A Review on Graphene Based Field Effect Transistor (GFET)

Show simple item record

dc.contributor.author Apurba, Hasinur Rahman
dc.contributor.author Rasel, Md. Mazharul Islam
dc.contributor.author Shawon, M. M. Abu Shahria
dc.date.accessioned 2021-10-01T03:58:52Z
dc.date.available 2021-10-01T03:58:52Z
dc.date.issued 2014-11-15
dc.identifier.citation *1+ G. E. Moore, ‘‘No exponential is forever: But ‘Forever’ can be delayed,’’ inDig. Tech Papers Int. Solid- State Circuits Conf., 2003, pp. 20–23 [2] International Journal of Advanced Research in Computer and Communication Engineering Vol. 1, Issue 4, June 2012 [3] K. Bolotin, K. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim, and H. Stormer, “Ultrahigh electron mobility in suspended graphene,” Solid State Communications, vol. 146, Jun. 2008, pp. 351-355. [4] B.S.K. Banerjee, F. Ieee, L.F. Register, E. Tutuc, M. Ieee, D. Basu, S. Kim, D. Reddy, and A.H. Macdonald, “Graphene for CMOS and Beyond CMOS Applications,” Proceedings of the IEEE, vol. 98, 2010. *5+ T.J. Echtermeyer, M.C. Lemme, J. Bolten, M. Baus, M. Ramsteiner, and H. Kurz, “Graphene fieldeffect devices,” The European Physical Journal Special Topics, vol. 148, Sep. 2007, pp. 19-26. [6] K. S. Novoselov, A. K. Geim, S. V. Morozov,D. Jiang, Y. Zhang, S. V. Dubonos,I. V. Grigorieva, and A. A. Firsov, ‘‘Electric field effect in atomically thin carbon films,’’ Science, vol. 306, pp. 666–669, 2004 [7] C. Berger, Z. Song, T. Li, X. Li, A. Y. Ogbazghi, R. Feng, Z. Dai, A. N. Marchenkov, E. H. Conrad, P. N. First, and W. A. de Heer, ‘‘Ultrathin epitaxial graphite: 2D electron gas properties and a route toward graphene-based nanoelectronics,’’J. Phys. Chem. B, vol. 108, pp. 19912–19916, 2004. [8] Vol. 101, No. 7, July 2013 |Proceedings of the IEEE 1567-1668 *9+ P. R. Wallace, ‘‘The band theory of graphite,’’ Phys. Rev., vol. 71, pp. 622–634, 1947. *10+ H. P. Boehm, A. Clauss, G. O. Fischer, and U. Hofmann, ‘‘Du¨nnste Kohlenstoff-Folien,’’ Z. Naturforschg., vol. 17b, pp. 150– 153, 1962. *11+ J. W. May, ‘‘Platinum surface LEED rings,’’ Surf. Sci., vol. 17, pp. 267–270, 1969. *12+ A. J. van Bommel, J. E. Crombeen, and A. van Tooren, ‘‘LEED and Auger electron observations of the SiC(0001) surface,’’ Surf. Sci., vol. 48, pp. 463–472, 1975. [13] H.-P. Boehm, R. Setton, and E. Stumpp,‘‘Nomenclature and terminology of graphitic intercalation compounds,’’ Pure Appl. Chem., vol. 66, pp. 1893–1901, 1994 [14] A. K. Geim and K. S. Novoselov, ‘‘The rise of graphene,’’Nature Mater., vol. 6, pp. 183–191, 2007. *15+ A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, ‘‘Theelectronic properties of graphene,’’Rev. Mod. Phys., vol. 81, pp. 109–162, 2009. 70 [16+ P. Avouris, ‘‘Graphene: Electronic and photonic properties and devices,’’Nano Lett., vol. 10, pp. 4285–4294, 2010. *17+ F. Schwierz, ‘‘Graphene transistors,’’ Nature Nanotechnol., vol. 5, pp. 487–496, 2010. [18] M. C. Lemme, T. J. Echtermeyer, M. Baus, and H. Kurz, ‘‘A graphene field-effect device,’’IEEE Electron Device Lett., vol. 28, no. 4, pp. 282–284, Apr. 2007 [19] Y.-M. Lin, C. Dimitrakopoulos, K. A. Jenkins, D. B. Farmer, H.-Y. Chiu, A. Grill, and P. Avouris, ‘‘100- GHz transistors from wafer-scale epitaxial grapheme,’’Science, vol. 327, p. 662, 2010. [20] L. Liao, Y.-C. Lin, M. Bao, R. Cheng, J. Bai, Y. Liu, Y. Qu, K. L. Wang, Y. Huang, and X. Duan, ‘‘Highspeed graphene transistorswith a self-aligned nanowire gate,’’Nature, vol. 467, pp. 305–308, 2010. [21] Y.