
1 | P a g e

ISLAMIC UNIVERSITY OF TECHNOLOGY

A Modified Algorithm For DNA Motif Finding & Ranking

Considering Variable Length Motif & Mutation

Authors:

Adnan Ferdous Ashrafi (104414)
A.K.M Iqtidar Newaz Adit (104427)

Supervisor:

Prof. Dr. M.A Mottalib
Head of Department,

Department of Computer Science and Engineering, IUT.

Co-Supervisor:

Moin Mahmud Tanvee
Lecturer,

Department of Computer Science and Engineering, IUT.

A thesis submitted to the Department of CSE

In partial fulfillment of the requirements for the degree

B. Sc. Engineering in CSE

Academic Year: 2013-2014

2 | P a g e

Declaration of Authorship

This is to certify that the work presented in this thesis is the outcome of

the analysis and investigation carried out by Adnan Ferdous Ashrafi and

A.K.M Iqtidar Newaz Adit under the supervision of Prof. Dr. M.A

Mottalib and Moin Mahmud Tanvee of the Department of Computer

Science and Engineering (CSE), IUT, Dhaka, Bangladesh. It is also

declared that neither of this thesis nor any part of this thesis has been

submitted anywhere else for any degree or diploma. Information

derived from the published and unpublished work of others has been

acknowledged in the text and a list of references is given.

Authors:

Adnan Ferdous Ashrafi

Student ID – 104414

__
A.K.M Iqtidar Newaz Adit

Student ID – 104427

Supervisor:

Prof. Dr. M.A Mottalib
Head of Department

Department of Computer Science and Engineering
Islamic University of Technology (IUT)

3 | P a g e

Abstract:
With the evolution of time the gene composition of species have changed a lot.

Consequently it has mutated to generate new diseases and traits. In order to

identify genes or coding sections of a DNA sequence it is imperative to find out the

promoter regions or the conserved regions of the DNA code first. But the main

problem stands that the databases for these information are quite messy and

needs to be researched. The main problems in finding motifs in a DNA sequence

are finding a good and fast algorithm, considering mutations in those motifs,

representing variable length motifs and being species general. In this thesis work

we tried to formulate a new algorithm which is fast, accurate and effective.

Instead of general string matching of DNA sequences we have done integer

mapping and matching which are comparatively fast and accurate. Besides in

order to formulate a complete DNA motif finding algorithm we also need a

generalized and rational fitness function for evaluating the potential motifs. Thus

we have formulated a desirable fitness function that enables us to compare the

relativity among potential motifs and finally to predict a certain motif for the input

DNA sequences.

Keywords: Motifs, De Novo Motif Finding, Hash Table, Mutation, Fitness

Function, Integer matching.

4 | P a g e

Table of Contents

Declaration of Authorship ... 2

Table of Contents .. 4

Table of Figures : ... 6

1.1 Overview ... 7

1.2 Problem Statement ... 8

1.3 Research Challenges ... 9

1.4 Motivation ... 10

1.5 Scopes ... 10

1.6 Thesis Outline .. 11

2.1Motif .. 12

2.2 Overview of Motif Discovery .. 13

2.2.1 Types of Motif Finding Approach ... 15

2.3 Modeling and representation of DNA motifs ... 15

2.3.1 Representation of DNA motifs with sequence patterns .. 15

2.3.2 Representation with weight matrices .. 17

2.4 Related Works for Motif Finding ... 18

2.4.1 Motif discovery using linear-PSO with linear search ... 19

Main Objective: ... 19

Process: ... 19

Fitness calculation: .. 20

2.4.2 Motif discovery using linear-PSO with binary search .. 20

2.4.3 Motif discovery using De Bruijn Graph .. 21

2.4.4 A Modified Algorithm for Variable Length DNA Motif Discovery .. 21

3.1 Overall Concept ... 24

3.2 Proposed Method ... 25

3.3 Proposed Algorithm .. 29

3.4 Fitness Calculation: ... 30

3.4.1 Fitness Function [12] : .. 30

3.4.2 Fitness Function [13] .. 31

3.4.3 Proposed Fitness Function: .. 32

3.5 Experimental Data and Results: .. 33

5 | P a g e

3.5.1 Datasets: ... 33

3.4.2 Results: ... 33

3.4.3 Time Comparisons: .. 37

3.4.4 Result Verification: ... 37

4.1 Summary of the research .. 39

4.2 Future works ... 39

5.1 References .. 40

6.0 Appendix ... 42

Appendix 6.1 - Textprocessor.java .. 42

Appendix 6.2 - motifGenerator.java ... 44

Appendix 6.3 - HashTable.java .. 45

Appendix 6.4 - motifChecker.java ... 47

Appendix 6.5 - fitness_function.java .. 50

Appendix 6.6 - final_output.java... 52

6 | P a g e

Table of Figures :

Figure 1 shows the typical representation for a motif ... 13

Figure 2 IUPAC nucleotide codes for representation of degenerate DNA sequence patterns 16

Figure 3 Alignment and analysis of yeast pho4-binding sites ... 17

Figure 4 Matrix representations of the 14 pho4-binding sites in Fig. 3 .. 18

Figure 5 Target motif finding .. 19

Figure 6 Target Motif representation ... 21

Figure 7 Target Motif .. 22

Figure 8 Hash Table ... 22

Figure 9 Comparing DNA sequence .. 23

Figure 10 Target motif finding .. 25

Figure 11 Hash Table for 2nd DNA sequence ... 26

Figure 12 Matching index ... 26

Figure 13 Matching index ... 26

Figure 14 Matching index ... 27

Figure 15 Matching index ... 27

Figure 16 Matching index ... 27

Figure 17 Finding potential motif ... 28

Figure 18 our proposed motif discovery flow chart ... 28

Figure 19 Time comparison between hash table and our proposed method .. 37

Figure 20 Result comparison... 38

file:///J:/Thesis%20Book%20Final/modified%20algorithm%20considering%20mutation%20(Recovered).docx%23_Toc402316597
file:///J:/Thesis%20Book%20Final/modified%20algorithm%20considering%20mutation%20(Recovered).docx%23_Toc402316599

7 | P a g e

 Chapter 1

Introduction

1.1 Overview
Bioinformatics is the application of computer technology to the management of biological

information. Computers are used to gather, store, analyze and integrate biological and genetic

information which can then be applied to gene-based drug discovery and development. The

need for Bioinformatics capabilities has been precipitated by the explosion of publicly available

genomic information resulting from the Human Genome Project. In experimental molecular

biology, bioinformatics techniques such as image and signal processing allow extraction of

useful results from large amounts of raw data.

In the field of genetics and genomics, it aids in sequencing and annotating genomes and their

observed mutations. It plays a role in the textual mining of biological literature and the

development of biological and gene ontology’s to organize and query biological data. It plays a

role in the analysis of gene and protein expression and regulation. Bioinformatics tools aid in

the comparison of genetic and genomic data and more generally in the understanding of

evolutionary aspects of molecular biology. At a more integrative level, it helps analyze and

catalogue the biological pathways and networks that are an important part of systems biology.

In structural biology, it aids in the simulation and modeling of DNA, RNA, and protein structures

as well as molecular interactions.

Accelerated sequencing of genomes in the past decade has been accompanied by a rise in the use

of bioinformatics tools by microbiologists. It would be difficult to find a microbiologist today

who has never accessed online biological databases. Bioinformaticians and software developers

have facilitated this process by increased emphasis on convenience and ease of use of software

and databases, which in turn allowed microbiologists to use increasingly sophisticated techniques

with minimal effort. The discovery of patterns in DNA, RNA, and protein sequences has led to

the solution of many vital biological problems. For instance, the identification of patterns in

nucleic acid sequences has resulted in the determination of open reading frames, identification of

promoter elements of genes, identification of intron/exon splicing sites, identification of SH

RNAs, location of RNA degradation signals, identification of alternative splicing sites etc.Pattern

search in biological sequences has numerous applications and hence a large amount of research

http://en.wikipedia.org/wiki/Genetics
http://en.wikipedia.org/wiki/Genomics
http://en.wikipedia.org/wiki/Mutation

8 | P a g e

has been done to identify patterns. In Bioinformatics, it is common to search biological

sequences (DNA, RNA, proteins) for functional motifs such as cross-over hotspot instigators

(chi), restriction sites, regulation motifs, binding sites, active sites in proteins, etc. Sequence

motifs are important tools in molecular biology. Sequence motifs can describe and identify

features in DNA, RNA and protein sequences such as transcription factor binding sites, splice

junctions and protein-protein interaction sites.

‘Motif discovery’ (or ‘motif finding’) in biological sequences can be defined as the problem of

finding short similar sequence elements (building the ‘motif’) shared by a set of nucleotide or

protein sequences with a common biological function. The identification of regulatory elements

in nucleotide sequences, like transcription factor binding sites (TFBSs), has been one of the most

widely studied flavors of the problem, both for its biological significance and for its

bioinformatics hardness. Motifs are fundamental functional elements in proteins vital for

understanding gene function, human disease, and may serve as therapeutic drug targets.

