| Login
dc.contributor.author | Hasan, Md. Sayeed Ul | |
dc.contributor.author | Islam, Md. Saiful | |
dc.date.accessioned | 2021-10-07T06:46:32Z | |
dc.date.available | 2021-10-07T06:46:32Z | |
dc.date.issued | 2017-11-15 | |
dc.identifier.citation | 1. Outwater, J. O. (1952). Surface temperatures in grinding. Trans. Asme, 73. 2. Malkin, S. (1974). Thermal Aspects of Grinding: Part 2—Surface Temperatures and Workpiece Burn. Journal of Engineering for Industry, 96(4), 1184-1191. 3. Shaji, S., & Radhakrishnan, V. (2003). Analysis of process parameters in surface grinding with graphite as lubricant based on the Taguchi method. Journal of Materials Processing Technology, 141(1), 51-59. 4. Shaji, S., & Radhakrishnan, V. (2003). Analysis of process parameters in surface grinding with graphite as lubricant based on the Taguchi method. Journal of Materials Processing Technology, 141(1), 51-59. 5. Mohamed Gamal Mekdad, Abdulkareem Sh. Mahdi Al-Obaidi, “Design and Analysis of A Thermo-Acoustic Refrigerator”, EURECA (2013),73-74 6. Nouh, M. A., Arafa, N. M., & Abdel-Rahman, E. (2014). Stack Parameters Effect on the Performance of Anharmonic Resonator Thermoacoustic Heat Engine. Archive of Mechanical Engineering, 61(1), 115-127. 7. Tönshoff, H. K., Karpuschewski, B., & Glatzel, T. (1997). Particle emission and immission in dry grinding. CIRP Annals-Manufacturing Technology, 46(2), 693-695. 55 8. Klocke, F., Schulz, A., Gerschwiler, Κ., & Rehse, M. (1998). Clean manufacturing technologies-The competitive edge of tomorrow?. Journal for Manufacturing Science and Production, 1(2), 77-86.. 9. Bhansali, P. S., Patunkar, P. P., Gorade, S. V., Adhav, S. S., & Botre, S. S. (2015). An overview of stack design for a thermoacoustic refrigerator. International Journal of Research in Engineering and Technology, 4(6), 68-72. 10. Akhavanbazaz, M., Siddiqui, M. K., & Bhat, R. B. (2007). The impact of gas blockage on the performance of a thermoacoustic refrigerator. Experimental thermal and fluid science, 32(1), 231-239. 11. Chattopadhyay, A. B., Paul, S., & Dhar, N. R. (1999). Fast production machining and grinding under clean and eco-friendly environment. In Proceedings of the Workshop on Clean Manufacturing, IEI, India (pp. 21-24). 12. Dhar, N. R., Paul, S., & Chattopadhyay, A. B. (2000, January). Improvement in Productivity and Quality in Machining Steels by Cryogenic Cooling. In Proceedings of the National Conference on Precession Engineering (pp. 247-255). 13. Dhar, N. R., Paul, S., & Chattopadhyay, A. B. (2001). The influence of cryogenic cooling on tool wear, dimensional accuracy and surface finish in turning AISI 1040 and E4340C steels. Wear, 249(10), 932-942. 56 14. Dhar, N. R., Paul, S., & Chattopadhyay, A. B. (2002). Role of cryogenic cooling on cutting temperature in turning steel. Journal of manufacturing science and engineering, 124(1), 146-154. 15. Paul, S., & Chattopadhyay, A. B. (1995). Effects of cryogenic cooling by liquid nitrogen jet on forces, temperature and surface residual stresses in grinding steels. Cryogenics, 35(8), 515-523. 16. Paul, S., & Chattopadhyay, A. B. (1996). The effect of cryogenic cooling on grinding forces. International Journal of Machine Tools and Manufacture, 36(1), 63-72. 17. Paul, S., & Chattopadhyay, A. B. (1996). Determination and control of grinding zone temperature under cryogenic cooling. International Journal of Machine Tools and Manufacture, 36(4), 491-501. 18. Bhattacharya, A., Roy, T. K., & Chattopadhyay, A. B. (1972). Application of cryogenic in metal machining. J. of Institution of Engs, India, 52, 73-81. 19. Uehara, K., & Kumagai, S. (1968). Chip formation, surface roughness and cutting force in cryogenic machining. Ann. CIRP, 17(1), 409-416. 20. Kai, Y. (2012). Sunappu: A Genre of Japanese Photography, 1930–1980. City University of New York. 57 21. Fillippi, A. D., & Ippolito, R. (1970). ‘Face Milling at 180 C. CIRP Ann, 19(1), 399-406. 22. Evans, C., & Bryan, J. B. (1991). Cryogenic diamond turning of stainless steel. CIRP Annals-Manufacturing Technology, 40(1), 571-575. 23. Ding, Y., & Hong, S. Y. (1998). Improvement of chip breaking in machining low carbon steel by cryogenically precooling the workpiece. TRANSACTIONS-AMERICAN SOCIETY OF MECHANICAL ENGINEERS JOURNAL OF MANUFACTURING SCIENCE AND ENGINEERING, 120, 76-83. 24. Economical Cryogenic Milling at http://www.columbia.edu/∼ahl21/ index2.html 25. Wang, Z. Y., & Rajurkar, K. P. (1997). Wear of CBN tool in turning of silicon nitride with cryogenic cooling. International Journal of Machine Tools and Manufacture, 37(3), 319-326. 