dc.identifier.citation |
[1] Allen Taflove and Susan C. Hagness, COMPUTATIONAL ELECTRODYNAMICS: THE FINITEDIFFERENCE TIME-DOMAIN METHOD, 3rd ed. 2000 ARTECH HOUSE INC, 2005. [2] M. A. Alsunaidi and A. A. Al Jabr, “A general ADE-FDTD algorithm for the simulation of dispersive structures,” Photonics Technology Letters, IEEE, vol. 21, no. 12, pp. 817–819, 2009. [3] C. A. Balanis, Advanced engineering electromagnetics. Wiley New York, 1989, vol. 205. [4] W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature, vol. 424, no. 6950, pp. 824–830, 2003. [5] J.-P. Berenger, “A perfectly matched layer for the absorption of electromagnetic waves,” Journal of computational physics, vol. 114, no. 2, pp. 185–200, 1994. [6] J.-L. Chabert and ´E. Barbin, A history of algorithms. Springer, 1999. [7] L. Chen, J. Shakya, and M. Lipson, “Subwavelength confinement in an integrated metal slot waveguide on silicon,” Optics letters, vol. 31, no. 14, pp. 2133–2135, 2006. [8] P. Drude, “Zur elektronentheorie der metalle,” Annalen der Physik, vol. 306, no. 3, pp. 566–613, 1900. [9] ——, “Zur elektronentheorie der metalle; II. Teil. galvanomagnetische und thermomagnetische effecte,” Annalen der Physik, vol. 308, no. 11, pp. 369–402, 1900. [10] C. H. Edwards Jr, The historical development of the calculus. Springer, 1979. [11] G. Gay, O. Alloschery, B. V. De Lesegno, C. Odwyer, J. Weiner, and H. Lezec, “The optical response of nanostructured surfaces and the composite diffracted evanescent wave model,” Nature Physics, vol. 2, no. 4, pp. 262–267, 2006. [12] S. Hamdi, W. E. Schiesser, and G. W. Griffiths, “Method of lines,” Scholarpedia, vol. 2, no. 7, p. 2859, 2007. [13] Y. Hao and R. Mittra, FDTD modeling of metamaterials. Artech house, 2009. [14] R. HasanSagor, “Plasmon Enhanced Symmetric Mode Generation in Metal-Insulator-Metal Structure with Kerr Nonlinear Effect,” International Journal of Computer Applications, vol. 50, no. 18, pp. 24–28, 2012. 48 BIBLIOGRAPHY [15] M. Hochberg, T. Baehr Jones, C. Walker, and A. Scherer, “Integrated plasmon and dielectric waveguides,” Optics Express, vol. 12, no. 22, pp. 5481–5486, 2004. [16] A. Hosseini and Y. Massoud, “A low-loss metal-insulator-metal plasmonic bragg reflector,” Optics express, vol. 14, no. 23, pp. 11 318–11 323, 2006. [17] J. T. Kim, J. J. Ju, S. Park, M.-s. Kim, S. K. Park, and S.-Y. Shin, “Hybrid plasmonic waveguide for low-loss lightwave guiding,” Optics express, vol. 18, no. 3, pp. 2808–2813, 2010. [18] K. Lee and Q.-H. Park, “Coupling of surface plasmon polaritons and light in metallic nanoslits,” Physical review letters, vol. 95, no. 10, p. 103902, 2005. [19] S. A. Maier, “Plasmonics: The promise of highly integrated optical devices,” Selected Topics in Quantum Electronics, IEEE Journal of, vol. 12, no. 6, pp. 1671–1677, 2006. [20] N. S. Matthew and O. Sadiku, “Numerical techniques in electromagnetics,” 2ND, EDITION, CRC PRESS, ISBN 0-8493-1395-3, 2001. [21] J.-W. Mu and W.-P. Huang, “Simulation of surface plasmon polariton (SPP) Bragg gratings by complex mode matching method,” Integrated Photonics and Nanophotonics Research and Applications, 2007. [22] ——, “A low-loss surface plasmonic Bragg grating,” Journal of Lightwave Technology, vol. 27, no. 4, pp. 436–439, 2009. [23] T. Onuki, Y. Watanabe, K. Nishio, T. Tsuchiya, T. Tani, and T. Tokizaki, “Propagation of surface plasmon polariton in nanometre-sized metal-clad optical waveguides,” Journal of microscopy, vol. 210, no. 3, pp. 284–287, 2003. [24] H. Raether, Surface plasmons on smooth surfaces. Springer, 1988. [25] A. D. Rakic, A. B. Djuriˇsic, J. M. Elazar, and M. L. Majewski, “Optical properties of metallic films for vertical-cavity optoelectronic devices,” Applied optics, vol. 37, no. 22, pp. 5271– 5283, 1998. [26] J. N. Reddy, An introduction to the finite element method. McGraw-Hill New York, 2006, vol. 2. [27] W. E. Schiesser and G. W. Griffiths, A compendium of partial differential equation models: method of lines analysis with Matlab. Cambridge University Press, 2009. [28] W. E. Schiesser and W. E. Schiesser, The numerical method of lines: integration of partial differential equations. Academic Press San Diego, 1991, vol. 212. [29] D. M. Sullivan, “Frequency-Dependent FDTD Method Using Z-Transform,” Antennas & Propagation, IEEE Transactions on, vol. 40, no. 10, pp. 1223–1230, 1992. [30] A. Zhao, J. Juntunen, and A. Raisanen, “Material independent PML absorbers for arbitrary anisotropic dielectric media,” Electronics Letters, vol. 33, no. 18, pp. 1535–1536, 1997. 49 |
en_US |