Regulatory motifs are used to control the expression of genes, dictating under which condition

a gene will be turned on or off. Motif discovery typically involves the discovery of binding sites,

conserved domains. Regulation of gene expression is an essential feature of all living organisms

and viruses. It is vital for understanding gene Function, human disease, drug design. They are

often helpful in finding transcriptional regulatory elements, transcription factor binding sites.

Sequence motifs are becoming increasingly important in the analysis of gene regulation. Within

a sequence or database of sequences, researchers search and find motifs using computer-based

techniques of sequence analysis, such as BLAST. Such techniques belong to the discipline of

bioinformatics.

1.2 Problem Statement
The motif finding algorithms of this paper differ from one another in three ways of defining and

representing motifs, making hash table approach, the fitness function for calculating motif

significance and the search techniques used to find the optimal motifs. Numerous algorithms

have been developed for discovering motifs, as well as algorithms for scanning databases for

matches to a given motif or motifs. Some are specialized for discovery of DNA motifs. The main

problem of large amount of data is the inclusion of noisy and irrelevant data in the information

set. As the datasets become large the number of noisy, redundant and uninformative gene also

increases resulting in space-time complexity. We mainly focused on finding the motifs

accurately. So we work with on an efficient algorithm for motif discovery based on linear PSO,

linear PSO(binary search), hash table approach and variable length motif ranking considering

mutation evaluating them with fitness function.

http://en.wikipedia.org/wiki/Regulation_of_gene_expression

9 | P a g e

1.3 Research Challenges

With the large amount of biological data generated due to DNA sequencing of various

organisms, it is becoming necessary to identify techniques that can help in finding useful

information amongst all the data. Finding motifs involves determining meaningful short

sequences that may be repeated over many sequences in various species. Various approaches

for the motif discovery problem have been proposed in the literature. Computational methods

for identifying and modeling DNA sequence motifs and regulatory elements have been

developed over the past 25 years. These methods either use DNA patterns or position weight

matrices to model target DNA-binding sites. Some of these methods have been used

successfully to discover the cis-regulatory elements in genes that are thought to be

regulated by a common transcription mechanism. Orthogonal information from

comparative genomics or co-regulation at the expression level have been incorporated into

these methods to identify cis-regulatory sites. Because many of the regulatory elements are

functional in vivo only in certain temporal or spatial contexts and require other nearby sites

that together function as cis-regulatory modules, methods have also been developed to

address composite regulatory elements or regulatory modules that consist of DNA sites bound

by multiple regulatory factors. There are now many programs available for DNA motif discovery

and putative regulatory element identification, and several have web interfaces for easy use.

Bioinformatics is such a research area that is the interface between the biological and

computational sciences. Identification of all of the functional elements in genomes, including

genes and regulatory elements, is a fundamental challenge now that the complete genomic

sequences of a number of prokaryotes and eukaryotes are available. The ultimate goal of

bioinformatics is to uncover the wealth of biological information hidden in the mass of data and

obtain a clearer insight into the fundamental biology of organisms. This new knowledge could

have profound impacts on fields as varied as human health, agriculture, the environment,

energy and biotechnology. The identification of DNA motifs remains an active challenge for the

researchers in the bioinformatics domain. In recent years a considerable number of algorithms

have been designed for identifying regulatory elements in DNA sequence.

10 | P a g e

1.4 Motivation
In recent decades, scientists have extracted genetic sequences—DNA, RNA, and protein

sequences—from numerous organisms. These sequences hold the information for the

construction and functioning of these organisms, but as yet we are mostly unable to read them.

It has long been known that these sequences contain many kinds of “motifs”, i.e. re-occurring

patterns, associated with specific biological functions. Thus, much research has been devoted

to computer algorithms for automatically discovering subtle, recurring motifs in sequences.

However, previous algorithms search for rigid motifs whose instances vary only by

substitutions, and by insertions or deletions. Real motifs are flexible, and not only do vary by

insertions and deletions but also on other things. This study describes a new computer

algorithm for discovering motifs, which allows for arbitrary insertions and deletions. This

algorithm can discover real, flexible motifs, and should be able to help us determine the

functions of many biological molecules. Motif discovery is one of the classical sequence analysis

problems but still has not been satisfactorily solved in an exact and efficient manner. Motifs are

important patterns that are helpful in finding transcriptional regulatory elements, transcription

factor binding site s, function al genomics, drug design, etc. As a result, numerous papers have

been written to solve the motif search problem. Our motivation was finding an improved

approach for motif discovery.

1.5 Scopes

Biology is encoded in molecular sequences: deciphering this encoding remains a grand scientific

challenge. Functional regions of DNA, RNA, and protein sequences often exhibit characteristic

but subtle motifs; thus, computational discovery of motifs in sequences is a fundamental and

much-studied problem. This study aims at giving a new approach for better motif finding

approach. However, most current algorithms do not allow for insertions or deletions (indels)

within motifs, and the few that do have other limitations. But in our approach we try to solve

that by using PSO. But still lot of work is needed for improving our algorithm. For that purpose

the door for implementation is open for all interested ones. There can be work done like- for

reducing the time complexity, giving scores to the alignments, for overcoming the

generalization problem and others.

11 | P a g e

1.6 Thesis Outline

In Chapter 1 we have talked about the introduction of our study in a précised manner. Chapter

2 deals with the basic motif finding method and some highlighted evolutionary approaches with

a brief discussion about “motif” discovery and PSO method, a modified algorithm for variable

length motif discovery. Chapter 3 will be discussed about our proposed algorithm and some

elaborate discussion. Here we present a method “Species Specific Motif Discovery Using HAH

table and Variable Length Motif ranking considering mutation” for discovering motifs allowing

simple comparison among sequences from databases in a fully general manner. Chapter 4 will

consist of the experimental analysis and result comparisons.

12 | P a g e

 Chapter 2

Literature Reviews

This chapter is divided into two categories. In the first part of this chapter, we will describe the

fundamentals of Motif Detection. It gives the basics idea about the motif definition, detection

and the decisions made latter part of this book. Information about motif detection and other

relevant topics are mostly taken from various research articles . In the last section, a short

description about the different properties of the Motif finding methods will be provided.

2.1Motif

To classify and identify the features of DNA, RNA, Protein sequences in molecular biology, motif

plays an important role. It has the capabilities to describe and find out the special

characteristics of DNA, RNA, Protein sequences. Sequence motifs are becoming important in

the analysis of gene regulation day by day. Actually Motifs are short repeating pattern in DNA,

RNA, Protein sequences in molecular biologythat is conserved during the process of evolution.

Motifs are short, recurring patterns in DNA that are presumed to have a biological

function.Often they indicate sequence-specific binding sites for proteins such as nucleases and

transcription factors (TF). Others are involved in important processes at the RNA level, including

ribosome binding, mRNA processing (splicing, editing) and transcription termination. Basically it

has a great impact on biological science. It resides in a DNA, RNA or Protein sequences and

plays an important role in molecular biology.

Some common features of motif has been invented to identify it in the long sequences of DNA,

RNA or Protein. Some important features that are helpful to identify motif or know about motif

are given below:

 Motifs are patterns are of length 5 to 20 bases and are repeated overmany sequences.

 They are small, have constant size, and are repeated very often.

 They are statistically over-represented in regulatory regions.

Here we have given an example of motif in DNA sequences to understand the characteristic of

motif. From the example we can have a brief idea about the short recurring sequence Motif. In

13 | P a g e

the following example, we can see a conserved short sequence (Motif) in few DNA Sequences.

From the example we can see that the pattern ATGCAACT is unchanged and conserved. This

short DNA sequence ATGCAACT is called motif.

CGGGGCTATGCAACTGGGTCGTCACATTC

TTTGAGGGTGCCCAATAAATGCAACTCCA

GGATGCAACTGATGCCGTTTGACGACCTA

AAGGATGCAACTCCAGGAGCGCCTTTGCT

TACATGATCTTTTGATGCAACTTGGATGA

2.2 Overview of Motif Discovery

Motif discovery is a process of finding a meaningful pattern for DNA, RNA and protein sequence

that is commonly shared by two or more human and animal molecules. Motif sequences are

patterns found in biological sequences (DNA sequences, Protein sequences) that are important

for understanding gene function, human disease, drug design, etc. It is helpful to find out and

know the transcriptional regulatory elements, transcription factor binding sites, and so on.

Basically it plays a great role to find out the biological function in human evolution. However, to

find motif sequences is a very challenging task for the people of this sector.

