

 Co-ordination of Streams of Data

 Authors

 Abdullah Al Mamun Student Id: 104425
 Tahmeed Hasan Student Id: 104431

Supervisor
Dr. Mohammad Rezwanul Huq

 Department of Computer Science & Engineering (CSE)
 Islamic University of Technology (IUT)

A Thesis submitted to the Department of Computer Science and Engineering (CSE),
Islamic University of Technology in Partial Fulfillment of the requirements for the

degree of Bachelor of Science in CSE (Computer Science & Engineering)

September, 2014

1

CERTIFICATE OF RESEARCH

This is to certify that the work presented in this thesis paper is the outcome of the
research carried out by the candidates under the supervision of Dr. Mohammad
Rezwanul Huq, Assistant Professor, Department of Computer Science and
Engineering, IUT Gazipur. It is also declared that neither this thesis nor any part
thereof has been submitted anywhere else for the award of any degree or any
judgment.

Authors

Md. Abu Naser Md. Nafiz Hamid

Signature of Supervisor

Md. Kamrul Hasan, PhD
Assistant professor

Department of CSE, IUT

Signature of the Head of the Department

Prof. Dr. M. A. Mottalib
Head, Department of CSE, IUT

2

ABSTRACT

Here in this thesis work we have proposed a model for some issues from a new data
processing model. In this type of model data we are dealing with does not possess
any relation that is persistent, rather this data have some different properties. They
arrive in real time, continuous, time varying, rapid and infinite streams of data. This
paper introduces a model for the delayed and unordered arrival of streams. In
addition, this thesis work also introduces the concept of using buffers and
algorithmic issues for stream management purpose reviewing the past related works
and also the ongoing research in this area.

 This thesis proposes a model and an algorithm that will deal with the
coordination of the tuples that do not arrive in due time and in some cases they just
lost forever. The model introduces some modules that will depict the total work flow
and the algorithm will propose some data set that will enable one to choose the trade-
off depending on the system requirements implementing the ordering mechanism.

3

--
ACKNOWLEDGMENT
--

At the very beginning we express our heartiest gratitude to Almighty Allah for His
divine blessings which allowed us to do this research work to life.

We are grateful and indebted to our supervisor Dr. Mohammad Rezwanul Huq,
Assistant Professor, Department of Computer Science and Engineering, IUT. Due
to his supervision, knowledge and relentless support allowed us to complete this
endeavour successfully.

We are thankful to Prof. Dr. M. A. Mottalib, Head of the department, Computer
Science and Engineering, IUT. Also our appreciation extends to all the respected
faculty members of the Department of Computer Science and Engineering, IUT.

Finally we would like to extend our thanks to our friends, students, staffs and
everyone else who have contributed to this work in their own way.

4

--
CONTENTS
--

1. Introduction………………………………………………………………….5
2. Related Work………………………………………………………………...7
3. Problem Definition…………………………………………………………..9
4. Challenges and Parameters…………………………………………………10

4.1 Challenges…………………………………………………………….....10
4.2 Parameters…………………………………………………………….....13

5. Proposed Model…………………………………………………………….17
5.1 Ordering Module………………………………………………………….19

6. Algorithm…………………………………………………………………..21
6.1 Initialization……………………………………………………………...22
6.2 Delay generation………………………………………………………….23
6.3 Ordering of the tuples…………………………………….………………..23
6.4 Total execution time calculation………………………………...…………..24

7. Result Analysis and Performance Evaluation………………………………31
7.1 Systematic Inquiry………………….……………………………………..32
7.2 Competence……………………………...………………………...…….33
7.3 Respect for the people………………….………………………………….34
7.4 Case Studies………………………………………………………...……34

7.4.1 Case no 1………………………………………………………...…36
7.4.2 Case no 2………………………………………………...…………39
7.4.3 Case no 3…………………………………………………...……....41

8. Conclusion………………………………………………………………….43
9. Appendix…………………………………………………………………...44

5

Chapter 1
--
INTRODUCTION

With the advancement of the technology we have to deal with more data set
efficiently. In many cases now a whole lot of data should be dealt with minimum
amount of time (e.g. reading from sensors, radars). Hence the concept of streams
comes into being. Management of streams of data leads to the concept of streaming
database where large amount of data are management within a minimum amount of
time. With the requirement of time the traditional query processing will not be
enough for this kind of data which are constantly in a motion. These data are needed
to be processed according to the adaptive dataflow.

In emerging networking systems, the commodity of interest is data. Like any

usual commodity, its value is understood when it is moved to different places as per
need. Unlike the traditional data processing systems where data is predicted to reside
in known locations statically, data in recent days for many applications are
continuously changing and dynamic. This fluidity nature of data leads us to consider
management of data for these recent applications as an adaptive dataflow processing
that must observe, monitor and react to information streams as they pass through any
kind of network.

Streaming databases are mostly used now a days for managing continuous

arriving of infinite timely data which we are referring to as streams. These Databases
offer flexible query processing and continuous queries. Continuous queries are those
which generates the output based on the rapid incoming values. Processing dataflow
for applications often has an active data monitoring or filtering aspect for the query.
Whenever new data arrives at the module that processes queries, it is then routed
through the set of queries which are continuously active. Such continuous query
processing needs a different approach rather a traditional one in case of managing
database. What happens in the traditional system is that the queries are allowed
access to a collection of data while in this case the arrival of streams of data initiates
access to a predefined set of queries. As expected this deviation prompts a very
different approach to query processing system.

Another important property of these continuous queries is that the streams

they deal with can be infinite. Queries that process infinite streams of data require

6

different semantics, non-blocking operators and exception handling. Operators
should return the incremental results continuously and need to be defined in such a
way that can process the window of the input. Continuous queries can be long lived
so, care must be taken to reduce the states that are required in processing.

For error free output, tuples in the input stream must be in correct order. For

databases that manages streams of data, co-ordination of streams can be a big
challenge, as the output can become erroneous for that moment of time. When the
incoming streams contain unordered data, the output will correspond to the result for
those incoming data. But hence data arriving in a specific moment of time must get
processed accordingly to generate output that will be related to the arrival time. So
not only producing output yields a correct result but generating output referring to
the incoming time will be considered as an errorfree outcome.

