].charAt(n)=="T") {
t++;

}

if (motifs[m].charAt(n)=="'G") {
gt++;

}

if (motifs[m].charAt(n)=="C") {
c++;

}

}

if (a>=t && a>=g && a>=c){
reference motif[n]='A";

}

elseif (t>=a && t>=g && t>=c) {
reference motif[n]="T";

}

elseif (g>=t && g>=a && g>=c) {
reference motif[n]='G";

}

elseif (c>=a && c>=g && c>=t) {
reference motif[n]='C";

}
}

returnreference motif;

}

doublerk(char[]lreference motif,char[]motif,intmotif length) {
doublerk=0;

rk=dkm(reference motif,motif,motif length)+ck(motif,motif length);
returnrk;
}
doubletotal fitness(doublerk,double length) {
doubletotal fitness=0;
double wl=0,w2=0;
wl=length-5;
w2=1;
total fitness= wl*length + w2*rk;
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returntotal fitness;

}
doubleck(char[lmotif,intmotif length) {
doubleck=0;

double a=0,t=0,c=0,g=0;
for(inti=0;i<motif length;i++) {
if(motif[i]l=="A"){

at++;

}

if(motif[i]l=="T"){

t++;

}

if(motif[i]l=="G") {

g++;

}

if (motif[i]l=="C"){

c++;

}

}
ck=(4/3)*(1-(((a*a)+(t*t)+(c*c)+(g*g))/(motif length*motif length)));
returnck;

}

doubledkm(char[]reference motif,char[]lmotif,intmotif length) {
doubledkm=0;

for(inti=0;i<motif length;i++) {
if (reference motif[i]l==motif[i]) {
dkm++;

}

}

dkm=dkm/motif length;

returndkm;

}

}

Appendix 6.6 - final_output.java

packagetext processor;

importjava.io.BufferedReader;
importjava.io.BufferediWriter;
importjava.io.DatalnputStream;
importjava.io.File;
importjava.io.FileInputStream;
importjava.io.FileNotFoundException;
importjava.io.FileWriter;
importjava.io.IOException;
importjava.io.InputStreamReader;
importjava.io.PrintWriter;
importjava.text.DecimalFormat;

public class final output{

public final output(String

input,intmotif length,intsequence no)throwsFileNotFoundException,IOException{
create directory();
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PrintWriter result =newPrintWriter (newBufferedWriter (new
FileWriter("final output\\"+"final output sequence no"+sequence no+" motif le
ngth "+motif length+".txt",6 false))):

String[] motifs =new String][ 1;
double[]total fitness=newdouble][ ], dkm=newdouble [ ], rk=newdouble[ 1,
ck=newdouble[ 1;

FileInputStreamfstream=newFilelInputStream(input) ;
DataInputStream in =newDatalnputStream(fstream);
BufferedReaderbr=newBufferedReader (newInputStreamReader (in)) ;
intline count=0;

String line="";
int count=0;
while((line=br.readLine()) '=null) {
if (line count>1){
String[] output=line.split("\\s+");
motifs[count]=String.valueOf (output[0]);
total fitness[count]=Double.parseDouble (output[1]);
rk[count]=Double.parseDouble (output[2]) ;
dkm[count]=Double.parseDouble (output[3]) ;
ck[count]=Double.parseDouble (output[4]) ;
count++;

}

line count++;

}

for (int j=0;j<count;j++){

for (int 1=7j+1;1<count;l++) {

if((motifs[j]==null? motifs[l]==null:
motifs[j].equals(motifs[l]))&&!"".equals(motifs[]j])&&!"".equals(motifs[1l])) {
total fitness[j]=total fitness[jl+total fitness[l];
rk[j1=rk[j1+rk[1];

dkm[j]=dkm[j]+dkm[1] ;

ck[l=ck[il+ck[1];

motifs[1l]="";

total fitness[1]=0;

rk[1]=0;

dkm[1]1=0;

ck[1]1=0;

}

}

}

for (int j=1;j<count;j++){

for(int l=count-1;1>=7j;--1){

if (total fitness[l-1]>total fitness[1]){

String temp motif=motifs[l-1];
doubletemp total fitness=total fitness[l-1];
doubletemp rk=rk[1-1];
doubletemp dkm=dkm[1-1];
doubletemp ck=ck[1-1];

motifs[l-1]= motifs[1l];

total fitness[l-1]=total fitness[1l];
rk[1-1]=rk[1l];

dkm[1-1]=dkm[1];

ck[1l-1]=ck[1l];

motifs[l]=temp motif;
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total fitness[l]=temp total fitness;
rk[l]=temp rk;
dkm[l]=temp dkm;
ck[l]=temp ck;

}

}

}

result.println("Motifs"+" "+"Total Fitness"+" "+"r (k) "+"
"4d (k,m) "+" "Hre (k) ") ;

for (int h=count-1;h>=0;h--){

if (motifs[h]!=""){

result.print(motifs[h]) ;

result.print (" ") ;

result.print (newDecimalFormat ("00.0000") .format (total fitness[h])):
result.print (" ")

result.print (newDecimalFormat ("00.0000") .format (rk[h]));

result

result.
result.

result
result
}
}

.print (" ")
print (newDecimalFormat ("00.

print (" ")

.print (newDecimalFormat ("00.
.println();

br.close() ;

result.

}

close();

privatevoidcreate directory() {
File theDir5 =newFile("final output");
if('theDir5.exists()) {
boolean result =false;

try{

theDir5.mkdir () ;
result=true;
}catch (SecurityException se) {

}

if (result) {

System.out.println("DIR created");

}
}
}
}
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0000") .

0000") .

format (dkm[h])) ;

format (ck[h])) ;