Identification of motifs is becoming very important because they represent conserved

sequences which can be biologically meaningful. Some of the areas where motif discovery can

be useful include finding binding sites in amino acids, finding regulatory information within

either DNA or RNA sequences, searching for splicing information and protein domains. The

motifs can represent patterns which activate or inhibit the transcription process and are

responsible for regulating gene expression. Motif identification can be thought of as finding the

best local multiple alignments for the sequences under consideration. So, motif discovery is a

challenging field for the people of bioinformatics. But motif discovery is very interesting and

important in biological science though it is challenging task. Motif discovery can be used to

categorize unknown DNA sequences into their corresponding families which is very important

in biological science. If we can find out the similar family of DNA sequences it is easy to know

Figure 1 shows the typical representation for a motif

14 | P a g e

the biological function of them. Motif discovery also helps to classify the features of DNA, RNA,

Protein sequences. From the motif we can know the characteristics of DNA, RNA, and Protein.

Motifs represent regions that have been conserved through evolution. So, those regions are

likely to be important for the function of the protein (e.g. an active site).Motifs can be used to

classify proteins into families based on their functions, or predict the function of a new protein.

It is very important to know the functions of protein in biological functions. For this reason

motif finding is very important feature today for its demand. The motifs can represent patterns

which activate or inhibit the transcription process and are responsible for regulating gene

expression. Not only that but also motif is helpful in finding transcriptional regulatory elements,

transcription factor binding sites. For these reasons researchers are very much interested to

find out the best algorithm to detect the short conserved sequence Motif.

They are taking the challenges to find out the Motif sequences which have great impact on

biological function. Motif identification can be thought of as finding the best local multiple

alignments for the sequences under consideration. But there are some causes for what it is

becoming challenging and difficult task for the bioinformatics people.

The challenges present in motif identification include:

• We do not know the actual length of Motif sequence. So, it’s difficult to find out motif of

unknown length.

• The motifs are never exactly the same as the actualconserved sequence. There is always a

lot of sequence variability present with respect to a single motif.

• Motifs are very short signals as compared to the size of the DNA sequence under

consideration.

• The regulatory sequences containing the motifs may sometimes be located very far away

from coding regions that they regulate. This makes it difficult to determine the portion of

the DNA sequence that should be analyzed.

• The regulatory sequences may, at times, be present on the opposite strand from the

coding sequence they regulate.

For these few topics today motif finding is still one of the hardest task and becoming the

challenging field for the people of this field. They are trying hard to find the path to overcome

the given problem and find out the optimal path for detecting the motif from the long

sequences of DNA, RNA and Protein.

15 | P a g e

2.2.1 Types of Motif Finding Approach

Three versions of the motif search problem have been identified by researchers:

 Simple Motif Search (SMS),

 Planted Motif Search (PMS) – also known as (l, d)- motif search and

 Edit-distance-based Motif Search (EMS).

PMS problem takes as input n sequences of length m each and two integers l and d. The

problem is to identify a string M of length l such that M occurs in each of the n sequences with

a Hamming distance of at most d.

For example, if the input sequences are GCGCGAT, CACGTGA, and CGGTGCC; l =3 and d=1, then

GGT is a motif of interest. EMS is the same as PMS, except that edit distance is used instead of

the Hamming distance. SMS takes as input n sequences and an integer l .The problem is to

identify all the patterns of length l (with up to l /2 wild card characters), together with a count

of how many times each pattern occurs.

2.3 Modeling and representation of DNA motifs

2.3.1 Representation of DNA motifs with sequence patterns

Motifs in DNA sequences can be modeled by sequence patterns, which are simply ‘words’ in the

four-letter alphabet (A, C, G, T) of DNA. In order to capture the information about degeneracy,

where more than one base may occur in a specific position of a binding site, the International

Union of Pure and Applied Chemistry (IUPAC) nucleic acid codes are used (see Fig. 2). Once a

sequence pattern for a binding site is determined, there are very fast methods for finding all

occurrences of that pattern in a DNA sequence. The limitation of sequence patterns is that

many binding sites do not match the pattern exactly, although they are usually very similar to it.

Fig. 2shows an alignment of binding sites for the Pho4 TF from Saccharomyces cerevisiae, taken

from the Promoter Database of Saccharomyces cerevisiae(SCPD) , and shows that at most

positions more than one base is tolerated, even though there is always a predominant, or

preferred, base. A consensus sequence, which indicates the most common base at each

position, is easily determined for this site: ATTCGCACGTGG. However, as the occurrence matrix

(see Fig. 3) shows, only positions 6–9 always match the consensus sequence, and every other

position tolerates variants; in a larger sample size of functional sites, even the apparently

conserved positions may show variations. A search for the consensus sequence would miss all

16 | P a g e

of the known sites.If we were to encode every position with the IUPAC degeneracy letter from

the observed sites; we would get the pattern HBHHNCACGYKN (invariant positions in bold). A

search of the genome with this pattern would find all of the known sites, but would also

produce a large excess of nonfunctional sites that match the pattern. For example, the

sequence CGATACACGCTA matches the degenerate IUPAC pattern but has almost no similarity

to the consensus sequence, matching only the four conserved positions, and is unlikely to be a

binding site. Alternatively, we could search using the consensus sequence allowing one

mismatch, but we would miss 13 of 14 known sites that way. The known binding sites have

between one and five mismatches to the consensus sequence, so to find all of them in the

genome one would have to allow up to five mismatches. However, there are more than 200

000 different sequences that match the consensus allowing for five mismatches, the vast

majority of which are unlikely to be true binding sites.

Figure 2 IUPAC nucleotide codes for representation of degenerate DNA sequence patterns

.

17 | P a g e

a) Alignment of the 14 S. cerevisiaepho4-binding sites generated by the consensusprogram

reveals a 12 nt. representative DNA motif. The binding site is boxed; sequences shown in

gray are on the opposite strand of the DNA and have been reverse-complemented in this

figure.

b) The table shows the frequency of each base at each of the 12 positions in the motif.

Beneath it are shown the consensus sequence and the IUPAC representation, which

shows all degeneracy in the sequence.

2.3.2 Representation with weight matrices

A more general representation of TF-binding sites is a position weight matrix (PWM)

(alternative names include weight matrix, position-specific scoring matrix or PSSM, specificity

matrix, and others. In this representation (see Fig. 4), an l-long sequence motif is represented

by a 4 × lmatrix where each possible base, at each position in the binding sites, is assigned a

score. The score of any specific sequence is just the sum of the position scores from the weight

matrix corresponding to that sequence. For example, the score of the consensus sequence, is

the sum of the bold numbers in the matrix (see Fig. 4d). Any other sequence can be scored

similarly, so that an entire genome can be scanned by a matrix and the score at every position

obtained.

Figure 3 Alignment and analysis of yeast pho4-binding sites

18 | P a g e

Figure 4 Matrix representations of the 14 pho4-binding sites in Fig. 3

2.4 Related Works for Motif Finding

Day by day Motif Detection is becoming a challenging and interesting topic to the concerned

people of this area. Many researchers are working to develop the methods to find the short

sequence from the DNA or Protein sequences. Motif discovery is a very important problem in

biology. It finds applications in DNA or protein sequence analysis, comprehending disease

susceptibility and disease cure. A considerable effort in this area was concentrated on

understanding the evolution of the genome by identifying the DNA binding sites for

transcription factors. So, now-a-days we can see a number of existing methods to get the motif

in the effective way. In this study, we present some of the computational methods that exist

and try to evaluate their performance in case of long sequences. Some computational

algorithms along with some Graph-based algorithms have been found to identify motif. Here,

we will discuss some of the methods that are needed to develop our proposed method.

19 | P a g e

2.4.1 Motif discovery using linear-PSO with linear search

Lailee et al [1] used a modified motif search algorithm based on a population based stochastic

optimization technique called Linear Particle Swarm Optimization (PSO).

For this study PSO was modified for discovering motif. The modified Linear-PSO is chosen even

though it is slower because linear search is not a choice but a necessary criteria for identifying

motif for specific species. Linear-PSO is used linear selection and linear search in order to

compare all possible motifs existing in DNA sequences for representing specific species. Particle

Swarm Optimization algorithm is an evolutionary optimization technique by Kennedy

&Eberhart. In Linear PSO they use linear number for population initializing and next position

updating.

Main Objective:

Search a species specific motif existed in each DNA sequence from the same species.

Process:

First a DNA set is selected as Target set. Then target motif(s) is extracted from the Target set

.Then target motif is compared with other DNA sequences.

Target motif is the possible combination of bases from the ‘Target Set’ of pre specified length.

Number of target motif , t = (n – tm) + 1

where n = length of target DNA sequence

tm = length of target motif

Figure 5 Target motif finding

20 | P a g e

Fitness calculation:

Fitness function is used to maximize the similarity of the sequence of the motif found while

avoiding low complexity solution .In case of exact match for each base count 1 point and for

exact match count an additional point (total point multiply by 2).

2.4.2 Motif discovery using linear-PSO with binary search

Lailee et al [4] used linear-PSO for binary search. Searching is one of the most basic

operations performed in a computer. Searching is widely used in fields such as database

management, compiler construction and natural language processing. Searching in

bioinformatics is important because there is a need to identify pattern in DNA sequences as

quickly as possible. Therefore, speed is one of the most important criteria when determining the

quality of a search process. The most popular method of searching is Binary Search.The Linear-

PSO algorithm [2] which uses linear search requires more time compared to the original PSO.

