dc.identifier.citation |
*1+ G. E. Moore, ‘‘No exponential is forever: But ‘Forever’ can be delayed,’’ inDig. Tech Papers Int. Solid- State Circuits Conf., 2003, pp. 20–23 [2] International Journal of Advanced Research in Computer and Communication Engineering Vol. 1, Issue 4, June 2012 [3] K. Bolotin, K. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim, and H. Stormer, “Ultrahigh electron mobility in suspended graphene,” Solid State Communications, vol. 146, Jun. 2008, pp. 351-355. [4] B.S.K. Banerjee, F. Ieee, L.F. Register, E. Tutuc, M. Ieee, D. Basu, S. Kim, D. Reddy, and A.H. Macdonald, “Graphene for CMOS and Beyond CMOS Applications,” Proceedings of the IEEE, vol. 98, 2010. *5+ T.J. Echtermeyer, M.C. Lemme, J. Bolten, M. Baus, M. Ramsteiner, and H. Kurz, “Graphene fieldeffect devices,” The European Physical Journal Special Topics, vol. 148, Sep. 2007, pp. 19-26. [6] K. S. Novoselov, A. K. Geim, S. V. Morozov,D. Jiang, Y. Zhang, S. V. Dubonos,I. V. Grigorieva, and A. A. Firsov, ‘‘Electric field effect in atomically thin carbon films,’’ Science, vol. 306, pp. 666–669, 2004 [7] C. Berger, Z. Song, T. Li, X. Li, A. Y. Ogbazghi, R. Feng, Z. Dai, A. N. Marchenkov, E. H. Conrad, P. N. First, and W. A. de Heer, ‘‘Ultrathin epitaxial graphite: 2D electron gas properties and a route toward graphene-based nanoelectronics,’’J. Phys. Chem. B, vol. 108, pp. 19912–19916, 2004. [8] Vol. 101, No. 7, July 2013 |Proceedings of the IEEE 1567-1668 *9+ P. R. Wallace, ‘‘The band theory of graphite,’’ Phys. Rev., vol. 71, pp. 622–634, 1947. *10+ H. P. Boehm, A. Clauss, G. O. Fischer, and U. Hofmann, ‘‘Du¨nnste Kohlenstoff-Folien,’’ Z. Naturforschg., vol. 17b, pp. 150– 153, 1962. *11+ J. W. May, ‘‘Platinum surface LEED rings,’’ Surf. Sci., vol. 17, pp. 267–270, 1969. *12+ A. J. van Bommel, J. E. Crombeen, and A. van Tooren, ‘‘LEED and Auger electron observations of the SiC(0001) surface,’’ Surf. Sci., vol. 48, pp. 463–472, 1975. [13] H.-P. Boehm, R. Setton, and E. Stumpp,‘‘Nomenclature and terminology of graphitic intercalation compounds,’’ Pure Appl. Chem., vol. 66, pp. 1893–1901, 1994 [14] A. K. Geim and K. S. Novoselov, ‘‘The rise of graphene,’’Nature Mater., vol. 6, pp. 183–191, 2007. *15+ A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, ‘‘Theelectronic properties of graphene,’’Rev. Mod. Phys., vol. 81, pp. 109–162, 2009. 70 [16+ P. Avouris, ‘‘Graphene: Electronic and photonic properties and devices,’’Nano Lett., vol. 10, pp. 4285–4294, 2010. *17+ F. Schwierz, ‘‘Graphene transistors,’’ Nature Nanotechnol., vol. 5, pp. 487–496, 2010. [18] M. C. Lemme, T. J. Echtermeyer, M. Baus, and H. Kurz, ‘‘A graphene field-effect device,’’IEEE Electron Device Lett., vol. 28, no. 4, pp. 282–284, Apr. 2007 [19] Y.-M. Lin, C. Dimitrakopoulos, K. A. Jenkins, D. B. Farmer, H.-Y. Chiu, A. Grill, and P. Avouris, ‘‘100- GHz transistors from wafer-scale epitaxial grapheme,’’Science, vol. 327, p. 662, 2010. [20] L. Liao, Y.-C. Lin, M. Bao, R. Cheng, J. Bai, Y. Liu, Y. Qu, K. L. Wang, Y. Huang, and X. Duan, ‘‘Highspeed graphene transistorswith a self-aligned nanowire gate,’’Nature, vol. 467, pp. 305–308, 2010. [21] Y.-M. Lin, A. Valdes-Garcia, S.-J. Han, D. B. Farmer, I. Meric, Y. Sun, Y. Wu, C. Dimitrakopoulos, A. Grill, P. Avouris, and K. A. Jenkins, ‘‘Wafer-scale graphene integrated circuit,’’ Science, vol. 332, pp. 1294–1297, 2011. [22] R. Cheng, J. Bai, L. Liao, H. Zhou, Y. Chen, L. Liu, Y.