-M. Lin, A. Valdes-Garcia, S.-J. Han, D. B. Farmer, I. Meric, Y. Sun, Y. Wu, C. Dimitrakopoulos, A. Grill, P. Avouris, and K. A. Jenkins, ‘‘Wafer-scale graphene integrated circuit,’’ Science, vol. 332, pp. 1294–1297, 2011. [22] R. Cheng, J. Bai, L. Liao, H. Zhou, Y. Chen, L. Liu, Y.-C. Lin, S. Jiang, Y. Huang, and X. Duan, ‘‘Highfrequency self-aligned graphene transistors with transferred gate stacks,’’Proc. Nat. Acad. Sci., vol. 109, pp. 11588–11592, 2012 *23+ N. Savage, ‘‘Super carbon,’’Nature, vol. 483, pp. S30–S31, 2012. *24+ R. Van Noorden, ‘‘Beyond sticky tape,’’ Nature, vol. 483, pp. S32–S33, 2012. *25+ K. Bourzac, ‘‘Back to analogue,’’Nature, vol. 483, pp. S34–S36, 2012. *26+ N. Savage, ‘‘Come into the light,’’Nature, vol. 483, pp. S38–S39, 2012. *27+ P. Gwynne and T. Palacios, ‘‘Taking charge,’’ Nature, vol. 483, pp. S40–S41, 2012. *28+ M. Segal, ‘‘Learning from silicon,’’Nature, vol. 483, pp. S43–S44, 2012 *29+ G. Jo, M. Choe, S. Lee, W. Park, Y. H. Kahng, and T. Lee, ‘‘The application of grapheneas electrodes in electrical and optical devices,’’Nanotechnology, vol. 23, 2012, 112001. [30] B. J. Kim, H. Jang, S.-K. Lee, B. H. Hong, J.-H. Ahn, and J. H. Cho, ‘‘High-performance flexible graphene field effect transistors with ion gel gate dielectrics,’’Nano Lett., vol. 10, pp. 3464–3466, 2010. *31+ S. Wang, P. K. Ang, Z. Wang, A. L. L. Tang, J. T. L. Thong, and K. P. Loh, ‘‘High mobility, printable, solution-processed graphene electronics,’’Nano Lett., vol. 10, pp. 92–98, 2010 [32] Kim S, Nah J, Jo I, Shahrjerdi D, Colombo L, Yao Z, Tutuc E and Banerjee S K 2009 Realization of a high mobility dual-gated graphene field-effect transistor with Al2O3 dielectricAppl. Phys. Lett.94062107 71 [33] Fang T, Konar A, Xing H and Jena D 2007 Carrier statistics and quantum capacitance of graphene sheets and nanoribbonsAppl. Phys. Lett.91092109 [34] Sam Vaziri,Fabrication and Characterization of Graphene Field Effect Transistors,June, 2011:pp. 11- 19 [35] L. Liao and X. Duan, “Graphene–dielectric integration for graphene transistors,” Materials Science and Engineering: R: Reports, vol. 70, Nov. 2010, pp. 354-370. *36+ R.L. Puurunen, “Surface chemistry of atomic layer deposition: A case study for the trimethylaluminum/water process,” Journal of Applied Physics, vol. 97, 2005, p. 121301. *37+ L. Liao and X. Duan, “Graphene–dielectric integration for graphene transistors,” Materials Science and Engineering: R: Reports, vol. 70, Nov. 2010, pp. 354-370. [38] M. Manouchehri and C. Henkel, “private communication,” 2010. [39] Javad Bavaghar Chahardeh,A Review on Graphene Transistors,International Journal of Advanced Research in Computer and Communication Engineering Vol. 1, Issue 4, June 2012:195-196 *40+ M.C. Lemme, “Current Status of Graphene Transistors,” Solid State Phenomena, vol. 158, 2010, pp. 499-509. [41] A. Ferrari, J. