dc.identifier.citation |
[1] J Ophir, S K Alam, B Garra, F Kallel, E Konofagou, T Krouskop and T Varghese, Elastography: ultrasonic estimation and imaging of the elastic properties of tissues [2] R. Ahmed, R. Afrin, M. Rubel, K. Islam, C, Jia, D, Metaxas, B. Garra, S. Alam, Comparison of windowing e ects on elastography images: Simulation phantom and in vivo studies, Ultrasonics 66(2016)140-153 [3] F. Shuib, M. Othman, K. Abdulrahim, and Z. Zulki i, Analysis of Motion Detection of Breast Tumor Based on Tissue Elasticity From B-Mode Ultrasound Images Using Gradient Method Optical Flow Algorithm, 978-1-4799-3251-1/13 [4] X. Pan, J. Gao, S. Tao, J. Bai, J. Luo, A two-step optical ow method for strain estimation in elastography Simulation and phantom study, http://dx.doi.org/10.1016/j.ultras.2013.11.010 [5] S. Kaisar Alam, Er Nest J. Feleppa, Mark Ron Deau, Andrew Kalisz Brian S. Garra Ultra- sonic Multi-Feature Analysis Procedure for Computer-Aided Diagnosis of Solid Breast Lesions. ultrasonic imaging 33,17-38 (2011) [6] L. Gao, K. J. Parker, R. M. Lerner and S. F. Levinson, Imaging of the elastic properties of tissue-a review, Ultrasound in Med. & Biol., Vol. 22. No. 8. pp. 959-977. 1996 [7] A. Kumar, J. Ophir and Thomas A. Krouskop, Noise Performance and Signal-To-Noise Ratio of Shear Strain Elastograms, ultrasonic imaging 27, 145-165 (2005) [8] Jonathan Por ee, Damien Garcia, Boris Chayer, Jacques Ohayon, and Guy Cloutier, Noninva- sive Vascular Elastography With Plane Strain Incompressibility Assumption Using Ultrafast Coherent Compound Plane Wave Imaging, ieee transactions on medical imaging, vol. 34, no. 12, december 2015 [9] Jonathan Ophir, Faouzi Kallel, Tomy Varghese, Michel Bertrand, Ignacio Ce' spedes, Hari Pon- nekanti, Elastography: A Systems Approach [10] 1W.Shen,R.Chang,W.Moon,Y.Chou,C.Huang,Breast Ultrasound Computer Aided Diagnosis Using BI-RADS Features, Academic Radiology 14(2007)928-939 [11] Y.Hunang, K.Wang, B.Chen, diagnosis of breast tumors with ultrasonic texture analysis using support vector machines. Neural computing and applications 15 (2)(2006) 164-169 [12] 12. W.Shen,R.Chang,W.Moon,Y.Chou,C.Huang,Breast Ultrasound Computer Aided Diagnosis Using BI-RADS Features ,Academic Radiology 14(2007)928-939 [13] 13. K.Drukker, C.A.Sennett, M.L.Giger, The e ect of image quality on the appearance of lesions on breast ultrasound : implications for CADx, in : Proceedings of SPIE, Medical Imaging 2007 : Computer { Aided Diagnosis, vol. 6514, 2007,p.65141E [14] 14. S. Kaisar Alam, Er Nest J. Feleppa, Mark Ron Deau, Andrew Kalisz Brian S. Garra Ultra- sonic Multi-Feature Analysis Procedure for Computer-Aided Diagnosis of Solid Breast Lesions. ultrasonic imaging 33,17-38 (2011) [15] 15. A novel automatic seed point selection algorithm for breast ultrasound images [16] 16. R.Jemila Rose,S.Allwin Computerized Cancer Detection and Classi cation Using Ultra- sound Images: A Survey International Journal of Engineering Research and Development e-ISSN: 2278-067X, p-ISSN : 2278-800X, www.ijerd.com Volume 5, Issue 7 (January 2013), PP. 36-47 [17] 17. Tao Tan, Jan-Jurre Mordang, Jan van Zelst Computer-aided detection of breast cancers using Haar-like features in automated 3D breast ultrasound. Medical Physics 42, 1498 (2015); doi: 10.1118/1.4914162 30 [18] 18. Karen Drukker, PhD Maryellen L. Giger, PhD Charles E. Metz, PhD Robustness of Com- puterized Lesion Detection and Classi cation Scheme across Di erent Breast US Platforms. 10.1148/radiol.2373041418Radiology 2005 [19] 19. Juan Shan,s. Kaisar Alam, Brian Garra, Yingtao Zhang, Tahira Ahmed Computer-aided Diagnosis For Breast Ultrasound Using computerized Bi-rads Features And Machine Learning Methods. Ultrasound in Med. & Biol., Vol. 42, No. 4, pp. 980{988, 2016 [20] 20. Siegel R, Ma J, Zou Z, Jemal A. Cancer statistics 2014. CA Cancer J Clin.2014;64:9{29 |
en_US |