As expected there are two parameters that we have identified, one is time and

other one is accuracy. When we allow the time to expand over infinite range,
accuracy also increases but waiting for infinite amount of time is not feasible. Again
if we want increased performance with respect to time that means lower processing
latency, it also degrades the accuracy level. So, our goal is to find the best trade-off
between time and accuracy for an optimize performance.

7

Chapter 2

RELATED WORKS
--

In the STEAM framework in [1] authors have proposed a model for a sensor based
streaming system. They have described the functionality and the key components of
the STEAM system. They have introduced a mechanism for calling individual
streams. Also they have described the mechanism for handling multiple streams and
sharing queries between them. They have also examined the scheduling of the query
operators and also gave a detail description of a class of join algorithms, the window
join for joining multiple data streams. Their research work is basically based on
video streaming offering comprehensive and efficient database management for real
time query managing and processing.

The key contribution of their research are:

• A stream processing framework with a powerful stream management system
that is capable of working and performing the basic operations of a multisensory
network.

• A class of algorithm for joining multiple streams that are non-blocking and
can be easily implemented in the pipeline system.

• Application development based on the stream database framework for online
data mining and analysis techniques,

In their proposed model they have used some components like stream
manager for managing the buffer and the streams, a scheduler for scheduling the
queries and a stream scan for scanning the streams and send it to the stream manager.
In their research work they have introduced a double buffer system that will reduce
the chance of buffer overflowing.

The major sectors of improvements or we can say disadvantages of their
research work are:

• We have reduced the component number of the model to reduce inter latency

time (discussed in the parameters part.).
• They have not specify how the main buffer and temporary storage will be

manageable, that is specified in our work.

8

• Also their fetching data’s from the temporary storage separately that will
also cost more time but in our model we have used the buffer always for incoming
or outgoing of the data.

In search based buffer management policies in [2] authors have introduced

buffer replacement and management policies for CM (continuous media) servers
based on the information from both searching and streaming process. They have
tested their approach in the real time video database system. They have also
compared the buffer policy and search policy. Their work is also based on the video
streaming.

The key contribution of their research are:

• Introducing some background work based on the CM (continuous media)

server.
• Introduction of the weight based system applying the generalized CLOCK

(G-CLOCK) algorithm for buffer replacement.

The major sectors of improvements or we can say disadvantages of their
research work are:

• They have used too many separate module in their model of CL server that
will cause huge latency. Our model is more simplified.

• They have not given any algorithm or real time example for the buffer
management. We have given that.

• We have showed how the weight value is assigned and how the tuples are
managed that is not described in their work.

9

Chapter 3

PROBLEM DEFINITION

In case of data streaming correctness of the tuples is very much important. There can
be some cases where tuples may be lost or they may come later as unordered. We
have to deal with certain issues when this cases occurs. This such phenomena creates
problem that any kind of database must deal with. When the tuple order is not
corrected the outcome of the result becomes less accurate. As it is quite obvious that
if some tuple in stream one is in order and some tuple in the second stream are out
of order, then for those tuples in the second stream which are not aligned with the
first one may produce the erroneous result. Which will affect the outcome. And this
may also cause a dramatic debase in the accuracy of the result processing. In this
situation getting the correct result which is defined as cent percent accurate is not
possible. Also there are some other issues which has been discussed later on.

If the tuples are out of order then we need to store the current tuples till the

correct ordered tuple come. Not only that, we need find a way to order the tuples
before they are sent to the processing unit. We must develop some algorithm that is
suitable and working to find the results. There will be delays if the tuples are
unordered. So the algorithm should have the ability to count and process the delay
and find the accuracy of getting correct data according to the delay. There should be
a better trade-off between the delay and accuracy as per as the system requirements
and demand.

10

Chapter 4

CHALLENGES & PARAMETERS
--

4.1 Challenges:

The problem we are dealing with definitely had some challenges by fighting which
we were expected to get a desired research outcome. In any research work soon after
the problem has defined, next comes the challenges we need to face to achieve the
proper model for this one. So after we are done with our problem definition that is
statement of the problem that is on which of the issues we are targeting and trying
to get a way around the problem. We have specified the major obstacles for this issue
and here some key challenges are discussed at length.

1. Designing a model for the whole process: Well as we are discussing the

coordination of the tuples that is in the streams, so first we need an
appropriate model which will depict the processing of the streams and will
also show the workflow of how the streams are handled and the different
modules are working. So designing was the first challenge we faced for
developing a suitable model.

2. Generate and discuss some case studies: A case study is an account of

an activity, event or problem that contains a real or hypothetical situation
and includes the complexities that might occur during actual workplace.
Case studies are used to plot the complexities to prepare necessary
measures. Here we have introduced some cases regarding the co-
ordination issue that we want to reduce. These case studies covers every
possible actions a system might face. This was also challenging because it
is not at all easy to plot a real world scenario by just assuming. There are
situations which cannot be predicted earlier and those cases are defined as
the special cases. Yet we covered every possible phase that may occur in
regular system.

11

3. Developing some ordering techniques: Now that system model and the
taste cases are generated now the real problem comes named how the
ordering should be managed. So to say this challenge was the most difficult
one to deal with. Because this was the main point of how the coordination
between the tuples should be done. The ordering techniques must be in
such a way that it must be faster and efficient. The ordering part of the
algorithm should have the property of optimized run time. This ordering
might take less time and with the efficient algorithm it should be an easy
procedure so that it can be implemented easily. To order the delayed tuple
we must mark them first and store them, then the comparison begins with
the first stream. That’s where we have introduced a weight value to mark
and swap the tuples.

4. Developing the algorithm: An algorithm is a process or set of rules to be

followed in calculations or other problem-solving operations. Algorithms
are mainly used for calculating complex problems which needs step by
step debugging. It is an effective method expressed as a finite list of well-
defined instructions for calculating a function. Starting from an initial state
and initial input that can also be empty, the instructions describe a
computation that, when executed, proceeds through a finite number of
well-defined successive states, eventually producing "output" and
terminating at a final ending state. The transition from one state to the next
is not necessarily deterministic; some algorithms, known as randomized
algorithms, incorporate random input. The algorithm is the key to devise a
perfect model for this coordination issue. So we have given the topmost
priority to the algorithm as it describes the total flow.

