Parametric Investigation of Induced Oscillation on ARC Welding

Show simple item record

dc.contributor.author Alam, Fahrial
dc.contributor.author Pavel, Mahmudul Hasan
dc.contributor.author Sanin, Ahmed Yousuf
dc.contributor.author Rakib, Nuruzzaman
dc.date.accessioned 2021-10-07T05:42:38Z
dc.date.available 2021-10-07T05:42:38Z
dc.date.issued 2017-11-15
dc.identifier.citation Abramov, V. O., O. V. Abramov, F. Sommer, and D. Orlov. "Properties of Al–Pb base alloys applying electromagnetic forces and ultrasonic vibration during casting." Mater. Lett. 23, no. 1-3 (1995): 17–20. Aendenroomer, A. J. R., and G. Den Ouden. "Weld pool oscillation as a tool for penetration sensing during pulsed GTA welding." Weld. J. 77, no. 5 (n.d.): 181s–187s. Andersen, K., G. E. Cook, R. J. Barnett, and A. M. Strauss. "Synchronous weld pool oscillation for monitoring and control." IEEE Trans. Ind. Appl. 33, no. 2 (1997): 464–471. Aoki, S., T. Nishimura, and T. Hiroi. "Reduction method for residual stress of welded joint using random vibration." Nucl. Eng. Des. 235, no. 14 (2005): 1441–1445. Aoki, S., T. Nishimura, T. Hiroi, and S. Hirai. "Reduction of residual stress of welded joint using local plasticity caused by ultrasonic vibration." Key Eng. Mater. 340-341 (2007): 1455–1460. Babitsky, V. I., A. Kalashnikov, A. Meadows, and A. Wijesundara. "Ultrasonically assisted turning of aviation materials." J. Mater. Process. Technol. 132 (n.d.): 157–167. Balasubramanian, K., D. Kesavan, and V. Balusamy. "Studies on the effect of vibration on hot cracking and grain size in AA7075 aluminum alloy welding." Int. J. Eng. Sci. Technol. 3, no. 1 (2011): 681–686. Biradar, N. S., and R. Raman. "Grain refinement in Al–Mg–Si alloy TIG welds using transverse mechanical arc oscillation." J. Mater. Eng. Perform. 21, no. 11 (2012): 2495–2502. Biradar, N. S., and R. Raman. "Investigation of hot cracking behavior in transverse mechanically arc oscillated autogenous AA2014 T6 TIG welds." Metall. Mater. Trans. A 43A, no. 9 (2014): 3179–3191. Bibliography Chen, K. K., and Y. S. Zhang. "Numerical analysis of temperature distribution during ultrasonic welding process for dissimilar automotive alloys." Sci. Technol. Weld. Join. 20, no. 6 (2015): 522–531. Chen, M. A., C. S. Wu, S. K. Li, and Y. M. Zhang. "Analysis of active control of metal transfer in modi?ed pulsed GMAW." Sci. Technol. Weld. Join. 12, no. 1 (2006): 10–14. Chen, S. -L., and L. -L. Hsu. "In-process vibration-assisted high power Nd:YAG pulsed laser ceramic–metal composite cladding on Al-alloys." Opt. Laser Technol. 30, no. 5 (1998): 263–273. Cui, Y., C. L. Xu, and Q. Han. "Effect of ultrasonic vibration on unmixed zone formation." Scr. Mater. 55, no. 11 (2006): 975–978. Cui, Y., C. Xu, and Q. Han. "Microstructure improvement in weld metal using ultrasonic vibrations." Adv. Eng. Mater. 9, no. 3 (2007): 161–163. Dehmolaei, R., M. Shamanian, and A. Kermanpur. "Effect of electromagnetic vibration on the unmixed zone formation in 25Cr– 35Ni heat resistant steel/alloy 800 dissimilar welds." Mater. Charact. 59, no. 12 (2008): 1814–1817. Dong, H., L. Yang, L.C. Dong, and S. Kou. "Improving arc joining of Al to steel and Al to stainless steel." Mater. Sci. Eng. A 534A (2012): 424–435. Fan, Y. Y., C. L. Yang, S. B. Lin, C. L. Fan, and W. G. Liu. "Ultrasonic wave assisted GMAW." Weld. J. 91, no. 3 (n.d.). Fan, Y., C. Fan, C. Yang, W. Liu, and S. Lin. "Development and preliminary study on the ultrasonic assisted GMAW method." China Weld. 19, no. 4 (2010): 1–5. Gao, H., et al. "Stress relaxation due to ultrasonic impact treatment on multi-pass welds." Sci. Technol. Weld. Join. 19, no. 6 (2014): 505–513. Graf, S., G. Staupendahl, C. Seiser, B. -J. Meyer, and F. A. Muller. "Enhanced melt pool stirring in welding with dynamic polarised laser