Efficiency Loss Due To Defects In AlGaAs/GaAs Hetero-junction Solar Cell

Show simple item record

dc.contributor.author Rahman, Khandaker Md. Sydur
dc.contributor.author Hossain, MD. Tasnim
dc.contributor.author Ahsan, Sadi M Jawad
dc.contributor.author Hasoneh, Odai Waheed Amin
dc.date.accessioned 2021-10-01T04:57:26Z
dc.date.available 2021-10-01T04:57:26Z
dc.date.issued 2014-11-15
dc.identifier.citation 1. B. Jensen and A. Torabi "Dispersion of the refractive index of GaAs and AlxGa1â ”xAs", IEEE J. Quantum Electron., vol. JQE-19, pp.877 - 882 1983 2. Peter Gevorkian, Sustainable energy systems engineering: the complete green building design resource, p. 498, McGraw-Hill Professional, New York, USA, 2007, ISBN: 978-0071473590. 3. Marius Grundmann, The Physics of Semiconductors: An Introduction Including Nanophysics and Applications, 2nd ed., p. 3, Springer-Verlag, Berlin, Germany, 2010, ISBN: 978-3642138843. 4. K. A. Tsokos, Physics for the IB Diploma, 5th ed., Cambridge University Press, Cambridge, UK, 2008, ISBN: 978-0521708203. Available:http: //www. ioffe.ru/SVA/NSM/Semicond/ 5. Harish Palaniappan. (2012) Solar Cells. [Online]. Available: http://solar_cells.tripod.com/notes_sel_1.html 6. T.V. Torchynska, and G.P. Polupan, “III-V material solar cells for space application”, Semiconductor Physics, Quantum Electronics & Optoelectronics, vol. 5, no. 1, pp. 63-70, 2002. 7. Ioffe Physical Technical Institute. (2005) NSM Archive - Physical Properties of Semiconductors. Available: http://www.ioffe.ru/SVA/NSM/Semicond/GaAs/index.html 8. Ioffe Physical Technical Institute. (2005) NSM Archive - Physical Properties of Semiconductors. Available: http://www.ioffe.ru/SVA/NSM/Semicond/AlGaAs/index.html 9. Ioffe Physical Technical Institute. (2005) NSM Archive - Physical Properties of Semiconductors. Available: http://www.ioffe.ru/SVA/NSM/Semicond/Ge/index.html 10. Casey and Panish, 1978; Sharma and Purohit, 1974; Milnes and Feucht, 1972 11. Chang and Esaki, 1980 12. Sakaki et al., 1977. 13. Ioffe Physical Technical Institute. (2005) NSM Archive - Physical Properties of Semiconductors. 14. Stuart Bowden. (2010) Energy of a Photon | pveducation.org. [Online]. Available: http://pveducation.org/pvcdrom/solar-celloperation/ solar-cell-structure 89 15. Available: http://whatis.techtarget.com/definition/dielectric-constant 16. Streetman, Ben G.; Sanjay Banerjee (2000). Solid State electronic Devices(5th ed.). New Jersey: Prentice Hall. p. 524. ISBN 0-13-025538- 6. 17. Hecht, Eugene (2002). Optics. Addison-Wesley. ISBN 0-321-18878-0. 18. Zh.I.Alferov,“Heterostructures and their applications in optoelectronics”, Akademiia Nauk SSSR, vol. 7, pp.28-40, 1976. 19. Stephen J. Fonash, Solar Cell Device Physics, 2nd Ed., Academic Press, Elsevier, Massachusetts, USA, 2010,ISBN: 978-0123747747. 20. U. S. Department of Energy. (2011) Energy Basics. [Online]. Available:http://www.eere.energy.gov/basics/renewable_energy/pv_cell_ structures.html 21. Peter Wurfel, Physics of Solar Cells: From Principles to New Concepts, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany, 2005, ISBN: 3-527-40428-7 22. Walter Ashley Harrison (1989). Electronic Structure and the Properties of Solids. Dover Publications. ISBN 0-486-66021-4. 