5. Evaluation of the results: Evaluating the outcome and compare the
performances at different parameters was another important aspect for
choosing the trade-off we were looking for. The algorithm, by evaluating
the sample data and graph, enables the user to choose the appropriate trade-
off between delay and accuracy in any particular system.

12

4.2 Parameters:

There are some key terms that needed to be understood in order to get a clear
idea about the research area. These key terms are considered as the parameter.in
this section we are describing some common and must needed parameters related
to our work.

Data stream [Si]: A continuous, ordered and infinite sequence of tuples.
When large amount of data comes at a time, then it is called streams of data. In
Connection-oriented communication, a data stream is a sequence of digitally
encoded coherent signals (packets of data or data packets) used to transmit or
receive information that is in the process of being transmitted.

In electronics and computer architecture, a data flow determines for which
time which data item is scheduled to enter or leave which port of a systolic array,
a Reconfigurable Data Path Array or similar pipe network, or other processing unit
or block.

Often the data stream is seen as the counterpart of an instruction stream, since
the von Neumann machine is instruction-stream-driven, whereas its counterpart,
the Anti-machine, is data stream driven.

Tuple [ti]: Incoming records residing in streams. Streams of data is basically
is a summation of tuples. They can be considered as a unit of data. A tuple is an
ordered list of elements.

Tuples are often used to describe other mathematical objects, such as vectors.
In computer science, tuples are directly implemented as product types in most
functional programming languages. More commonly, they are implemented as
record types, where the components are labeled instead of being identified by
position alone. This approach is also used in relational algebra. Tuples are also
used in relation to programming the semantic web with Resource Description
Framework or RDF.

Buffer: Temporary memory storage for stream processing. Buffer is a storage
that is used to store data for a short period to use it in processing the query.

In computer science, a data buffer (or just buffer) is a region of a physical
memory storage used to temporarily store data while it is being moved from one
place to another. Typically, the data is stored in a buffer as it is retrieved from an
input device (such as a microphone) or just before it is sent to an output device
(such as speakers). However, a buffer may be used when moving data between

13

processes within a computer. This is comparable to buffers in telecommunication.
Buffers can be implemented in a fixed memory location in hardware—or by using
a virtual data buffer in software, pointing at a location in the physical memory. In
all cases, the data stored in a data buffer are stored on a physical storage medium.
A majority of buffers are implemented in software, which typically use the faster
RAM to store temporary data, due to the much faster access time compared with
hard disk drives. Buffers are typically used when there is a difference between the
rate at which data is received and the rate at which it can be processed, or in the
case that these rates are variable, for example in a printer spooler or in online
video streaming.

A buffer often adjusts timing by implementing a queue (or FIFO) algorithm
in memory, simultaneously writing data into the queue at one rate and reading it
at another rate.

Window (W): A bounded set of tuples over which the operation takes place.
A set of tuples that is suitable for the given operation is set, and used as a limit of
the processing of the queries.

Instead of using synopses to compress the characteristics of the whole data
streams, window techniques only look on a portion of the data. This approach is
motivated by the idea that only the most recent data are relevant. Therefore, a
window continuously cuts out a part of the data stream, e.g. the last ten data stream
elements, and only considers these elements during the processing.

There are different kinds of such windows like sliding windows that are
similar to FIFO lists or tumbling windows that cuts out disjoints parts.
Furthermore, the windows can also be differentiated into element based to
consider, e.g. the last ten elements, or time based windows, e.g. to consider the
last ten seconds of data. Additionally, there are also different approaches to
implement windows. There are, for example, approaches that use timestamps or
time intervals for system-wide windows or buffer-based windows for each single
processing-step.

Window type [Wtype]: Window can be of different types. We are

considering tuple/time based window. This window is measured by the size of
the tuples.

14

Window size [Wsize]: The maximum number of tuples in a stream. Here we
are considering the window size 3 of type tuple-based window.

Buffer size: Maximum number of tuples it can store. Buffer size can be
anything. But to find a better tradeoff between time and accuracy we need to set
a proper sized buffer.

Processing latency [PL]: the time required for the processing of tuples while
in buffer. Processing time can be different depending on tuple number, buffer size
and waiting time for the tuple arrival. Latency is a time interval between the
stimulation and response, or, from a more general point of view, as a time delay
between the cause and the effect of some physical change in the system being
observed. Latency is physically a consequence of the limited velocity with which
any physical interaction can propagate. This velocity is always lower than or
equal to the speed of light. Therefore every physical system that has spatial
dimensions different from zero will experience some sort of latency, regardless
of the nature of stimulation that it has been exposed to.

The precise definition of latency depends on the system being observed and

the nature of stimulation. In communications, the lower limit of latency is
determined by the medium being used for communications. In reliable two-way
communication systems, latency limits the maximum rate that information can be
transmitted, as there is often a limit on the amount of information that is "in-
flight" at any one moment. In the field of human–machine interaction, perceptible
latency has a strong effect on user satisfaction and usability.

Inter arrival time [IAT]: the time difference between two incoming tuples.
It can be changed for tuple loss or late arrival. Inter arrivals provide a method of
creating object arrivals at regular intervals without the need to specify detailed
arrival profiles. Inter arrivals require that the total number of objects (or
unlimited) to arrive is specified along with how often one object (or a batch)
arrive. Variables can be defined as either constant values, distributions (using
the distribution wizard) or predefined variables. The value type list box
determines which value is applied to the simulation.

15

When defining an Inter Arrival Time the following Simulation propertieswill
apply:

4.2.1 Maximum Arrivals:

 Maximum number of objects that can arrive throughout the simulation run.
Maximum Value Type-- you may specify that the Maximum Value Type is
Constant, Distribution, or Variable. Note that if you specify one of these choices,
then you only need to fill in the accompanying property from the set below:

Constant: Type in the number of Objects that you want to run the experiment
for. For example, when simulating a Car Wash, you might want to look at 500
cars. You would enter the number 500 in this field.