beam." Sci. Technol. Weld. Join. 15, no. 3 (2010): 208–212. Bibliography Grill, A. "Effect of arc oscillations on the temperature distribution and microstructure in GTA tantalum welds." Metall. Trans. B 12B, no. 4 (1981): 667–674. Hirata, Y., K. Tsujimura, B. Y. B. Yudodibroto, M. J. M. Hermans, and I. M. Richardson. "Modeling of molten drop oscillation in gas shielded metal arc welding." Mater. Sci. Forum 539–543 (2007): 3973–3978. Huang, Z., M. Lucas, and M. J. Adams. "Influence of ultrasonics on upsetting of a model paste." Ultrasonics 40, no. 1-8 (2002): 43–48. Hussein, A. R., N. A. A. Jail, and A. R. Abu Talib. "Improvement of mechanical welding properties by using induced harmonic vibration." J. Appl. Sci. 11, no. 2 (2001): 348–353. Jimma, T., et al. "An application of ultrasonic vibration to the deep drawing process." J. Mater. Process. Technol. 80-81 (1998): 406–412. Jones, L. A., T. W. Eagar, and J. H. Lang. "Investigations of drop attachment control in gas metal arc welding." Proc. 3rd Int. Conf. on Trends in welding science and technology. Gatlinburg, TN, USA, june 1992. 1009–1013. Ju, J., Y. Suga, and K. Ogawa. "Penetration control by monitoring molten pool oscillation in TIG arc welding." Proc. 12th Int. Offshore and Polar Engineering Conf. Kitakyushu, Japan, May 2002. 241–246. Kim, B. J., Y. R. Son, J. O. Yun, and J. S. Lee. "Residual stress relief and redistribution of welded metals by vibratory stress relaxation." Mater. Sci. Forum 580-582 (2008): 419–423. Kishore Babu, N., and C. E. Cross. "Grain refinement of AZ31 magnesium alloy weldments by AC pulsing technique." Metall. Mater. Trans. A 43A, no. 11 (2012): 4145–4154. Kou, S., and Y. Le. "Grain structure and solidification cracking in oscillated arc welds of 5052 aluminum alloy." Metall. Trans. A 16A, no. 7 (1985): 1345–1352. Krajewski, A., W. Wlosin ´ski, T. Chmielewski, and P. Kolodziejczak. "Ultrasonic-vibration assisted arc-welding of aluminum alloys." Bull. Pol. Acad. Sci. Tech. Sci. 60, no. 4 (2012): 841–852. Bibliography Kuo, C. W., et al. "Preferred orientation of inconel 690 after vibration arc oscillation welding." Mater. Trans. 49 (2008): 688–690. Lee, C. H., G. C. Jang, H. C. Park, and K. H. Chang. "Effect of vibration during welding on the fatigue strength of structural steel weldments." Solid State Phenom. 124–126 (2007): 1329–1332. Li, Y., and K. Shen. "The effect of melt vibration on polystyrene melt flowing behavior during extrusion." J. Macromol. Sci. B 47, no. 6 (2008): 1228–1235. Lim, Y. C., et al. "Effect of magnetic stirring on grain structure refinement. Part 2 – nickel alloy weld overlays." Sci. Technol. Weld. Join. 15, no. 5 (2010): 400–406. Liu, A., X. Tang, and F. Lu. "Arc profile characteristics of Al alloy in double-pulsed GMAW." Int. J. Adv. Manuf. Technol. 65 (2013): 1–7. Liu, X. C., C. S. Wu, and G. K. Padhy. "Improved weld macrosection, microstructure and mechanical properties of 2024Al-T4 butt joints in ultrasonic vibration enhanced friction stir welding, Sci." Technol. Weld. Join. 20, no. 4 (2015): 345–352. Lu, Q., L. Chen, and C. Ni. "Effect of vibratory weld conditioning on welded valve properties." Mech. Mater. 40, no. 7 (2008): 565–574. Lu, Q., L. Chen, and C. Ni. "Improving welded valve quality by vibratory weld conditioning." Mater. Sci. Eng. A 457A, no. 1-2 (2007): 246–253. Mahajan, S., N. S. Biradar, R. Raman, and S. Mishra. "Effect of mechanical arc oscillation on the grain structure of mild steel weld metal." Trans Ind. Inst. Met. 65, no. 2 (2012): 171–177. Maruo, H., and Y. Hirata. "Natural frequency and oscillation modes of weld pools. 