Even though the speed of Linear-PSO is slow, the validity and accuracy of the result is high

because all possible combinations of motifs are tested.

However, linear search slows down the algorithm, when the speed is one of the most important

factors under consideration. In this paper we present an improved version of Linear -PSO that is

integrated with a Binary Search.The first DNA sequence was selected as a Reference Set and

other DNA sequences will be used to compare for similarity of motif among different animals

from the same species as shown in Fig 4. Target motif is found as like as in the linear search

algorithm. From the 1st sequence target motif is selected and compare with the other sequences.

In this study, length of motif is set to 6 bases and without any mutation (6, 0).Linear-PSO with

Binary Search is an improved version of Linear-PSO. There were two improvements made to the

Linear-PSO algorithm. First, the preprocessed data needed to be sorted before applying this

algorithm. Second, for similarity searching, Binary Search is used instead of Linear Search.

21 | P a g e

Figure 6 Target Motif representation

2.4.3 Motif discovery using De Bruijn Graph

Hong Zhou et al [5] used De Bruijn graph for motif discovery.Graph theory is playing an

important role in computational biology. Graph-based algorithms provide a simpler and quicker

solution to computationally intensive problems such as DNA fragment assembly and motif

discovery.

This paper focuses on developing a time-efficient algorithm for motif discovery using a de

Bruijn graph. We have found that the algorithm was successful in mining signals for larger

number of sequences and at a faster rate when compared to some popular motif searching tools

such as MEME.

First a deBruijn graph is constructed. Then cycles are removed and transformed it into a directed

acyclic graph.Then a path on the directed graph is computed and later on the conserved regions

are extracted.

2.4.4 A Modified Algorithm for Variable Length DNA Motif Discovery

Samiul Islam et al [11] used variable length motif discovery, introducing index table concept in

motif searching, In their paper they model the solution by following steps: Extract target motif,

compare with other DNA sequence, calculating the target motif using fitness function, find the

best motif using fitness value.A DNA sequence is selected as a target set and motifs(particles)

are generated from the target set of a specific length which are known as ‘target motif’.

22 | P a g e

Figure 7 Target Motif

For searching purpose they have made a index table where the positions of the first character of

the target motif existed in other DNA sequences will be indexed.

Figure 8 Hash Table

Directly search those positions of the DNA sequence for further comparison and compare the

characters sequentially.

23 | P a g e

Figure 9 Comparing DNA sequence

For Fitness calculation and Ranking, maximize the similarity of the sequence motif avoid low

complexity solutions. For example ‘TTTTT’ has lower complexity than ‘ATTTA’. For exact

matching, Fitness value = motif length*2. For one mutation, Fitness value = motif length-1. For

ranking highest fitness value is considered.

24 | P a g e

Chapter 3

Proposed Method

3.1 Overall Concept

PSO algorithm starts with the random initialization of a population of individual particle in the

search space. Each particle goes through the fitness calculation. However, previous researchers

who used methods based on PSO only focus on motif detection in individual DNA sequence that

permit randomization of selected population.In our method we propose to select variable

length target motif where as previously some researchers selected constant length target

motifs. For that reason the output motif sequence may not be the best motif sequence because

there can be other motif sequence of different length whose fitness value might be higher than

the previous. In our proposed method we focus on not only finding the exact motif sequence

and also the mutation.

In our thesis work, we are going to propose a new searching algorithm based on the PSO where

for each cycle only one particle called ‘target motif’ are selected and compared with the DNA

sequences for fitness calculation.

The selection of target motif in our proposed method plays an important role to get the exact

and accurate motif sequence. Here, we consider the variable length to choose the target motif

from the selected DNA sequence which will to correctly identify the motif. Because motif length

is an important fact in finding motif sequences. So, we consider the variable length to calculate

the fitness value and from the fitness values we can identify the best suited motif. In our

method we have shown that when the target motif length is increasing it’s tough to get the

perfect match. But here we can see that for which length of target motif we are getting the

motif frequently and for which length we are getting the highest fitness value.

We can see the experimental result from our next result section from where we can get the

idea of our proposed variable length target motif.

Secondly we develop a new searching algorithm to compare the target motif with other DNA

sequences in effective way. Basically we introduce the ‘hash table’ in searching process which

brings the flexibility and simplicity. Each sequence is converted to a corresponding index hash

table. So basically instead of string matching we are trying for integer matching which is faster

25 | P a g e

in all sense. It’s also helpful for time consuming. It reduces the redundancy which we face in the

linear search. Actually linear search is a time consuming and lengthy process for long DNA

sequences. So, we are planning to improve the method by effectively the hash table concept to

compare the long DNA sequences in an effective way.

3.2 Proposed Method

The information in DNA is stored as a code made up of four chemical bases A, T, C, and G. In our

proposed method the main focus is on finding the best suited motif sequence from a set of

DNA sequences. To do that we assume the chemical bases as characters and the DNA

sequences as strings. Initially we will select some random DNA sequences of same species. But

finally we will choose a specific dataset (GenBank:SusScrofa) for DNA sequences.

Figure 10 Target motif finding

From those DNA sequences first we have selected a random DNA sequence as target DNA

sequence and from it we will extract the target motifs. For the every DNA sequences we have

made the hash table. Below we have shown our reference genome and 2nd DNA sequence and

its hash table:

26 | P a g e

Figure 11 Hash Table for 2nd DNA sequence

Our target motif is AATCGT and we are going to the 2nd DNA sequence hash table and looking

for A’s position and we have found it in 1, 2, 8, 13, 14, 16, 17, 22 index position. Now our

second letter is also A it must be in next of 1st A position. And that’s why 8 and 22 indices are

omitted.

Figure 12 Matching index

Now, our next letter is T and its position is 3, 6, 9, 12, 18, 23, 29, 30. And we need to check

whether it’s in the next position of the second A’s index. And we have found it in the 3rd and

18th positon.

Figure 13 Matching index

Similarly we need to check for C’s and G’s position.

27 | P a g e

Figure 14 Matching index

Figure 15 Matching index

But now we have to check T’s index which position must be 21 but here in 21 position its G’s

index so this doesn’t match and we can say that it’s 1 letter mutation.

Figure 16 Matching index

For target motif: A=1, A =2, T=3, C=4, G=5, T=6

For 2nd DNA sequence if we take A’s position as i then 2nd A’s position must be i+1. This

sequence will be continued up to six characters and if all matches then it is (6,0) potential motif

and if one mismatch then it is (5,1) potential mutated motif.

28 | P a g e

Figure 17 Finding potential motif

Now we need to do this process repeatedly to get the potential motif and below we have

shown our flow chart:

Figure 18 our proposed motif discovery flow chart

29 | P a g e

3.3 Proposed Algorithm

Algorithm: MOTIF _FINDER

1. Select the database for finding motifs, constraint is the database files must be DNA

sequences of the same species.

2. Select randomly any one of the DNA sequences to be the reference DNA from where we

will extract the motifs.

3. Make hash table consisting of 4 rows for the 4 letters A,T,G & C for the remaining DNA

sequences.

4. Extract motifs of length 5 to 20 from the reference DNA sequence.

5. Take 1 motif at a time and begin checking.

I. For each target motif check indices of corresponding characters in hash table of

next sequences.

II. Consider the mutation flag set to 1. [1 mutation allowed in each motif]

A. If corresponding indices match output it as a motif.

B. If corresponding indices match with 1 mismatch maximum, output it as a

mutated motif.

C. Else go to step 5.

III. Check for 1st letter mutation.

A. Check for strings of size 1 less than the target motif length from the hash

table of other sequences.

B. If all corresponding indices match check its left position by comparing the

character at the leftmost of the motif and corresponding index from the

hash table.

C. If the character does not match output it as a possible 1 character

mutated motif.

D. Else go to step IV.

30 | P a g e

IV. Calculate the fitness value according to the fitness function.

V. Increase motif length.

VI. Go back to step 4 and repeat the process until motif length is greater than 20.

6. Make a ranking table from the fitness values of target motifs.

Choose the high ranked motif as output.

3.4 Fitness Calculation:
Similarity and complexity are the two main factor required to evaluate a motif [9]. Along with

the necessity of being the two sequences to be similar, their complexity also needs to be

addressed. For example ‘TTTTT’ has lower complexity than ‘ATTTA’. The objective of the fitness

function is to maximize the similarity of the sequence motif as well as avoiding low complexity

solutions.

3.4.1 Fitness Function [12] :

Fitness function used in this experiment is adapted from Sarwar Topon, Dianhui Wang [12] that

we intend to use in our algorithm:

𝑟(𝑘,𝑚) =
𝑑(𝐾,𝑀)

𝑑(𝐾,𝑀𝑟𝑒𝑓) +𝑐(𝐾)

r(K,M) is used to find the potential motif.