23. G. D. Boyd and G. Livescu "Electro-absorption and refraction in Fabry- Perot quantum well modulators: A general discussion", Opt. Quantum Electron., vol. 24, pp.S147 -S165 1992 24. L. J. A. Koster, E. C. P. Smits, V. D. Mihailetchi, and P. W. M. Blom, “Device model for the operation of polymer/fullerene bulk heterojunction solar cells”, Physical Review B, vol. 72, pp. 085205-1 - 085205-9, 2005,DOI: 10.1103/PhysRevB.72.085205 25. T. Tiedje, E. Yablonovitch, G. D. Cody, and B. G. Brooks, “Limiting efficiency of Silicon solar cells”, IEEE Transactions on Electron Devices, vol. ED-31, pp. 711-716, 1984. 26. L.W. James, “III-V Compound heterojunction solar cells”, in Proceedings of IEEE International Electron Devices Meeting, vol. 21, pp. 87-90, Washington, USA, 1975. 27. J.E. Sutherland, and J.R. Hauser, “Optimum bandgap of several III–V heterojunction solar cells”, Solid-State Electronics, vol. 22, no.1, pp.3-5, 1979. 28. B. L. Anderson and R. L. Anderson, "Fundamentals of Semiconductor Devices, " Mc Graw Hill, 2005. 29. European Transactions on Telecommunications Volume 1, Issue 4, pages 433–437, July/August 1990. 90 30. Chapter 2: Semiconductor Fundamentals. Online textbook by B. Van Zeghbroeck]. 31. Stuart Bowden. (2010) Energy of a Photon | pveducation.org. [Online]. Available: http://pveducation.org/pvcdrom/solar-celloperation/ short-circuit-current. 32. Stuart Bowden. (2010) Energy of a Photon | pveducation.org. [Online]. Available: http://pveducation.org/pvcdrom/solar-celloperation/ fill-factor. 33. M. A. Green, K. Emery, Y. Hishikawa, W. Warta, and E. D. Dunlop, “Solar cell efficiency tables (version 39)”,Progress in Photovoltaics: Research and Applications, vol. 20, pp. 12-20, 2012. 34. B. Garcia, Jr., “Indium Gallium Nitride Multijunction Solar Cell Simulation Using Silvaco Atlas”, M. Sc. Thesis, Naval Postgraduate School, Monterey, California, June 2007. 35. F. Dimroth, “High-efficiency solar cells from III-V compound semiconductors”, Physica Status Solidi (c), vol.3, no. 3, pp. 373-379, 2006. 36. M. Meyer, and R.A. Metzger, “Flying high: The Commercial Satellite Industry Convert to Compound Semiconductor Solar Cells”, Compound Semiconductor, vol. 2, no. 6, pp. 22-24, 1996. 37. A. Goetzberger, C. Heblinga, and H. Schockb, “Photovoltaic materials, history, status and outlook”, Materials Science and Engineering: R: Reports, vol. 40, no. 1, pp. 1-46, 2003. 38. J.J. Schermer, G.J. Bauhuis, P. Mulder, E.J. Haverkamp, J. van Deelen, A.T.J. van Niftrik, and P.K. Larsen, “Photon confinement in highefficiency, thin-film III–V solar cells obtained by epitaxial lift-off”, Thin Solid Films, vol. 511, pp. 645 – 653, 2006. 39. Solar Cell Conversion Efficiency Limits, vol. 5,pp.5.1-5.12. 40. J. L. Gray and Michael McLennan. (2008) Adept. [Online]. Available: http://nanohub.org/resources/adept/ 41. A. S. Brown, U. K. Mishra, J. A. Henige, and M. J. Delaney, Journal of Vacuum Science & Technology B, vol.6, no. 2, pp. 678-681, 1988. 42. ECEn IMMERSE Web Team, Brigham Young University. (2009) Energy Gap in III-V Ternary Semiconductors. [Online]. Available: http://www.cleanroom.byu.edu/EW_ternary.phtml 91 43. J. G. Fossum, “Physical operation of back-surface-field silicon solar cells,” IEEE Transactions on Electron Devices, vol. 24, no. 4, pp. 322- 325, Apr. 1977. 44. Md. Sharafat Hossain, Nowshad Amin, M. A. Matin, M. Mannir Aliyu, Takhir Razykov, and Kamaruzzaman Sopian, “A numerical study on the prospects of high efficiency ultra thin ZnxCd1-xS/ CdTe solar cell,”Chalcogenide Letters, vol. 8, no. 3, pp. 263-272, Mar. 2011. 