1st report: weld pool oscillation in full penetration welding of thin plate." Weld. Int. 7, no. 8 (1993): 614–619. Matsuda, F., H. Nakagawa, K. Nakata, and R. Ayani. "Effect of electromagnetic stirring on weld solidification structure ofaluminium alloys (report I) – investigation on GTA weld metal of thin sheet." Trans. JWRI 7, no. 1 (1978): 111–127. Bibliography Matsui, H., and S. Shionoya. "Reduction of blowholes by vibration of the molten pool in arc welding of galvanised carbon steel sheet." Weld. Int. 12, no. 12 (1998): 959–965. Matsui, H., T. Chiba, and K. Yamazaki. "Detection and amplification of the molten pool natural oscillation in consumable electrode arc welding." Weld. Int. 28 (2014): 5–12. Methong, T., and B. Poopat. "The effect of ultrasonic vibration on properties of weld metal." Key Eng. Mater. 545 (2013): 177–181. Mousavi, S. A. A. A., H. Feizi, and R. Madoliat. "Investigations on the effects of ultrasonic vibrations in the extrusion process." J. Mater. Process. Technol. 187-188 (2007): 657–661. Munsi, A. S. M. Y., A. J. Waddell, and C. A. Walker. "Modifcation of welding stresses by flexural vibration during welding." Sci. Technol. Weld. Join. 6, no. 3 (2001): 133–138. Munsi, A. S. M. Y., A. J. Waddell, and C. A. Walker. "Vibratory weld conditioning — the effect of rigid body motion vibration during welding." Strain 35, no. 4 (1999): 139–143. Munsi, A. S. M. Y., A. J. Waddell, and C. A.r Walke. "The effect of vibratory stress on the welding microstructure and residual stress distribution." Proc. IMechE L 215L, no. L2 (2001): 99–111. Nie, K. B., X. J. Wang, K. Wu, X. S. Hu, M. Y. Zheng, and L. Xu. "Microstructure and tensile properties of micro-SiC particles reinforced magnesium matrix composites produced by semisolid stirring assisted ultrasonic vibration." Mater. Sci. Eng. A 528, no. 29-30 (2011): 8709–8714. P, T. S., and S. Anand. "Effects of longitudinal vibration on hardness of the weldments." ISIJ Int. 33, no. 12 (1993): 1265–1269. Pal, K., and S. Pal. "Effect of pulse parameters on weld quality in pulsed gas metal arc welding: a review." J. Mater. Eng. Perform. 20, no. 6 (2011): 918–931. Pilyushenko, V. L., V. A. Belevitin, Y. V. Pettik, E. S. Klimenko, and I. P . Degtyarenko. "The influence of vibration treatment on the structure and properties of iron and steel castings." Chem. Petrol. Eng. 28, no. 6 (1992): 401–402. Bibliography Prihandana, G. S., M. Mahardika, M. Hamdi, Y. S. Wong, and K. Mitsui. "Effect of micro-powder suspension and ultrasonic vibration of dielectric fluid in micro-EDM processes – Taguchi approach." Int. J. Mach. Tools Manuf. 49, no. 12-13 (2009): 1035–1041. Pucko, B. "Charpy toughness of vibrated microstructures." Metalurgija 44, no. 2 (2005): 103–106. Pucko, B. "Effect of vibratory weld conditioning on weld impact toughness." Mater. Manuf. Processes 24, no. 7-8 (2009): 766–771. Pucko, B., and V. Gliha. "Charpy toughness and microstructure of vibrated weld metal." Sci. Technol. Weld. Join. 11, no. 3 (2006): 289–294. Pucko, B., and V. Gliha. "Effect of vibration on weld metal hardness and toughness." Sci. Technol. Weld. Join. 10, no. 3 (2005): 335–338. Qi, H., YuanJ., and T. Xie. "Investigations on the effects of ultrasonic vibrations in the wire drawing." Ultrasonics Symposium, 2008. IUS 2008. IEEE (IEEE), November 2008: 2134–2137. Rao, S. R. K., G. M. Reddy, M. Kamaraj, and K. P. Rao. "Grain refinement through arc manipulation techniques in Al–Cu alloy GTA welds." Mater. Sci. Eng. A 404A, no. 1-2 (2005): 227–234. Renwick, R. J., and R. W. Richardson. "Experimental investigation of GTA weld pool oscillations." Suppl. Weld. J., 1983: 29–35. S, T. "Effects of oscillation on impact property of weldments." ISIJ Int. 39, no. 8 (1999): 809–812. S., T. "Effects of transverse oscillation on tensile properties of mild steel weldments." ISIJ Int. 39, no. 6 (1999570–574). Shukla, D. P., D. B. Goel, and P. C. Pandey. "Effect of vibration on the formation of porosity in aluminum alloy ingots." Metall. Trans. B 11B, no. 1 (1980): 166–168. Singh, J., G. Kumar, and N. Garg. "Influence of vibrations in arc welding over mechanical properties and microstructure of buttwelded-joints." Int. J. Sci. Technol. 