4.2.2 First Arrival At:

The time of the first object to arrive in the model. You may specify that the First
Arrival At property is Constant, Distribution, or Variable.

Constant: the Constant Arrival Time by default is set to 0. If you set it to 60
by putting the number 60 in the Constant field of the First Arrival At property,
the model will be simulated for 60 time units before the first Object would be
brought into the system.

4.2.3 Inter Arrival Time:

Time between the objects arrivals. The time of the first object to arrive in the
model. You may specify that the Inter Arrival Time property is Constant,
Distribution, or Variable.

4.2.4 Lot Size:

Number of objects that arrive together. The time of the first object to arrive in the
model. You may specify that the Lot Size property is Constant, Distribution, or
Variable.

16

Valid/explicit time [Explicit]: the time when the data was originated. The time is
count when the data was created from any input source. Valid time is the time
period during which a fact is true with respect to the real world. Transaction
time is the time period during which a fact stored in the database is considered
to be true. Temporal data combines both Valid and Transaction Time.

Transaction/implicit time [Implicit]: the time when the data get processed. The
time from one processing unit to another is measured as the transaction time.
Transaction time (TT), a concept originated by Richard T. Snodgrass and his
doctoral student, is used in temporal databases.[1] It denotes the time period
during which a fact stored in the database is considered to be true. In a database
table transaction time is often represented by two extra table-columns StartTT
and EndTT. The time interval is closed at its lower bound and open at its upper
bound.

When the ending transaction time is unknown, it may be considered as
"Until Changed". Academic researchers and some RDBMS have represented
"Until Changed" with the largest timestamp supported or the keyword "forever".
This convention is not technically precise.

Inter latency time (Tl): the time needed for a tuple or data unit to go form one
module to another.it can be different based on module number, size and type and
path it is travelling. Regardless of the speed of the processor or the efficiency of
the software, it takes a finite amount of time to manipulate and present data.
Whether the application is a web page showing the latest news or a live camera
shot showing a traffic jam, there are many ways in which an application can be
affected by latency. Four key causes of latency are: propagation delay,
serialization, data protocols, routing and switching, and queuing and buffing.

17

Chapter 5

PROPOSED MODEL
--

The model we are proposing is basically an improvised model from the models that
has been discussed in the related works. There are five basic components in the
model:

A. Stream reader: stream reader is used to take the input streams and send them

to the ordering module and also take the output stream from the buffer and deliver it
to the query manager. This is the module where the incoming streams are received.
The tuples in the stream may occur in any order. Here it is important to mention that
Stream Reader only receives the streams, it does not sort or convey other information
about the streams. It only passes the incoming streams to the next unit which we
named the Ordering module.

B. Ordering module: the ordering module takes input stream from the stream

reader and order it. It also assign a weight value (Boolean value 0 or 1) to the tuples
and send them to buffer for storing. Ordering module is the central and most
important unit in our model. Ordering module takes the streams passed by the stream
reader and then it processes them. Ordering module detects the tuple which are
unordered and also keeps track of the in time streams. It has a buffer connected with
it which is used for the correct ordering of the tuples. Ordering module actually sends
the timely stream to the buffer from where the streams are retrieved when the
operation is performed. The Ordering module also sends the delayed stream to the
buffer and the stream stays there until the delayed tuple is arrived or time out occurs.
Well time out is defined by the specific amount of time set by the user to wait for
the delayed tuple to arrive. If that time limit is exceeded then the operation for those
streams are aborted as well. So time out is the maximum delay time an operation can
sustain. The tuples in the delayed streams are stored in the buffer, but what happens
when the delayed tuples arrive?

A Weight value is introduced for this kind of scenario, Out of order tuples are
identified by the weight value and thus the operation waits till ordered streams are
processed. If the desired tuple takes too much time to arrive then there has been a
chance for buffer overflowing, and so for that purpose we have introduced a

18

temporary storage. Where the tuples that are not in order will stay. And after the
arrival of delayed tuple. The stream’s tuple gets ordered on the basis of the weight
value. Then the contents of the temporary storage also get updated. When both the
streams in the buffer has the same numbered tuple, they both are popped from the
buffer for the query execution. They are again passed to the stream reader which
forwards those streams to query manager where the desired query is performed. This
time the stream reader gets the ordered streams to forward.

C. Current buffer: Current buffer is used to store the tuples with the assigned

weight values. Based on the weight values, the ordering is done. Current buffer holds
the tuples that are in order in the streams. The out of order streams are instantly
replaced from the temporary storage. So the buffer waits for the tuples to get sorted
in the streams. Then it passes the sorted streams to the query manager for the
operation.

D. Temporary storage: Temporary storage is used to store the tuples if the

current buffer is overflowed. Temporary storage is the final repository for the tuples.
The delayed tuple waits here and only called when the desired tuple arrives. If the
delayed and desired tuple does not arrive within the time out then the contents of the
current buffer is replaced by the contents of the temporary storage. And then the
further processing is continued. The size of the temporary storage should be
considerably large.

19

 Figure 1: proposed model for ordering tuples of streaming data

E. Query manager: Query manager processes the query with the tuples that
stream reader takes from the current buffer. Query manager always receives the
streams which have the tuples ordered. As they have been processed by the ordering
module and the buffer, the query manager takes the corrected streams from the
stream reader as inputs and then it performs the desired user defined or predefined
queries.

5.1 Ordering module: All about the ‘weighting’

One possible solution is to assign weight values to the incoming tuples. Here in the
figure 2 we can see how the tuples are coming and weight value is assigned to them
when they are inserted into the database. We can see form the figure that tuple 6, 7,
8 from stream s1 are in order so they have the weight value 1. Tuple 9 from stream
s2is out of order and so it has the value 0. When the buffer is overflowed the next
tuple will go to the secondary storage. Now as tuple 8 from stream s2 has the weight
value 1 it will replace the tuple 9 in the main buffer and tuples will be rearranged in
order again. The change is shown in the figure 3.

20

Figure 2: before swapping the tuple

Figure 3: after swapping the tuple

21

Chapter 6

ALGORITHM:
--

In mathematics and computer science, an algorithm is a step-by-step procedure for
calculations. Algorithms are used for calculation, data processing, and automated
reasoning.