𝑑(𝑘,𝑚) = 1 − 1/𝑘

[

∑ ∑ f(bi, i)𝑘(𝑏𝑖, 𝑖)

⍱𝑏𝑖€𝑥

𝑘

𝑖=1]

…………0 ≤ d(k,m) ≤ 1

d(K,M) is generalized hamming distance, where f(bi,i) and k(bi,i) are the observed frequencies of

base bi at position i in K and M.

𝑐(𝑘) = 4/3[1 −
1

𝑘2 [∑ (∑ 𝑘(𝑏𝑖, 𝑖)𝑘
𝑖=1)

2
∀𝑏𝑖∈𝑥]

]…………0 ≤ 𝑐(𝑘) ≤ 1

31 | P a g e

c(K) is used to find the composition complexity of K where the complexity is scored according to

the distribution of bases (A, C, G, T) in the K.

Example:

Let’s say K = AATCTC M = AATGTC Mref = ACTATC

d(K,M) =
1

6
 d(K,Mref) =

2

6
 c(K) = 0.72

 r(K,M) = 0.15822

As d(K,M) > d(K,Mref) so it is a potential motif of r(K,M) = 0.60096

Let’s say K = TTTTTT M = AATGTC Mref = ACTATC

d(K,M) =
4

6
 d(K,Mref) =

4

6
 c(K) = 0.0

 r(K,M) = 1.0

So the lowest r(K,M) is their desired motif.

3.4.2 Fitness Function [13]

Total_Fitness (P) = w1*L + w2*∑ FS(Sm, Pn)……………………[13]

Here,

 w1 = weight given to the length and

 w2 = weight given to similarity.

If S = AATCTC , P = AATCTC

 w1 = w2 = 1 [we assume]

 L =length of the motif = 6

Then ∑ FS(Sm, Pn) means how many times P has been found in S (DNA sequences).

32 | P a g e

Example :

If it matches exactly then 1 otherwise 0. Here for this example:

 Total_Fitness(P) = w1*L + w2* ∑FS(Sm, Pn)

 Let’s say P has been found in S for 19 times that means:

 Total_fitness(P) = 1*6+1*19 = 25 [w1=w2=1 and ∑FS(Sm,Pn) =19]

 Here for low complexity like “TTTTTT” it will show the highest value but actually it is

not a motif.

3.4.3 Proposed Fitness Function:

Fitness_Score = w1 * L + w2 * r(K,M)

r(k,m) will now calculate the similarity

Let’s say K = AATCTC M = AATGTC Mref = ACTATC

d(K,M) =
5

6
 d(K,Mref) =

4

6
 c(K) = 0.72

 r(K,M) = 0.60096

As d(K,M) > d(K,Mref) so it is a potential motif of r(K,M) = 0.60096

Fitness Score = 1*6+1*(0.60096+0.72) = 7.32096

Let’s say K = TTTTTT M = AATGTC Mref = ACTATC

d(K,M) =
2

6
 d(K,Mref) =

2

6
 c(K) = 0.0

 r(K,M) = 1.0

Fitness_Score = 1 * 6 + 1 * 1.0 = 7

Now, it will give lower value for lower complexity.

So in this example AATCTC is the potential motif.

33 | P a g e

3.5 Experimental Data and Results:

In this paper, we have used Sus Scrofa , Mus musculus, Homo sapiens, Aedes aegypti , Felis

catus dataset. The data was taken from GenBank database. The lengths of selected sequences are

from 829 based to 850 bases. Table shows the dataset we have used.

3.5.1 Datasets:

The datasets that we used are as follows (accession numbers specified)

SusScrofa Musmusculus Feliscatus Homo sapiens Aedesaegypti

BW970508 JK707008.1 KJ933256 NM_001166002.2 KJ736826

BW971304 JK707007.1 KJ933223 NM_001166004.2 KJ736827

BW972295 JK707011.1 KJ933191 NM_001166003.2 KJ736825

BW973679 JK707010.1 KJ933160 NM_181773.4 KJ736824

Table 1: Dataset

3.4.2 Results:

We have considered variable length motif discovery. As mentioned earlier, any of the DNA

sequences can be chosen for generating the target motifs. For our experiment, we have selected

the first DNA sequence to generate target motif. When we have considered the motif length as

six without mutation (6, 0), the total number of potential motif presents in the DNA sequence is

824 ((829 – 6) +1). The set of target motifs then compared with all possible combinations of

motifs from 2nd, 3rd and 4th DNA sequences with the help of index table generated for respective

DNA sequence. The same procedure has been repeated while the motif length are (7, 0) and (8,

0). Only one iteration is required in this process to discover any unknown motifs. While

searching for a motif, the fitness function assigns points for each of the potential motifs for each

34 | P a g e

of the other DNA sequences. The motifs are ranked based on the fitness values acquired while

comparing with other DNA sequences.We have also considered the possibility of mutation in

motifs. We have allowed our calculation to consider one or more mutation (i.e. (6, 1,(6,2)) for

motifs of length six and one or two or no mutation) while comparing motifs with other

sequences. Below we have given our target motif results for 2nd, 3rd and 4th sequence.

Sequence

Number

Motif

Length

Target

Motifs

Total

Fitness

r(k)

value

d(k, m)

value

c(k) value

2
n

d
 S

e
q

u
e

n
ce

6,0 TGTGGC 27.7776 03.7776 01.3332 02.4444

GTGGCT 27.7776 03.7776 01.3332 02.4444

AAAAGG 27.1112 03.1112 01.3332 01.7776

7,0 ATTTCAG 30.2448 02.2448 00.8572 01.3878

GTGGCTG 29.7142 01.7142 00.5714 01.1428

ATGTGTA 15.5102 01.5102 00.8571 00.6531

8,0 ATTTCAGC 25.5938 01.5938 00.8750 00.7188

ATGTGTAC 25.3438 01.3438 00.6250 00.7188

TGTGGCAC 25.0938 01.0938 00.3750 00.7188

6,1 and 6,2 GTGGCT 42.6666 06.6666 03.0000 03.6666

AAAAGG 33.8890 03.8890 01.6665 02.2220

CAAAAA 31.3890 01.3890 00.0000 01.3890

7,1 and 7,2 GTGGCTG 76.4285 06.4285 03.5715 02.8570

GTGTACA 30.6122 02.6122 01.1428 01.4694

GTGGAGT 30.5714 02.5714 01.4286 01.1428

8,1 and 8,2 GTGGAGTT 50.1876 02.1876 01.0000 01.1876

CTGCCATG 25.4688 01.4688 00.7500 00.7188

CGGTCCTG 25.2812 01.2812 00.6250 00.6562

35 | P a g e

Sequence

Number

Motif

Length

Target

Motifs

Total

Fitness

r(k)

values

d(k, m)

values

c(k)

values

3
rd

 S
e

q
u

e
n

ce

6,0 AAGAAG 108.4448 12.4448 05.3328 07.1104

GTGGAG 43.0002 07.0002 04.0002 03.0000

TGTGGA 42.6666 06.6666 03.0000 03.6666

7,0 CAAGAAG 59.4284 03.4284 01.1428 02.2856

AAGAAGG 44.7552 02.7552 01.2858 01.4694

GAAGAAG 44.7552 02.7552 01.2858 01.4694

8,0 GAAGAAGG 50.2500 02.2500 01.2500 01.0000

AAGAAGGC 50.1876 02.1876 01.0000 01.1876

CGCGGAGC 25.2188 01.2188 00.6250 00.5938

6,1 and 6,2 AAGAAG 145.8324 19.8324 10.5000 09.3324

TTGTGG 56.0000 08.0000 04.0000 04.0000

TGTGGA 49.7777 07.7777 03.5000 04.2777

7,1 and 7,2 CAAGGTG 61.0612 05.0612 02.2856 02.7756

TGACACG 60.0816 04.0816 01.1428 02.9388

CAAGAAG 60.0000 04.0000 01.7144 02.2856

8,1 and 8,2 CAAGGTGG 50.5624 02.5624 01.2500 01.3124

TGGACCGG 50.3124 02.3124 01.0000 01.3124

36 | P a g e

Sequence

Number

Motif

Length

Target

Motifs

Total

Fitness

r(k)

values

d(k, m)

values

c(k)

values

4
th

 s
e

q
u

e
n

ce

6,0 CCTGCA 43.0002 07.0002 03.0000 04.0002

TCATCA 28.0000 04.0000 01.3332 02.6668

ACCAGG 28.0000 04.0000 01.3332 02.6668

7,0 CATCATC 44.3877 02.3877 00.4287 01.9593

GTGGCCA 30.8164 02.3877 01.4286 01.3878

TTCAGCA 30.0408 02.0408 00.5714 01.4694

8,0 GGCACCAT 25.3438 01.3438 00.6250 00.7188

GTGGCCAT 25.3438 01.3438 00.6250 00.7188

GCGGCGAA 25.2500 01.2500 00.6250 00.6250

6,1 and 6,2 ATGCTG 70.5560 10.5560 03.3330 07.2220

AAGAAG 47.4446 05.4446 02.3331 03.1108

ACCAGG 43.9998 07.9998 04.0002 04.0002

7,1 and 7,2 TGCCGCC 75.7145 05.7145 02.8570 02.8570

CATCATC 44.8164 02.8164 00.8571 01.9593

ATGCTGC 30.8980 02.8980 01.4286 01.4694

8,1 and 8,2 CAAGAGTC 49.9376 01.9376 00.5000 01.4376

ATGCTGCA 25.3750 01.3750 00.6250 00.7500

CTGCAGTG 25.3438 01.3438 00.6250 00.7188

Table 2: Potential target motif(after fitness calculation)

37 | P a g e

3.4.3 Time Comparisons:

Figure 19 Time comparison between hash table and our proposed method

Here for hash table approach for (6,0) motif it took 128 seconds where for our proposed method

it takes 15 seconds. For (7,0) motif it takes 14 seconds and for (8,0) motif it takes 18 seconds.