26. Wang, Z. Y., Rajurkar, K. P., & Murugappan, M. (1996). Cryogenic PCBN turning of ceramic (Si3N4). Wear, 195(1-2), 1-6. 27. Boothroyd, G., & Knight, W. A. (1989). Fundamentals of Machining and Machine Tools, Marcel-Dekker. New York. 58 28. Corballis, M. C. (1998). Evolution of the human mind (Vol. 2, pp. 31-62). Hove,, England: Psychology Press/Lawrence Erlbaum Associates, Inc. 29. Buljan, S. T., & Wayne, S. F. (1989). Wear and design of ceramic cutting tool materials. Wear, 133(2), 309-321. 30. Moore, D. F. (2013). Principles and Applications of Tribology: Pergamon International Library of Science, Technology, Engineering and Social Studies: International Series in Materials Science and Technology (Vol. 14). Elsevier. 31. Putnam, A. A., & Dennis, W. R. (1956). Survey of Organ‐Pipe Oscillations in Combustion Systems. The Journal of the Acoustical Society of America, 28(2), 246-259. 32. Swift, G. W. (1988). Thermoacoustic engines. The Journal of the Acoustical Society of America, 84(4), 1145-1180. 33. Feldman, K. T. (1968). Review of the literature on Rijke thermoacoustic phenomena. Journal of Sound and Vibration, 7(1), 83-89. 34. Ceperley, Peter H. "A pistonless Stirling engine—The traveling wave heat engine." The Journal of the Acoustical Society of America 66.5 (1979): 1508-1513. 35. Ceperley, P. H. (1985). Gain and efficiency of a short traveling wave heat engine. The Journal of the Acoustical Society of America, 77(3), 1239-1244. 59 36. Tominaga, A. (1995). Thermodynamic aspects of thermoacoustic theory. Cryogenics, 35(7), 427-440. 37. Rott, N. (1969). Damped and thermally driven acoustic oscillations in wide and narrow tubes. Zeitschrift für Angewandte Mathematik und Physik (ZAMP), 20(2), 230-243. 38. Rott, N. (1973). Thermally driven acoustic oscillations. Part II: Stability limit for helium. Zeitschrift für Angewandte Mathematik und Physik (ZAMP), 24(1), 54-72. 39. Rott, N. (1975). Thermally driven acoustic oscillations, part III: Second-order heat flux. Zeitschrift für angewandte Mathematik und Physik ZAMP, 26(1), 43-49. 40. Rott, N., & Zouzoulas, G. (1976). Thermally driven acoustic oscillations, part IV: tubes with variable cross-section. Zeitschrift für Angewandte Mathematik und Physik (ZAMP), 27(2), 197-224. 41. Zouzoulas, G., & Rott, N. (1976). Thermally driven acoustic oscillations, part V: Gas-liquid oscillations. Zeitschrift für Angewandte Mathematik und Physik (ZAMP), 27(3), 325-334. 42. Müller, U. A., & Rott, N. (1983). Thermally driven acoustic oscillations, Part VI: Excitation and power. Zeitschrift für Angewandte Mathematik und Physik (ZAMP), 34(5), 609-626. 60 43. Xiao, J. H. (1992). Thermoacoustic theory for cyclic flow regenerators. Part I: Fundamentals. Cryogenics, 32(10), 895-901. 44. Deng, X. H., Hu, X., & Guo, F. Z. (1996). Thermoacoustic network model of regenerator. Cryogenics, 2, 6-13. | en_US |
dc.identifier.uri | http://hdl.handle.net/123456789/1131 | |
dc.description | Supervised by Dr. Anayet U Patwari, Professor, Department of Mechanical and Chemical Engineering (MCE), Islamic University of Technology (IUT), Board Bazar, Gazipur-1704, Bangladesh. | en_US |
dc.description.abstract | Different types of coolant are used in machining process to reduce heat and friction between the tool and the work piece, to improve the surface finishing and to increase tool life. But long term exposure to these kinds of working fluids can present with some health hazards. To eliminate these types of coolant in the manufacturing process, a Thermo Acoustic Refrigerator (TAR) generated air coolant is developed. This technology uses high intensity acoustic waves in a pressurized gas tube to pump heat from one place to other to produce a refrigeration effect. In this study, an electromagnetic loudspeaker is used to generate the acoustic input inside an acoustically insulated tube filled with inert gases inside and with little or almost no moving parts which making the system highly efficient. Cooling effect produced by TAR will be applied in machining process as coolant. The result shows a promising window of application for thermo acoustic refrigerator coolant in machining process. | en_US |
dc.language.iso | en | en_US |
dc.publisher | Department of Mechanical and Production Engineering (MPE),Islamic University of Technology(IUT), Board Bazar, Gazipur, Bangladesh | en_US |
dc.title | Design and Construction of Thermo acoustic Refrigerator for its optimum Performance and Its application in Machining Process | en_US |
dc.type | Thesis | en_US |