An algorithm is an effective method expressed as a finite list [of well-defined
instructions for calculating a function. Starting from an initial state and initial input
(perhaps empty), the instructions describe a computation that, when executed,
proceeds through a finite number of well-defined successive states, eventually
producing "output" and terminating at a final ending state. The transition from one
state to the next is not necessarily deterministic; some algorithms, known as
randomized algorithms, incorporate random input.

In computer systems, an algorithm is basically an instance of logic written in
software by software developers to be effective for the intended "target" computer(s)
for the target machines to produce output from given input (perhaps null).

"Elegant" (compact) programs, "good" (fast) programs: The notion of "simplicity
and elegance" appears informally in Knuth and precisely in Chaitin:

Knuth: ". . . we want good algorithms in some loosely defined aesthetic sense. One
criterion . . . is the length of time taken to perform the algorithm. ... Other criteria
are adaptability of the algorithm to computers, its simplicity and elegance, etc"
Chaitin: “. . . a program is 'elegant,' by which I mean that it's the smallest possible
program for producing the output that it does"
Chaitin prefaces his definition with: "I'll show you can't prove that a program is
'elegant'"—such a proof would solve the Halting problem (ibid).

Algorithm versus function computable by an algorithm: For a given function
multiple algorithms may exist. This is true, even without expanding the available
instruction set available to the programmer. Rogers observes that "It is . . . important
to distinguish between the notion of algorithm, i.e. procedure and the notion of
function computable by algorithm, i.e. mapping yielded by procedure. The same
function may have several different algorithms".

22

Unfortunately there may be a trade-off between goodness (speed) and

elegance (compactness)—an elegant program may take more steps to complete a
computation than one less elegant. An example that uses Euclid's algorithm
appears below.

Developing a good algorithm to solve the problem was not easy. We have
developed an algorithm that will order the tuples and also evaluate the result.

There are basically 4 parts of the algorithm:

• Initialization
• Delay
• Ordering the tuple
• Total execution time and accuracy

Details of these are discussed below:

6.1 Initialization:

Here in the initialization part we have initialized the variables we need for
thealgorithm.
Stream represents streams and tuple represents tuples.

t_number[stream][tuple] is a double array for the incoming tuples of data.
temp_arr[stream][tuple] is a temporary array that will store data in the time of
ordering.

DECLARE INTEGER stream
DECLARE INTEGER tuple
DECLARE INTEGER t_number[stream][tuple]
DECLARE INTEGER temp_arr[stream][tuple]
DECLARE INTEGER temp, q=0,ch
DECLARE FLOAT iat=0.1, accuracy, t_delay, In_time=0, t_time=0, delay[tuple

23

6.2 Delay:

In the delay part we basically generate random delays for the tuples using a for
loop and random function. And next we are printing the delays generated.

6.3 Ordering the tuples:

PRINT "randomly generated delays:\n“
FOR i=0 TO i LESS THAN tuple
delay[i]=(double)(rand()%55)/100
PRINT "for tuple %d: %.2f\n",i+1,delay[i]
END
NEXT i
PRINT ”\n”

FOR i=0 TO i LESS THAN stream
weight=0
FOR j=tuple-1 TO j GREATER THAN 0
IF t_number[i][j]<t_number[i][j-1]
 THEN weight=1
END
END IF
PRIVIOUS j
IF weight
PRINT "tuples of stream %d are out-of-order\n",i+1
s_no=i+1
FOR k=0 TO k LESS THAN tuple-1
FOR j=0 TO j LESS THAN tuple-1
IF t_number[i][j] > t_number[i][j+1]
THEN
 temp=t_number[i][j+1]
 t_number[i][j+1]=t_number[i][j]
 t_number[i][j]=temp
END
END IF
NEXT j
END
NEXT k
FOR i=0 TO i LESS THAN stream
FOR j=0 TO j LESS THAN tuple
IF t_number[i][j]!=temp_arr[i][j]
THEN NEXT q
END
END IF
NEXT j
END
NEXT i
ELSE PRINT "stream %d is in-time\n",i+1
END
END IF

24

Ordering the tuples is the crucial part of our algorithm. Here comparing the tuple
number using for loop we are assigning weight values to the ordered and
unordered tuples. We are also printing how many tuples are out of order and how
many are synchronized.

6.4 Total execution time and accuracy:

PRINT "\n"
 PRINT "%d tuples of stream %d are out-of-order\n",q,s_no
 PRINT "%d tuples of both streams are synchronized\n",tuple-q
 PRINT ("\n")
 a=tuple-q
 accuracy=(double)a/(double)tuple *100
 PRINT "\n"
FOR j=0 TO j LESS THAN tuple
in_time = (double)tuple * iat
END
NEXT j
PRINT "total processing time for in-time stream = %.2f\n",in_time
PRINT "Accuracy: %.2f%% (no delay is considered)\n ",accuracy
IF s_no=1
THEN
FOR j=0 TO j LESS THAN tuple
t_time= (double)tuple * (double)iat
END
NEXT j
t_delay=0
PRINT "If consecutive delays are considered:\n"
FOR j=0 TO j LESS THAN q
t_time+=(double)delay[j]
 t_delay+=(double)delay[j]
 accuracy=(double)++a/(double)tuple *100
PRINT "Accuracy: %.2f%% \t processing time: %.2f (Delay: %.2f)\n",accuracy,t_time,delay[j]
END
NEXT j
PRINT total processing time for out-of-order stream = %.2f \n",t_time
 PRINT "Accuracy: %.2f%% (total delay= %.2f)\n",accuracy,t_delay
 t_time=0
END
END IF

25

In this part of the algorithm some basic printing part was done. Here we have
calculated the processing time and the accuracy of the tuples both in total and
individual cases.

Here is the full code given below:

Source code:

In computing, source code is any collection of computer instructions (possibly with
comments) written using some human-readable computer language, usually as text.
The source code of a program is specially designed to facilitate the work of computer
programmers, who specify the actions to be performed by a computer mostly by
writing source code. The source code is often transformed by a compiler program
into low-level machine code understood by the computer. The machine code might
then be stored for execution at a later time. Alternatively, an interpreter can be used
to analyze and perform the outcomes of the source code program directly on the fly.