2, no. 1 (2012): 1–6. Skelton, R. C. "Turning with an oscillating tool." Int. J. Mach. Tool Des. Res. 8, no. 4 (1968): 239–259. Bibliography Sorensen, C. D., and T. W. Eagar. "Measurement of oscillations in partially penetrated weld pools through spectral analysis." J. Dyn. Syst. Meas. Contr. 112 (1990): 463–468. Sorensen, C. D., and T. W. Eagar. "Modeling of oscillations in partially penetrated weld pools." J. Dyn. Syst. Meas. Contr. 112 (1990): 469–474. Starling, C. M. D., Marques, P. V., and P. J. Modenesi. "Statistical modelling of narrow-gap GTA welding with magnetic arc oscillation." J. Mater. Process. Technol. 51, no. 1-4 (1995): 37–49. Sun, Q., S. Lin, C. Yang, Y. FanY, and G. Zhao. "The arc characteristic of ultrasonic assisted TIG welding." China Weld. 17, no. 4 (2008): 6. Sundaresan, S., and G. D. J. Ram. "Use of magnetic arc oscillation for grain re?nement of gas tungsten arc welds in a–b titanium alloys." Sci. Technol. Weld. Join. 4, no. 3 (1999): 151–160. Tewari, S. P. "Influence of longitudinal oscillation on tensile properties of medium carbon steel welds of different thickness." Thammasat Int. J. Sci. Technol. 14, no. 4 (2009): 17–27. Tewari, S. P., and A Shanker. "Effects of longitudinal vibration on the mechanical properties of mild steel weldments." Proc. IMechE B 207B, no. 3 (1993): 173–177. Tewari, S. P., and A. Shanker. "Effects of longitudinal vibration on tensile properties of weldments." Weld. J. 73 (1994): 11. W, W. "Mechanical behavior of vibration-arc-welded alloy 690." Mater. Trans. JIM 40, no. 12 (1999): 1456–1460. Wang, J. J., and X. O. Hong. "Research on twin-arc TIG welding with ultrasonic excitation and its effect to weld." Key Eng. Mater. 450 (2010): 300–303. Wang, J., J. Zhu, P. Fu, R. Su, W. Han, and F. Yang. "A swing arc system for narrow gap GMA welding." ISIJ Int. 52, no. 1 (n.d.): 110-114. Watanabe, T., M. Shiroki, A. Yanagisawa, and T. Sasaki. "Improvement of mechanical properties of ferritic stainless steel weld metal by ultrasonic vibration." J. Mater. Process. Technol. 210, no. 12 (2010): 1646–1651. Bibliography Weber, H., J. Herberger, and R. Pilz. "Turning of machinable glass ceramics with an ultrasonically vibrated tool." CIRP Ann. 33, no. 1 (1984): 85–87. Wu, C. S., M. A. Chen, and S. K. Li. "Analysis of excited droplet oscillation and detachment in active control of metal transfer." Comput. Mater. Sci. 31, no. 1-2 (2004): 147–154. Wu, W. "Influence of vibration frequency on solidifcation of weldments." Scr. Mater 42, no. 7 (2000): 661–665. Wu, W. "Mechanical behavior of the precision component after synchronous vibratory joining." 5650 (2005): 438–445. Xiao, Y. H., and G. den Ouden. "Weld pool oscillation during GTA welding of mild steel." Weld. J. 72, no. 8 (1993). Xiao, Y., and G. Den Ouden. "A study of GTA weld pool oscillation." Weld. J. 1969, no. 8 (1990): S289–S293. Xu, C., G. Sheng, H. Wang, and X. Yuan. "Reinforcement of Mg/Ti joints using ultrasonic assisted tungsten inert gas welding–brazing technology." Sci. Technol. Weld. Join. 19, no. 8 (2014): 703–707. Xu, H., X. Jian, T. T. Meek, and Q. Han. "Ultrasonic degassing of molten aluminium under reduced pressure’, in ‘Light metals’, (ed. H. Kvande)." The Minerals, Metals & Materials Society, 2005: 915–919. Xu, J. J., L. G. Chen, and C. Z. Ni. "Effects of vibratory weld conditioning on residual stresses and transverse contraction distortions in multipass welding." Sci. Technol. Weld. Join. 11, no. 4 (2006): 374–378. Xu, J. J., L. G. Chen, and C. Z. Ni. "Low stress welding technology without post-weld heat treatment." Mater. Sci. Technol. 