-C. Lin, S. Jiang, Y. Huang, and X. Duan, ‘‘Highfrequency self-aligned graphene transistors with transferred gate stacks,’’Proc. Nat. Acad. Sci., vol. 109, pp. 11588–11592, 2012 *23+ N. Savage, ‘‘Super carbon,’’Nature, vol. 483, pp. S30–S31, 2012. *24+ R. Van Noorden, ‘‘Beyond sticky tape,’’ Nature, vol. 483, pp. S32–S33, 2012. *25+ K. Bourzac, ‘‘Back to analogue,’’Nature, vol. 483, pp. S34–S36, 2012. *26+ N. Savage, ‘‘Come into the light,’’Nature, vol. 483, pp. S38–S39, 2012. *27+ P. Gwynne and T. Palacios, ‘‘Taking charge,’’ Nature, vol. 483, pp. S40–S41, 2012. *28+ M. Segal, ‘‘Learning from silicon,’’Nature, vol. 483, pp. S43–S44, 2012 *29+ G. Jo, M. Choe, S. Lee, W. Park, Y. H. Kahng, and T. Lee, ‘‘The application of grapheneas electrodes in electrical and optical devices,’’Nanotechnology, vol. 23, 2012, 112001. [30] B. J. Kim, H. Jang, S.-K. Lee, B. H. Hong, J.-H. Ahn, and J. H. Cho, ‘‘High-performance flexible graphene field effect transistors with ion gel gate dielectrics,’’Nano Lett., vol. 10, pp. 3464–3466, 2010. *31+ S. Wang, P. K. Ang, Z. Wang, A. L. L. Tang, J. T. L. Thong, and K. P. Loh, ‘‘High mobility, printable, solution-processed graphene electronics,’’Nano Lett., vol. 10, pp. 92–98, 2010 [32] Kim S, Nah J, Jo I, Shahrjerdi D, Colombo L, Yao Z, Tutuc E and Banerjee S K 2009 Realization of a high mobility dual-gated graphene field-effect transistor with Al2O3 dielectricAppl. Phys. Lett.94062107 71 [33] Fang T, Konar A, Xing H and Jena D 2007 Carrier statistics and quantum capacitance of graphene sheets and nanoribbonsAppl. Phys. Lett.91092109 [34] Sam Vaziri,Fabrication and Characterization of Graphene Field Effect Transistors,June, 2011:pp. 11- 19 [35] L. Liao and X. Duan, “Graphene–dielectric integration for graphene transistors,” Materials Science and Engineering: R: Reports, vol. 70, Nov. 2010, pp. 354-370. *36+ R.L. Puurunen, “Surface chemistry of atomic layer deposition: A case study for the trimethylaluminum/water process,” Journal of Applied Physics, vol. 97, 2005, p. 121301. *37+ L. Liao and X. Duan, “Graphene–dielectric integration for graphene transistors,” Materials Science and Engineering: R: Reports, vol. 70, Nov. 2010, pp. 354-370. [38] M. Manouchehri and C. Henkel, “private communication,” 2010. [39] Javad Bavaghar Chahardeh,A Review on Graphene Transistors,International Journal of Advanced Research in Computer and Communication Engineering Vol. 1, Issue 4, June 2012:195-196 *40+ M.C. Lemme, “Current Status of Graphene Transistors,” Solid State Phenomena, vol. 158, 2010, pp. 499-509. [41] A. Ferrari, J. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. Novoselov, S. Roth, and A. Geim, “Raman Spectrum of Graphene and Graphene Layers,” Physical Review Letters, vol. 97, Oct. 2006, pp. 1-4. *42+ A. Ferrari, “Raman spectroscopy of graphene and graphite: Disorder, electron–phonon coupling, doping and nonadiabatic effects,” Solid State Communications, vol. 143, Jul. 2007, pp. 47-57. [43] Sam Vaziri, "Fabrication and Characterization of Graphene Field Effect Transistors," Royal Institute of Technology (KTH), Jun. 2011, pp. 21 [44] Sam Vaziri, "Fabrication and Characterization of Graphene Field Effect Transistors," Royal Institute of Technology (KTH), Jun. 2011, pp. 22 [45] Sam Vaziri, "Fabrication and Characterization of Graphene Field Effect Transistors," Royal Institute of Technology (KTH), Jun. 2011, pp. 23 [46] Sam Vaziri, "Fabrication and Characterization of Graphene Field Effect Transistors," Royal Institute of Technology (KTH), Jun. 2011, pp. 24 [47] Sam Vaziri, "Fabrication and Characterization of Graphene Field Effect Transistors," Royal Institute of Technology (KTH), Jun. 2011, pp. 27-28 [48] Sam Vaziri, "Fabrication and Characterization of Graphene Field Effect Transistors," Royal Institute of Technology (KTH), Jun. 2011, pp. 33 72 [49] Sam Vaziri, "Fabrication and Characterization of Graphene Field Effect Transistors," Royal Institute of Technology (KTH), Jun. 2011, pp.34-35 [50] J. Phys. D: Appl. Phys.44(2011) 313001 pp 12- 14 *51+ S. Fregonese, M. Magallo, C. Maneux, H. Happy, and T. Zimmer, “Scalable electrical