Most computer applications are distributed in a form that includes executable
files, but not their source code. If the source code were included, it would be useful
to a user, programmer, or system administrator, who may wish to modify the
program or understand how it works.

Aside from its machine-readable forms, source code also appears in books and
other media; often in the form of small code snippets, but occasionally complete
code bases; a well-known case is the source code of PGP.

The notion of source code may also be taken more broadly, to include machine
code and notations in graphical languages, neither of which are textual in nature. An
example from an article presented on the annual IEEE conference and on Source
Code Analysis and Manipulation.

For the purpose of clarity ‘source code’ is taken to mean any fully executable
description of a software system. It is therefore so construed as to include machine
code, very high level languages and executable graphical representations of systems.

26

#include<stdio.h>
int main()
{
 int stream=2;
 int tuple=100;
 int t_number[stream][tuple];
 int temp_arr[stream][tuple];
 float iat=0.1;
 float accuracy,t_delay,in_time=0,t_time=0;
 int i,j,k,num,weight,s_no,a;
 float delay[10];
 int temp,q=0;

//input
//
 printf("Enter the number of tuples in each stream:");
 scanf("%d",&num);

 for(i=0;i<stream;i++)
 {
 printf("Enter the tuple order for stream %d: ",i+1);
 for(j=0;j<num;j++)
 {
 scanf("%d",&t_number[i][j]);
 }
 }
//

//copy to a temp array and print the input
//
 for(i=0;i<stream;i++)
 {
 for(j=0;j<num;j++)
 {
 temp_arr[i][j]= t_number[i][j];
 }

 printf("\n");

27

 printf("Inserted values are:\n");

 for(i=0;i<stream;i++)
 {
 printf("stream %d : ",i+1);
 for(j=0;j<num;j++)
 {
 printf("%d ",t_number[i][j]);
 }
 printf("\n");
 }
///

 printf("\n");
 printf("\n");

//delay
//

 printf("randomly generated delays:\n");
 for (i=0; i<num; i++)
 {
 delay[i]=(double)(rand()%55)/100;
 printf("for tuple %d: %.2f\n",i+1,delay[i]); //random delay
 }
 printf("\n");

//ordering the delayed tuple
//
 for(i=0;i<stream;i++)
 {
 weight=0;
 for(j=num-1;j>0;j--)
 {
 if (t_number[i][j]<t_number[i][j-1])
 {
 weight=1;

28

 }
 }

 if (weight)
 {
 printf("tuples of stream %d are out-of-order\n",i+1); s_no=i+1;
 for(k=0;k<num-1;k++)
 {
 for(j=0;j<num-1;j++)
 {
 if (t_number[i][j] > t_number[i][j+1])
 {
 temp=t_number[i][j+1];
 t_number[i][j+1]=t_number[i][j];
 t_number[i][j]=temp;
 }
 }
 }

 for(i=0;i<stream;i++)
 {
 for(j=0;j<num;j++)
 {
 if (t_number[i][j]!=temp_arr[i][j]) q++;
 }
 }
 }

 else printf("stream %d is in-time\n",i+1);

//

 printf("\n");
 printf("\n");

29

 //print after ordering
 ///

/* printf("values after ordering:\n");
 for(i=0;i<2;i++)
 {
 printf("stream %d : ",i+1);
 for(j=0;j<num;j++)
 {
 printf("%d ",t_number[i][j]);
 }
 printf("\n");
 }*/
 printf("\n");
 printf("%d tuples of stream %d are out-of-order\n",q,s_no);
 printf("%d tuples of both streams are synchronized\n",num-q);
 printf("\n");
 a=num-q;
 accuracy=(double)a/(double)num *100;
 printf("\n");
 for(j=0;j<num;j++)
 {
 in_time = (double)num * iat;
 }

 printf("total processing time for in-time stream = %.2f\n",in_time);
 printf("Accuracy: %.2f%% (no delay is considered)\n ",accuracy);

//
 printf("\n");
 printf("\n");

//total execution time
///
 if (s_no=1)
 {
 for(j=0;j<num;j++)

30

 {
 t_time= (double)num * (double)iat;
 }

 t_delay=0;
 printf("If consecutive delays are considered:\n");

 for(j=0;j<q;j++)
 {
 t_time+=(double)delay[j];
 t_delay+=(double)delay[j];
 accuracy=(double)++a/(double)num *100;
 printf("Accuracy: %.2f%% \t processing time: %.2f
(Delay: %.2f)\n",accuracy,t_time,delay[j]);
 }

 printf("\n");
 printf("\n");

 printf("total processing time for out-of-order stream = %.2f \n",t_time);
 printf("Accuracy: %.2f%% (total delay= %.2f)\n",accuracy,t_delay);

 t_time=0;

 printf("\n");
 printf("\n");
 }
///
}

31

Chapter 7

RESULT ANALYSIS & PERFORMANCE EVALUATION
--

Evaluation is a systematic determination of a subject's merit, worth and significance,
using criteria governed by a set of standards. It can assist an organization, program,
project or any other intervention or initiative to assess any aim, realizable
concept/proposal, or any alternative, to help in decision-making; or to ascertain the
degree of achievement or value in regard to the aim and objectives and results of any
such action that has been completed. The primary purpose of evaluation, in addition
to gaining insight into prior or existing initiatives, is to enable reflection and assist
in the identification of future change.

Evaluation is often used to characterize and appraise subjects of interest in a
wide range of human enterprises, including the arts, criminal justice, foundations,
non-profit organizations, government, health care, and other human services.

Evaluation is the structured interpretation and giving of meaning to predict or
actual impacts of proposals or results. It looks at original objectives, and at what is
either predicted or what was accomplished and how it was accomplished. So
evaluation can be formative that is taking place during the development of a concept
or proposal, project or organization, with the intention of improving the value or
effectiveness of the proposal, project, or organization. It can also be assumptive,
drawing lessons from a completed action or project or an organization at a later point
in time or circumstance.