For hash table approach (6,1) motif took 236 seconds where our method take only 31 seconds for

both (6,1) and (6,2) motifs. And all at once it takes 84 seconds.

3.4.4 Result Verification:

For our result evaluation we used Fasta, Blast, CompareMotif(Online de novo motif finding tool)

http://bioware.ucd.ie/~compass/biowareweb/Server_pages/comparimotif.php . For input it takes motif

in one text file and DNA sequence in another text file then there is a field of variation in motif if there is

0.5 then it will consider 50 percent mutation from its parents and if it is 1 then it will show the exact

match of the motif.For the following output inputs were

I. Compare motif
 Motifs file (motifs_length_6.txt)

 2nd DNA sequence from Sus

scrofa dataset (2.txt, accession

number BW971304)

 IC value 1.0 (means only exact

matching)

II. Proposed system
 Motifs file (motifs_length_6.txt)

 2nd DNA sequence from Sus

scrofa dataset (2.txt, accession

number BW971304)

 Allowed Mutation is 2

Table 3 : Inputs for result verification

http://bioware.ucd.ie/~compass/biowareweb/Server_pages/comparimotif.php

38 | P a g e

Figure 20 Result comparison

39 | P a g e

Chapter 4

Conclusion

4.1 Summary of the research
In our thesis, mainly we proposed a method to identify motif in an effective way. As motif

detection is an important part of biological researches due its demand on biological science, we

have tried our best to find out the most efficient way to detect motif in DNA sequences. Actually

we have considered the length of the target motif very seriously and we build up our proposed

algorithm according to the variable length of target motif. We mainly developed a new searching

algorithm concept where we introduce hash table concept from the index of the target motif

using linear search and we have used new fitness function to calculate the potential motif and

also we consider the first letter mutation and mutation in any possible position.

Experimental results show that the proposed method identifies the motifs from Sus Scrofa,Homo

Sapiens, Cat, Mus muculus dataset with similar accuracy as Linear-PSO and with greater

efficiency. By incorporating Linear-PSO we have achieved the benefit of allowing all possible

motifs in a sequence of variable length and along with it, the addition of the concept of index

table made the pervious algorithm an improved method. As a result, the algorithm becomes

faster and the validity of the result is also high.

4.2 Future works
We have completed our simulation work and have got better result than using the Linear-PSO

method and modified algorithm of motif finding..

During the process of creating index table, we have created hash table for every DNA sequence

and for every character we are going back to the hash table again and it has been taken less time

then previous method. And the fitness function that we have used is more efficient than the

previous one which is too trivial. And here we also considered the first letter mutation. So next

time we will try to make the search faster though we have used exhaustive search here.

40 | P a g e

Chapter 5

5.1 References

1. Davila, J., Balla, S., Rajasekaran, S.: Fast and practical Algorithm for Panted (l, d) Motif

Search. In: IEEE/ACM Transactions on Computational Biology and Bioinformatics, vol.

4, pp. 544-552, IEEE Press (2007)

2. Pradhan, M.: Motif Discovery in Biological Sequences. Master’s Projects (2008)

3. Kennedy, J., and Ebehart, R.: Particle Swarm Optimization. In: IEEE International

Conference on Neural Networks, Perth, Australia (1995).

4. Chang, B., C., H., Ratnaweera, A., and Halagmuge, S., K.,: Particle Swarm Optimization

for Protein Motif Discovery. In Genetic Programming and Evolvable Machine, vol. 5, pp.

203-214. (2004)

5. Akbari, R., and Ziarati, K.,: An Efficient PSO Algorithm for Motif Discovery in DNA. In

IEEE International Conference of Emerging Trends in Computing, Tamil Nadu, India

2009.

6. Hardin, C., T., and Rouchka, E., C.: DNA Motif Detection Using Particle Swarm

Optimization and Expectation-Maximization. In IEEE Symposium on Swarm

Intelligence, 2005.

7. Zhou, W., Zhu, H., Liu, G., Huang, Y., Wang, Y., Han, D., and Zhou C.: A Novel

Computational Based Method for Discovery of Sequence Motifs from Coexpressed

Genes. In International Journal of Information Technology, vol. 11 (2005).

8. Lei, C., and Ruan, J.: A Particle Swarm Optimization Algorithm for Finding DNA

Sequence. In IEEE International Conference on Bioinformatics and Biomedicine,

Philadelphia, 2008.

9. Sharifa, L., S., A., Harun, H., and Taib, M., N.: A Modified Algorithm for Species

Specific Motif Discovery. In International Conference on Science and Social Research

(CSSR 2010), Kuala Lumpur, Malaysia, Dec 5-7, 2010.

10. Sharifa, L., S., A. and Harun, H.: Motif Discovery using Linear-PSO with binary Search.

In AWERProcedia Information Technology & Computer Science. Pp 458 – 462. (2012)

41 | P a g e

11. CompariMotif: quick and easy comparisons of sequence motifs Richard J. Edwards1,2,*,

Norman E. Davey1 and Denis C. Shields. Received on February 11, 2008; revised on

March 18,2008; accepted on March 19, 2008.Advance Access publication March 28,

2008

12. Dianhui Wang, SarwarTapan. : MISCORE: a new scoring function for characterizing

DNA regulatory motifs in promoter sequences.From 23rd International Conference on

Genome Informatics (GIW 2012) Tainan, Taiwan. 12-14 December 2012.

13. ShripalVijayvargiya, Pratyoosh Shukla.: A Structured Evolutionary Algorithm for

Identification of Transcription Factor Binding Sites in Unaligned DNA Sequences.

International Journal of Advancements in Technology http://ijict.org/ ISSN 0976-4860

14. Matt Stine, DipankurDashgupta,SurajMukatira. : Motif Discovery in Upstream

Sequences of Coordinately Expressed genes. sequences.From 20rd International

Conference on Genome Informatics (GIW 2011) Tainan, Taiwan. 11-13 December 2011.

42 | P a g e

Chapter 6

6.0 Appendix

Appendix 6.1 - Textprocessor.java

Package text_processor;

Import java.io.BufferedReader;

Import java.io.Buffe redWriter;

Import java.io.DataInputStream;

Import java.io.File;

Import java.io.FileInputStream;

Import java.io.FileNotFoundException;

Import java.io.FileWriter;

Import java.io.IOException;

Import java.io.InputStreamReader;

Import java.io.PrintWriter;

Import java.text.DecimalFormat;

publicclassfinal_output{

publicfinal_output(String

input,intmotif_length,intsequence_no)throwsFileNotFoundException,IOException{

create_directory();

PrintWriter result =newPrintWriter(newBufferedWriter(new

FileWriter("final_output\\"+"final_output_sequence_no"+sequence_no+"_motif_le

ngth_"+motif_length+".txt",false)));

String[] motifs =new String[1500];

double[]total_fitness=newdouble[1500],dkm=newdouble[1500],rk=newdouble[1500],

ck=newdouble[1500];

FileInputStreamfstream=newFileInputStream(input);

DataInputStream in =newDataInputStream(fstream);

BufferedReaderbr=newBufferedReader(newInputStreamReader(in));

intline_count=0;

 String line="";

int count=0;

while((line=br.readLine())!=null){

if(line_count>1){

String[] output=line.split("\\s+");

motifs[count]=String.valueOf(output[0]);

total_fitness[count]=Double.parseDouble(output[1]);

rk[count]=Double.parseDouble(output[2]);

dkm[count]=Double.parseDouble(output[3]);

ck[count]=Double.parseDouble(output[4]);

count++;

}

line_count++;

}

for(int j=0;j<count;j++){

for(int l=j+1;l<count;l++){

43 | P a g e

if((motifs[j]==null? motifs[l]==null:

motifs[j].equals(motifs[l]))&&!"".equals(motifs[j])&&!"".equals(motifs[l])){

total_fitness[j]=total_fitness[j]+total_fitness[l];

rk[j]=rk[j]+rk[l];

dkm[j]=dkm[j]+dkm[l];

ck[j]=ck[j]+ck[l];

motifs[l]="";

total_fitness[l]=0;

rk[l]=0;

dkm[l]=0;

ck[l]=0;

