dc.identifier.citation |
[1] Yu, Y. H., Lawson, M., Li, Y., Previsic, M., Epler, J., & Lou, J. (2015). Experimental Wave Tank Test for Reference Model 3 Floating-Point Absorber Wave Energy Converter Project (No. NREL/TP--5000-62951). National Renewable Energy Lab.(NREL), Golden, CO (United States). [2] Tanaka, Y., Oko, T., Mutsuda, H., Patel, R., McWilliam, S., & Popov, A. A. (2014, August). An Experimental Study of Wave Power Generation Using Flexible Piezoelectric Device. In The Twenty-fourth International Ocean and Polar Engineering Conference. International Society of Offshore and Polar Engineers. 21 [3] Cornett, A. M. (2008, January). A global wave energy resource assessment. In The Eighteenth International Offshore and Polar Engineering Conference. International Society of Offshore and Polar Engineers. [4] Mørk, G., Barstow, S., Kabuth, A., & Pontes, M. T. (2010, June). Assessing the global wave energy potential. In Proc. of 29th International Conference on Ocean, Offshore and Arctic Engineering, ASME, paper (Vol. 20473). [5] Gunn, K., & Stock-Williams, C. (2012). Quantifying the global wave power resource. Renewable Energy, 44, 296-304. [6] Arinaga, R. A., & Cheung, K. F. (2012). Atlas of global wave energy from 10 years of reanalysis and hindcast data. Renewable Energy, 39(1), 49-64. [7] Iglesias, G., López, M., Carballo, R., Castro, A., Fraguela, J. A., & Frigaard, P. (2009). Wave energy potential in Galicia (NW Spain). Renewable Energy, 34(11), 2323-2333. [8] Iglesias, G., & Carballo, R. (2010). Wave energy and nearshore hot spots: The case of the SE Bay of Biscay. Renewable Energy, 35(11), 2490-2500. [9] Rusu, L., & Soares, C. G. (2012). Wave energy assessments in the Azores islands. Renewable Energy, 45, 183-196. [10] Rusu, L. (2015). Assessment of the wave energy in the Black Sea based on a 15-yearhindcast with data assimilation. Energies, 8(9), 10370-10388. [11] Reikard, G., Robertson, B., Buckham, B., Bidlot, J. R., & Hiles, C. (2015). Simulating and forecasting ocean wave energy in western Canada. Ocean Engineering, 103, 223-236. [12] Lenee-Bluhm, P., Paasch, R., & Özkan-Haller, H. T. (2011). Characterizing the wave energy resource of the US Pacific Northwest. Renewable Energy, 36(8), 2106-2119. [13] Hughes, M. G., & Heap, A. D. (2010). National-scale wave energy resource assessment for Australia. Renewable Energy, 35(8), 1783-1791. [14] Dufour, G., Michard, B., Cosquer, E., & Fernagu, E. (2014). EMACOP Project: Assessment of wave energy resources along France's coastlines. In ICE Conference. [15] Cahill, B. G., & Lewis, T. (2013). Wave energy resource characterisation of the atlantic marine energy test site. International Journal of Marine Energy, 1, 3-15. [16] Atan, R., Goggins, J., & Nash, S. (2016). A Detailed Assessment of the Wave Energy Resource at the Atlantic Marine Energy Test Site. Energies, 9(11), 967. [17] Siddiqui, S., & Qureshi, S. R. (2012). Harnessing Ocean Wave Energy in Pakistan. New Horizons, 6(1), 86. [18] Newman, J. N. (1976). The interaction of stationary vessels with regular waves. In Proceedings of the 11th Symposium on Naval Hydrodynamics. London, 1976. 22 [19] Jones, W. J., & Ruane, M. (1977). Alternative electrical energy sources for Maine. MIT Energy Laboratory. [20] Bae, Y. H., & Cho, I. H. (2013). Characteristics of Heaving Motion of Hollow Circular Cylinder. Journal of Ocean Engineering and Technology, 27(5), 43-50. [21] Beatty, S. J., Buckham, B. J., & Wild, P. (2008, January). Frequency response tuning for a two-body heaving wave energy converter. In The Eighteenth International Offshore and Polar Engineering Conference. International Society of Offshore and Polar Engineers. [22] Budar, K., & Falnes, J. (1975). A resonant point absorber of ocean-wave power. Nature, 256(5517), 478-479. [23] Cho, I. H., & Kim, M. H. (2013). Enhancement of wave-energy-conversion efficiency of a single power buoy with inner dynamic system by intentional mismatching strategy. Ocean Systems Engineering, 3(3), 203-217. |
en_US |