Evaluation is inherently a theoretically informed approach (whether explicitly
or not), and consequently any particular definition of evaluation would have be
tailored to its context – the theory, needs, purpose, and methodology of the
evaluation process itself. Having said this, evaluation has been defined as:

A systematic, rigorous, and meticulous application of scientific methods to
assess the design, implementation, improvement, or outcomes of a program. It is a
resource-intensive process, frequently requiring resources, such as, evaluate
expertise, labor, time, and a sizable budget

"The critical assessment, in as objective a manner as possible, of the degree
to which a service or its component parts fulfills stated goals" (St Leger and

32

Wordsworth-Bell). The focus of this definition is on attaining objective knowledge,
and scientifically or quantitatively measuring predetermined and external concepts.

"A study designed to assist some audience to assess an object's merit and
worth" (Shuffleboard). In this definition the focus is on facts as well as value laden
judgments of the programs outcomes and worth.

Depending on the topic of interest, there are professional groups that review
the quality and rigor of evaluation processes.

Evaluating programs and projects, regarding their value and impact within the
context they are implemented, can be ethically challenging. Evaluators may
encounter complex, culturally specific systems resistant to external evaluation.
Furthermore, the project organization or other stakeholders may be invested in a
particular evaluation outcome. Finally, evaluators themselves may encounter
"conflict of interest (COI)" issues, or experience interference or pressure to present
findings that support a particular assessment.

General professional codes of conduct, as determined by the employing
organization, usually cover three broad aspects of behavioral standards, and include
inter-collegial relations (such as respect for diversity and privacy), operational issues
(due competence, documentation accuracy and appropriate use of resources), and
conflicts of interest (nepotism, accepting gifts and other kinds of favoritism).
However, specific guidelines particular to the evaluator's role that can be utilized in
the management of unique ethical challenges are required. The Joint Committee on
Standards for Educational Evaluation has developed standards for program,
personnel, and student evaluation. The Joint Committee standards are broken into
four sections: Utility, Feasibility, Propriety, and Accuracy. Various European
institutions have also prepared their own standards, more or less related to those
produced by the Joint Committee. They provide guidelines about basing value
judgments on systematic inquiry, evaluator competence and integrity, respect for
people, and regard for the general and public welfare.

The American Evaluation Association has created a set of Guiding Principles
for evaluators. The order of these principles does not imply priority among them;
priority will vary by situation and evaluator role. The principles run as follows:

7.1 Systematic Inquiry: evaluators conduct systematic, data-based inquiries
about whatever is being evaluated. This requires quality data collection, including a
defensible choice of indicators, which lends credibility to findings. Findings are
credible when they are demonstrably evidence-based, reliable and valid. This also
pertains to the choice of methodology employed, such that it is consistent with the

33

aims of the evaluation and provides dependable data. Furthermore, utility of findings
is critical such that the information obtained by evaluation is comprehensive and
timely, and thus serves to provide maximal benefit and use to stakeholders.

7.2 Competence: evaluators provide competent performance to stakeholders.

This requires that evaluation teams comprise an appropriate combination of
competencies, such that varied and appropriate expertise is available for the
evaluation process, and that evaluators work within their scope of capability.
Integrity/Honesty: evaluators ensure the honesty and integrity of the entire
evaluation process. A key element of this principle is freedom from bias in
evaluation and this is underscored by three principles: impartiality, independence,
and transparency.

Independence is attained through ensuring independence of judgment is
upheld such that evaluation conclusions are not influenced or pressured by another
party, and avoidance of conflict of interest, such that the evaluator does not have a
stake in a particular conclusion. Conflict of interest is at issue particularly where
funding of evaluations is provided by particular bodies with a stake in conclusions
of the evaluation, and this is seen as potentially compromising the independence of
the evaluator. Whilst it is acknowledged that evaluators may be familiar with
agencies or projects that they are required to evaluate, independence requires that
they not have been involved in the planning or implementation of the project. A
declaration of interest should be made where any benefits or association with project
are stated. Independence of judgment is required to be maintained against any
pressures brought to bear on evaluators, for example, by project funders wishing to
modify evaluations such that the project appears more effective than findings can
verify.

Impartiality pertains to findings being a fair and thorough assessment of
strengths and weaknesses of a project or program. This requires taking due input
from all stakeholders involved and findings presented without bias and with a
transparent, proportionate, and persuasive link between findings and
recommendations. Thus evaluators are required to delimit their findings to evidence.
A mechanism to ensure impartiality is external and internal review. Such review is
required of significant (determined in terms of cost or sensitivity) evaluations. The
review is based on quality of work and the degree to which a demonstrable link is
provided between findings and recommendations.

Transparency requires that stakeholders are aware of the reason for the
evaluation, the criteria by which evaluation occurs and the purposes to which the
findings will be applied. Access to the evaluation document should be facilitated

34

through findings being easily readable, with clear explanations of evaluation
methodologies, approaches, sources of information, and costs incurred.

7.3 Respect for People: Evaluators respect the security, dignity and self-

worth of the respondents, program participants, clients, and other stakeholders with
whom they interact. This is particularly pertinent with regards to those who will be
impacted upon by the evaluation findings. Protection of people includes ensuring
informed consent from those involved in the evaluation, upholding confidentiality,
and ensuring that the identity of those who may provide sensitive information
towards the program evaluation is protected. Evaluators are ethically required to
respect the customs and beliefs of those who are impacted upon by the evaluation or
program activities. Examples of how such respect is demonstrated is through
respecting local customs e.g. dress codes, respecting people’s privacy, and
minimizing demands on others' time. Where stakeholders wish to place objections
to evaluation findings, such a process should be facilitated through the local office
of the evaluation organization, and procedures for lodging complaints or queries
should be accessible and clear.

Responsibilities for General and Public Welfare: Evaluators articulate and
take into account the diversity of interests and values that may be related to the
general and public welfare. Access to evaluation documents by the wider public
should be facilitated such that discussion and feedback is enabled.

We have considered three different cases of unsorted tuples and compares the
results for the three cases.