45. Lin Aiguo, Ding Jianning, Yuan Ningyi, Wang Shubo, Cheng Guanggui, and Lu Chao, “Analysis of the p+/p window layer of thin film solar cells by simulation,” Journal of Semiconductors, vol. 33, no. 2, pp. 023002-1 -023002-6 , 2012. DOI:10.1088/1674-4926/33/2/023002 46. C. Lee, H. Efstathiadis, J. E. Raynolds, and P. Haldar, “Twodimensional Computer Modeling of Single Junction a-Si:H Solar Cells”, in IEEE Proceedings of 34th Photovoltaic Specialists Conference, pp. 1118-1122, Philadelphia, USA, 2009. 47. S. Bothra, and J.M. Borrego, “Design of GaAs solar cells with low doped base,” Solar Cells, vol. 28, no. 1, pp.95-102, Jan. 1990. 48. N. Bouarissa, and M. Boucenna, “Band parameters for AlAs, InAs and their ternary mixed crystals”, Physica Scripta, vol. 79, pp. 015701-1 - 015701-7 , 2009, DOI: 10.1088/0031-8949/79/01/015701 49. J.W. Matthews, and A.E. Blakeslee, “Defects in epitaxial multilayers: I. Misfit dislocations”, Journal of Crystal Growth, vol. 27, pp. 118- 125, 1974. 50. P. K. Nayak, G. G. Belmonte, A. Kahn, J. Bisquert, and D. Cahen, “Photovoltaic efficiency limits and material disorder”, Energy and Environmental Science, 2012, vol. 5, pp. 6022-6039, DOI: 10.1039/c2ee03178g 51. P. P. Boix, M.M.Wienk, R. A. J. Janssen, and G.Garcia-Belmonte, “Open-Circuit Voltage Limitation in LowBandgap Diketopyrrolopyrrole- Based Polymer Solar Cells Processed from Different Solvents”, Journal of Physical Chemistry C, vol. 115, pp. 15075–15080, 2011. 52. T. H. Glisson, J. R. Hauser, M. A. Littlejohn, and C. K. Williams, “Energy bandgap and lattice constant contours of III-V quaternary alloys”, Journal of Electronic Materials, vol. 7, no. 1, pp. 1-16, 1978. 53. A.W. Bett , F. Dimroth , G. Stollwerck, and O.V. Sulima, “III-V compounds for solar cell applications”, Applied Physics A, vol. 69, pp. 119–129, 1999, DOI: 10.1007/s003399900062 92 54. Sadao Adachi: "GaAs and Related Materials", World Scientific Publishing Co. 1994 55. G. D. Boyd and G. Livescu "Electro-absorption and refraction in Fabry- Perot quantum well modulators: A general discussion", Opt. Quantum Electron., vol. 24, pp.S147 -S165 1992 56. C.-H. Lin , J. M. Meese and Y.-C. Chang "Optical properties of GaAs/AlxGax-1 As multiple quantum wells versus electric field including exciton transition broadening effects in optical modulators", J. Appl. Phys., vol. 75, no. 5, pp.2618 -2627 1994 57. C.-H. Lin and J. M. Meese "Optical properties of bulk AlxGax-1 As", J. Appl. Phys., vol. 74, no. 10, pp.6341 -6348 1993 58. Κ. Î’. Kahen and J. P. Leburton "Structure variation of the index of refraction of GaAs-AlAs superlattices and multiple quantum wells", Appl. Phys. Lett., vol. 47, pp.508 -510 1985 59. Donald A. Neamen, Semiconductor Physics And Devices, 3rd Ed.,Tata Mcgraw Hill Education Private Limited,2007, pp.596-618 60. K. H. Goetz, D. Bimberg, H. Jurgensen, J. Selders, A.V.Solomonov, G.F.Glinskii, and M. Razeghi, “Optical and crystallographic properties and impurity incorporation of GaxIn1−xAs (0.44<x<0.49) grown by liquid phase epitaxy, vapor phase epitaxy, and metal organic chemical vapor deposition”, Journal of Applied Physics, vol. 54, no.8, pp.4543- 4552, 1983. 61. Lindholm FA, Fossum JG, Burgess EL. Application of the superposition principle to solar-cell analysis IEEE Transactions on Electron Devices. 1979 ;26:165–171 62. Baruch P, De Vos A, Landsberg PT, Parrott JE. On some thermodynamic aspects of photovoltaic solar energy conversion. Solar Energy Materials and Solar Cells. 1995 ;36:201-222. 63. Levy MY, Honsberg CB. Rapid and precise calculations of energy and particle flux for detailed-balance photovoltaic applications. Solid-State . 64. B.Monemar, K.K. Shih, and G.D.Pettit, J. Appl. Phys., 47, no.6, pp.2604- 2613 (1976). en_US