25, no. 8 (2009): 976–980. Xu, J., L. Chen, and C. Ni. "Effect of vibratory weld conditioning on the residual stresses and distortion in multipass girth-butt welded pipes." Int. J. Pres. Ves. Pip. 84, no. 5 (2007): 298–303. Bibliography Xu, M. G., J. H. Zhang, Y. Li, Q. H. Zhang, and S. F. Ren. "Material removal mechanisms of cemented carbides machined byultrasonic vibration assisted EDM in gas medium." J. Mater. Process. Technol. 209, no. 4 (2009): 1742–1746. Yamamoto, H., S. Harada, T. Ueyama, S. Ogawa, F. Matsuda, and K. Nakata. "Beneficial effect of low frequency pulsed MIG welding on grain refinement of weld metal and improvement of solidification crack susceptibility for aluminium alloy." Weld. Int. 7, no. 8 (1993): 593–598. Ye, Y., X. Li, J. Kuang, Y. Geng, and G. Tang. "Effects of electropulsing assisted ultrasonic impact treatment on welded components." Mater. Sci. Technol., 2015. Yudodibroto, B. Y. B., M. J. M. Hermans, Y. Hirata, G. den Ouden, and I. M. Richardson. "Pendant droplet oscillation during GMAW." Sci. Technol. Weld. Join. 11, no. 3 (2006): 308–314. Zhang, C., M. Wu, H. Hao, and Z. Han. "Research on resonance mechanism of arc-ultrasonic." 525–528 16, no. 5 (2009): 525–528. Zhang, S. -S., and Z. -D. Zou. "Effects of applied magnetic field on twin-wire indirect arc shapes." Front. Mater. Sci. China 4, no. 3 (2010): 321–324. Zhu, Z. Q., L. Chen, and D. Rao. "Relieving welding residual stress by applying vibratory weld conditioning." Mater. Sci. Forum 490-491 (2005): 475–480. en_US
dc.identifier.uri http://hdl.handle.net/123456789/1121
dc.description Supervised by Dr. Mohammad Ahsan Habib, Department of Mechanical and Chemical Engineering (MCE), Islamic University of Technology (IUT), Board Bazar, Gazipur-1704, Bangladesh. en_US
dc.description.abstract Welding is one of the important processes in mechanical engineering. In engineering sector, welding is a common phenomenon. Now-a-days, production time is an important factor in industrial sector because every industries is very competitive with each other. At the same time, maintaining quality of the product is necessary. For maintaining quality of joining process, there must be some changes in regular welding process. Normally, regular welding consumes lots of time. According to the research in welding process, it has been found that oscillation can improve mechanical properties of the joining section. However, welding joint quality varies with different ranges of parameters in different conditions. This study has been performed to analyze those ranges of parameters in some selected conditions. Here are some input parameters like vibration amplitude, vibration frequency, welding speed and electrode angle are selected to analyze the variation in welded joint. For analyzing the results, output parameters – hardness, bending strength, deposition rate and dilution are calculated. It has been found that if all input parameters are kept in a selected range then output parameters – hardness, bending strength, deposition rate and dilution increase than regular case. Therefore, it can be seen that welding process assisted by oscillation increases production rate as well as quality in high welding speed. After all, oscillation affects all of the major mechanical properties, which gives strength to the joining section in a welding process. en_US
dc.language.iso en en_US
dc.publisher Department of Mechanical and Production Engineering (MPE),Islamic University of Technology(IUT), Board Bazar, Gazipur, Bangladesh en_US
dc.title Parametric Investigation of Induced Oscillation on ARC Welding en_US
dc.type Thesis en_US


Files in this item

This item appears in the following Collection(s)

Show simple item record

Search IUT Repository


Advanced Search

Browse

My Account

Statistics