7.4 Case study:

An average, or typical, case is often not the richest in information. In clarifying lines
of history and causation it is more useful to select subjects that offer an interesting,
unusual or particularly revealing set of circumstances. A case selection that is based
on representativeness will seldom be able to produce these kinds of insights. When
selecting a subject for a case study, researchers will therefore use information-
oriented sampling, as opposed to random sampling. Outlier cases (that is, those
which are extreme, deviant or atypical) reveal more information than the potentially
representative case. Alternatively, a case may be selected as a key case, chosen
because of the inherent interest of the case or the circumstances surrounding it. Or it
may be chosen because of researchers' in-depth local knowledge; where researchers
have this local knowledge they are in a position to “soak and poke” as Fenno puts it,

35

and thereby to offer reasoned lines of explanation based on this rich knowledge of
setting and circumstances.

Three types of cases may thus be distinguished:

 Key cases
 Outlier cases
 Local knowledge cases

Whatever the frame of reference for the choice of the subject of the case study (key,
outlier, local knowledge), there is a distinction to be made between the subjestorical
unity through which the theoretical focus of the study is being viewed. The object is
that theoretical focus – the analytical frame. Thus, for example, if a researcher were
interested in US resistance to communist expansion as a theoretical focus, then the
Korean War might be taken to be the subject, the lens, the case study through which
the theoretical focus, the object, could be viewed and explicated.

Beyond decisions about case selection and the subject and object of the study,
decisions need to be made about purpose, approach and process in the case study.
Thomas thus proposes a typology for the case study wherein purposes are first
identified (evaluative or exploratory), then approaches are delineated (theory-
testing, theory-building or illustrative), then processes are decided upon, with a
principal choice being between whether the study is to be single or multiple, and
choices also about whether the study is to be retrospective, snapshot or diachronic,
and whether it is nested, parallel or sequential. It is thus possible to take many routes
through this typology, with, for example, an exploratory, theory-building, multiple,
nested study, or an evaluative, theory-testing, single, retrospective study. The
typology thus offers many permutations for case study structure.

A closely related study in medicine is the case report, which identifies a
specific case as treated and/or examined by the authors as presented in a novel form.
These are, to a differentiable degree, similar to the case study in that many contain
reviews of the relevant literature of the topic discussed in the thorough examination
of an array of cases published to fit the criterion of the report being presented. These
case reports can be thought of as brief case studies with a principal discussion of the
new, presented case at hand that presents a novel interest.

36

7.4.1 Case 1:

If 63 tuples are out of order:

• Accuracy is between 38% to
 100%

• Processing time is between
 10.41 sec to 29.61 sec

• Total processing time is 29.61
 Sec

• Total delay for 100% accuracy
 19.61sec

In the screen shots below we can see the detail for unsorted tuples.

37

38

The graphs shows the accuracy in the x axis and delay in y axis. We can see the
line is polynomial and with the delay accuracy is increasing.

0

5

10

15

20

25

30

35

0 20 40 60 80 100 120

de
la

y

accuracy

If 63 tuples are out of order

39

7.4.2 Case 2:

If 27 tuples are out of order:

• Accuracy is between 74% to
 100%

• Processing time is between
 10.41 sec to 19.17 sec

• Total processing time is 19.17
 sec

• Total delay for 100% accuracy
 9.17 sec

In the screen shots below we can see the detail for unsorted tuples.

40

The graphs shows the accuracy in the x axis and delay in y axis. We can see the
line is polynomial and with the delay accuracy is increasing.

0

5

10

15

20

25

0 20 40 60 80 100 120

de
la

y

accuracy

If 27 tuples are out of order

41

7.4.3 Case 3:

If 7 tuples are out of order:

• Accuracy is between 94% to
 100%

• Processing time is between 10.41
 sec to 12.53 sec

• Total processing time is 12.53 sec
• Total delay for 100% accuracy

 2.53 sec

In the screen shots below we can see the detail for unsorted tuples.

42

The graphs shows the accuracy in the x axis and delay in y axis. We can see the
line is polynomial and with the delay accuracy is increasing.

10

10.5

11

11.5

12

12.5

93 94 95 96 97 98 99 100

de
la

y

accuracy

If 7 tuples are out of order

43

Chapter 8

CONCLUSION

The algorithm, by evaluating the sample data and graph, enables the user to choose
the appropriate trade-off between delay and accuracy in any particular system.it
depends on user choice as for different accuracy delay will be different. From the
graphs user easily can see the variation of data and decide which he will choose. The
main purpose of the algorithm is to enable the user to analyze the sample data that
will be taken as the input and it will show the delay and the accuracy values. If the
values are plotted in the graph, then the trade-off becomes easy to pick. As they have
the properties similar to each other like if the processing time is increased then the
accuracy also increases but just the opposite happens when the processing time is
decreased then the accuracy also degrades. So this creates a constraint about picking
the right point between them. Again, the delay and the accuracy has a completely
similar relationship. When we want to increase the accuracy measure, the delay time
also gets increased. So there is apparently no perfect solution but there can be an
optimized point chosen depending on the system environment.

But in case of special situations (e.g. too many tuples within inter arrival time)
the performance of the algorithm might degrade. So further improvements will
surely been done after evaluating some user cases and more study. When the model
gets fully functioning then based on the feedbacks and other bugs that will be
revealed after the usage the improvisation shall be made.

44

Appendix
--
REFERENCES AND BIBLIOGRAPHY

• [1] Moustafa A. Hammad, Walid G. Aref, Ann C. Catlin, Mohamed G.
Elfeky and Ahmed K. Elmagarmid, “A Stream Database Server for Sensor
Applications”.

• [2] Moustafa A. Hammad Walid G. ArefAhmed K. Elmagarmid, “Search
based buffer management policies for streaming in continuous media
servers”.

• [3] watsawee sansrimahachai , “tracing fine grained provenance in stream

processing systems using a reverse mapping method”.

• [4] Irina Botan, Gustavo Alonso, Peter M. Fischer, Donald Kossmann,
Nesime Tatbul ,”Flexible and Scalable Storage Management for Data-
intensive Stream Processing”.

• [5] Brian Babcock, Shivnath Babu, Mayur Datar, Rajeev Motwani, Jennifer
Widom ,” Models and Issues in Data Stream Systems”

45