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. Novoselov, S. Roth, and A. Geim, “Raman Spectrum of Graphene and Graphene Layers,” Physical Review Letters, vol. 97, Oct. 2006, pp. 1-4. *42+ A. Ferrari, “Raman spectroscopy of graphene and graphite: Disorder, electron–phonon coupling, doping and nonadiabatic effects,” Solid State Communications, vol. 143, Jul. 2007, pp. 47-57. [43] Sam Vaziri, "Fabrication and Characterization of Graphene Field Effect Transistors," Royal Institute of Technology (KTH), Jun. 2011, pp. 21 [44] Sam Vaziri, "Fabrication and Characterization of Graphene Field Effect Transistors," Royal Institute of Technology (KTH), Jun. 2011, pp. 22 [45] Sam Vaziri, "Fabrication and Characterization of Graphene Field Effect Transistors," Royal Institute of Technology (KTH), Jun. 2011, pp. 23 [46] Sam Vaziri, "Fabrication and Characterization of Graphene Field Effect Transistors," Royal Institute of Technology (KTH), Jun. 2011, pp. 24 [47] Sam Vaziri, "Fabrication and Characterization of Graphene Field Effect Transistors," Royal Institute of Technology (KTH), Jun. 2011, pp. 27-28 [48] Sam Vaziri, "Fabrication and Characterization of Graphene Field Effect Transistors," Royal Institute of Technology (KTH), Jun. 2011, pp. 33 72 [49] Sam Vaziri, "Fabrication and Characterization of Graphene Field Effect Transistors," Royal Institute of Technology (KTH), Jun. 2011, pp.34-35 [50] J. Phys. D: Appl. Phys.44(2011) 313001 pp 12- 14 *51+ S. Fregonese, M. Magallo, C. Maneux, H. Happy, and T. Zimmer, “Scalable electrical compact modeling for graphene FET transistors,”IEEE Trans. Nanotechnol., vol. 12, no. 4, pp. 539–546, Jul. 2013. *52+ H. Shichman and D. A. Hodges, “Modeling and simulation of insulated-gate ?eld-effect transistor switching circuits,” IEEE J. Solid-State Circuits, vol. 3, no. 3, pp. 285–289, Sep. 1968. *53+ J. J. Ebers and J. L. Moll, “Large-signal behavior of junction transistors,” Proc. IRE, vol. 42, no. 12, pp. 1761–1772, Dec. 1954. [54] Saul Rodriguez, Sam Vaziri, Anderson Smith, Sébastien Frégonèse, Mikael Ostling, Max C. Lemme and Ana Rusu, "Comprehensive Graphene FET Model for Circuit Design" pp. 3 [55] Omid Habibpour, "A Large Signal Graphene FET Model," pp 2 *56+ S. Han, Z. Chen, and A. Bol, “Channel-length-dependent transport behaviors of graphene ?eld-effect transistors,” IEEE Electron Device Lett., vol. 32, no. 6, pp. 812–814, Jun. 2011. [57+ A. Venugopal, J. Chan, X. Li, C. W. Magnuson, W. P. Kirk, L. Colombo, et al., “Effective mobility of single-layer graphene transistors as a function of channel dimensions,” J. Appl. Phys., vol. 109, no. 10, pp. 104511-1–104511-5, 2011. [58] Saul Rodriguez, Sam Vaziri, Anderson Smith, Sébastien Frégonèse, Mikael Ostling, Max C. Lemme and Ana Rusu, "Comprehensive Graphene FET Model for Circuit Design" pp. 4 [59] Giancarlo VINCENZI, "Graphene: FET and Metal Contact Modeling," Universite de Toulouse, Jan. 2014, pp 57-58 [60] Saul Rodriguez, Sam Vaziri, Anderson Smith, Sébastien Frégonèse, Mikael Ostling, Max C. Lemme and Ana Rusu, "Comprehensive Graphene FET Model for Circuit Design" pp. 5 [61] I. Meric, C. Dean, A. Young, J. Hone, P. Kim, and K. L. Shepard, “Graphene ?eld-effect transistors based on boron nitride gate dielectrics graphene,” in Proc. IEEE IEDM, Dec. 2010, pp. 556–559. [62] Y. Wu, D. B. Farmer, W. Zhu, S.