}

}

}

for(int j=1;j<count;j++){

for(int l=count-1;l>=j;--l){

if(total_fitness[l-1]>total_fitness[l]){

 String temp_motif=motifs[l-1];

doubletemp_total_fitness=total_fitness[l-1];

doubletemp_rk=rk[l-1];

doubletemp_dkm=dkm[l-1];

doubletemp_ck=ck[l-1];

motifs[l-1]= motifs[l];

total_fitness[l-1]=total_fitness[l];

rk[l-1]=rk[l];

dkm[l-1]=dkm[l];

ck[l-1]=ck[l];

motifs[l]=temp_motif;

total_fitness[l]=temp_total_fitness;

rk[l]=temp_rk;

dkm[l]=temp_dkm;

ck[l]=temp_ck;

}

}

}

result.println("Motifs"+" "+"Total Fitness"+" "+"r(k)"+"

"+"d(k,m)"+" "+"c(k)");

for(int h=count-1;h>=0;h--){

if(motifs[h]!=""){

result.print(motifs[h]);

result.print(" ");

result.print(newDecimalFormat("00.0000").format(total_fitness[h]));

result.print(" ");

result.print(newDecimalFormat("00.0000").format(rk[h]));

result.print(" ");

result.print(newDecimalFormat("00.0000").format(dkm[h]));

result.print(" ");

result.print(newDecimalFormat("00.0000").format(ck[h]));

result.println();

}

}

br.close();

result.close();

}

44 | P a g e

privatevoidcreate_directory(){

 File theDir5 =newFile("final_output");

if(!theDir5.exists()){

boolean result =false;

try{

theDir5.mkdir();

result=true;

}catch(SecurityException se){

}

if(result){

System.out.println("DIR created");

}

}

}

}

Appendix 6.2 - motifGenerator.java

packagetext_processor;

importjava.io.BufferedWriter;

importjava.io.File;

importjava.io.FileWriter;

importjava.io.IOException;

importjava.io.PrintWriter;

publicclassmotifGenerator{

publicmotifGenerator(String DNA,intmotif_length)throwsIOException{

 String reference_motif;

int counter =0;

int total =0;

 File theDir=newFile("motifs");

// if the directory does not exist, create it

if(!theDir.exists()){

boolean result =false;

try{

theDir.mkdir();

result=true;

}catch(SecurityException se){

//handle it

}

if(result){

System.out.println("DIR created");

}

}

PrintWriter update

=newPrintWriter(newBufferedWriter(newFileWriter("motifs\\motifs_length_"+moti

f_length+".txt",false)));

for(inti=0;i<DNA.length()-(motif_length-1);i++){

reference_motif=DNA.subSequence(counter,counter+motif_length).toString();

total++;

counter++;

update.write(reference_motif);

45 | P a g e

update.println("\n");

}

System.out.println("Total Number of motifs possible is : "+ total +" bp.");

System.out.println("Total Length of DNA sequence 1 is : "+DNA.length()+"

bp.");

update.close();

}

}

Appendix 6.3 - HashTable.java
/*

 * To change this license header, choose License Headers in Project

Properties.

 * To change this template file, choose Tools | Templates

 * and open the template in the editor.

 */

packagetext_processor;

importjava.io.BufferedWriter;

importjava.io.FileWriter;

importjava.io.IOException;

importjava.io.PrintWriter;

public class HashTable{

int number;

 String DNA;

HashTable(String DNA,int number)throwsIOException{

this.DNA= DNA;

this.number=number;

table_sequence();

}

int[][]table_sequence()throwsIOException{

int hash[][];

int A,T,G,C;

int count;

intcount_A=0;

intcount_T=0;

intcount_G=0;

intcount_C=0;

hash=newint[4][DNA.length()];

 A=0;

 T=1;

 G=2;

 C=3;

PrintWriter viewer

=newPrintWriter(newBufferedWriter(newFileWriter("hash_table\\hash_table_seque

nce_"+ number +".txt",false)));

for(count=0;count<DNA.length();count++){

if(DNA.charAt(count)=='A'){

hash[A][count_A]=count+1;

count_A++;

}

46 | P a g e

if(DNA.charAt(count)=='T'){

hash[T][count_T]=count+1;

count_T++;

}

if(DNA.charAt(count)=='G'){

hash[G][count_G]=count+1;

count_G++;

}

if(DNA.charAt(count)=='C'){

hash[C][count_C]=count+1;

count_C++;

}

}

System.out.print("A : ");

viewer.print("A : ");

for(int m=0;m<count_A;m++){

viewer.print(hash[A][m]);

viewer.print(" ");

System.out.print(hash[A][m]);

System.out.print(" ");

}

System.out.print("\n"+"T : ");

viewer.println("\n");

viewer.print("\n"+"T : ");

for(int m=0;m<count_T;m++){

viewer.print(hash[T][m]);

viewer.print(" ");

System.out.print(hash[T][m]);

System.out.print(" ");

}

System.out.print("\n"+"G : ");

viewer.println("\n");

viewer.print("\n"+"G : ");

for(int m=0;m<count_G;m++){

viewer.print(hash[G][m]);

viewer.print(" ");

System.out.print(hash[G][m]);

System.out.print(" ");

}

System.out.print("\n"+"C : ");

viewer.println("\n");

viewer.print("\n"+"C : ");

for(int m=0;m<count_C;m++){

viewer.print(hash[C][m]);

viewer.print(" ");

System.out.print(hash[C][m]);

System.out.print(" ");

}

System.out.print("\n");

viewer.close();

System.out.println("Total Length of DNA sequence "+ number +" is :

"+DNA.length()+" bp.");

return hash;

}

}

47 | P a g e

Appendix 6.4 - motifChecker.java

packagetext_processor;

importjava.io.BufferedReader;

importjava.io.BufferedWriter;

importjava.io.DataInputStream;

importjava.io.FileInputStream;

importjava.io.FileNotFoundException;

importjava.io.FileWriter;

importjava.io.IOException;

importjava.io.InputStreamReader;

importjava.io.PrintWriter;

public class motifChecker{

int count_motif=0;

motifChecker(int[][]hashtable,Stringpath,Stringoutput,intDNA_length,intmotif_

length,int mutation)throwsFileNotFoundException,IOException{

FileInputStreamfstream=newFileInputStream(path);

DataInputStream in =newDataInputStream(fstream);

BufferedReaderbr=newBufferedReader(newInputStreamReader(in));

 String motif;

char letter =0;

PrintWriter result

=newPrintWriter(newBufferedWriter(newFileWriter("frequent_motifs\\"+

output,false)));

PrintWriter result2

=newPrintWriter(newBufferedWriter(newFileWriter("candidates\\"+

output,false)));

PrintWriter result3

=newPrintWriter(newBufferedWriter(newFileWriter("mutation\\mutation"+mutation

+"_"+ output,false)));

int index =0;

int[][] results =newint[motif_length][DNA_length];

int length =0;

result.println("Motif Number"+" "+"Motif"+"

"+"Position");

result.println("============"+" "+"====="+"

"+"========");

//intoutput_motif=0;

intmotif_no=1;

intm_init=mutation;

while((motif =br.readLine())!=null){

length=0;

int[]check_count=newint[DNA_length];

intm_check=1;

for(int m =0; m <=motif.length()-1; m++){

letter=motif.charAt(m);

index=returnindex(letter);

int[] counter =hashtable[index];

inti=0;

if(length ==0){

for(i=0;i<DNA_length;i++){

48 | P a g e

results[length][i]= counter[i];

check_count[i]++;

}

}

int[] checker=hashtable[index];

if(length >0){

for(int j =0; j <DNA_length; j++){

intcheck_mut=0;

for(int k =0;k < checker[k]; k++){

if(counter[k]== results[length-1][j]+1&& results[length-1][j]!=0){

results[length][j]= counter[k];

check_count[j]++;

}

elseif(m_init==1){

if((mutation==1&& length>1&& counter[k]== results[length-2][j]+2&&

results[length-2][j]!=0&& results[length-1][j]!=results[length-2][j]+1)){

results[length][j]= counter[k];

results[length-1][j]=0;

check_count[j]++;

mutation--;

check_mut++;

m_check=mutation;

}

}

else{

}

if(m_init==1&&check_mut==0){

mutation=1;

}

}

}

}

length++;

}

if(length>=(motif_length-1)){

for(int k=0;k<DNA_length;k++){

if((check_count[k]==motif_length/*&&m_init==m_check) ||

(m_init>m_check&&check_count[k]==motif_length*/)){

if(motif_no>=1&&motif_no<10){

result.print(motif_no+" "+" ");

}

if(motif_no>=10&&motif_no<100){

result.print(motif_no+" "+" ");

}

if(motif_no>=100){

result.print(motif_no+" "+" ");

}

result.print(motif +" ");

count_motif++;

result2.println(motif);

for(int g=0;g<motif_length;g++){

result.print(" "+ results[g][k]+" ");

}

result.println("\n");

}

49 | P a g e

if(check_count[k]== motif_length-1){

if(motif_no>=1&&motif_no<10){

result3.print(motif_no+" "+" ");