compact modeling for graphene FET transistors,”IEEE Trans. Nanotechnol., vol. 12, no. 4, pp. 539–546, Jul. 2013. *52+ H. Shichman and D. A. Hodges, “Modeling and simulation of insulated-gate ?eld-effect transistor switching circuits,” IEEE J. Solid-State Circuits, vol. 3, no. 3, pp. 285–289, Sep. 1968. *53+ J. J. Ebers and J. L. Moll, “Large-signal behavior of junction transistors,” Proc. IRE, vol. 42, no. 12, pp. 1761–1772, Dec. 1954. [54] Saul Rodriguez, Sam Vaziri, Anderson Smith, Sébastien Frégonèse, Mikael Ostling, Max C. Lemme and Ana Rusu, "Comprehensive Graphene FET Model for Circuit Design" pp. 3 [55] Omid Habibpour, "A Large Signal Graphene FET Model," pp 2 *56+ S. Han, Z. Chen, and A. Bol, “Channel-length-dependent transport behaviors of graphene ?eld-effect transistors,” IEEE Electron Device Lett., vol. 32, no. 6, pp. 812–814, Jun. 2011. [57+ A. Venugopal, J. Chan, X. Li, C. W. Magnuson, W. P. Kirk, L. Colombo, et al., “Effective mobility of single-layer graphene transistors as a function of channel dimensions,” J. Appl. Phys., vol. 109, no. 10, pp. 104511-1–104511-5, 2011. [58] Saul Rodriguez, Sam Vaziri, Anderson Smith, Sébastien Frégonèse, Mikael Ostling, Max C. Lemme and Ana Rusu, "Comprehensive Graphene FET Model for Circuit Design" pp. 4 [59] Giancarlo VINCENZI, "Graphene: FET and Metal Contact Modeling," Universite de Toulouse, Jan. 2014, pp 57-58 [60] Saul Rodriguez, Sam Vaziri, Anderson Smith, Sébastien Frégonèse, Mikael Ostling, Max C. Lemme and Ana Rusu, "Comprehensive Graphene FET Model for Circuit Design" pp. 5 [61] I. Meric, C. Dean, A. Young, J. Hone, P. Kim, and K. L. Shepard, “Graphene ?eld-effect transistors based on boron nitride gate dielectrics graphene,” in Proc. IEEE IEDM, Dec. 2010, pp. 556–559. [62] Y. Wu, D. B. Farmer, W. Zhu, S.-J. Han, C. D. Dimitrakopoulos, A. A. Bol, et al., “Three-terminal graphene negative differential resistance devices,” ACS Nano, vol. 6, no. 3, pp. 2610–2166, Mar. 2012. *63+ R. Grassi, T. Low, A. Gnudi, and G. Baccarani, “Contact-induced negative differential resistance in short-channel graphene FETs ,” IEEE Trans. Electron Devices, vol. 60, no. 1, pp. 140–146, Jan. 2013. [64] WANG Zhen Xing, ZHANG ZhiYong and PENG LianMao,SPECIAL ISSUE: Graphene,Vol.57 No. 23: 2956–2970 doi: 10.1007/s11434-012-5143-x,chinese science bulletin,August 2012:2968 [65]89 Wang H, Nezich D, Kong J, et al. Graphene frequency multipliers. IEEE Electron Device Lett, 2009, 30: 547–549 73 [66] Wang Z X, Zhang Z Y, Xu H L, et al. A high-performance top-gate graphene field-effect transistor based frequency doubler. Appl Phys Lett, 2010, 96: 173104 [67] Wang H, Hsu A, Kim K K, et al. Gigahertz ambipolar frequency multiplier based on CVD graphene. IEEE International Electron Devices Meeting, 2010, 23.6.1–23.6.4 [68] 91 Wang Z X, Ding L, Pei T, et al. Large signal operation of small bandgap carbon nanotube-based ambipolar transistor: A high-performance frequency doubler. Nano Lett, 2010, 10: 3648–3655 [69] Durkop T, Getty S A, Cobas E, et al. Extraordinary mobility in semiconducting carbon nanotubes. Nano Lett, 2004, 4: 35–39 [70] Baumgardner J E, Pesetski A A, Murduck J M, et al. Inherent linearity in carbon nanotube field-effect transistors. Appl Phys Lett, 2007, 91:052107 [71] Wang H, Hsu A, Wu J, et al. Graphen-based ambipolar RF mixers.IEEE Electron Device Lett, 2010, 31: 906–908 [72] Lin Y M, Valdes-Garcia A, Han S J, et al. Wafer-scale graphene integrated circuit. Science, 2011, 332: 1294–1297 [73] Yang X B, Liu G X, Balandin A A, et al. Triple-mode single-transistor graphene amplifier and its applications. ACS Nano, 2010, 4: 5532–5538 [74] Yang X B, Liu G X, Rostami M, et al. Graphene ambipolar multiplier phase detector. IEEE Electron Device Lett, 2011, 32: 1328–1330 |
en_US |