-J. Han, C. D. Dimitrakopoulos, A. A. Bol, et al., “Three-terminal graphene negative differential resistance devices,” ACS Nano, vol. 6, no. 3, pp. 2610–2166, Mar. 2012. *63+ R. Grassi, T. Low, A. Gnudi, and G. Baccarani, “Contact-induced negative differential resistance in short-channel graphene FETs ,” IEEE Trans. Electron Devices, vol. 60, no. 1, pp. 140–146, Jan. 2013. [64] WANG Zhen Xing, ZHANG ZhiYong and PENG LianMao,SPECIAL ISSUE: Graphene,Vol.57 No. 23: 2956–2970 doi: 10.1007/s11434-012-5143-x,chinese science bulletin,August 2012:2968 [65]89 Wang H, Nezich D, Kong J, et al. Graphene frequency multipliers. IEEE Electron Device Lett, 2009, 30: 547–549 73 [66] Wang Z X, Zhang Z Y, Xu H L, et al. A high-performance top-gate graphene field-effect transistor based frequency doubler. Appl Phys Lett, 2010, 96: 173104 [67] Wang H, Hsu A, Kim K K, et al. Gigahertz ambipolar frequency multiplier based on CVD graphene. IEEE International Electron Devices Meeting, 2010, 23.6.1–23.6.4 [68] 91 Wang Z X, Ding L, Pei T, et al. Large signal operation of small bandgap carbon nanotube-based ambipolar transistor: A high-performance frequency doubler. Nano Lett, 2010, 10: 3648–3655 [69] Durkop T, Getty S A, Cobas E, et al. Extraordinary mobility in semiconducting carbon nanotubes. Nano Lett, 2004, 4: 35–39 [70] Baumgardner J E, Pesetski A A, Murduck J M, et al. Inherent linearity in carbon nanotube field-effect transistors. Appl Phys Lett, 2007, 91:052107 [71] Wang H, Hsu A, Wu J, et al. Graphen-based ambipolar RF mixers.IEEE Electron Device Lett, 2010, 31: 906–908 [72] Lin Y M, Valdes-Garcia A, Han S J, et al. Wafer-scale graphene integrated circuit. Science, 2011, 332: 1294–1297 [73] Yang X B, Liu G X, Balandin A A, et al. Triple-mode single-transistor graphene amplifier and its applications. ACS Nano, 2010, 4: 5532–5538 [74] Yang X B, Liu G X, Rostami M, et al. Graphene ambipolar multiplier phase detector. IEEE Electron Device Lett, 2011, 32: 1328–1330 en_US
dc.identifier.uri http://hdl.handle.net/123456789/1040
dc.description Supervised by Dr. Syed Iftekhar Ali, Associate Professor, Department of Electrical and Electronic Engineering(EEE), Islamic University of Technology (IUT), Board Bazar, Gazipur-1704, Bangladesh en_US
dc.description.abstract With the advancement of technology, the necessity of devices in nanometer range has gone up. A new addition in this nano device family is Graphene based Field Effect Transistor or GFET. Graphene is a single sheet of graphite and it has some amazing properties those made it possible to use it in the fabrication of GFET. The main difference of this device with the regular FETs is that the channel of GFET is of single layer Graphene flake. The fabrication process is a bit complex due to ensure the use of SINGLE layer Graphene flake as the channel of the GFET. There are a few fabrication processes depending on what kind of GFET is being tried to be fabricated. There have been so many experiments to find out the characteristics of GFET and they seem to very unique according to their types. Different GFET models are being tried to be developed by the specialists lately to operate them in newer levels and there are some revolutionary inventions happened on that matter. The potential uses of GFET are amazing which makes us think that may be it would be a great idea to work further on the application of GFET. en_US
dc.language.iso en en_US
dc.publisher Department of Electrical and Electronic Engineering, Islamic University of Technology (IUT), Board Bazar, Gazipur-1704, Bangladesh en_US
dc.title A Review on Graphene Based Field Effect Transistor (GFET) en_US
dc.type Thesis en_US


Files in this item

This item appears in the following Collection(s)

Show simple item record

Search IUT Repository


Advanced Search

Browse

My Account

Statistics