}

if(motif_no>=10&&motif_no<100){

result3.print(motif_no+" "+" ");

}

if(motif_no>=100){

result3.print(motif_no+" "+" ");

}

result3.print(motif +" ");

for(int g=0;g<motif_length;g++){

result3.print(" "+ results[g][k]+" ");

}

result3.println("\n");

}

}

}

mutation=1;

if(length>0){

motif_no++;

}

}

result3.close();

result2.close();

result.close();

}

intreturnindex(char in){

intindexs=0;

if(in =='A'){

indexs=0;

}

if(in =='T'){

indexs=1;

}

if(in =='G'){

indexs=2;

}

if(in =='C'){

indexs=3;

}

returnindexs;

}

intreturncount(){

returncount_motif;

}

}

50 | P a g e

Appendix 6.5 - fitness_function.java

packagetext_processor;

importjava.io.BufferedReader;

importjava.io.BufferedWriter;

importjava.io.DataInputStream;

importjava.io.FileInputStream;

importjava.io.FileNotFoundException;

importjava.io.FileWriter;

importjava.io.IOException;

importjava.io.InputStreamReader;

importjava.io.PrintWriter;

importjava.text.DecimalFormat;

public class fitness_function{

publicfitness_function(String path,intcount,intmotif_length,int

sequence)throwsFileNotFoundException,IOException{

PrintWriter result

=newPrintWriter(newBufferedWriter(newFileWriter("fitness\\fitness_"+"possible

_motifs_sequence"+sequence+"_length_"+motif_length+".txt",false)));

FileInputStreamfstream=newFileInputStream(path);

DataInputStream in =newDataInputStream(fstream);

BufferedReaderbr=newBufferedReader(newInputStreamReader(in));

 String motif;

String[] motifs=new String[count];

inti=0;

while((motif=br.readLine())!=null){

motifs[i]=motif;

i++;

}

char[]reference_motif=consensus_motif(motifs,count,motif_length);

result.print("Consensus Motif");

result.print(" ");

for(int u=0;u<motif_length;u++){

result.print(reference_motif[u]);

}

result.println();

result.println("Motif "+" "+"Total Fitness"+"

"+"R(k)"+" "+"D(k,m)"+" "+"C(k)");

for(int y=0;y<count;y++){

if(!motifs[y].isEmpty()){

result.print(motifs[y]);

result.print(" ");

doubletotalfitness=

total_fitness(rk(reference_motif,motifs[y].toCharArray(),motif_length),motif_

length);

result.print(newDecimalFormat("00.0000").format(totalfitness));

result.print(" ");

double fitness =rk(reference_motif,motifs[y].toCharArray(),motif_length);

result.print(newDecimalFormat("00.0000").format(fitness));

result.print(" ");

doubledkm=dkm(reference_motif,motifs[y].toCharArray(),motif_length);

result.print(newDecimalFormat("00.0000").format(dkm));

51 | P a g e

result.print(" ");

doubleck=ck(motifs[y].toCharArray(),motif_length);

result.print(newDecimalFormat("00.0000").format(ck));

result.println();

}

}

result.close();

}

char[]consensus_motif(String[]motifs,intcount,intmotif_length){

char[]reference_motif=newchar[motif_length];

for(int n=0;n<motif_length;n++){

int a=0,t=0,g=0,c=0;

for(int m=0;m<count;m++){

if(motifs[m].charAt(n)=='A'){

a++;

}

if(motifs[m].charAt(n)=='T'){

t++;

}

if(motifs[m].charAt(n)=='G'){

g++;

}

if(motifs[m].charAt(n)=='C'){

c++;

}

}

if(a>=t && a>=g && a>=c){

reference_motif[n]='A';

}

elseif(t>=a && t>=g && t>=c){

reference_motif[n]='T';

}

elseif(g>=t && g>=a && g>=c){

reference_motif[n]='G';

}

elseif(c>=a && c>=g && c>=t){

reference_motif[n]='C';

}

}

returnreference_motif;

}

doublerk(char[]reference_motif,char[]motif,intmotif_length){

doublerk=0;

rk=dkm(reference_motif,motif,motif_length)+ck(motif,motif_length);

returnrk;

}

doubletotal_fitness(doublerk,double length){

doubletotal_fitness=0;

double w1=0,w2=0;

 w1=length-5;

 w2=1;

total_fitness= w1*length + w2*rk;

52 | P a g e

returntotal_fitness;

}

doubleck(char[]motif,intmotif_length){

doubleck=0;

double a=0,t=0,c=0,g=0;

for(inti=0;i<motif_length;i++){

if(motif[i]=='A'){

a++;

}

if(motif[i]=='T'){

t++;

}

if(motif[i]=='G'){

g++;

}

if(motif[i]=='C'){

c++;

}

}

ck=(4/3)*(1-(((a*a)+(t*t)+(c*c)+(g*g))/(motif_length*motif_length)));

returnck;

}

doubledkm(char[]reference_motif,char[]motif,intmotif_length){

doubledkm=0;

for(inti=0;i<motif_length;i++){

if(reference_motif[i]==motif[i]){

dkm++;

}

}

dkm=dkm/motif_length;

returndkm;

}

}

Appendix 6.6 - final_output.java

packagetext_processor;

importjava.io.BufferedReader;

importjava.io.BufferedWriter;

importjava.io.DataInputStream;

importjava.io.File;

importjava.io.FileInputStream;

importjava.io.FileNotFoundException;

importjava.io.FileWriter;

importjava.io.IOException;

importjava.io.InputStreamReader;

importjava.io.PrintWriter;

importjava.text.DecimalFormat;

public class final_output{

public final_output(String

input,intmotif_length,intsequence_no)throwsFileNotFoundException,IOException{

create_directory();

53 | P a g e

PrintWriter result =newPrintWriter(newBufferedWriter(new

FileWriter("final_output\\"+"final_output_sequence_no"+sequence_no+"_motif_le

ngth_"+motif_length+".txt",false)));

String[] motifs =new String[1500];

double[]total_fitness=newdouble[1500],dkm=newdouble[1500],rk=newdouble[1500],

ck=newdouble[1500];

FileInputStreamfstream=newFileInputStream(input);

DataInputStream in =newDataInputStream(fstream);

BufferedReaderbr=newBufferedReader(newInputStreamReader(in));

intline_count=0;

 String line="";

int count=0;

while((line=br.readLine())!=null){

if(line_count>1){

String[] output=line.split("\\s+");

motifs[count]=String.valueOf(output[0]);

total_fitness[count]=Double.parseDouble(output[1]);

rk[count]=Double.parseDouble(output[2]);

dkm[count]=Double.parseDouble(output[3]);

ck[count]=Double.parseDouble(output[4]);

count++;

}

line_count++;

}

for(int j=0;j<count;j++){

for(int l=j+1;l<count;l++){

if((motifs[j]==null? motifs[l]==null:

motifs[j].equals(motifs[l]))&&!"".equals(motifs[j])&&!"".equals(motifs[l])){

total_fitness[j]=total_fitness[j]+total_fitness[l];

rk[j]=rk[j]+rk[l];

dkm[j]=dkm[j]+dkm[l];

ck[j]=ck[j]+ck[l];

motifs[l]="";

total_fitness[l]=0;

rk[l]=0;

dkm[l]=0;

ck[l]=0;

}

}

}

for(int j=1;j<count;j++){

for(int l=count-1;l>=j;--l){

if(total_fitness[l-1]>total_fitness[l]){

 String temp_motif=motifs[l-1];

doubletemp_total_fitness=total_fitness[l-1];

doubletemp_rk=rk[l-1];

doubletemp_dkm=dkm[l-1];

doubletemp_ck=ck[l-1];

motifs[l-1]= motifs[l];

total_fitness[l-1]=total_fitness[l];

rk[l-1]=rk[l];

dkm[l-1]=dkm[l];

ck[l-1]=ck[l];

motifs[l]=temp_motif;

54 | P a g e

total_fitness[l]=temp_total_fitness;

rk[l]=temp_rk;

dkm[l]=temp_dkm;

ck[l]=temp_ck;

}

}

}

result.println("Motifs"+" "+"Total Fitness"+" "+"r(k)"+"

"+"d(k,m)"+" "+"c(k)");

for(int h=count-1;h>=0;h--){

if(motifs[h]!=""){

result.print(motifs[h]);

result.print(" ");

result.print(newDecimalFormat("00.0000").format(total_fitness[h]));

result.print(" ");

result.print(newDecimalFormat("00.0000").format(rk[h]));

result.print(" ");

result.print(newDecimalFormat("00.0000").format(dkm[h]));

result.print(" ");

result.print(newDecimalFormat("00.0000").format(ck[h]));

result.println();

}

}

br.close();

result.close();

}

privatevoidcreate_directory(){

 File theDir5 =newFile("final_output");

if(!theDir5.exists()){

boolean result =false;

try{

theDir5.mkdir();

result=true;

}catch(SecurityException se){

}

if(result){

System.out.println("DIR created");

}

}

}

}