dc.identifier.uri http://hdl.handle.net/123456789/1048
dc.description Supervised by Prof. Dr. Md. Ashraful Hoque, Professor, Co-Supervised by K. A. S. M. Ehteshamul Haque Lecturer Department of Electrical and Electronic Engineering (EEE), Islamic University of Technology (IUT), Board Bazar, Gazipur-1704, Bangladesh. en_US
dc.description.abstract The principle of Energy conservation is -Energy can neither be created nor be destroyed, it can only be converted from one form to another. So energy conversion efficiency is a major issue for photovoltaic cells. Researchers are continuously trying to improve the efficiency level of photovoltaic devices by introducing new materials and advanced concepts. The target is to reach a high efficiency level within affordable cost, which will lead to a mass generation of electricity using photovoltaic devices. In this work, a III-V hetero-junction solar cell has been introduced and characterized, which uses an AlxGa1-xAs/GaAs hetero-junction as the working p-n junction. ADEPT, 1D simulation software was used throughout the whole work for the simulation of light J-V characteristics for different designs. Energy conversion efficiency for each design was calculated from its corresponding light J-V characteristics curve. An illumination level of 1000 W/m2 (AM1.5G standard) and a concentration level of 1 sun was considered for all the simulations in the work. The photovoltaic cell has an non- p structure, where the n-type AlxGa1-xAs layer acts as an base, and the p-type GaAs layer serves as the emitter. The base thickness was kept at 2 μm. Germanium (Ge) substrate (p-doped) was used for the structure. We used ADAPT software for simulating J-V curve. From the curves, we got Open circuit voltage Voc and short circuit current Isc . Then, from these, Fill Factor and efficiency was calculated for each mole fraction of 0 to 1 with a gap of 0.01. And, then generation on electron hole pair was calculated. Then parameters including absorption coefficient α(λ), number of photons φ0 were calculated for a mole fraction of 0 to 1 with a gap of 0.01 . Short circuit current and open circuit voltage were calculated and from that, fill factor and efficiency was calculated for each mole fraction from 0 to 1 with a gap of 0.01. Then, simulated efficiency and theoretical efficiency were plotted against mole fraction from 0 to 1. And then, efficiency loss vs. mole fraction was plotted. en_US
dc.language.iso en en_US
dc.publisher Department of Electrical and Electronic Engineering, Islamic University of Technology (IUT), Board Bazar, Gazipur-1704, Bangladesh en_US
dc.title Efficiency Loss Due To Defects In AlGaAs/GaAs Hetero-junction Solar Cell en_US
dc.type Thesis en_US


Files in this item

This item appears in the following Collection(s)

Show simple item record

Search IUT Repository


Advanced Search

Browse

My Account

Statistics